W. Wu, S. H. Brongersma, M. V. Hove, and K. Maex, Influence of sruface and grain-boundary scattering on the resisitvity, Appl. Phys. Lett, vol.84, issue.15, pp.2838-2840, 2004.

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller, J. Appl. Phys, vol.97, p.23706, 2005.

A. Todri-sanial, R. Ramos, H. Okuno, J. Dijon, A. Dhavamani et al., A Survey of Carbon Nanotube Interconnects for Energy Efficient Integrated Circuits, IEEE Circuits and Systems Magazine, vol.17, pp.47-62, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01795757

B. Q. Wei, R. Vajtai, and P. M. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Appl. Phys. Lett, vol.79, issue.8, pp.1172-1174, 2001.

S. Berber, Y. Kwon, and D. Tománek, Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett, vol.84, p.4613, 2000.

H. Li, W. Liu, A. M. Cassell, F. Kreupl, and K. Banerjee, LowResistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications-Part I: Process Development, IEEE Trans. Electron Device, vol.60, issue.9, pp.2862-2869, 2013.

C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D. N. Futaba et al., One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite, Nat.Commun, vol.4, p.2202, 2013.

M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber et al., Resonant Electron Scattering by Defects in Single-Walled Carbon Nanotubes, Science, vol.291, p.283, 2001.

, Atomistix Tool Kit, 2016.

Y. Hancock, K. Saloriutta, A. Uppstu, A. Harju, and M. J. Puska, SpinDependence in Asymmetric, V-Shaped-Notched Graphene Nanoribbons, J. Low Temp. Phys, vol.153, pp.393-398, 2008.

A. Naeemi and J. D. Meindl, Compact Physical Models for Multiwall Carbon-Nanotube Interconnects, IEEE Electron Device Lett, vol.27, issue.5, pp.338-340, 2006.