Atoms-to-circuits simulation investigation of CNT interconnects for next generation CMOS technology
Jaehyun Lee, Jie Liang, Salvatore Amoroso, Toufik Sadi, Liping Wang, Asen Asenov, Andrew Pender, Dave Reid, Vihar Georgiev, Campbell Millar, et al.

To cite this version:

HAL Id: lirmm-01795803
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01795803
Submitted on 16 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/147286/

Deposited on: 04 September 2017

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk
Atoms-to-Circuits Simulation Investigation of CNT Interconnects for Next Generation CMOS Technology

Jaehyun Lee1*, Jie Liang2, Salvatore M. Amoroso1, Toufik Sadi1,4, Liping Wang3, Plamen Asenov3, Andrew Pender3, Dave T. Reid3, Vihar P. Georgiev1, Campbell Millar3, Aida Todri-Sanial2, and Asen Asenov1, Fellow IEEE

1School of Engineering, University of Glasgow, Glasgow, Scotland, UK, *Jaehyun.Lee@glasgow.ac.uk
2CNRS-LIRMM, University of Montpellier, Montpellier, France
3Synopsys Inc., Glasgow, Scotland, UK
4Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland

Abstract—In this study, we suggest a hierarchical model to investigate the electrical performance of carbon nanotube (CNT)-based interconnects. From the density functional theory, we have obtained important physical parameters, which are used in TCAD simulators to obtain the RC netlists. We then use these RC netlists for the circuit-level simulations to optimize interconnect design in VLSI. Also, we have compared various CNT-based interconnects such as single-walled CNTs, multi-walled CNTs, doped CNTs, and Cu-CNT composites in terms of conductivity, ring oscillator delay, and propagation time delay.

Keywords—Density Functional Theory (DFT); circuit simulation; hierarchical models; interconnects; carbon nanotubes (CNTs); Cu-CNT composites;

I. INTRODUCTION

Complementary Metal–Oxide–Semiconductor (CMOS) scaling dictates a shrinking in interconnect wiring size, resulting in increased Cu resistivity (mainly due to surface roughness and grain boundary scatterings) and decreased reliability (mainly limited by electro-migration) [1-3]. At the current technology generation, interconnect delay is comparable to transistor delay, which will represent a major limit to next-generation circuit performance [4].

Carbon NanoTubes (CNTs) exhibit small effective transport masses and a nearly one-dimensional (1-D) ballistic transport, which results in high electrical and thermal conductivities. Moreover, very high ampacity (100 times the value of Cu [5]) and excellent mechanical properties make them a promising candidate for replacing Cu interconnects. Manufacturability, process yields and variability of metallic CNT remain major issues [6].

In this work, we present a hierarchical simulation approach to studying of CNT-based interconnect performance [7-9]. The transport properties of CNT interconnects are first evaluated by ab-initio methods. The extracted material properties are then used in 3D TCAD simulations to extract resistance and capacitance (RC) for complex interconnects systems. These interconnect RC netlists are then used in circuit-level simulations for design optimization. The proposed multi-scale simulation flow is illustrated in Fig.1.

II. METHODOLOGY

A. Ab-initio simulation

We have used the Density Functional Theory (DFT) – Non-Equilibrium Green’s Function (NEGF) framework implemented in Atomistix ToolKit (ATK) [10] to obtain physical material parameters such as the ballistic conductance. Firstly, we have performed a geometrical optimization for single-walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs), iodine-doped CNTs and Cu-CNT composites. All atoms are fully relaxed until maximum force becomes less than 0.01 eV/Ang. Fig.2 shows the optimized atomic structures of iodine-doped MWCNT (15,0)(24,0) and Cu-CNT(6,0) composite. In order to minimize the lattice mismatch for the Cu-CNT(6,0) composite, the transport direction of Cu is set to $\langle 112 \rangle$.

After calculating the ballistic conductance (G_{bal}) with the DFT-NEGF approach, a mean free path approximation is adopted to describe the phonon scattering effects. The diffusive conductance (G_{diff}) can be calculated using following equation:

$$G_{diff} = G_{bal} \left(1 + \frac{L}{\lambda} \right)^{-1},$$

where L and λ are the interconnect length and the mean free path, respectively.

The quantum capacitance (C_Q) can also be calculated from the density-of-states (DOS) obtained from the DFT calculations, using the following equation [11]:
where e, k, and T are the elementary charge, Boltzmann constant, and temperature, respectively.

B. TCAD & circuit simulation

A finite-difference approach is adopted to solve the Laplace equations for RC extraction in complex interconnect structures such as the inverter:

$$\forall \psi = 0 \text{ for an insulator}$$

$$\forall k\psi = 0 \text{ for a metal},$$

where ε, k, and ψ are permittivity, conductivity, and potential, respectively.

Fig. 3 shows the 3D TCAD simulation output for a 14nm CMOS inverter highlighting the cross-talk between lines up to the M2 interconnect level. Advanced models for conductivity and capacitance of both Cu and CNT are implemented using ab-initio results. Extracted RC netlists are provided in a SPICE-like format for the next stage.

For the circuit simulation, we have considered C_Q, but the total capacitance of the interconnects (C_W) remains quasi-constant because the classical electrostatic capacitance (C_E) is much lower than C_Q in this technology:

$$C_W = \left(C_Q^{-1} + C_E^{-1} \right)^{-1}. \quad (5)$$

We also considered doping effects that increase the number of conducting channels (N_C). From the DFT simulations, we have found that N_C can be increased from 2 up to 8 if somehow the Fermi-level is shifted by ± 1.0 eV relative to the Fermi-level of the pristine CNT. N_C can be obtained from G_{bal}:

$$N_C = \frac{G_{bal}}{G_{bal}} \quad (6)$$

where G_Q is the quantum conductance.

III. SIMULATION RESULTS

The calculated ballistic conductance and quantum capacitance are summarized in Table 1. The former was normalized to the cross-sectional area, and the latter to the area and length. In this study, the area of CNTs is assumed to be

$$A = \frac{\pi}{2} (D_{CNT} + d_{VW})^2. \quad (7)$$

where the van der Waals distance (d_{VW}) is 0.34 nm and D_{CNT} is the diameter of CNT. As can be seen from this table, G_{bal} of CNTs is smaller than those of bulk Cu. It means that although CNTs have ideally zero effective masses (high mobility), the resistance is still larger than bulk Cu. In terms of the capacitance, however, it is obvious that CNTs have a clear advantage.

<table>
<thead>
<tr>
<th>Material</th>
<th>Ballistic Conductance (mS/nm²)</th>
<th>Quantum Capacitance (aF/nm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWCNT(24,0)</td>
<td>0.033</td>
<td>0.132</td>
</tr>
<tr>
<td>Doped</td>
<td>0.054</td>
<td>0.251</td>
</tr>
<tr>
<td>MWCNT (15,0)(24,0) doped</td>
<td>0.065</td>
<td>0.206</td>
</tr>
<tr>
<td></td>
<td>0.089</td>
<td>0.418</td>
</tr>
<tr>
<td>Cu-CNT(6,0) composite</td>
<td>0.582</td>
<td>4.743</td>
</tr>
<tr>
<td>Bulk Cu [11-2]</td>
<td>0.785</td>
<td>6.110</td>
</tr>
</tbody>
</table>
To enhance the ballistic conductance of CNTs, we have considered the MWCNTs, the doped CNTs, and Cu-CNT composites. Generally, MWCNTs have higher G_{bal} and C_0 than SWCNTs when they have the same d_{CNT}. This is because each shell of MWCNTs is independent, and reducing the empty space inside the tube allows the conducting channel to be used more efficiently. In the case of the iodine-doped CNTs, DOS and the number of conducting channel near the Fermi-level increases as can be seen in Fig. 5 thanks to the Fermi-level shift by dopants. The Cu-CNT composites have the material advantages of both Cu and CNT. They have larger G_{bal} than CNTs, and smaller C_0 than bulk Cu.

Fig. 6 illustrates the dependence of the diffusive conductivity of pristine and iodine-doped CNTs, Cu-CNT composites, and bulk Cu on the interconnect length. When the interconnect length is shorter than 1 μm, bulk Cu, which has the largest value of the ballistic conductance in Table 1, has the largest conductivity. However, when the interconnect length is longer than 1 μm, the iodine-doped MWCNT(15,0)(24,0) shows the best performance because the mean free path of CNTs ($1000 \times d_{\text{CNT}}$ nm) is longer than Cu (40 nm). We have also found that doped SWCNTs and MWCNTs have a larger conductivity than pristine SWCNTs and MWCNTs, respectively, thanks to their large N_c. The Cu-CNT composite interconnects have a higher conductivity than CNTs in the short interconnects ($L < 500$ nm) and a higher conductivity than bulk Cu in the long interconnects ($L > 500$ nm).

Fig. 7 shows the output voltage waveform in an interconnect within a 17-stage ring oscillator. We have compared the ring oscillator delay (ROD) with an ideal material, Cu, and CNTs. In the case of the ideal interconnects, since there is no propagation time delay in the interconnect, ROD is only limited by the CMOS gate delay. As shown in this figure, the CNT interconnect shows a performance closer to the ideal interconnect compared to the Cu interconnect.

Fig. 8 describes the dependence of the propagation time delay ratio of MWCNT interconnects with various d_{CNT}, where d_{CNT} is their outermost shell diameter. The propagation time delay ratio is calculated by the ratio of propagation delay based on the pristine MWCNT [6, 7]. In this study, we assumed that the MWCNT is filled with shells until its diameter is smaller than d_{CNT}, and each shell of the doped MWCNT has the same N_c. As shown in these figures, we have observed that as L increases, doping is more effective in reducing the propagation delay.
Moreover, dopants in MWCNT interconnects with $D_{\text{CNT}}^{\text{max}} = 10$, 14, and 22 nm reduce the propagation delay by 10, 5 and 2 %, respectively, when $L = 600 \, \mu m$. Because increasing $D_{\text{CNT}}^{\text{max}}$ increases the number of shells (N_{sh}) and the total number of the conducting channels ($N_{c}^{\text{total}} = N_{sh} \times N_{c}$), the effect of doping is reduced.

IV. CONCLUSIONS

We have presented a multiscale simulation flow to allow the design-technology co-optimization of CNT-based interconnect technologies. We have benchmarked CNT performances vs. Cu. We have demonstrated the impact of iodine doping and Cu-CNT composites on CNT interconnects performance.

ACKNOWLEDGMENT

This work is supported by EU H2020 CONNECT project under grant agreement No. 688612, http://www.connecth2020.eu/.

REFERENCES

