W. Wu, S. H. Brongersma, M. V. Hove, and K. Maex, Influence of sruface and grain-boundary scattering on the resisitvity, Appl. Phys. Lett, vol.84, issue.15, pp.2838-2840, 2004.

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller, J. Appl. Phys, vol.97, p.23706, 2005.

E. T. Ogaw, K. Lee, V. A. Blaschke, and P. S. Ho, Electromigration Reliability Issues in Dual-Damascene Cu Interconnections, IEEE Trans. Rel, vol.51, issue.4, pp.403-419, 2002.

, International Technology Roadmap for Semiconductors

C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D. N. Futaba et al., One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite, Nat.Commun, vol.4, p.2202, 2013.

A. Todri-sanial, J. Dijon, and A. Maffucci, Carbon Nanotube Interconnects: Process, Design and Applications, 2016.

A. Todri-sanial, R. Ramos, H. Okuno, J. Dijon, A. Dhavamani et al., A Survey of Carbon Nanotube Interconnects for Energy Efficient Integrated Circuits, IEEE Circuits and Systems Magazine, vol.17, pp.47-62, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01795757

A. Naeemi and J. D. Meindl, Compact Physical Models for Multiwall Carbon-Nanotube Interconnects, IEEE Electron Device Lett, vol.27, issue.5, pp.338-340, 2006.

H. Li, W. Yin, K. Banerjee, and J. Mao, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects, IEEE Trans. on Electron Devices, vol.55, issue.6, pp.1328-1337, 2008.

, Atomistix Tool Kit, 2016.

C. Zhan, J. Neal, J. Wu, and D. Jiang, Quantum Effects on the Capacitance of Graphene-Based Electrodes, J. Phys. Chem, vol.119, issue.39, pp.22297-22303, 2015.

, The dependence of the delay ratio of MWCNT interconnects with = a) 10 nm, b) 14 nm, and c) 22 nm on the interconnect length and the number of conducting channel per shell