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Abstract.—This study introduces a new Bayesian technique for molecular dating that explicitly accommodates for uncertainty
in the phylogenetic position of calibrated nodes derived from the analysis of fossil data. The proposed approach thus defines
an adequate framework for incorporating expert knowledge and/or prior information about the way fossils were collected
in the inference of node ages. Although it belongs to the class of “node-dating” approaches, this method shares interesting
properties with “tip-dating” techniques. Yet, it alleviates some of the computational and modeling difficulties that hamper
tip-dating approaches. The influence of fossil data on the probabilistic distribution of trees is the crux of the matter considered
here. More specifically, among all the phylogenies that a tree model (e.g., the birth–death process) generates, only a fraction
of them “agree” with the fossil data. Bayesian inference under the new model requires taking this fraction into account.
However, evaluating this quantity is difficult in practice. A generic solution to this issue is presented here. The proposed
approach relies on a recent statistical technique, the so-called exchange algorithm, dedicated to drawing samples from
“doubly intractable” distributions. A small example illustrates the problem of interest and the impact of uncertainty in the
placement of calibration constraints in the phylogeny given fossil data. An analysis of land plant sequences and multiple
fossils further highlights the pertinence of the proposed approach. [Bayesian inference, land plants, MCMC, molecular
dating.]

INTRODUCTION

Inferring times of divergence between species from
the analysis of genetic and fossil data has led to
spectacular advances in our understanding of evolution.
One of the most striking illustrations is given by
the work of Sarich and Wilson (1967) which led to
a reappraisal of the timing of divergence between
African apes and humans. Still, “molecular estimates”
are generally older than that suggested by the fossil
record (Benton and Ayala 2003). Statistical modeling
of the age of the most recent common ancestor
(MRCA) of extant primates based on the fossil record
points to estimates close to those obtained from
the analysis of molecular data nonetheless (Tavaré
et al. 2002). Still, discrepancies between molecular and
paleontological dates are frequent and are generally
attributed to deficiencies in the models used to infer
divergence times from molecular data (Yang 2006;
Puttick et al. 2016).

Overly simplistic models of substitution rate variation
during the course of evolution are a cause of concern
amongst others. In fact, Bromham et al. (2000) provide
a clear example whereby enforcing a strict molecular
clock leads to inaccurate estimates of divergence times
between rodents and primates. Sanderson (1997) was
the first to propose a statistical framework and a
corresponding inference technique (Sanderson 2002) to
accommodate for the variation of substitution rates
across lineages. Thorne et al. (1998) devised a similar
yet more explicit statistical model of a “relaxed clock”
and based the inference on the posterior distribution of
model parameters.

Thorne et al. (1998) applied Markov Chain Monte
Carlo (MCMC) techniques to Bayesian inference of
hierarchical model parameters in phylogenetics. The
Bayesian approach enjoyed a considerable popularity in
the decades that followed (see dos Reis et al. 2016 for
a recent review). Part of this success comes from the
ease with which new models can be integrated without
affecting the inference techniques (see for instance
the “plug-in” architecture implemented in BEAST2,
Bouckaert et al. 2014).

The first technique that combined fossil and genetic
data in Bayesian molecular dating relied on the so-
called “node-dating” approach. The age of a given
fossil’s stratigraphic range along with its morphological
features are examined in a first step. This analysis
is usually conducted by experts, following a well-
established protocol (Benton and Donoghue 2007;
Parham et al. 2011). As a result, subsets of extant (and
sampled) species are identified that share a MRCA with
one or more fossils. If a particular subset of taxa is
deemed to share its MRCA with more than one fossil,
then only the oldest fossil conveys information about
the minimum, that is younger age of the corresponding
clade. Maximum clade ages are frequently determined
from the age of older fossil deposits that do not
contain the fossil of the clade under scrutiny (Benton
and Donoghue 2007). Despite these clear guidelines,
spectacular failures in properly accommodating for
calibration constraints are still not uncommon (see dos
Reis et al. 2014).

There has been a substantial number of developments
around node-dating techniques and software
implementing these in the last decade or so
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(dos Reis et al. 2016; Kumar and Hedges 2016). Yet,
current approaches have serious limitations. One of
these originates in the mathematics underlying the tree
model, that is the distribution of topology and node
ages, given calibration data. Although it is commonplace
to define a marginal distribution for each calibrated
node, Rannala’s (2016) theoretical investigations indicate
that it is generally not possible to specify a tree model
that “agrees” with these distributions. In other words,
when ignoring genetic data, the marginal distributions
of calibrated node ages as defined by the user differ
from that derived from the joint distribution of ages
given calibration data returned by the MCMC analysis.
A corollary is that the models implemented in several
popular statistical software are in fact distinct from
those intended (Warnock et al. 2015). Beside these
mathematical difficulties, node-dating techniques
lack flexibility in accommodating for uncertainty
associated to fossil data. In particular, it is not always
straightforward to delineate the subset of species a
given fossil shares its MRCA with (see e.g., Sauquet
et al. 2011; Saladin et al. 2017). Yet, in practice, only
one subset of taxa is associated to a given calibration
constraint, thereby overlooking the uncertainty inherent
to the process that translates fossil data into calibration
constraints.

“Tip-dating” approaches avoid some of the difficulties
that hamper node-dating methods by treating fossils as
bona fide taxa. The fossilized birth–death (FBD) process
(Stadler 2010; Didier et al. 2012; Heath et al. 2014), for
instance, belongs to this class of methods as it considers
the phylogenetic position and age of fossils as latent
variables (but see Arcila et al. 2015 for a different
viewpoint). The FBD model accommodates for birth and
death of lineages along with fossilization events in a
unified mathematical framework. The direct ancestor
of each fossil, that is the internal node that connects
the external edge leading to a fossil tip to the rest
of the tree, has to be older than the fossil itself. This
constraint imposes a “hard” younger bound on the age
of this internal node. The corresponding older bound is
determined by the time elapsed between the speciation
event that gave rise to the fossil’s direct ancestor and the
fossilization event itself. The distribution of this time is
determined by the parameters inferred under the FBD
process. The corresponding older bound is thus less
constrained than the younger bound and can be as old
as the (unknown) age of the crown node of the clade that
the fossil calibrates. As a likely consequence, node age
estimates obtained under the FBD model are generally
older than that derived from node-dating techniques
(Grimm et al. 2014; Arcila et al. 2015; Zhang et al. 2016;
Saladin et al. 2017).

The “total-evidence” approach also belongs to
the class of tip-dating methods. It was proposed
in an attempt to analyze genetic sequences along
with morphological characters in a unified statistical
framework (Pyron 2011; Ronquist et al. 2012). The
inferred position of fossil taxa in the phylogeny is
here determined by the similarities of morphological

features displayed by extant and extinct (i.e., fossil)
taxa. While node-dating relies on expert knowledge to
translate fossil data into calibration information, total-
evidence instead tackles this issue using a statistical
modeling approach. Uncertainty around the placement
of calibration constraints is thus dealt with in a
proper probabilistic framework, thereby giving this
tip-dating technique a clear edge on node-dating
approaches. The implementation of the total-evidence
technique proposed by Pyron (2011) and Ronquist
et al. (2012) involved tree generating processes that did
not accommodate for the specificities of fossil taxa.
Gavryushkina et al. (2017) and Zhang et al. (2016)
recently combined the total-evidence approach with
the FBD model in order to draw inference from both
morphological and genetic data under a probabilistic
model that is well suited to the hybrid type of data at
hand.

Current tip-dating techniques have serious limitations
however. First, treating fossils as actual taxa requires
exploring the space of their potential positions
in the phylogeny, making this approach more
computationally intensive compared to node-dating. But
most importantly, modeling morphological character
evolution, as is done in the total evidence approach,
is challenging. Indeed, as opposed to DNA or protein
sequences where the state space is well defined (i.e., the
four nucleotides and the 20 amino-acids for DNA and
protein sequences, respectively), each morphological
feature has its own state space. Correlation between
characters and ascertainment biases (only parsimony-
informative characters are usually collected) are also a
source of concern (dos Reis et al. 2016). Finally, current
tip-dating techniques ignore relevant information about
fossil deposits that ought to contain fossils of the clade
of interest, but do not. As already mentioned, the lack
of a given fossil in a particular fossiliferous horizon
is a clear indicator of the maximum age of a clade
(Benton and Donoghue 2007). Yet, current tree models,
including the FBD, do not accommodate for this type
of evidence while node-dating techniques rely on it, at
least in theory.

This study introduces a new Bayesian dating
technique that alleviates some of the issues currently
hindering both node- and tip-dating approaches.
The new method belongs to the family of node-
dating techniques. Yet, it brings flexibility in handling
uncertainty around fossil data comparable to that
achieved by tip-dating approaches. More specifically,
a given calibration constraint can apply to various
clades with different probabilities. The proposed model
thereby provides a relevant framework to deal with
ambiguities related to the interpretation of fossil data.
I show that the joint distribution of node ages under
the new model belongs to the class of “doubly
intractable” distributions (Murray et al. 2012). Efficient
computational solutions exist to tackle this class of
problems. I present one of them in the context of
molecular dating. An illustration of the proposed
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TABLE 1. Definitions of the main symbols used in this article

Symbol Definition

n Number of taxa
dn Aligned genetic sequences
α Vector of calibration constraints probabilities
� Ranked tree topology
t Vector of internal node ages
θ Vector of tree model parameters
e Vector of calibrated subsets of taxa
i Vector of calibration time intervals

technique on the timing of speciation events in land
plants is also provided.

THEORY

A labeled history or ranked tree is defined as a labeled
tree with temporally ordered internal nodes (Edwards
1970). Let n be the number of taxa and t1 ≥ t2 ≥···tn−1 ≥0
denote the ages of internal nodes from the oldest to the
youngest. t= (t1,...,tn−1) is the vector of these ranked
times. The parameter θ denotes one or more numerical
parameters involved in the definition of the processes
generating the tree and calibration data (e.g., θ :={�,�},
where � and � are the birth and death rates in the birth–
death model with full sampling). � is the ranked tree
topology, that is the ranked tree with information about
the age of internal nodes removed. Let dn denote a set of
n homologous sequences collected for the inference of �
and t.

Fossil data convey information about the age of
the MRCA of subsets of extant species that define a
clade. In what follows, these clades may or may not
be monophyletic. Also, in case the tree topology is
not fixed throughout the inference, the internal node
corresponding to the MRCA of interest may move about.
The age of the oldest fossil sharing one or multiple
apomorphies with this subset of taxa defines the
minimum age of the MRCA in question. The maximum
age of the same MRCA is often derived from the age of
the youngest stratigraphic range that does not contain
any fossil of the clade of interest (Benton and Donoghue
2007).

Let I(k) be the random interval corresponding to
the age range defining the kth calibration constraint.
i(k) denote a particular time interval, that is a value
taken by the random variable I(k). i(k)

− , and i(k)
+ give

the younger and corresponding older bounds for that
interval. Note that I(k) characterizes the age of the MRCA
of a subset of sampled species, which is distinct from
the age of the fossil itself. E(k) is the random subset of
species associated to the kth calibration constraint. e(k)

corresponds to one such subset, that is a realization
of the random variable E(k). In the following, i=
(i(1),...,i(m)) and e= (e(1),...,e(m)) will denote the vectors
of time intervals and subsets of species corresponding

to m calibration constraints. For the sake of brevity,
I will omit the superscript (k) when referring to a
given subset of species and a time interval in some
cases.

The random variables I(k) and E(k) belong to the set of
parameters of the model rather than data. In the context
of interest, fossil data arise as a random variable, noted
as F={F(1),...,F(m)}, whereby F(k) is the set of fossils
that are used to define the kth calibration constraint.
Typically, the value taken by F(k) will correspond to a
series of quantitative or qualitative measurements made
from the analysis of morphological characters found in
one or more fossils and extant taxa. Values taken by
these random variables define the probability of the
different outcomes of I(k) and E(k). In the following, I
will use Pr(e,i|f ,�) instead of Pr(E(k) =e,I(k) = i|F(k) = f ,�)
for the sake of brevity. One may then have Pr(e,i|f ,�)=
�, Pr(e′,i′|f ,�)=1−�, and Pr(e′,i|f ,�)=Pr(e,i′|f ,�)=0,
with 0<�<1. In other words, fossil data suggest here
that a calibration constraint (the kth) applies to the subset
of taxa e (with a MRCA that lived in the time interval
i) with probability �, or to the subset e′ (with time
interval i′) with probability 1−�. In what follows, α will
denote the vector of values of � as introduced above.
The length of this vector corresponds to the number
of calibration constraints, that is m. Since α conveys
all the information from fossil data about calibration
constraints as determined by expert knowledge, it will
replace F in the following. Table 1 provides a summary
of the main mathematical symbols used in this article
and their definitions.

The posterior distribution of model parameters (t, �,
e, i, and θ) given genetic sequences (dn) and fossil data
(α) can be written as follows:

p(t,�,e,i,θ|dn,α)∝Pr(dn|t,�)p(t,�,e,i,θ|α).

The term Pr(dn|t,�) corresponds to the likelihood of
the phylogenetic model given the alignment of genetic
sequences (the average rate at which substitutions take
place along the tree is omitted here for the sake of clarity
of notations). It is evaluated using Felsenstein’s pruning
algorithm (Felsenstein 1981). The term p(t,�,e,i,θ|α)
is the focus of this study. There are multiple ways
to define this posterior density, corresponding to
various modeling assumptions. I propose the following
definition:

p(t,�,e,i,θ|α) :=pT(t,�|θ,e,i)g(e,i|θ,α)f (θ). (1)

f (θ) is the prior density for the tree and calibration model
parameters. Exponential distributions for the birth and
death parameters of the tree model are fairly standard.
The definition of the probability density pT(t,�|θ,e,i)
depends on the tree process and calibration data. More
specifically, this term can be understood as a truncated
density whereby the truncation comes from calibration
constraints and applies to the tree process. Its precise
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definition is the crux of the present study and is
discussed in detail below. Note that the definition above
implies that p(α|θ) :=p(α), that is the likelihood of a given
value of θ does not depend on α. In words, the position
of calibration constraints in the tree and the associated
uncertainty (represented by α) is not influenced by
the tree process parameters (represented by θ). This
assumption is built into the model and amounts to
considering that all the signal in the data about the tree
process parameters is conveyed by the genetic sequences
through the inferred phylogenetic tree, which does not
seem unreasonable.

The density g(e,i|α,θ) is defined as a product over
all calibrations. This term is the part of the model that
incorporates expert knowledge about the uncertainty
of calibration constraints given fossil data. Unlike for
the “product-of-marginals” approach, the assumption of
independence of calibration constraints is sensible here
as the phylogeny is not involved on that level of the
hierarchical model:

g(e,i|α,θ)=
m∏

k=1

Pr(E(k) =e(k),I(k)
+ = i(k)

+ ,I
(k)
− = i(k)

− |�(k)), (2)

where �(k) is the kth element of α while I(k)
+ and I(k)

−
correspond to the younger and older age bounds defined
by I(k). I will often write g(e,i|α) instead of g(e,i|α,θ)
as the density defined above is not a function of θ
by definition. As mentioned before, fossils typically
define precise younger bounds for clade ages while older
bounds are less well known (Benton and Donoghue
2007). This asymmetry can be dealt with by defining the
conditional distribution of the older clade age I(k)

+ |I(k)
−

and the marginal distribution of the younger age I(k)
−

accordingly. The corresponding densities then serve as a
basis for the definition of Pr(E(k) =e,I(k)

+ = i+,I(k)
− = i−|�)

(the subscripts (k) on e, i+, i−, and � are omitted in
this paragraph in a slight abuse of notation). In the
present study, I will mostly focus on the simple case
where Pr(E(k) =e,I(k)

+ = i+,I(k)
− = i−|�)=1, that is there

is no uncertainty in the subset of species and the
corresponding time interval calibrated by the kth fossil
datum. The case where Pr(E(k) =e,I(k)

+ = i+,I(k)
− = i−|�)=�

and Pr(E(k) =e′,I(k)
+ = i′+,I

(k)
− = i′−|�)=1−� with 0<�<1

will also be examined in the setting of a three-taxon data
set. In this situation, the calibration constraint defined
by the kth fossil datum calibrates the subset of species e
in the time interval i with probability � and the subset e′
with time interval i′ with probability 1−�.

The modeling approach proposed above provides a
simple mean to incorporate expert knowledge derived
from the analysis of fossils into the molecular dating
experiment. More sophisticated mechanistic models
such as that described in Tavaré et al. (2002) and
Wilkinson et al. (2010) could be used here instead.
In fact, accounting for relevant assumptions about the
fossilization process and the sampling intensities in

different stratigraphic layers is a useful and potentially
important feature of the technique proposed in this
study.

As stated before, the main focus is on the
probabilistic distribution of the phylogeny given
calibration constraints. The density of interest is given
below:

pT(t,�|θ,e,i)=
{

pT(t|θ)PrT(�)/Zθ if �(t,�,e,i)=1
0 if �(t,�,e,i)=0,

(3)

or simply pT(t,�|θ,e,i)=pT(t|θ)PrT(�)�(t,�,e,i)/Zθ,
where �(t,�,e,i)=1 whenever all calibration constraints
are “satisfied” and 0 otherwise. The kth calibration
constraint is said to be satisfied when the internal node
corresponding to the MRCA of the set of taxa making
up e(k) has an age that falls within the time interval
defined by i(k). If multiple calibration constraints are
associated to a single node, a conservative criterion
applies. The older bound for the age of that node is then
set to the youngest of the older bounds of all calibration
intervals pointing to this node. In a symmetric fashion,
the younger bound is set to the oldest of the younger
bounds of all corresponding calibration intervals. Also,
the distribution on ranked tree topologies with n tips is
uniform under classical tree models (Stadler 2008). The
equality PrT(�)=2n−1/(n!(n−1)!) therefore holds in the
present study, and this probability can be safely ignored
throughout the inference.

Zθ is the normalization factor for the density of
interest. We have:

Zθ =
∑
�

∫
pT(u|θ)PrT(�)�(u,�,e,i)du, (4)

where the sum is over all ranked trees �, the integral
is over all vectors of internal node ages u with no
reference to calibration constraints, and �(u,�,e,i) is
the probability defined above. The value of Zθ is thus
a function of θ. Therefore, it cannot be considered as a
constant that would cancel out in the Metropolis ratio of
a MCMC operator updating θ.

Altogether, the probability density of interest is thus:

p(t,�,e,i,θ|α) := pT(t,�|θ)�(t,�,e,i)
Zθ

g(e,i|α,θ)f (θ).

If one uses g(e,i|α,θ) :=Zθ instead of the definition given
in Equation 2, the above density simplifies to give the
following:

p(t,�,e,i,θ|α) :=pT(t,�|θ)�(t,�,e,i)f (θ). (5)

This expression is in fact similar to that used by
Gavryushkina et al. (2017) in the context of a total-
evidence approach combined to the FBD tree process. It
also corresponds to using uniform priors on calibrated
node ages in the “product-of-marginals” technique
implemented in the BEAST software. This particular
approach thus relies implicitly on substituting g(e,i|α,θ)
with Zθ, which indeed corresponds to the probability
of the calibration constraint given the fossil data under
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the tree process considered. This choice makes perfect
sense from a mathematical and a modeling perspective.
Yet, as shown above, using the tree process to define
the distribution of e,i|α,θ is not a requirement. In
fact, choosing one model instead of the other should
be governed by the way fossil and genetics data are
sampled (see Discussion section). Notwithstanding the
design of the experiment, practical considerations are
also important. Defining g(e,i|α,θ) in a manner that
reflects uncertainty in the translation of fossil data into
calibration constraints is straightforward. The ease with
which expert knowledge can be incorporated in the
model therefore makes this approach appealing from a
practical point of view. In the following, the modeling
approaches defined by Equations 1 and 5 will be referred
to as the “tree-independent” and “tree-dependent”
calibration densities respectively.

A “Doubly Intractable” Problem
If the tree topology is to be estimated, the calculation

of Zθ requires summing over all ranked tree topologies
and, for each of these, integrating over node heights
(see Equation 4). It might not be feasible to enumerate
such topologies for a large number of constraints (see
Gavryushkina et al. 2014) The present study thus uses
a new route to tackle this problem. The proposed
approach relies on efficient numerical techniques that
are relevant to Bayesian inference using MCMC. Below
is a description of one of these techniques, namely the
“exchange algorithm.”

The posterior distribution of model parameters (t, �, θ,
e and i) given genetic sequences (dn) and fossil data (α)
is given below:

p(�,t,e,i,θ|dn,α)=
Pr(dn|t,�)pT(t|θ)PrT(�)�(t,�,e,i)

g(e,i|α)f (θ)
ZθPr(dn)

,

which is rewritten as follows:

p(�,t,e,i,θ|dn,α)= Pr(dn|t,�)
Pr(dn)

h(e,i,α,θ)
fT(t,θ,�,e,i)

Zθ
,

whereby fT(t,θ,�,e,i) :=pT(t|θ)PrT(�)�(t,�,e,i) and
h(e,i,α,θ) :=g(e,i|α)f (θ).

I assume that neither Zθ nor Pr(dn) can be computed.
For that reason, the posterior density of interest can be
considered as a doubly intractable distribution (Murray
et al. 2012). Updating the value of θ using a traditional
Metropolis–Hastings (MH) algorithm is not feasible as
the calculation of the MH acceptance ratio � requires
knowing the values of both Zθ and Zθ′ in the expression
below:

�=min
{

1,
h(e,i,α,θ′)
h(e,i,α,θ)

· pT(t|θ′)
pT(t|θ)

· Zθ

Zθ′
· q(θ|θ′)
q(θ′|θ)

}
, (6)

where θ and θ′ are the current and proposed values
of the parameter respectively and q(·|·) is the proposal
density. One way to circumvent this issue is to introduce

an auxiliary variable, �={u,�}, which is a composite
parameter made of u, a vector of non-negative real
numbers that has length n−1, that is the same as that
of t, corresponding to the number of internal nodes in
the tree, and�, the corresponding ranked tree topology.

The proposed algorithm then relies on the following
joint posterior probability density:

p(�,t,e,i,θ,�,u,θ′|dn,α)

:= Pr(dn|�,t)
Pr(dn)

h(e,i,α,θ)
fT(t,θ,�,e,i)

Zθ
q(θ′|θ)

fT(u,θ′,�,e,i)
Zθ′

,

(7)

which, when marginalizing over �, u and θ′ gives the
posterior density of interest. Consider that the current
instance of the (augmented) model is {�,t,θ,�,u,θ′},
where u and � were obtained by sampling from
fT(·,θ′,·,e,i)/Zθ′ and θ′ was sampled from q(·|θ), in
accordance with the density above. A new instance of
the model is then proposed by swapping θ and θ′. The
proposed state is thus {�,t,θ′,�,u,θ} and the Hastings
ratio for that move is equal to one because the exchange
θ↔θ′ is deterministic. The acceptance ratio is therefore
given by the ratio of the relevant posterior densities:

� = min
{

1,
p(�,t,e,i,θ′,�,u,θ|dn,α)
p(�,t,e,i,θ,�,u,θ′|dn,α)

}
(8)

= min
{

1,
h(e,i,α,θ′)
h(e,i,α,θ)

· pT(t|θ′)
pT(t|θ)

· pT(u|θ)
pT(u|θ′) · q(θ|θ′)

q(θ′|θ)

}
,(9)

which does not require evaluating Z	 nor Z	′ . This
approach corresponds to the “exchange algorithm” first
described in Murray et al. (2012).

The distribution of the auxiliary variables as defined
by the joint posterior density (Equation 7) is determined
by fT(u,θ′,�,e,i)/Zθ′ . In other words, random draws
from the target distribution for u and � could be
obtained through exact simulation under the tree model
with calibration constraints. I was unable to design
a suitable technique for that step unfortunately. It is
nonetheless possible to obtain valid draws from the
relevant distribution using traditional MH. Indeed, for a
given value of θ, the term Zθ cancels out in the Metropolis
ratio and the acceptance ratio for updating the value of
u and � in a MH step is as follows:


=min
{

1,
pT(u∗ |θ)
pT(u|θ)

· q(u,�|u∗,�∗)
q(u∗,�∗|u,�)

}
,

where u and � refer to the state currently occupied by
the chain built in this MCMC-within-MCMC step of
the analysis, while u∗ and �∗ are the proposed states.
New values of (auxiliary) node ages and ranked tree
topologies are proposed using standard operators in
statistical phylogenetics. Therefore, updating values of
� does not present any particular difficulty. In practice,
100 MH steps were taken in order to obtain what was
considered as a valid draw from the target distribution.
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RESULTS

An Example with Three Taxa
It is possible to derive an analytical expression for

the posterior density of model parameters in the special
case where only three taxa are analyzed and sequences
of infinite length are considered. I will use this simple
setting to illustrate the technique proposed in this
study. In particular, differences between the posterior
distributions of tree model parameters derived under
the tree-dependent (Equation 5) and the new tree-
independent (Equation 1) modeling strategies will be
examined. The impact of uncertainty around calibration
constraints will be illustrated afterwards.

Let a, b, and c denote the three taxa. Also, e and e′ are
the subsets of species {a,b} and {a,b,c}, respectively. i and
i′ are two nonoverlapping time intervals [u,v] and [x,y]
such that x>v (i.e., the time point x is older than v).
The MRCAs of {a,b} and {a,b,c} lived in time intervals
[u,v] and [x,y] respectively, without ambiguity, that is
g(e= (e,e′),i= (i,i′)|α)=1.

Because the sequences are of infinite length and a strict
molecular clock with known substitution rate applies,
we have Pr(dn|t,�)=�(t,t∗,�,�∗), where t∗ and �∗ are
the maximum likelihood estimates of node ages and
ranked tree topology.�(t,t∗,�,�∗) is equal to one for t= t∗
and �=�∗, and zero otherwise. The posterior density of
interest takes the following expression:

p(�,t,e,i,θ|dn,α)=
⎧⎨
⎩

pT(�,t|e,i,θ)g(e,i|α)f (θ)/K
if t= t∗ and �=�∗,

0 otherwise.

K is a normalization factor (distinct from Zθ) that ensures
that p(�,t,e,i,θ|dn,α) as defined above is proper. Its
expression is given below:

K =
∫ ∞

0
pT(�∗,t∗|θ,e,i)g(e,i|α)f (θ)dθ. (10)

The expression for pT(�∗,t∗ |θ,e,i) is given by Equation
3. I assume that the tree process is a critical birth–
death model (i.e., birth and death rates are equal) with
parameter θ. The joint density of node ages under this
model is as follows (see Equation 3.19 in Stadler 2008,
with �→�):

pT(t1,t2|θ,n=3)=3! θ

(1+θt1)3
θ

(1+θt2)2 .

Only one ranked tree topology (�∗) has
nonzero probability (see Fig. 1). More precisely
PrT(�)�(t∗,�,e,i)=1 when �=�∗ and PrT(�)�(t∗,�,e,i)=
0 otherwise. In fact, if � 	=�∗, then PrT(�)�(t,�,e,i)=0
for all t. Considering the special case where v<x (i.e.,
the two calibration time intervals do not overlap),
pT(�,t|e,i,θ) is a function of Zθ which is expressed as
follows:

Zθ =
∑
�

∫
pT(t|θ)PrT(�)�(t,�,e,i)dt

FIGURE 1. An example with three taxa. �1, �2, and �3 are the three
ranked tree topologies. �1 corresponds to the maximum likelihood
ranked tree topology (�∗). t1 and t2 are node ages. They also correspond
to the maximum likelihood estimates of these parameters (i.e., if �=�∗,
then t∗1 = t1 and t∗2 = t2). u and v are the younger and older bounds for
the calibration time interval i with e={a,b} the corresponding subset
of taxa being calibrated. x and y are the younger and older bounds
for the calibration interval i′ and e′ ={a,b,c} is the subset of taxa that
defines this calibration. The black disks and open circles indicate the
MRCA of e and e′, respectively. For �2 and �3, the age of the MRCA
for a and b (respectively a, b, and c) cannot fall within its calibration
interval, provided the age of the MRCA of a, b and c (respectively a and
b) is inside its calibration interval. Therefore, PrT(�2)�(t1,t2,�2,e,i)=0
and PrT(�3)�(t1,t2,�3,e,i)=0 for all t1 and t2.

=
∫ y

x

∫ v

u
2

θ

(1+θt1)3
θ

(1+θt2)2 dt2dt1

= θ2(u−v)(θx2 −θy2 +2x−2y)
(θu+1)(θv+1)(θx+1)2(θy+1)2 .

Taking f (θ)∝1, the posterior density for θ is then:

p(θ|dn,α)= pT(t∗ |θ,n=3)
ZθK

, (11)

where Equation 10 gives:

K ∝
∫ ∞

0

pT(t∗ |θ,n=3)
Zθ

dθ.

When ignoring Zθ, that is using the tree-dependent
approach, the posterior density of θ is instead:

p∗(θ|dn,α)= pT(t∗ |θ,n=3)
K∗ (12)

where

K∗ ∝
∫ ∞

0
pT(t∗|θ,n=3)dθ.

Values of K and K∗ were computed for different t∗, u, v,
x, and y using numerical integration routines available
in Maple 17 (http://www.maplesoft.com/).

As mentioned previously, I first consider the case
where there is no uncertainty in calibration constraints
such that g(e= (e,e′),i= (i,i′)|α)=1. Figure 2 shows the
impact of the width of the calibration time interval for
the MRCA of {a,b} on the marginal posterior of θ. While
that width does not affect the tree-dependent densities
(in green), the tree-independent ones (in red) behave
differently. When the calibration constraint is tight
(e.g., u=0.45 and v=0.55), the posterior distribution of
the birth–death parameter is virtually uniform under
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FIGURE 2. Impact of tightening calibration bounds on the posterior distributions of θ using the tree-independent (in red) and the tree-
dependent (in green) models. The values of u and v, defining the calibration time interval for the age of clade {a,b} are given above each plot
while that of t∗1 and t∗2 are set to 100 and 50 time units throughout, respectively. The younger and older bounds for the age of the MRCA of {a,b,c}
are x=90 and y=110, respectively.

the tree-independent scheme. This flattening of the
posterior distribution is expected under that model.
Indeed, among all the possible birth–death trees, one
only considers those where t2 falls within [u,v] (and
t1 within [x,y]). Hence, the data-generating process is
heavily censored here and only a small fraction of all
possible birth–death trees are observable when the time
interval [u,v] is narrow, thereby decreasing the signal
conveyed by the data about θ.

The posterior distribution of θ is not a function of e
and i with the tree-dependent approach (provided the
calibration constraints are fulfilled). The green curves in
the three settings tested in Figure 2 are thus all identical
indeed. The difference of behavior between the two
techniques illustrates the fact that all the information
about θ is conveyed by the tree (i.e., � and t) under the
tree-dependent approach. As already mentioned above,
the tree-independent technique acknowledges instead
that, while � and t conveys information about θ, e, and i
only allow a fraction of all realizations of the tree variable
to be observed. It is not obvious whether one approach
is more relevant than the other since they both tackle the
same problem from two distinct modeling angles (but
see Discussion section).

I next considered the impact of uncertainty around
calibration constraints. The calibrations of the MRCAs
of {a,b} and {a,b,c} correspond here to the time
intervals [u,v] and [x,y] with probability �, whereby
u=1, v=90, x=90, and y=110. Also, with probability
1−�, the two subsets of taxa are calibrated with the
same time interval [u,y]. Let i

′′
denote this last time

interval. We thus have g(e= (e,e′),i= (i,i′)|�)=� and
g(e= (e,e′),i= (i

′′
,i

′′
)|�)=1−�. The proposed calibration

model therefore accommodates for the uncertainty
around the maximum (older) age of the MRCA of {a,b}
and the minimum (younger) age of that of {a,b,c}. In the
next paragraph, I will refer to these two alternatives as
the two-interval and the one-interval scenarios. I will
focus on the interplay between the strength of fossil
evidence for the two-interval scenario and the signal

conveyed by molecular data. If molecular data tend to
push the values of t∗2 upwards (i.e., close to t∗1), then it
favors the one-interval scenario, which may go against
a strong support for the two-interval scenario conveyed
by fossil data (if the value of � is close to one).

Figure 3 gives the posterior probability of model
parameters as a function of t∗2 and �. The contour plot
indicates that � mitigates the impact of molecular data,
as expected, with larger values of this scalar increasing
the support for the two-interval scenario, no matter
how close t∗2 is from t∗1. In other words, if fossil data
strongly suggest that the two-interval scenario is the
most plausible (�>0.8), then the signal conveyed by
molecular data only weakly impacts that belief. For
values of � smaller than ∼0.2, the posterior probability of
the two-interval scenario quickly drops as t∗2 gets closer
to t∗1, conveying the idea that the one-interval scenario is
indeed preferable when both fossil and molecular data
weakly support the two-interval scenario (� small, t∗2
close to t∗1).

THE ORIGINS OF FLOWERING PLANTS

Smith et al. (2010) conducted a thorough analysis of
the timing of speciation in land plants. They used a
nucleotide sequence data set with 154 taxa and three
genes (18S, atpB, and rbcL) totaling 4533 bp. The fossil
data available provide calibration time intervals for
33 sets of taxa. The authors performed two analyses:
one with a maximum age for the origin of eudicots
set to 125 Ma and another without this particular
constraint. Because geographical and morphological
evidence suggest an earlier origin for that clade, this
datum was discarded and the analysis conducted here
focuses on the remaining 32 calibration intervals.

Smith et al. (2010) used the “product-of-marginals”
approach implemented in BEAST 1.4.7. A log-
normal probability density was used to model the
marginal distribution corresponding to each fossil.
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FIGURE 3. Posterior probability of the model parameters for
variable calibration constraints. The contour plot gives the values of
Pr(�= ((a,b),c),t∗1 =100,t∗2 =·,e= ({a,b},{a,b,c}),i= ([u,v],[x,y])|dn,�=
·) as a function of t∗2 and �, with u=1, v=90, x=90 and y=110.

Each distribution was offset by a value corresponding
to the minimum age of each clade (see Table S2 in their
article). These values were used in my own analysis
to define the younger bounds for the ages of the
same clades. The corresponding older bounds are less
straightforward to define as fossil data do not provide
precise information about them. A preliminary analysis
using the 95% quantiles of every lognormal distribution
with mean and standard deviation as determined by the
authors (given in their Table S2) revealed that the timing
of some events (e.g., the origins of Eudicots) was largely
defined by this soft older bound (i.e., increasing the
standard deviation of the lognormal prior distributions
also increased the median posterior ages). I thus elected
to use a less stringent strategy whereby all calibrated
nodes were constrained to be younger than the older
bound of the oldest calibration (corresponding to the
stem age of the clade Tracheophyta). As in the preliminary
analysis, this older bound was given by the 95% quantile
of the corresponding lognormal, giving an age of 452
Ma.

The sequence alignment resulting from the
concatenation of the three genes was analyzed under
the HKY nucleotide substitution model (Hasegawa et al.
1985) and the FreeRate model (Soubrier et al. 2012),
which is a nonparametric mixture model (with three
classes here) that accommodates for the heterogeneity of
rates across sites. Truncated normals were used to model
the distributions of substitution rates on the edges of the
phylogeny. Let wi :=ric be the average substitution rate
on edge i. The parameter c corresponds to the “clock
rate” of substitution which is common to all edges, while
ri corresponds to a multiplicative factor that is specific to
edge i. The value of wi was assumed to be a random draw

from a normal distribution truncated to positive values,
with mode set to c and standard deviation c�. Therefore,
rates are not autocorrelated a priori under this model,
following (Smith et al., 2010) analysis. The parameter
� measures here the deviation from the strict clock
assumption. Its posterior distribution was estimated
from the data. Lastly, the tree process was considered
to be a birth-death model with birth and death
parameters � and �. Complete sampling of lineages was
assumed here since the fraction of sampled lineages
cannot be estimated whenever the birth and death of
lineages are considered as two separate parameters
(Stadler 2009).

Two series of experiments were performed. In the first,
five MCMC analyses were run separately using different
random seeds to initiate the analysis. The values of� and
�were updated using the exchange algorithm, under the
tree-independent model. The second series consisted in
five separate analyses where the same two parameters
were updated using the tree-dependent approach, that
is ignoring the normalization factor Zθ in Equation 6.
The analysis of the trace files produced showed that the
effective sample size for each parameter was generally
well beyond 200. Comparison of the five replicates for
each of the two methods also indicated that the sampling
had systematically converged to the same ranges of
parameter values.

The analysis involving 32 fossils did not reveal any
substantial difference between node ages estimated
under the tree-dependent and tree-independent
techniques. The 95% posterior credibility intervals
for the timing of diversification of angiosperms were
[244;307] and [247;304] Ma, respectively. Similarly, the
origin of eudicots was estimated to have taken place in
[184;240] and [189;243] Ma with these two approaches.
These estimates are older than those reported in Smith
et al. (2010), although the credibility intervals for the
origins of angiosperms reported here overlap with
that reported in their study. Also, when using BEAST
1.7.4 in the same conditions as in Smith et al. (2010),
increasing the standard deviation for every calibration
distribution from 0.5 to 10 except for that of the oldest
fossil leads to node age estimates similar to those
obtained here. This result suggests a high sensitivity of
posterior age estimates to the prior distributions used
for calibration in the Smith et al. (2010) study. Similarly,
Bell et al. (2010) reported younger age estimates for
the origins of angiosperms but only considered tight
calibration intervals in their Bayesian analysis without
clear justification for that choice.

In order to further investigate the impact of the amount
of fossil data available, I randomly picked 16 out of the
32 fossil data points available and ran five independent
repeats of the analyses under the tree-dependent and
tree-independent models in conditions identical to those
used before. The time estimates obtained with the
tree-independent model are noticeably younger than
those returned by the tree-dependent one. Figure 4
shows the posterior distributions and node ages
corresponding to the origins of eudicots, angiosperms
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FIGURE 4. Impact of ignoring Zθ on the inferred timing of speciation in lands plants. Smith et al. (2010) data set was analyzed with a subsample
of 16 fossils (randomly sampled in the full set of 32 fossils). The timing of diversification of land plants, angiosperms and eudicots were estimated
using the “traditional” tree-dependent approach that ignores Zθ (in blue) and the exchange algorithm that implements the tree-independent
technique (in pink).

and land plants. The 95% credibility intervals for these
three events are [159;225], [221;303] and [428;990]
Ma, respectively under the tree-independent model.
Using the tree-dependent approach, the equivalent
intervals are [177;337], [240;448, and [475;1367] Ma.
Substantial differences in the posterior distribution of
the birth parameter are also observed: the 95% credibility
intervals with the tree-independent and the tree-
dependent techniques are [0.006;0.014] and [0.005;0.008]
respectively. Conversely, the posterior distributions of
the death parameter do not show any noticeable
difference between the two approaches.

In conclusion, the analysis using the full set of 32 fossils
does not reveal any obvious difference between node age
estimates using the technique introduced in this study
compared to the traditional tree-dependent approach.
Yet, the analysis based on a reduced number of fossils
gives substantial differences in node age and tree process
parameter estimates. In particular, the tree-independent
approach produces younger node ages compared to that
obtained with the more traditional model. The “new”
estimates thus provide a closer match to the stratigraphic
record, even though the gap between the two is still
considerable. Inference of the birth parameter is also
impacted with a wider credibility interval obtained
under the tree-independent approach, as expected.

DISCUSSION

Hierarchical Bayesian modeling provides a suitable
framework for inferring the timing of evolutionary
events from the joint analysis of molecular and
fossil data. On the first level of the hierarchy,
molecular data convey evidence about the evolutionary
history of sampled species. This history forms the
basis of the second level of the hierarchy whereby
fossil data help disentangling times and rates of
evolution. Although this construction is fairly standard
in statistics, meaningful Bayesian inference requires
proper mathematical modeling of all aspects of the
hierarchy.

The top level of this hierarchy, corresponding to
the probability of the sequence alignment given a
phylogenetic tree, suffers no ambiguity. The lower level,
however, is more difficult to comprehend. Although
the product-of-marginals approach is very popular and
fairly straightforward at first sight, it has conceptual
issues. As already pointed out in Rannala (2016) and
elsewhere (see e.g., Warnock et al. 2011), the distributions
of node ages defined by the tree process with calibration
constraints generally conflict with the user-defined
distributions of ages for specific groups of species,
thereby limiting the relevance of the latter.

The present study relies on a new approach
to accommodate for the effect of fossil data on
the probabilistic distribution of trees generated by
a birth and death process. While the traditional
approach consists in modeling the distribution of
calibration constraints conditional on the underlying
phylogeny, the tree-independent model considers
instead that the distribution of ranked trees is
conditioned on the calibration constraints. This last
approach gives leeway to accommodate for expert
knowledge about the placement of these constraints
in the tree and the associated uncertainty. A given
constraint can apply to several groups of taxa, with
an associated probability distribution. Inference under
this new modeling approach relies on an original
statistical technique that was designed to deal with
doubly intractable distributions. Murray et al. (2012)
recently described a sampling approach—the so-called
“exchange algorithm”—that generates valid random
draws from this type of distribution. This algorithm
involves a modest computational overhead compared to
the standard approach and is relatively straightforward
to implement.

The analysis of a three-taxon data set with sequences
of infinite length shows that the precision with which
the tree process parameters are estimated depends on
the width of the time intervals defining the calibration
constraints. The narrower the time range, the broader
the posterior distribution. This result appears to be
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counter-intuitive at first sight. It is in fact well explained
when examining the underlying experimental design
assumed here. The tree-independent model considers
that the morphological features of the fossil(s) influence
which species are selected for the molecular dating
analysis. The timing of divergence is thus informed by
the calibration time interval, not the other way around.
This time interval does not convey any information about
the rate at which lineages arise or vanish. Instead, it
may reflect the difficulty or ease with which particular
geological layers can be accessed for collecting fossils. In
this context, a short calibration time interval constrains
the species divergence times to occur in a narrow
“window of observation,” thereby explaining the lack
of signal in the data for the tree-process parameters.
In the tree-dependent model, species are selected first
and the sampling of fossil data is conditioned on the
morphological features of the sampled lineages. In
the given example, all the information about the tree-
process parameters is conveyed by the phylogeny in as
sequences are of infinite lengths and the substitution rate
is considered as known. Therefore, fossil data do not play
any role in the estimation of these parameters and the
three posterior distributions obtained under this model
are thus all identical.

The reanalysis of a land plant data set indicates that
the standard product-of-marginals, the tree-dependent
and the tree-independent methods return similar node
age estimates when using comparable priors and a
substantial number of calibration constraints, which
is reassuring. However, noticeable differences between
node age estimates are observed with a smaller number
of calibration constraints. Younger ages are derived
under the tree-independent model compared to the tree-
dependent approach. Although it is not clear whether
this particular observation corresponds to a real trend,
the gap between node ages obtained from fossils and
molecules appears to be smaller here with the tree-
independent technique.

The exchange algorithm relies on simulating the tree
process conditional on time constraints coming from
fossil data. In the present study, this task involved a
series of Metropolis–Hastings steps updating different
components of the model parameters. This approach is
efficient from a computational perspective. Nonetheless,
direct simulation from the generating process would
be preferable. Although generating birth–death or
coalescent trees is straightforward, incorporating time
constraints for some clades in these simulations
is challenging. Efficiently generating random trees
conditional on calibration constraints would also help
testing the correctness of the implementation of Bayesian
samplers (through the comparison of sampled and
simulated tree distributions, ignoring sequence data).
Furthermore, such a generator would also help assessing
the impact of calibration data on divergence time
estimates through simulations.

Finally, the method proposed in this study belongs
to the family of “node-dating” techniques. It does not
rest on stochastic models describing the evolution of

morphological characters for calibrating the molecular
clock. This lesser degree of sophistication compared
to the total-evidence technique can be perceived as
a weakness. Yet, both approaches achieve the same
goal in accounting for the uncertainty in the placement
of calibration constraints in the tree. Moreover, the
technique described here provides a suitable statistical
framework for modeling the occurrence of fossils
across stratigraphic ranges that can accommodate for
the complexities of the underlying fossilization and
sampling processes. It should therefore contribute to
improving the techniques for dating evolutionary events
from the analysis of genetic and fossil data.

SOFTWARE

The model and sampling techniques described in this
article are available in the PhyTime software (Guindon
2013), which is part of the PhyML package available at
https://github.com/stephaneguindon/phyml.
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