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EPIDEMIOLOGY

HIV-1 Full-Genome Phylogenetics of Generalized
Epidemics in Sub-Saharan Africa:

Impact of Missing Nucleotide Characters
in Next-Generation Sequences
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Abstract

To characterize HIV-1 transmission dynamics in regions where the burden of HIV-1 is greatest, the ‘‘Phylogenetics
and Networks for Generalised HIV Epidemics in Africa’’ consortium (PANGEA-HIV) is sequencing full-genome
viral isolates from across sub-Saharan Africa. We report the first 3,985 PANGEA-HIV consensus sequences from
four cohort sites (Rakai Community Cohort Study, n = 2,833; MRC/UVRI Uganda, n = 701; Mochudi Prevention
Project, n = 359; Africa Health Research Institute Resistance Cohort, n = 92). Next-generation sequencing success
rates varied: more than 80% of the viral genome from the gag to the nef genes could be determined for all sequences
from South Africa, 75% of sequences from Mochudi, 60% of sequences from MRC/UVRI Uganda, and 22% of
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sequences from Rakai. Partial sequencing failure was primarily associated with low viral load, increased for
amplicons closer to the 3¢ end of the genome, was not associated with subtype diversity except HIV-1 subtype D, and
remained significantly associated with sampling location after controlling for other factors. We assessed the impact
of the missing data patterns in PANGEA-HIV sequences on phylogeny reconstruction in simulations. We found a
threshold in terms of taxon sampling below which the patchy distribution of missing characters in next-generation
sequences (NGS) has an excess negative impact on the accuracy of HIV-1 phylogeny reconstruction, which is
attributable to tree reconstruction artifacts that accumulate when branches in viral trees are long. The large number of
PANGEA-HIV sequences provides unprecedented opportunities for evaluating HIV-1 transmission dynamics across
sub-Saharan Africa and identifying prevention opportunities. Molecular epidemiological analyses of these data must
proceed cautiously because sequence sampling remains below the identified threshold and a considerable negative
impact of missing characters on phylogeny reconstruction is expected.

Keywords: human immunodeficiency virus, phylogenomics, phylodynamics, HIV-1 molecular epidemiology,
sub-Saharan Africa, PANGEA

Introduction

V iral phylogenetic methods are proving effective in
addressing central questions in HIV-1 epidemiology:

from characterizing continued transmissions in vulnerable
populations1,2 to quantifying their sources of transmission,3,4

and detecting HIV-1 outbreaks in near real time.5 In the past,
these investigations were largely based on partial HIV-1 se-
quences of less than 1,500 nucleotides (nt) in length, obtained
through Sanger sequencing.

To expand the utility of viral phylogenetic methods, sev-
eral consortia are now generating HIV-1 sequence data sets
that span the entire viral genome.6–9 The ‘‘Phylogenetics and
Networks for Generalised HIV Epidemics in Africa’’ con-
sortium (PANGEA-HIV) is in the process of providing more
than 10,000 NGS from partnering cohort sites in sub-Saharan
Africa for a comprehensive evaluation of current HIV-1
transmission dynamics.6

We report the first 3,985 PANGEA-HIV consensus se-
quences that were generated in high throughput at the Well-
come Trust Sanger Institute on the Illumina MiSeq platform,
after automated extraction of viral RNA and amplification
with a universal HIV-1 primer set.10 The sequences are from
diverse settings in sub-Saharan Africa, including cohorts of
the general population at various surveillance sites (Rakai
Community Cohort Study,11 Mochudi Prevention Pro-
ject,12,13 MRC/UVRI Uganda general population and fisher-
folk cohorts14–16), a cohort of female sex-workers (MRC/
UVRI Uganda Good Health for Women17), historical se-
quences from the 1980s, and a cohort of HIV-1 drug-resistant
individuals from northern KwaZulu-Natal in South Africa
(Africa Health Research Institute Resistance Cohort18).

Most PANGEA-HIV consensus sequences from Botswa-
na, South Africa, and MRC/UVRI Uganda cover nearly the
entire viral genome from the gag to nef genes. Sequencing
success rates were considerably lower for samples from the
Rakai Community Cohort and varied substantially across the
genome. Potential reasons for variation in NGS success rates
could be as follows: low viral RNA count at time of sampling;
sample degradation before RNA extraction; failure to extract
viral RNA from plasma or serum samples; failure to amplify
extracted RNA with the universal HIV-1 primer set; and
failure during sequencing or sequence assembly. Our inves-

tigations below indicate that a number of factors, and not only
low serum/plasma HIV-1 RNA loads, were associated with
partial sequencing failure.

Phylogenomic studies across the tree of life highlight that
phylogenies can be accurately reconstructed from sequences
with very high proportions of missing characters.19–25 This
could also be the case for HIV-1 phylogenies. Longer se-
quences of HIV-1 genomes increase phylogenetic accura-
cy,26,27 because more nucleotide characters are available to
resolve internal branches through characters that are uniquely
shared among sets of sequences, and to infer multiple sub-
stitutions between convergent sequences.28

On the contrary, and similar to many other pathogens, the
HIV-1 genome is short (9,719 nt for the reference strain
HXB2, including 5¢- and 3¢-LTR sequences). Thus, the
number of informative characters between full-genome
HIV-1 sequences remains limited, and missing data act by
reducing the number of shared informative characters dis-
proportionally when any two sequences have missing char-
acters at different alignment positions.

In addition, HIV-1 phylogenies from generalized epi-
demics in sub-Saharan Africa are broad and exhibit many
long branches.12,29,30 Indeed, due to the sheer magnitude of
generalized HIV-1 epidemics in sub-Saharan Africa, closely
related sequences are often not available to break long
branches in viral phylogenies,31 although other factors, in-
cluding onward transmission months or years after infection,
also contribute to the presence of long branches.32 When
branches are long, more informative sites are required to
correctly infer phylogenetic relationships, and missing data
could in this context indirectly exacerbate tree reconstruction
artifacts.31,33,34 These considerations suggest that missing
data in HIV-1 sequences could have a substantial negative
impact on tree reconstruction accuracy and subsequent mo-
lecular epidemiological studies, especially in sub-Saharan
African settings where sequence sampling is limited.

To characterize the implications of missing nucleo-
tide characters in PANGEA-HIV sequences on tree recon-
struction accuracy, we conducted simulation studies. An
individual-level transmission and prevention model was
used to generate regional HIV-1 epidemics in populations
of *80,000 individuals, as well as corresponding HIV-1
phylogenies and full-genome sequences.35 Each simulated
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sequence was paired at random with a PANGEA-HIV se-
quence, and missing nucleotide patterns of PANGEA-HIV
sequences were superimposed onto the simulated sequences.
We then tested several tree reconstruction tools in their
ability to re-estimate known HIV-1 phylogenies from par-
tially determined consensus sequences.

These analyses provide insight into the accuracy with
which viral phylogenetic relationships can be reconstructed
from NGS that have missing characters at different positions
in the sequence alignment. Since all molecular epidemio-
logical investigations rely on accurately reconstructed viral
phylogenies, our findings are fundamental to PANGEA-HIV
and analogous full-genome viral sequencing efforts.

Materials and Methods

Next-generation sequencing

Serum and plasma samples from PANGEA-HIV partici-
pating cohort sites in Uganda and Botswana were shipped to
University College London Hospital, London, United King-
dom, for automated RNA sample extraction on QIAsymph-
ony SP workstations with the QIAsymphony DSP Virus/
Pathogen Kit (Cat. No. 937036, 937055; Qiagen, Hilden,
Germany), followed by one-step reverse transcription poly-
merase chain reaction (RT-PCR) as described in Ref.10

Amplification was assessed through gel electrophoresis on a
fraction of samples, and samples were shipped to the Well-
come Trust Sanger Institute, Hinxton, United Kingdom.

From plasma samples from the resistance cohort, RNA
was extracted at the Africa Health Research Institute in
Durban, South Africa, using the QIAamp Viral Mini kit (Cat.
No 52906; Qiagen), followed by one-step RT-PCR as de-
scribed in Ref.10 Amplicons were purified using the QIA-
quick Purification kit (Cat. No. 28106; Qiagen) and shipped
to the Wellcome Trust Sanger Institute.

Next-generation sequencing was performed as described
previously on the Illumina MiSeq platform in the DNA pipe-
lines core facility at the Wellcome Trust Sanger Institute.36

HIV-1 consensus sequences

Next-generation sequencing output was assembled with
the SHIVER sequence assembly pipeline.37 Briefly, short
reads were mapped to a de novo reference constructed using
contigs (that were assembled from the short reads with
IVA38) and a set of standard whole-genome reference se-
quences.39 Using, where available, the contigs for mapping
increased accuracy in the constructed consensus sequences
compared to using standard reference sequences alone. Gaps
between contigs in the reference sequence were filled with
a ‘‘best guess’’ standard reference sequence, giving those
short reads that failed to result in contigs a chance to be
mapped and produce additional consensus sequence. The
SHIVER pipeline thus combined de novo assembly and read
mapping to maximize accuracy and the length of the genome
that can be assembled.

The consensus sequence of mapped reads was determined
by the most frequent read call at each site. To mitigate the
effects of low-level contaminant reads, sites with less than 10
mapped reads were classified as undetermined. Consensus
sequences were trimmed to the viral genome from HIV-1 gag
(p17) to HIV-1 nef. This process yielded consensus se-

quences that were each aligned against a de novo reference
sequence and a set of standard reference sequences, in this
case the Los Alamos HIV-1 sequence compendium 2012.39

To construct alignments of HIV-1 consensus sequences,
insertions in consensus sequences were excised if they
were not present in the standard reference sequences. The
resulting alignment was uncertain in that gap characters
which flank missing data characters could represent a dele-
tion or a missing nucleotide as in ‘‘AC-GT-??–?-ACGT.’’
These sites were set to missing nucleotide characters: ‘‘AC-
GT???????ACGT.’’

Statistical analysis of factors associated with partial
sequencing failure

To evaluate factors associated with partial sequencing fail-
ure, we focused on four genomic regions in the unaligned
consensus sequences that were amplified by exactly one of the
four primer sets of the Gall protocol10: region start-2F between
the start of the gag gene and the 2F primer on amplicon 1,
region 1R-3F between the 1R and 3F primers on amplicon 2,
region 2R-4F between the 2R and 4F primers on amplicon 3,
and region 3R-end between the 3R primer and the end of the nef
gene on amplicon 4 (‘‘partial amplicon sequences,’’ see Fig. 1).

Based on PANGEA-HIV sequencing failure rates, partial
amplicon sequences were classified into ‘‘undetermined’’
when more than 80% of nucleotide characters were missing,
and ‘‘determined’’ when less than 60% of characters were
missing. Ambiguous partial amplicon sequences with 20%–
40% missing characters were not used in the analysis. Mul-
tivariate logistic regression analysis (gamlss,40 R version
3.2.0) was used to identify covariates that were significantly
associated with undetermined partial amplicon sequences.

Simulations to assess impact of missing
nucleotides in PANGEA-HIV sequences

Viral trees were generated under the regional PANGEA-
HIV simulation model35 and captured disease dynamics in a
regional population of *80,000 individuals from 1985 until
2020. Sequences of 6,807 nt were simulated along the viral
trees with SeqGen version 1.3.2,41 using codon- and gene-
specific evolutionary rates and relative substitution rate pa-
rameters that were estimated from HIV-1 subtype C sequences
(see supplementary fig. S13 in Ref.35). The simulated se-
quences correspond to concatenated gag, pol, and env genes,
excluding the gag stem loop and variable loops in the env gene.

To create alignments with missing data, missing nucleotide
patterns of aligned PANGEA-HIV sequences were super-
imposed onto the simulated sequences. This step preserved the
nonrandom distribution of missing data in PANGEA-HIV se-
quences. Other missing data patterns were also considered.
Simulated sequence alignments systematically varied in the
average proportion of missing characters per sequence in an
alignment (0% to 60%), the distribution of missing characters
[structured as in PANGEA-HIV sequences (‘‘patchy’’ se-
quences), or in a single block after a given genomic position
(‘‘partial’’ sequences)], and sequence sampling coverage
[1,600 (6%) to 9,629 (30%) of individuals living with HIV-1 in
2020 in the simulations].

Alignments and corresponding viral trees were indexed as
described in Supplementary Table S1, and are available from
https://doi.org/10.6084/m9.figshare.5056837.v1
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Maximum-likelihood tree reconstruction

To ensure optimal deployment of existing phylogenetic
inference tools, HIV-1 trees were reconstructed with IQ-
TREE,42,43 PhyML,44 and RAxML45 by the respective soft-
ware developers. To determine best program settings, the

‘true’ phylogeny, from which the sequences were simulated,
was provided for one data set without missing nucleotides to
the teams. Trees were also reconstructed with FastTree46 by
the authors of this study. The command line options that were
used for HIV-1 tree reconstructions are listed in Supple-
mentary Data; Supplementary Data are available online at

FIG. 1. Alignment of the first PANGEA-HIV consensus sequences. Three thousand nine hundred eighty-five HIV-1
consensus sequences were generated from samples collected as part of the Mochudi Prevention Project (dark blue), the
Rakai Community Cohort Study ( purple), the Africa Health Research Institute Resistance Cohort (red), and the general
population, fisherfolk, and female sex worker cohorts from MRC/UVRI Uganda (green). Locations of the HIV-1 gag, pol,
and env genes are indicated on the x-axis, along with the primer sets of the Gall protocol that were used to amplify four
overlapping genomic regions (arrows and blue dots). Vertical lines indicate the position of primers in the alignment.
Missing data and gaps are shown in white. The total length of the alignment is 9,742 nt and covers the viral genome between
HIV-1 gag and nef (length 8,628 nt in reference strain HXB2).
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www.liebertpub.com/aid). Trees were subsequently dated
and rooted with LSD version 0.3beta.47

Assessment of phylogeny reconstructions
from sequences with missing data

Reconstructed trees were compared to true trees using
several distance measures for tree topologies and HIV-1
transmission pairs. The central aim of PANGEA-HIV is to
characterize recent transmission dynamics. For this reason,
we focused on comparing the topology of phylogenetic
clades that corresponded to transmission chains within the
simulated regional population. This excluded deep splits in
the true and inferred phylogenies from consideration. For
each clade with at least four taxa, we calculated the pro-

portion of unrooted, labeled subtrees of four taxa whose
topologies differed between inferred and true clades
(Quartet distance).48 In addition, we evaluated the Kendall-
Colijn distance on the same clades.49 Tree distances typically
scaled with clade size.50 We estimated average functional
relationships between tree distance and clade size with
polynomial regression techniques, and adjusted tree dis-
tances for differences in clade size.

To evaluate whether transmission pairs were accurately
identified, we considered phylogenetically very close indi-
viduals as a proxy of transmission pairs and evaluated the
proportion of false positives. The divergence cutoff was set
deliberately at a low value of 1% substitutions per site,51,52 so
that a high proportion of true transmission pairs was expected
under baseline analyses from near complete sequences.

Table 1. Characteristics of the First PANGEA-HIV Consensus Sequences

Africa Health Research
Institute Resistance

Cohort

Mochudi
Prevention

Project

Rakai
Community

Cohort Study
MRC/UVRI

Uganda

Number of sequences 92 359 2,833 701

Number of individuals 92 351 2,820 694

Sex, %
F 73 73 56 51
M 27 24 44 32
Missing 0 3 0 16

Age at time of sampling, %
<25 10 17 25 11
25–29 20 21 28 13
30–34 16 18 22 20
35–39 24 14 15 19
40 or older 30 24 10 15
Missing 0 6 0 23

Serum/plasma HIV-1 RNA within 1 year of sampling date (copies/ml), %
<10,000 7 30 19 1
10,000–49,999 36 22 8 0
50,000–99,999 13 16 3 1
100,000 or higher 35 19 2 2
Missing 9 13 68 96

Self-reported ART use before sampling, %
Yes 100 3 6 0
No 0 91 94 90
Missing 0 6 0 10

Year of sampling, %
2009 0 0 0 35
2010 0 38 0 5
2011 55 36 25 0
2012 42 17 46 0
2013 2 7 19 40
2014 0 0 11 10
Missing 0 2 0 10

HIV-1 subtype, %
A1 0 0 19 23
B 0 0 0 2
C 94 93 3 1
D 0 0 30 21
Other 0 0 0 1
potentially recombinanta 6 3 33 38
<500 nt to determine subtype 0 4 15 14

aAs identified with the COMET HIV-1 subtyping tool52 on four partial amplicon sequences, see Materials and Methods. More refined
approaches are underway to confirm recombinant sequences among potentially recombinant sequences.
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To evaluate whether transmission pairs were accurately
dated, we considered for each sampled transmission pair (for
whom both the transmitter and recipient had a sequence
taken) the distance in units of time between their sequences in
the true phylogeny, as well as the inferred phylogeny. We
then calculated the mean absolute error of these distances
across pairs. These distance measures provided an assess-
ment of tree reconstruction accuracy in terms of local HIV-1
transmission chains and sampled transmission pairs.

Results

PANGEA-HIV next-generation sequences

Table 1 characterizes the first 3,985 PANGEA-HIV con-
sensus sequences. Next-generation sequencing data are
available through the European Nucleotide Archive (www.
ebi.ac.uk/ena/data/view/PRJEB19239) and HIV-1 consensus
sequences are available upon request to the PANGEA-HIV
steering committee (Supplementary Data).

Two thousand eight hundred thirty-three sequences are
from 26 communities of the Rakai Community Cohort study,
Uganda.53 Serum samples were obtained from household
residents (aged 15–49 years) in three survey rounds between
2011 and 2014 in fisherfolk communities at the shores of
Lake Victoria, and predominantly agrarian or trading com-
munities inland. Participants were recruited at central com-
munity locations after a community mobilization event.
Samples were sequenced regardless of viral load.

Two hundred thirty-one sequences were obtained from 25
neighboring communities in Kalungu district, Uganda, and
from fisherfolk communities on the shores of Lake Victoria,
Uganda, through MRC/UVRI. Plasma samples were obtained
from household residents (aged 13+ years) through house-to-
house census rounds in Kalungu district between 2013 and
2014, and from a subset of residents (aged 13+) in fisherfolk
communities between 2009 and 2010.14–16 Fifty-two se-
quences were from a historic sample collection of the 1980s
from MRC-UVRI. Four hundred eighteen sequences were

obtained from female sex workers in Kampala, Uganda, as
part of the Good Health for Women Project by MRC-
UVRI.17 Women (aged 15+ years) involved in commercial
sex or employed in entertainment facilities were enrolled
through peers between 2009 and 2014. Samples were se-
quenced regardless of viral load.

Three hundred fifty-nine sequences are from the Mochudi
Prevention Project, Botswana. Plasma samples were obtained
from ART-naive individuals (aged 16–64 years) who tested
positive during three rounds of an enhanced HIV testing and
counseling campaign in households in northeastern Mochudi
between 2010 and 2013.12,13 Samples were sequenced re-
gardless of viral load.

Finally, 92 sequences are from the Africa Health Research
Institute resistance cohort, South Africa. Plasma samples
were obtained from primary health clinic attendees who
failed ART in the Hlabisa sub-district of KwaZulu-Natal.
Patients (>18 years) had been on ART for at least 1 year, had
two successive plasma HIV-1 RNA measurements >1,000
copies/ml, at least 18 years old, and were seen between 2011
and 2013.

NGS success rates

Table 2 and Supplementary Figure S1 characterize sequenc-
ing success rates on the first PANGEA-HIV samples. More than
80% of the HIV-1 genome from the gag to the nef gene could be
determined for all samples from the Africa Health Research
Institute resistance cohort, 75% of samples from Mochudi, 60%
of samples from MRC/UVRI Uganda, and 22% of samples from
the Rakai Community Cohort. Sequencing success rates varied
considerably across the genome. Figure 1 shows the alignment of
PANGEA-HIV consensus sequences, directly obtained from
paired consensus and assembly reference sequences (see the
Materials and Methods section). As a result of alignment un-
certainty, on average 0.11 additional missing nucleotide char-
acters were introduced in the PANGEA-HIV alignment per
missing character in unaligned consensus sequences (Supple-
mentary Fig. S2).

Table 2. Sequencing Success Rates Among the First PANGEA-HIV Consensus Sequences

Average proportion of nonmissing nucleotide characters per sequence
(relative to corresponding de novo reference sequence)

Length
in HXB2 (nt)

Africa Health
Research Institute

Resistance Cohort (%)

Mochudi
Prevention
Project (%)

Rakai
Community

Cohort Study (%)
MRC/UVRI
Uganda (%)

Partial genome
gag 1,503 99 91 82 85
pol 2,844 100 81 37 68
env 2,571 100 80 37 66
gag (p17)-nef 8,628 99 82 46 71

Genomic region between primersa

gag start-2F 241 98 88 78 81
2F-1R 879 100 93 84 89
1R-3F 2,375 100 79 33 66
3F-2R 231 100 91 48 76
2R-4F 908 99 81 40 68
4F-3R 1,844 100 84 42 71
3R-nef end 1,048 99 71 30 59

aSee Figure 1 for location of the four forward and reverse primer sets.
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Factors associated with partial sequencing failure

Serum and plasma samples were processed in batches from
shipment to sequencing. Twenty-one of 110 batches were
significantly associated with partial sequencing failure across
the four amplicons of unaligned consensus sequences, after
controlling for recent viral load, sampling location, amplicon,
and ART use before sampling (Supplementary Fig. S3). The
21 batches were processed consecutively up to and inclusive
of RNA extraction, and contained 770 sequences from Rakai.

Among the remaining sequences, serum or plasma viral load
below 50,000 copies/ml within 1 year of sampling was sig-
nificantly associated with partial sequencing failure across the

four amplicons [adjusted odds ratio (OR) 2.47 (1.81–3.41) for
viral loads within 10,000–49,999 copies/ml and 13.82 (10.34–
18.79) for viral loads below 10,000 copies/ml; analysis 1 in
Table 3]. After the 21 sequencing batches in Supplementary Fig
S3 were excluded from analysis, we found sequencing success
rates steadily decreased from amplicon 1 to amplicon 4.
Sampling location remained significantly associated with par-
tial sequencing failure after controlling for viral load, prior
ART use, and differential amplicon success rates (Table 3).

The distribution of HIV-1 subtypes varied across sampling
locations, with relatively homogeneous subtype C epidemics
in Botswana and South Africa,12,29 and more diverse epi-
demics in Uganda where subtypes A and D circulate

Table 3. Adjusted Odds Ratios of Partial Sequencing Failure Among the First PANGEA-HIV Sequences

Sample characteristic
Adjusted odds ratio for sequencing failure

(>80% missing characters) in partial amplicon sequences

Analysis 1 Analysis 2
Excluding sequences from 21 batches

that were significantly associated
with sequencing failure

Excluding sequences from 21 batches
as in analysis 1, and short sequences
of less than 500 nt whose subtype
could not be determined

(n = 3,125 PANGEA-HIV sequences
with 12,214 partial amplicon
sequences)

(n = 2,725 PANGEA-HIV sequences
with 10,635 partial amplicon sequences)

Odds ratio 95% confidence
interval

Odds ratio 95% confidence
interval

Serum/plasma HIV-1 RNA within 1 year of sampling date (copies/ml)
<10,000 13.82 10.34–18.79 12.81 9.03–18.69
10,000–49,999 2.47 1.81–3.41 3.6 2.5–5.32
50,000–99,999 1.02 0.69–1.5 1.36 0.87–2.14
100,000 or higher 0.02 0.01–0.02 0.01 0.01–0.02
Missing 5.76 4.34–7.79 6.1 4.33–8.84

Self-reported ART use before sampling
No 1.0 1.0
Yes 1.05 0.95–1.16 0.96 0.85–1.08

Cohort site
Mochudi 1.0 1.0
Africa Health Research Institute
Resistance Cohort

0a singulara 0a singulara

Rakai 4.01 3.38–4.76 5.95 4.24–8.38
MRC/UVRI Historic 2.65 1.88–3.72 3.72 2.3–6.01
MRC/UVRI FSW cohort 1.69 1.38–2.07 1.75 1.21–2.53
MRC/UVRI population cohorts 1.26 1–1.59 1.55 1.04–2.31

Ampliconb

Amplicon 1 1.0 1.0
Amplicon 2 3.7 3.27–4.2 8.19 6.86–9.82
Amplicon 3 5.06 4.48–5.73 12.42 10.42–14.87
Amplicon 4 6.97 6.16–7.91 18.24 15.29–21.86

HIV-1 subtypec

A1 — — 1.0
B — — 0a singulara

C — — 1.18 0.87–1.59
D — — 1.22 1.07–1.38
Other — — 1.18 0.35–4.11
Potential recombinant — — 0.64 0.54–0.76

aNo partial sequencing failure observed
bThe following genomic regions (partial amplicon sequences) in each amplicon were considered: gag start-2F in amplicon 1, 1R-3F in

amplicon 2, 2R-4F in amplicon 3, 3R-nef end in amplicon 4. See Figure 1 for location of the partial amplicon sequences.
cHIV-1 subtype was determined with the COMET HIV-1 subtyping tool,52 version 2.1, for each of the genomic regions 1F-1R, 3F-4F,

4F-3R, if these were determined to at least 500 nt. If all region-specific assignments agreed, corresponding sequences were classified as
‘‘A1,’’ ‘‘B,’’ ‘‘C,’’ ‘‘D,’’ ‘‘other’’ (pure subtype). All other sequences were classified as ‘‘potential recombinant.’’
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predominantly.30,54 This prompted us to investigate if HIV-1
subtypes or recombinant forms could be associated with
partial sequencing failure.

We conducted a subanalysis on sufficiently long sequences
whose subtype could be determined with the COMET HIV-1
subtyping tool version 2.1.55 The short sequences that were
excluded all represent partial sequencing failures, which led
to changes in the ORs relative to the central analysis. Relative
to subtype A1, sequences of subtype D were significantly
associated with more frequent partial sequencing failure,
although not very strongly [(adjusted OR 1.22 (1.07–1.38),
analysis 2 in Table 3]. By contrast, no subtype B sequence
had more than 80% missing characters in the partial amplicon
sequences. Sample sizes were small for sequences of subtypes
other than A1, B, C, and D (Table 1). Depending on the ex-
clusion criteria, potentially recombinant sequences were or

were not significantly associated with partial sequencing fail-
ure. This indicates that more detailed analyses are required to
identify recombinants among PANGEA-HIV sequences, and
to evaluate their impact on sequencing success rates.

Large impact of missing characters in NGS
on estimating HIV-1 phylogenies when
sequences are sparsely sampled

We generated 921 phylogenies with IQ-TREE,42,43 PhyML,44

RAxML,45 and FastTree46 from simulated sequence alignments
that varied in size and missing data patterns (Supplementary
Table S1). On the sequence alignments with 1,600 taxa (6%
sequence sampling coverage of individuals living with HIV-1 by
2020 in the simulations), increased phylogenetic error was
readily visible even when the gag+pol+env sequences contained

FIG. 2. Correctly reconstructed clades in simulated HIV-1 phylogenies from sequence alignments of 1,600 taxa with and
without missing characters. Viral phylogenies of a generalized HIV-1 epidemic in a hypothetical sub-Sahara African setting
were simulated, and HIV-1 gag, pol, and env sequences were generated along this phylogeny. The sampling coverage was
6% of individuals living with HIV-1 by 2020 in the simulation, corresponding to 1,600 taxa. PhyML was used to reconstruct
the simulated viral tree. (A) Parts of the simulated viral phylogeny (blue) that were correctly reconstructed in 10 out of 10
replicate runs of PhyML from the sequence alignment of gag+pol+env sequences without missing characters (data set D1,
see Supplementary Table S1). (B) Parts of the same simulated viral phylogeny that were correctly reconstructed in 10 out of
10 replicate runs of PhyML from a patchy sequence alignment, obtained by copying missing characters of randomly
selected PANGEA-HIV sequences from Botswana into the sequence alignment D1 (data set D2). For visualization pur-
poses, only the first five clades of the phylogeny are shown, each corresponding to a distinct transmission chain in the
simulation. Results were similar with other tree reconstruction methods, and PhyML was chosen for illustration purposes.
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relatively few missing characters, as among the PANGEA-HIV
sequences from Botswana. Figure 2 illustrates this when using
PhyML; similar results were obtained with IQ-TREE, RAxML,
and FastTree.

Figure 3 summarizes results from four error measures. We
first assessed the accuracy with which clades that correspond
to sampled HIV-1 transmission chains were reconstructed.
When phylogenies were inferred from gag+pol+env se-
quences without missing characters using IQ-TREE, the av-
erage Quartet distance between true and reconstructed clades
was 5.8% (meaning that 5.8% of all unrooted and unlabeled
subtrees of four taxa of these clades were not correct). The
average Quartet distance rose to 11% when phylogenies were
reconstructed from sequences with missing characters as seen
in PANGEA-HIV sequences from Botswana, and to 15.3%
when simulated sequences had missing characters as seen in
PANGEA-HIV sequences from Uganda (Fig. 3A).

This trend was consistent regardless of tree distance
measure (see Fig. 3B for results using the Kendall-Colijn
distance), and results using other reconstruction methods
were broadly comparable. Trees generated with FastTree did
not have larger Quartet distances than other methods, despite
significantly shorter run times of the method.

We also observed similar problems in accurately re-
constructing basic topological relationships as the extent of
missing characters increased in simulations. Specifically, we
evaluated the proportion of incorrect transmission pairs
among phylogenetically very close individuals. Despite tight
selection criteria (<1% substitutions per site for classifying
any pair as phylogenetically close), the false-positive rate was
28% on gag+pol+env sequences without missing characters
using PhyML, and rose to 41% when gag+pol+env sequences
contained missing characters as seen for PANGEA-HIV se-
quences from Botswana (Fig. 3C). Results were broadly
comparable using other reconstruction methods.

The impact of missing data on falsely identified trans-
mission pairs depended primarily on how well branch lengths
for these topologically fundamental units were estimated,
which was increasingly challenging and variable on patchy
sequence alignments when sequence sampling was sparse.
Specifically, the mean absolute error in divergence time es-
timates of sampled transmission pairs was 1.83 years with
fully determined gag+pol+env sequences using IQ-TREE,
and increased to 5.51 years with simulated gag+pol+env
sequences that had missing characters as seen among
PANGEA-HIV sequences from Uganda (Fig. 3D). Shorter
branch lengths were typically inferred with increasing pro-
portions of missing characters, suggesting that detection of
multiple nucleotide substitutions was increasingly difficult

(Supplementary Fig. S4). This led to more individuals esti-
mated to be phylogenetically very closely related and in-
creased false-positive rates (Supplementary Fig. S5).

Overall, trees reconstructed with FastTree had longer
branch lengths compared to trees reconstructed with other
methods, implying that the criteria for selecting phylo-
genetically close pairs were implicitly tighter for trees
reconstructed with FastTree. This explains why phylogene-
tially close pairs identified with FastTree were overall more
accurate with our error measure, compared to using IQ-TREE
or RAxML.

Irregular distribution of missing characters in NGS
exacerbates tree reconstruction errors, but only when
sequences are sparsely sampled

HIV-1 phylogenies have been more successfully re-
constructed from partial gag or pol sequences even when
taxon sampling is limited.29,30,56 We therefore suspected that
the large increases in tree reconstruction error of Figure 3
were related to the irregular, nonrandom distribution of
missing data patches seen in Figure 1. To test this hypothesis,
we compared tree reconstructions from increasingly patchy
gag+pol+env sequences to those from partial sequences that
were fully determined up to a certain genome position. Thus,
in simulated alignments of partial sequences, missing char-
acters formed a contiguous block from a certain genome
position to the end of the gag+pol+env sequence.

We then compared trees from patchy and partial se-
quences, while maintaining the overall proportion of miss-
ing nucleotides constant. For the same level of missing
characters, viral trees were substantially less accurately re-
constructed from gag+pol+env sequence alignments with
irregularly distributed missing data than from alignments of
partial sequences. (Fig. 4A). Thus, the poor performance of
tree reconstruction methods is attributable to an excess neg-
ative impact of missing characters when these are irregularly
distributed.

In addition, when a larger number of patchy sequences were
available for tree reconstruction, accuracy increased and ap-
proached that of alignments of partial sequences with the same
average proportion of missing characters (Fig. 4B). With a
sequence sampling coverage above 30%, trees from patchy
gag+pol+env sequence alignments were not significantly less
accurately reconstructed as trees from partial sequence align-
ments with a comparable level of missing characters. This in-
dicates that the excess negative impact of irregularly distributed
missing characters in HIV-1 sequence alignments is side-
stepped when sufficiently many patchy sequences are available

FIG. 3. Impact of missing characters in PANGEA-HIV sequences on phylogeny reconstruction when sequences are
sparsely sampled. Three sequence data sets of 1,600 taxa of concatenated HIV-1 gag, pol, env genes were simulated. For
each data set, missing characters in real PANGEA-HIV sequences from specific sampling locations (see x-axis) were copied
into simulated sequences (data sets D1–D3, see Supplementary Table S1). Phylogenies were reconstructed in replicate with
several tree reconstruction algorithms and compared to the true phylogeny. (A) Quartet distance between reconstructed and
true subtrees that correspond to sampled transmission chains in the simulations. (B) Kendall-Colijn distance between
reconstructed and true subtrees that correspond to sampled transmission chains in the simulations. (C) Proportion of false-
positive transmission pairs among pairs of individuals that diverged less than 1% substitution/site in reconstructed phy-
logenies. (D) Mean absolute error (years) in estimated divergence times between sequences from sampled transmission
pairs. Across all error measures, reconstructed phylogenies were considerably less accurate when sequences were sparsely
sampled and contained missing characters as seen among PANGEA-HIV sequences from Botswana or Uganda, compared to
gag+pol+env sequences without missing characters.

‰
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for analysis. Below this sequence coverage threshold, error in
phylogeny reconstructions from patchy sequence alignments
was larger than expected from alignments of partial sequences
with the same overall level of missing characters.

Alignment trimming to reduce tree
reconstruction artifacts

The excess negative impact of irregularly distributed missing
characters arises through a combination of direct and indirect
effects, including disproportionally fewer informative sites that
are shared between any two sequences, and accumulating tree
reconstruction artifacts. Intriguingly, the indirect effects could
potentially be mitigated by excluding alignment columns with
disproportionally many missing characters (‘‘trimming’’),21,57

at the expense of fewer shared informative sites.

Sequencing success rates were highest for amplicon 1
among PANGEA-HIV sequences, prompting us to compare
tree reconstructions from more complete gag genes (1,440 nt
without stem loop) to tree reconstructions from more patchy
gag+pol+env sequences (6,807 nt). Figure 5A shows that
trees reconstructed from gag sequence alignments of 1,600
taxa with <10% missing characters were on average more
accurate than trees reconstructed from gag+pol+env se-
quence alignments of 1,600 taxa with >40% missing char-
acters. Thus, more accurate HIV-1 phylogenies are only
expected from trimmed alignments when sequencing success
rates are highly uneven. This explains why we did not re-
construct more accurate phylogenies from gag genes com-
pared to gag+pol+env sequences when both alignments had
missing characters as seen among PANGEA-HIV sequences
from Botswana, nor when both alignments had missing

FIG. 4. Excess negative impact of irregularly distributed missing characters on HIV-1 phylogeny reconstruction. Four
times 60 sequence alignments of varying size (1,600 to 9,629 sequences, shape of points) and varying missing site patterns
(either patchy or allocated in a single block after a certain genome position, color of points) were simulated (data sets D1-
Mxx, D4-Mxx, D5-Mxx, D6-Mxx, D1-Pyy, see Supplementary Table S1). For each alignment, the average proportion of
missing characters per sequence in alignments relative to the length of the gag+pol+env genome (6,807 nt) was calculated.
One phylogeny per alignment was reconstructed with RAxML. (A) We first compared Quartet distances of trees re-
constructed from patchy sequence alignments of 1,600 taxa to those of trees reconstructed from partial sequence alignments
of 1,600 taxa. For the same average number/average proportion of missing characters, viral trees were less accurately
reconstructed when missing characters were irregularly distributed. (B) We then compared Quartet distances of trees
reconstructed from patchy sequence alignments of that increased in the number of viral sequences sampled. The excess error
in Quartet distances associated with irregularly distributed missing characters vanished as sampling coverage approached
30% of individuals living with HIV-1 by 2020 in the simulations (*10,000 taxa).
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characters as seen among PANGEA-HIV sequences from
Uganda (Fig. 5B).

Discussion

NGS data of HIV-1 viruses offer unprecedented opportunities
for studying disease progression,58,59 evolution of resistance to
antiretrovirals,60,61 as well as aspects of transmission dynam-
ics.51,62,63 Obtaining NGS data from serum or plasma samples is
fraught with difficulties, owing, in part, to the extreme genetic
diversity of the virus, large variation in copy numbers in sam-
ples, as well as sample degradation.64 PANGEA-HIV adopted a
sequencing protocol that combined automated RNA extraction
with amplification-dependent next-generation sequencing under
the Gall protocol.10 With this approach, consensus sequences of
the HIV-1 genome could be generated from a diverse set of
samples in high throughput. Sequencing success rates varied
across the genome and were particularly low on samples from
the Rakai Community Cohort Study, Uganda.

Our phylogenetic simulation study indicates that missing
nucleotide characters in PANGEA-HIV sequences have
limited impact on phylogeny reconstruction when a suffi-
ciently high proportion of viral sequences from epidemics are
sampled. Specifically, the particular missing data patterns in
PANGEA-HIV sequences did not have a significant excess
negative impact on reconstructing phylogenies of simulated
HIV-1 transmission chains when sequence sampling cover-
age was at least 30% (of individuals living with HIV-1 by the
end of the simulation, Fig. 4). Above this threshold, phylo-
genetic inference error from alignments with missing char-
acters at differing positions did not increase faster than on
alignments with missing characters at the same positions, and
overall relatively slowly.

The Mochudi Prevention Project, the Rakai Community
Cohort Study, and other sites have collected samples at higher
coverage within the surveillance sites.30,56 At larger geograph-
ical areas (e.g., the regions that encompass individual surveil-
lance sites), current sequence sampling coverage remains below

FIG. 5. Alignment trimming to reduce tree reconstruction artifacts. (A) Sixty alignments of 1,600 gag+pol+env sequences
(6,807 nt) with increasing proportions of missing characters were simulated. Missing site patterns were copied at random
from PANGEA-HIV sequences (data sets D1-Mxx, see Supplementary Table S1). Thirty alignments were trimmed to the
gag gene. One phylogeny per alignment was reconstructed with RAxML. We compared Quartet distances of trees re-
constructed from patchy gag+pol+env sequences (gray) to those of patchy gag sequences (orange). It is possible to
reconstruct more accurate phylogenies from shorter gag sequences, but only when the trimmed alignment harbors sub-
stantially fewer missing characters than the longer original alignment and sequence sampling coverage is low (6%). The
proportion of missing characters in gag and gag+pol+env sequences among PANGEA-HIV sequences from Botswana and
Uganda is indicated with triangles and diamonds. (B) The three sequence data sets of 1,600 gappy gag+pol+env sequences
of Figure 2 were trimmed to the gag gene. Ten phylogenies were reconstructed with IQ-TREE, PhyML, and RAxML per
alignment, and results are shown for IQ-TREE and PhyML. Tree reconstructions from gag genes that harbored missing
characters as seen in PANGEA-HIV sequences from Botswana or Uganda were not more accurate than those from patchy
gag+pol+env sequences, regardless of distance measure and tree reconstruction method. The differences in missing char-
acter patterns between the trimmed and original alignments were not large enough to result in more accurate tree recon-
structions with the trimmed alignment.
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30% of all individuals living with HIV-1. Large data sets of
partial HIV-1 sequences are now available for Southern and
Central Africa, including historical samples from partnering
cohort sites. These sequence data sets should be used to in-
crease taxon sampling in future analyses, and further mitigate
the impact that missing characters could have on phylogeny
reconstruction.29,69

Phylogenetic analysis of real HIV-1 sequences is more
challenging than that of the simulated sequences in this study.
Simulations were generated under standard nucleotide evo-
lution models and did not account for recombination between
viral strains. Failure to appropriately account for recombina-
tion65 as well as differences in relative nucleotide substitution
rates,66 evolutionary rates,67 and nucleotide composition bias
across the genome68 can substantially increase systematic bias
and lead to incorrect phylogenies that are highly supported in
bootstrap analyses.25,57 It is not clear to what extent these
factors could exacerbate the impact of irregularly distributed
missing data on phylogeny reconstruction and subsequent
molecular epidemiologic investigations.

Conversely, our accuracy measures were not restricted to
phylogenetically credible clades due to computational limi-
tations in generating large numbers of replicate trees. Phy-
logenetically credible clades (that occur in a high proportion
of replicate trees) could be considerably more robust to the
impact of missing sequence data than our error analyses
across all clades suggest.

Several previous studies support our finding that irregularly
distributed missing data patterns have a substantial excess
negative impact on HIV-1 phylogeny reconstruction below a
certain sampling level. Missing nucleotide characters can ex-
acerbate long branch attraction artifacts,33,34 while increased
taxon sampling reduces systematic errors in tree reconstruc-
tion.31,70 In settings with sparse sequence sampling, our find-
ings also support previous arguments against ad hoc alignment
trimming71: we found that missing characters must be highly
unevenly distributed across the genome for this trimming to
have a net positive impact on phylogeny reconstruction. We
suggest evaluating the impact of alignment trimming in sim-
ulations before application to real data. Simulation routines for
this purpose are available as part of the PANGEA-HIV sim-
ulation tool (https://github.com/olli0601/PANGEA.HIV.sim).

Even when using NGS without missing characters, a large
proportion (25%–35%) of phylogenetically very close pairs of
individuals (patristic distance <1% substitutions/site) were not
transmission pairs in our simulations. The fact that complete
NGS cannot confirm HIV-1 transmission events is primarily a
consequence of sparse sampling in our simulations and also of
viral evolution within hosts, which can lead to incongruencies
between phylogenies and transmission trees regardless of
sampling.72 Further work is needed to characterize false-
positive rates when sequencing is targeted at subpopulations,
for example, at young women and their sexual partners.

Considering the observed variation in sequencing success
rates, there is clear scope for improving the PANGEA-HIV se-
quencing protocol. Our retrospective analyses indicate that in
addition to low viral load, amplicon order and sampling locations
were also strongly associated with partial sequencing failure.

This could be due to several factors. One study found that
manual extraction of viral RNA led to improved recovery of
near full-length viral sequences compared to automated RNA
extraction.73 Considering differential amplicon sequencing

success rates, modified protocols74 or amplification-
independent sequencing techniques75–77 could also poten-
tially improve NGS success rates. Data from the first PAN-
GEA sequences were not sufficient to robustly evaluate the
potential impact of nucleotide mutations at specific primer
sites: at the 2R primer, we found larger proportions of se-
quences with a mutation toward the 3¢-end, although the
percent difference was not significant between sequences
with >80% and <60% missing characters in 1R-3F, and
mutations at the 2R primer were also not independently as-
sociated with partial sequencing failure in a subanalysis. A
systematic comparison of NGS protocols on the same spec-
imen is needed to identify more robust NGS approaches.

This study provides evidence that the missing data patterns
in PANGEA-HIV sequences do not substantially impact on
phylogeny reconstruction when sufficiently many viral se-
quences are sampled. Current sequence sampling levels of
regional HIV-1 epidemics in sub-Saharan Africa remain
considerably below the sampling coverage threshold of
*30% that was identified on simulated data. Further efforts
to develop more robust NGS protocols would be highly
beneficial for using NGS data to characterize patterns of HIV-1
transmission and HIV-1 prevention opportunities.
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