
HAL Id: lirmm-01800340
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01800340

Submitted on 25 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Relationship between superstring and compression
measures: New insights on the greedy conjecture

Bastien Cazaux, Eric Rivals

To cite this version:
Bastien Cazaux, Eric Rivals. Relationship between superstring and compression measures:
New insights on the greedy conjecture. Discrete Applied Mathematics, 2018, 245, pp.59-64.
�10.1016/j.dam.2017.04.017�. �lirmm-01800340�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01800340
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Discrete Applied Mathematics 245 (2018) 59–64

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Relationship between superstring and compression
measures: New insights on the greedy conjecture
Bastien Cazaux, Eric Rivals ∗

LIRMM, CNRS and Université de Montpellier, 161 rue Ada, 34095 Montpellier Cedex 5, France
Institut Biologie Computationnelle, CNRS and Université de Montpellier, 860 rue Saint Priest, 34095 Montpellier Cedex 5, France

a r t i c l e i n f o

Article history:
Received 25 December 2015
Received in revised form 31 March 2017
Accepted 19 April 2017
Available online 19 May 2017

Keywords:
Approximation algorithm
Shortest Common Superstring Problem
Stringology
Data compression
Assembly
Greedy conjecture

a b s t r a c t

A superstring of a set ofwords is a string that contains each inputword as a substring. Given
such a set, the Shortest Superstring Problem (SSP) asks for a superstring ofminimum length.
SSP is an important theoretical problem related to the Asymmetric Travelling Salesman
Problem, and also has practical applications in data compression and in bioinformatics.
Indeed, it models the question of assembling a genome from a set of sequencing reads.
Unfortunately, SSP is known to be NP-hard even on a binary alphabet and also hard
to approximate with respect to the superstring length or to the compression achieved
by the superstring. Even the variant in which all words share the same length r , called
r-SSP, is NP-hard whenever r > 2. Numerous involved approximation algorithms
achieve approximation ratio above 2 for the superstring, but remain difficult to implement
in practice. In contrast the greedy conjecture asked in 1988 whether a simple greedy
algorithm achieves ratio of 2 for SSP. Here, we present a novel approach to bound the
superstring approximation ratio with the compression ratio, which, when applied to the
greedy algorithm, shows a 2 approximation ratio for 3-SSP, and also that greedy achieves
ratios smaller than 2. This leads to a new version of the greedy conjecture.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a set of p words P := {s1, s2, . . . , sp} over a finite alphabet Σ , a superstring of P is a string containing each si for
1 ≤ i ≤ p as a substring. The Shortest Superstring Problem (SSP) asks for a superstring of P of minimal length. SSP is a
well studied problem (alias Shortest Common Superstring), with a strong relation to the Asymmetric Travelling Salesman
Problem, and is known to be NP-hard even on a binary alphabet [7]. The restriction to instances where all input strings share
the same length, say r > 1, is denoted r-SSP, becomes polynomial if r ≤ 2, but remains NP-hard as soon as the strings are of
length at least 3 [1]. Two approximationmeasures can be optimised for SSP: either the length of the superstring isminimised,
or the compression is maximised (i.e., the sum of the lengths of the input strings minus that of the superstring). For a word
x, |x| denotes the length of x. Let ∥P∥ denote


si∈P |si| and let t be the output superstring, then the compression equals

∥P∥ − |t|. With both measures SSP is hard to approximate (MAX-SNP-hard, see [1]). Since 1991, a long series of elaborated
algorithms have improved the approximation ratio for bothmeasures culminating in 2 11

23 for the superstring [13] and in 3/4
for the compression measure [14]. A recent table listing these ratio and the literature, as well as known inapproximability
bounds appears in [9]. A detailed survey gives an overview of the numerous application contexts of SSP [8].
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In 1988, a seminal paper introduced a simple greedy algorithm, consisting in repeatedly merging two words that exhibit
the largest (prefix–suffix) overlap until only one string remains [16]. With P := {abba, bbaa, aaba} for example, abba is
first merged with bbaa yielding abbaa (they share a 3-letter overlap), then, abbaa is merged with aaba resulting in the
superstring abbaaba of length 7; as ∥P∥ = 12, the compression obtained equals ∥P∥ − |t| = 12 − 7 = 5. Note that their
greedy algorithm, denoted by greedy, can be seen as the greedy algorithm of a specific hereditary system [4]. Tarhio and
Ukkonen proved in [16] that greedy achieves a compression ratio of 1/2 and formulated the greedy conjecture: the greedy
algorithm yields a superstring ratio of 2. Despite a lot of research dedicated to SSP, this conjecture has remained open since
1988. A weaker form of this conjecture asks to prove this ratio for r-SSP and some values of r . Blum et al. have shown for
greedy a superstring ratio of 4 [1], which was later improved to 3.5 in [10]. The greedy conjecture is supported by simulated
experiments [18,15]. Moreover, the superstring approximation ratio obtained by the greedy algorithm remains a crucial
question, especially since other approximation algorithms are usually less efficient than greedy [10].

Recently, it has been proven that in the casewhere all inputwords have length 4 (for 4-SSP) the greedy algorithmachieves
a superstring ratio of at most 2, as stated by the conjecture [11]. This proof is valid only for words of length 4 and cannot be
adapted to words of length 3, for instance. Kulikov and colleagues [11] suggest that the conjecture for 3-SSP follows from
the fact that greedy achieves 2-approximation of the compression measure, citing [16]. To our knowledge, no proof for the
greedy conjecture for words of length 3 has ever been published and there are no mention of it in a recent survey [8]. Here,
we study the relationship between the compression ratio and the superstring ratio of an approximation algorithm in general,
and derive a bound of the superstring ratio in function of the compression ratio. When applied to greedy on words of fixed
length (r-SSP), we obtain a superstring approximation ratio of 2 for 3-SSP, and this ratio increases with r to reach for r = 6
a value of 7/2, which is the best known ratio for the greedy algorithm [10]. But we also get a tight superstring ratio of 3/2
for 2-SSP, thereby demonstrating that the greedy algorithm can achieve a ratio strictly smaller than 2. This shows first that
the general relationship between the superstring and compressionmeasures is important and can serve for future research.
Second, the ratio smaller than 2 does not contradict known bounds or instances. Indeed, the known examples give a bound
that converges towards 2 from belowwhen the length of the input words tends to infinity. Thus, we propose a more precise
conjecture for r-SSP, in which the superstring ratio equals 2 −

1
r instead of 2.

Notation: An alphabet Σ is a finite set of letters. A linear word or string over Σ is a finite sequence of elements of Σ . The set
of all finite words over Σ is denoted by Σ⋆, and Σ r denotes the subset of Σ⋆ of words of length r for any positive integer r .
Given two words x and y, we denote by xy the concatenation of x and y.

2. Relation between maximum compression and shortest superstring approximation ratios for SSP

Here, we exhibit for SSP an upper bound of the superstring approximation ratio of an algorithm in function of its
compression ratio.

Let A be a polynomial-time approximation algorithm for SSP. As all approximation algorithms considered here take
polynomial time in the input size, we simply omit this characteristic in the sequel. We denote by sA(P) the output of
algorithm A with input P , and by sopt(P) an optimal superstring for this input. Note that sopt(P) also achieves a maximum
compression for P . We only consider approximation algorithms that return a superstring whose length is bounded by
∥P∥. In other words, we disregard algorithms that insert additional symbols beyond those required by the words of the
instance. Without this restriction, the approximation ratio super(A) would not be defined for any algorithm A, and the
ratio comp(A) could be negative; both ratios are defined a few lines below. Instances where the optimal superstring is the
concatenation of all the words of the instance satisfy |sopt(P)| = ∥P∥. In such cases, for any approximation algorithm A,
one has ∥P∥ = |sopt(P)| = |sA(P)| = ∥P∥. Such instances are excluded from Theorem 1. Let us define the superstring
approximation ratio of algorithm A, denoted super(A), as the smallest real value such that for any input P:

1 ≤
|sA(P)|

|sopt(P)|
≤ super(A).

Similarly, we define the compression ratio comp(A) as the largest real value such that, for any input P satisfying ∥P∥ ≠

|sopt(P)|, we have

0 ≤ comp(A) ≤
∥P∥ − |sA(P)|

∥P∥ − |sopt(P)|
.

Instances where the optimal superstring is the concatenation of all the words of the instance satisfy |sopt(P)| = ∥P∥. In
such cases, for any approximation algorithm A one has ∥P∥ = |sopt(P)| = |sA(P)| = ∥P∥. Such instances are excluded from
Theorem 1.

Theorem 1. Let P be a set of words satisfying |sopt(P)| ≠ ∥P∥. Let γ be a real such that 0 < γ ≤
|sopt (P)|

∥P∥
, and let A be an

approximation algorithm for SSP. We have:

super(A) ≤
(γ − 1) × comp(A) + 1

γ
.
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Proof. Let α =
(γ−1)×comp(A)+1

γ
and the function f : x →

(x−1)×comp(A)+1
x . Its derivative is f ′

: x →
comp(A)−1

x2
, which is

negative since 0 < comp(A) ≤ 1. Moreover, f is decreasing, and as γ < 1, we get α = f (γ ) > f (1) = 1. We obtain that
γ =

1−comp(A)

α−comp(A)
. It follows that:

γ × ∥P∥ ≤ |sopt(P)|

⇔
1 − comp(A)

α − comp(A)
× ∥P∥ ≤ |sopt(P)|

⇔ (1 − comp(A)) × ∥P∥ ≤ (α − comp(A)) × |sopt(P)|
⇔ comp(A) × |sopt(P)| + (1 − comp(A)) × ∥P∥ ≤ α × |sopt(P)|.

By definition A achieves the compression ratio comp(A), so using the previous inequality we get

comp(A) × (∥P∥ − |sopt(P)|) ≤ ∥P∥ − |sA(P)|
⇒ α × |sopt(P)| ≥ comp(A) × |sopt(P)| + (1 − comp(A)) × ∥P∥ ≥ |sA(P)|

⇒ α ≥
|sA(P)|

|sopt(P)|
.

As for any set P of input words, super(A) is the smallest value larger than |sA(P)|

|sopt (P)|
, and as α does not depend on P , we get:

super(A) ≤ α

=
(γ − 1) × comp(A) + 1

γ
. �

3. Approximation of r-SSP

Let r be an integer satisfying r > 1. Now, let us study the superstring approximation for the restriction of SSP to instances
in which all input words have the same length r . First we show a theorem bounding the superstring ratio in function of the
compression ratio for r-SSP for any algorithm. Then, we derive an upper bound and prove a lower bound for the superstring
ratio of the greedy algorithm. Finally, applying this theorem improves the superstring ratio for r < 6 compared to the 7/2
bound of [10], and solves the greedy conjecture for 3-SSP.

Since the instance P is a subset of Σ r , we have ∥P∥ = r × p. As all words of P are different, any word differs from the
other by at least one symbol and any two words overlap by at most r − 1 positions, which implies the following property.

Proposition 1. Let t be a superstring of P. Then |t| ≥ r + p − 1.

We derive the following theorem.

Theorem 2. Let r be an integer such that r > 1 and let P be a subset of Σ r . For any approximation algorithm A, we have:

|sA(P)|

|sopt(P)|
≤ r − (r − 1) × comp(A).

Proof. From Proposition 1, we know that |sopt(P)| ≥ r + p − 1, which implies

|sopt(P)|

∥P∥
≥

r + p − 1
∥P∥

≥
p

r × p
=

1
r
.

Using Theorem 1 with γ = 1/r , we obtain

|sA(P)|

|sopt(P)|
≤

 1
r − 1


× comp(A) + 1

1
r

= r ×


1 − r
r


× comp(A) + 1


= r − (r − 1) × comp(A). �

Theorem 2 bounds the ratio of an algorithm A for any instance of r-SSP. Consequently, super(A) also satisfies the same
inequation.

We can now provide a bound on the approximation ratio of the greedy algorithm for r-SSP, knowing that its compression
ratio is 1/2 [16,4,3].
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(a) Prefix graph of the instance.

(b) Path of the optimal superstring in the prefix graph.

(c) Path of the greedy superstring in the prefix graph.

Fig. 1. Illustration of the instance considered in the proof of Proposition 2, which gives the lower bound of greedy superstring ratio for r-SSP. The prefix
graph for this instance is shown in (a), the path corresponding to the optimal solution in (b), and the path of the greedy solution in (c). The prefix graph
is complete digraph in which each input word is a node, and the weight of an arc (x, y) equals the length of x minus the length of the overlap between x
and y.

Proposition 2. greedy approximates r-SSP with a ratio of at least 2 −
1
r .

Proof. Theorem2 gives an upper bound on the approximation ratio of greedy. To obtain the desired lower bound,we exhibit
an instance where |sgreedy(P)|

|sopt (P)|
= 2 −

1
r (see Fig. 1).

Consider P := {a1ar−1
2 , ar2, a

r−1
2 a3, a2ar−1

3 , . . . , arm−1, a
r−1
m−1am} on the alphabet Σ = {a1, a2, . . . , am}. Then in the worst

case, the greedy solution is

sgreedy(P) = a1ar−1
2 ar−1

3 . . . ar−1
m−1ama

r
2a

r
4 . . . arm−1

while an optimum superstring is sopt(P) = a1ar2a
r
3 . . . arm−1am. Thus, we get

|sgreedy(P)|

|sopt(P)|
=

2 + (r − 1)(m − 2) + r(m − 2)
2 + r(m − 2)

= 2 −
m

2 + r(m − 2)
−−−−→m→∞ 2 −

1
r
. �

In the instance of the proof above, because of the fixed word length, both the alphabet cardinality and the number of
words go to infinity to reach the bound. Thanks to Proposition 2 and to Theorem 2, and by using the compression ratio
of greedy, which equals 1/2, we obtain new bounds on the approximation ratio of greedy for r-SSP. The known greedy
superstring ratio of 3.5 [10] allows us to precise the upper bound of super(greedy) for r-SSP.

Theorem 3. The superstring approximation ratio of greedy for r-SSP is bounded by

2 −
1
r

≤ super(greedy) ≤ min

r + 1
2

,
7
2


.

Note that the lower and upper bounds meet for r = 2. Theorem 3 suggests a more precise version of the greedy
conjecture: the superstring approximation ratio of greedy on r-SSP is 2 −

1
r . Note that this ratio has been proven, but

for a subset of instances corresponding to a restricted class of orders in which strings are merged, known as ‘‘linear greedy
orders’’ [17].

Table 1 shows the actual bounds for small values of r . One observes that greedy achieves a superstring ratio that increases
from3/2 forwords of length 2 until 7/2 for r = 6. It reaches a ratio of 2 for 3-SSP,which solves the classical greedy conjecture
for 3-SSP. As the previously known bound on the approximation ratio of greedy for r-SSP is 7/2 [10], our theorem improves
on this bound for all values of r below 6. Surprisingly for 2-SSP, greedy achieves a ratio of 3/2, which is tight. This shows
that greedy can do better than the ratio of 2 stated by the classical greedy conjecture.

Note that other approximation algorithms (which are more complex than greedy) yield better approximation ratios for
small values of r . For instance, an algorithm that combines a de Bruijn graph and an overlap graph approaches yields a ratio
(r2 + r − 4)/(4r − 6), which is 4/3 for 3-SSP [9]. The greedy conjecture remains open for r > 5 and in general for SSP.
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Table 1
Bounds on the approximation ratio of the greedy algorithm for r-SSP for
r < 7. It achieves a bound of 2 for 3-SSP. Ratio 7/2 is the currently best
known ratio for r-SSP in general. It also gives a tight ratio of 3/2 for 2-SSP,
which is polynomial.

r 1 2 3 4 5 6

Lower bound 2 −
1
r 1 3/2 5/3 7/4 9/5 11/6

Upper bound min
 r+1

2 , 7
2


1 3/2 2 5/2 3 7/2

4. Conclusion

The Shortest Superstring Problem is a crucial problem in computer science and has many practical applications in
data compression, and in bioinformatics where it models genome assembly [8]. In this context, the case of r-SSP is
realistic since sequencers often produce sequencing reads of the same length. Because it is simple and more efficient
than other methods [10], and because it yields very good solutions in practice [12,15], the greedy algorithm is important.
More generally, we exploit the relationship between the two approximation measures, the superstring length and the
compression, to bound the superstring ratio in function of the compression ratio, which to our knowledge is new. This
bound applies to SSP in general, and our results could prove useful for variants of SSP, like SSP for DNA strings, SSP with
flippings, or for cyclic superstrings [2,6].

Maximising the compression orminimising the superstring length are dual problems (known asMaximum Compression
and SSP, respectively). An optimal solution for one is also optimal for the other, while good approximate solutions differ
for both. To solve this artificial asymmetry, another definition of approximation ratio has been proposed: the differential
approximation ratio [5], which incorporates the size of the worst solution. For SSP in general, there is no longest superstring
(no worst solution). With the natural restriction we considered for Theorem 1, the superstring ratio is the classical ratio,
while the compression ratio is the differential approximation ratio for SSP. For the Maximum Compression problem, the
compression ratio is both the classical and the differential approximation ratio. As we conjecture that computing a longest
superstring obtained from a permutation of the input words is NP-hard, the study of the differential approximability of SSP
appears as an appealing future line of research.

In addition, the greedy algorithm also gives an exact solution for finding the Shortest Cyclic Cover of Strings [4,3].
Proving the greedy conjecture in general remains a challenging open question. Here, we prove the greedy conjecture of a 2
superstring approximation ratio for 3-SSP, a restriction of SSP known to beNP-hard. Our proof also implies better superstring
ratios for r < 6 (except 4). In addition, we show that greedy has a tight approximation bound of 3/2 on 2-SSP, meaning
that it can yield ratios strictly smaller than 2, which was unknown. It suggests that the ratio depends on the length of input
words. Hence, we propose to revise the greedy conjecture for input words of fixed length: is the superstring ratio of greedy
equal to 2 − 1/r?
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