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DIMENSION 1 SEQUENCES ARE CLOSE TO RANDOMS

We show that a sequence has effective Hausdorff dimension 1 if and only if it is coarsely similar to a Martin-Löf random sequence. More generally, a sequence has effective dimension s if and only if it is coarsely similar to a weakly s-random sequence. Further, for any s ă t, every sequence of effective dimension s can be changed on density at most H ´1ptq ´H´1 psq of its bits to produce a sequence of effective dimension t, and this bound is optimal.

The theory of algorithmic randomness defines an individual object in a probability space to be random if it looks plausible as an output of a corresponding random process. The first and the most studied definition was given by Martin-Löf [START_REF] Martin-Löf | The definition of random sequences[END_REF]: a random object is an object that satisfies all "effective" probability laws, i.e., does not belong to any effectively null set. (See [DH10, [START_REF] Uspensky | Kolmogorov complexity and algorithmic randomness (Russian title: Kolmogorovskaya slozhnost i algoritmichskaya sluchainost)[END_REF][START_REF] Shen | Around Kolmogorov complexity: Basic Notions and Results[END_REF] for details; we consider only the case of uniform Bernoulli measure on binary sequences, which corresponds to independent tossings of a fair coin.) It was shown by Schnorr and Levin (see [START_REF] Peter | The process complexity and effective random tests[END_REF][START_REF] Schnorr | Process complexity and effective random tests[END_REF][START_REF] Levin | On the notion of a random sequence[END_REF]) that an equivalent definition can be given in terms of description complexity: a bit sequence X P 2 ω is Martin-Löf (ML) random if and only if the prefix-free complexity of its n-bit prefix X ae n is at least n ´Op1q.

(See [LV93, [START_REF] Uspensky | Kolmogorov complexity and algorithmic randomness (Russian title: Kolmogorovskaya slozhnost i algoritmichskaya sluchainost)[END_REF][START_REF] Shen | Around Kolmogorov complexity: Basic Notions and Results[END_REF] for the definition of prefix-free complexity and for the proof of this equivalence; one may use also monotone or a priori complexity.) This robust class also has an equivalent characterization based on martingales that goes back to Schnorr [START_REF] Peter | A unified approach to the definition of random sequences[END_REF].

The notion of randomness is in another way quite fragile: if we take a random sequence and change to zero, say, its 10th, 100th, 1000th, etc. bits, the resulting sequence is not random, and for a good reason: a cheater that cheats once in a while is still a cheater. To consider such sequences as "approximately random", one option is to relax the Levin-Schnorr definition by replacing the Op1q term in the complexity characterisation of randomness by a bigger opnq term, thus requiring that lim nÑ8 KpX ae n q{n " 1. Such sequences coincide with the sequences of effective Hausdorff dimension 1. (Effective Hausdorff dimension was first explicitly introduced by Lutz [START_REF] Jack | Gales and the constructive dimension of individual sequences[END_REF]. It can be defined in several equivalent ways via complexity, via natural generalizations of effective null sets, and via natural generalizations of martingales; again, see [DH10, [START_REF] Uspensky | Kolmogorov complexity and algorithmic randomness (Russian title: Kolmogorovskaya slozhnost i algoritmichskaya sluchainost)[END_REF][START_REF] Shen | Around Kolmogorov complexity: Basic Notions and Results[END_REF] for more information.)

Another approach follows the above example more closely: we could say that a sequence is approximately random if it differs from a random sequence on a set
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of density 0. Our starting point is that this also characterizes the sequences of effective Hausdorff dimension 1.

To set notation, for n ě 1, we let d be the normalised Hamming distance on t0, 1u

n , the set of binary strings of length n: dpσ, τ q " # tk : σpkq ‰ τ pkqu n ;

and we also denote by d the Besicovitch distance on Cantor space 2 ω (the space of infinite binary sequences), defined by dpX, Y q " lim sup nÑ8 dpX ae n , Y ae n q,

where Z ae n stands for the n-bit prefix of Z. If dpX, Y q " 0, then we say that X and Y are coarsely equivalent. 1

Theorem 1.7. A sequence has effective Hausdorff dimension 1 if and only if it is coarsely equivalent to a ML-random sequence.

In Section 2, we generalize this result to sequences of effective dimension s in various ways. Because a sequence X having effective dimension s implies that the prefix-free complexity of its n-bit prefix X ae n is at least sn ´opnq, it is natural to consider the weakly s-randoms, those sequences X such that KpX ae n q ě sn ´Op1q.

Theorem 2.5. Every sequence of effective Hausdorff dimension s is coarsely equivalent to a weakly s-random.

Along the way to proving this, we pass through the question of how to raise the effective dimension of a given sequence while keeping density of changes at a minimum. If dpX, Y q " 0, then dimpXq " dimpY q; so sequences of effective Hausdorff dimension s ă 1 cannot be coarsely equivalent to a ML random sequence. It is natural then to ask, what is the minimal distance required between any sequence and a random? By Theorem 2.5, it is equivalent to ask about distances between sequences of dimension s and dimension 1; and naturally generalising, to ask, for any 0 ď s ă t ď 1, about distances between sequences of dimension s and dimension t. We start with a naive bound. For any X, Y P 2 ω , | dimpY q ´dimpXq| ď HpdpX, Y qq. This is our Proposition 3.1. Here Hppq " ´pp log p `p1 ´pq logp1 ´pqq is the binary entropy function defined on r0, 1s. The binary entropy function is used to measure the size of Hamming balls. If V pn, rq " ř kďnr `n k ˘is the size of a Hamming ball of radius r ă 1{2 in 2 n , then Hprqn ´Oplog nq ď logpV pn, rqq ď Hprqn (see [MS77, Cor. 9, p. 310]).

In Proposition 3.5, we will see that this bound is tight, in the sense that if s ă t then there are X, Y P 2 ω with dimpXq " s, dimpY q " t and dpX, Y q " H ´1pt ´sq. Note that for H ´1 we take the branch which maps r0, 1s to r0, 1{2s.

Bounding the distance from an arbitrary dimension s sequence to the nearest dimension t sequence requires more delicate analysis. For example, fix 0 ă s ă t ď 1. If X is Bernoulli H ´1psq-random, then its dimension is s. But its density of 1s is H ´1psq. If dimpY q ě t then the density of 1s in Y is at least H ´1ptq, so 1 One place this is defined is in [START_REF] Jockusch | Generic computability, Turing degrees, and asymptotic density[END_REF], where it is called "generic similarity". dpX, Y q ě H ´1ptq ´H´1 psq. Note that H ´1ptq ´H´1 psq ě H ´1pt ´sq, so this is a sharper bound, and it is tight: Theorem 4.1. For every sequence X with dimpXq " s, and every t P ps, 1s, there is a Y with dimpY q " t and dpX, Y q ď H ´1ptq ´H´1 psq.

In particular, for t " 1, in light of Theorem 1.7, we obtain Theorem 2.1. For every X P 2 ω there is a ML-random sequence Y such that dpX, Y q ď 1{2 ´H´1 pdimpXqq.

(We however prove Theorem 2.1 first, and elaborate on its proof to obtain Theorem 2.5 and then Theorem 4.1.)

We can also ask, starting from an arbitrary random, how close is the nearest sequence of dimension s guaranteed to be? For example, a typical construction of a sequence of effective dimension 1{2 starts with a random and replaces all the even bits with 0. The distance between the resulting pair is 1{4, less than the 1{2 ´H´1 p1{2q « .4 needed to get to a Bernoulli random, but more than the H ´1p1 ´1{2q « .1 lower limit from Proposition 3.1. Here, the latter bound is tight: Theorem 3.3. For any Y P 2 ω there is some X P 2 ω such that dimpXq ď s and dpX, Y q ď H ´1p1 ´sq.

These results mean that in general, the distance from an arbitrary dimension 1 sequence to the nearest dimension s sequence is quite a bit less than the distance from an arbitrary dimension s sequence to the nearest dimension 1 sequence.

Finally, we mention that for t ă 1, the bound given by Proposition 3.1 for the required distance to a sequence of dimension s ă t is not optimal; we show below (Proposition 3.4) that for the case t " 1{2 and s " 0, there are Y P 2 ω of dimension 1{2 with no X P 2 ω of dimension 0 within distance H ´1p1{2q. Here decreasing information is not so simple due to the possibility of redundancy of information.

Each of these infinitary results have finite versions. Examples of similar finite theorems previously appeared in [START_REF] Buhrman | Increasing Kolmogorov complexity[END_REF]. The finite versions are proved using either Harper's Theorem, a result of finite combinatorics; or estimates on covering Hamming space by balls of a given radius. We adapt those methods, together with some convexity arguments, to prove our results. These results exist in the context of a larger set of questions on the general theme of asking whether every sequence of high effective dimension is obtainable by starting with a random and "messing it up". If a random were messed up only slightly to produce a sequence of high effective dimension, it might be possible to computably extract a random sequence back out. It was shown in [START_REF] Bienvenu | Constructive dimension and Turing degrees[END_REF]FHP `11] that if X has positive packing dimension, then X computes a sequence of packing dimension at least 1 ´ε for each ε ą 0. On the other hand, the second author showed that for any left-c.e. α P p0, 1q, there is a sequence of effective dimension α which does not compute any sequence of effective dimension greater than α [START_REF] Miller | Extracting information is hard: a Turing degree of non-integral effective Hausdorff dimension[END_REF], and in [START_REF] Greenberg | Diagonally non-recursive functions and effective Hausdorff dimension[END_REF] it was shown that there is a sequence of dimension 1 that does not compute any random. Therefore, the symmetric differences X∆Y which we find here are not, in general, computable. For more references on this type of question, see [DH10, Section 13.7].

To set notation, for a binary string σ of length n (we write σ P t0, 1u n ) let dimpσq " Kpσq n ;

then for an infinite binary sequence X P 2 ω , dimpXq " lim inf n dimpX ae n q.

We can similarly define conditional dimension:

dimpσ | τ q " Kpσ | τ q |σ| .

Dimension 1 sequences and randoms

In this section, we prove Theorem 1.7. Let P be the set of random sequences with deficiency 0:

P " tY : p@nq KpY ae n q ě nu . This P is not empty. Given a dimension 1 sequence X, we will build a Y P P such that dpX, Y q " 0.

Let P be the set of extendible strings of P : the prefixes of elements of P . The following lemma tells us that every string σ in P has many extensions in P of length 2|σ|. An analogous lemma for supermartingales rather than prefix-free complexity was proved by Merkle and Mihailovic [MM04, Rmk. 3.1]. They gave a clean presentation of the Kučera-Gács theorem. Gács made use of a similar lemma ([Gác86, Lem. 1]), which guaranteed a sufficient number of extensions in Π 0 1 classes. Lemma 1.1. Every σ P P has at least 2 |σ|´Kp|σ|q´Op1q extensions in P of length 2|σ|.

Proof. We prove that there is a k such that every σ P P has at least 2 2|σ|´Kpσq´k extensions of length 2|σ|. This is enough, since Kpσq ď |σ| `Kp|σ|q `Op1q.

Suppose that some σ P P has fewer than 2 2|σ|´Kpσq´k extensions in P (but has some, otherwise σ cannot be in P). Then each extension (denoted by σ 1 ) has small complexity:

Kpσ 1 q ď Kpσq `Kpσ 1 |σ, Kpσqq `Op1q ď ď Kpσq `Kpσ 1 |k, σ, Kpσqq `Oplog kq ď ď Kpσq `2|σ| ´Kpσq ´k `Oplog kq " 2|σ| ´k `Oplog kq
The first inequality is the formula for the complexity of a pair. In the second one we add k to the condition; the additional Oplog kq term appears. For the third one, if we know k, σ, and Kpσq, then we can wait until fewer than 2 2|σ|´Kpσq´k candidates for σ 1 remain (the set P is co-c.e.), and then specify each remaining candidate by its ordinal number using a 2|σ|´Kpσq´k bit string; this is a self-delimiting description since its length is known from the condition.

For each such σ 1 , we have Kpσ 1 q ě 2|σ|. Therefore, k ´Oplog kq ď 0. So if such a σ exists, then k is bounded. Equivalently, if k is sufficiently large, then there is no such σ, i.e., each σ must have at least 2 2|σ|´Kpσq´k extensions.

For sets of strings A, B Ď t0, 1u

n , we let dpA, Bq " min tdpσ, τ q : σ P A, τ P Bu. We let dpσ, Aq " dptσu, Aq.

Harper's theorem ( [START_REF] Harper | Optimal numberings and isoperimetric problems on graphs[END_REF], see also [START_REF] Frankl | A short proof for a theorem of Harper about Hamming-spheres[END_REF]) says that among all subsets A, B Ď t0, 1u n of fixed sizes, a pair with maximal distance is obtained by taking spheres with opposite centres of 0 n and 1 n . Here a sphere centred at σ is a set C that (for some k) contains the Hamming ball of radius k{n centred at σ and is also contained in the ball of radius pk `1q{n with the same centre.2 

Harper's Theorem. For any sets A, B Ď t0, 1u n , there are spheres Â, B, centred at 0 n and 1 n respectively, such that |A| " | Â|, |B| " | B| and dpA, Bq ď dp Â, Bq.

A first application, useful for us, is the following.

Lemma 1.2. For every ε ą 0 there is a q ă 1 such that for any n and any A Ď t0, 1u

n of size at least 2 nq , there are at most 2 nq strings σ P t0, 1u n such that dpσ, Aq ą ε.

Proof. For a given A Ď t0, 1u n , let B " tσ P t0, 1u n : dpσ, Aq ą εu. We need to show that A and B cannot both contain at least 2 nq elements, for an appropriate choice of q. Note that if |A| ě 2 nq and |B| ě 2 nq , where q " Hp1{2 ´ε{2q, then the inner radii of the spheres  and B from Harper's Theorem are at least 1{2 ´ε{2 ´Op1q{n, because each sphere is an intermediate set between two balls whose radii differ by 1{n. Therefore, dpA, Bq ď ε `Op1q{n. Note that H is strictly increasing on r0, 1{2s and Hp1{2q " 1, so q ă 1.

To get rid of the error term Op1q{n that appears because of discretisation, we can decrease ε in advance. Then the statement is true for all sufficiently large n. To make it true for all n, we choose q so close to 1 that the statement is vacuous for small n; it is guaranteed if 2 nq ą 2 n ´1.

These tools (Harper's theorem and the entropy bound) were used in [START_REF] Buhrman | Increasing Kolmogorov complexity[END_REF] to prove results on increasing the Kolmogorov complexity of finite strings by flipping a limited number of bits. As an example of this technique, consider the following "finite version" of Theorem 1.7: for any ε ą 0 there is a q ă 1 such that for sufficiently large n, for any string σ P t0, 1u

n of dimension at least q (i.e., Kpσq ě nq), there is a random string τ P t0, 1u n (i.e., Kpτ q ě n) such that dpσ, τ q ď ε. Here is the argument using Lemma 1.2. The set of random strings has size at least 2 n´1 , and is co-c.e.; so once we see that a string σ is one of the fewer than 2 qn many strings that are at least ε-away from each random string, we can give it a description of length essentially nq.

A naive plan for the infinite version is to repeat this construction for longer and longer consecutive blocks of bits of a given sequence X of dimension 1, finding closer and closer extensions in a Π 0 1 class of randoms. This fails because the opponent X can copy the extra information that we pump into Y , erasing our gains. For example, if X begins with a very large string of 0s, we must begin Y with a random string to stay in P . Then X (which must have dimension 1 eventually) could bring its initial segment complexity as close to 1/2 as it likes by copying Y from the beginning onto its upcoming even bits. Then Y can never take advantage of X's complexity to get closer to X, since that would cause Y to repeat information. We cannot overcome this problem by taking huge steps (so large that X runs out of things to copy and must show us new information) because X can still use a similar strategy to ensure that the density of symmetric difference is large near the beginning of each huge interval, driving up the lim sup n dpX ae n , Y ae n q even as we keep dpX ae n , Y ae n q low for n on the interval boundary.

Our solution is to not do an initial segment construction but rather use compactness to let ourselves change our mind about our initial segment whenever the opponent seems to take advantage of its extra information. Lemma 1.3 below shows how to do this.

Let E be the set of all finite sequences ε " pε 1 , ε 2 , . . . , ε m q such that ε 1 " 1 and ε k`1 equals either ε k or ε k {2 for all k ă m. For m ě 1, binary sequences σ, τ of length 2 m , and ε P E of length m, we write σ " ε τ if for all k P t1, . . . , mu, d `σ ae r2 k´1 ,2 k q , τ ae r2 k´1 ,2 k q ˘ď ε k .

So we compare the second halves of the strings for k " m, the second quarters for k " m ´1, and so on. (The 0th bits of σ and τ are ignored.) Lemma 1.3. For every ε ą 0 there is an s ă 1 such that for sufficiently large m, for every ε P E of length m, and for all binary strings σ, ρ of length 2 m , if

(1) pε, εq P E (i.e., ε P tε m , ε m {2u),

(2) dimpρ | σq ě s, 3 and (3) there is a τ P P of length 2 m such that τ " ε σ, then there is a ν P P of length 2 m`1 such that ν " pε,εq σρ.

Note that the guaranteed ν need not be an extension of τ .

Proof. Let n " 2 m . For a given σ and ε, let A be the set of all strings η P t0, 1u n such that for some τ P P X t0, 1u n we have τ " ε σ and τ η P P. The set A is co-c.e. (given σ and ε). Let q be given by Lemma 1.2 (for ε). Now apply Lemma 1.1 to any τ P P X t0, 1u

n : since Kpnq{n Ñ 0 as n Ñ 8, the size of A (and even its part that corresponds to this specific τ ) is at least 2 nq (for sufficiently large m).

Let B be the set of strings π P t0, 1u n such that dpπ, Aq ě ε. The set B is c.e., and Lemma 1.2 guarantees that the size of B is at most 2 nq . This implies that each string in B can be given a description (conditioned on σ) of length nq `m `Op1q bits; m bits are used to specify ε. Set s ą q. Then since m " log n, for sufficiently large m we have dimpπ | σq ă s for all π P B. So ρ R B. This means that there is some η P A such that dpη, ρq ď ε. Let τ witness that η P A. Then ν " τ η is as required.

We finish our preparation with three easy observations. Lemma 1.4. Let X, Y P 2 ω and suppose that lim mÑ8 dpX ae r2 m´1 ,2 m q , Y ae r2 m´1 ,2 m q q " 0.

Then dpX, Y q " 0.

Lemma 1.5. Let X P 2 ω and suppose that dimpXq " 1. Then

lim mÑ8 KpX ae r2 m ,2 m`1 q | X ae 2 m q 2 m " 1.
Proof. The complexity of pairs formula shows that KpX ae 2 m`1 q " KpX ae 2 m q `KpX ae r2 m ,2 m`1 q | X ae 2 m q `op2 m q;

the sum can be (almost) maximal only if both terms are (almost) maximal.

Lemma 1.6. If dpX, Y q " 0, then dimpXq " dimpY q.

Theorem 1.7. Let X P 2 ω . Then dimpXq " 1 if and only if there is a ML random Y P 2 ω such that dpX, Y q " 0.

Proof. One direction is immediate from Lemma 1.6. For the other direction, assume that dimpXq " 1. Let

s m " dim pX ae r2 m ,2 m`1 q | X ae 2 m q.
Define an infinite sequence ε " pε 1 , ε 2 , . . . q such that: ' ε 1 " 1 and ε k`1 P tε k , ε k {2u for all k, ' lim kÑ8 ε k " 0, and ' for all m, the triple ε m , s m , m satisfies the conclusion of Lemma 1.3 (so if s m slowly converges to 1, we need a sequence ε m that slowly converges to 0). We then let Q m "

! ν P P X t0, 1u 2 m : ν " pε1,...,εmq X ae 2 m
) .

By induction, Lemma 1.3 shows that for all m the set Q m is nonempty. Note also that all elements of Q m have a prefix from Q m´1 . By compactness, there is a Y P P such that Y ae 2 m P Q m for all m. By Lemma 1.4, such Y is as required.

Dimension s sequences and randoms

In this section, we look at the distance between dimension s sequences and two kinds of randoms. We consider first the density of symmetric difference required to change a sequence of dimension s into a ML random. Extending that argument, we then show that every sequence of dimension s is coarsely similar to a weakly s-random.

Theorem 2.1. For every X P 2 ω there is a ML-random sequence Y such that dpX, Y q ď 1{2 ´H´1 pdimpXqq.

In the introduction we saw that Theorem 2.1 is optimal by considering the case when X is a Bernoulli H ´1psq-random sequence.

The proof of Theorem 2.1 requires several modifications to the work we did in the previous section. For one thing, Lemma 1.4 fails to generalize, as a positive upper density of X∆Y may be greater partway through these intervals than at their boundaries. This could be improved by shortening the intervals. On the other hand, to make something like Lemma 1.5 true for dimension s we would need to increase the size of the intervals; shortening them only makes it fail even worse. The solution is to go ahead and shorten the intervals, but instead of trying to approach a given target symmetric distance slowly and directly, we let the local symmetric difference rise and fall in accordance with the rise and fall of the conditional complexity of each new chunk. Then a convexity argument will let us conclude that the distance between X and Y is small enough.

Letting the size of the intervals grow quadratically achieves a happy medium. In this and all following constructions, the jth chunk has size j 2 and the first j chunks have concatenated length of n j :" ř iăj i 2 , so that n j `j2 " n j`1 . There was plenty of freedom in choice of chunk growth rate, but we must choose something satisfying these conditions: We need n j`1 ´nj ! n j so that the impact of new chunks on the density of symmetric difference and effective dimension goes to zero in the limit. And although we could get away with somewhat less, we also want j log j ! n j`1 ´nj in order to have room to fit a description of δ, which we define next.

To replace the set E of descending sequences of ε i , we use the set D of finite sequences δ " pδ 1 , . . . , δ m q such that each δ j is a fraction of the form k{j for some positive integer k ď j. As before, we write σ " δ τ if for each j, dpσ ae rnj ,nj`1q , τ ae rnj,nj`1q q ă δ j .

By Theorem 1.7, it suffices to construct Y of effective dimension 1. So instead of staying inside a tree of randoms, in this and all following constructions we stay in trees of the following type.

Given a sequence t of numbers in the unit interval, let

Pt " tY : p@iq dimpY ae rni,ni`1q | Y ae ni q ě t i u.

Let Pt denote the set of initial segments of Pt. For this first argument, we let t be 1, the sequence of all 1s. By Lemma 2.4 below, if Y P P1, then dimpY q " 1.

The following lemma plays the role of Lemma 1.2 and Lemma 1.3.

Lemma 2.2. For every ε ą 0, there is an N such that for every j ě N , σ P t0, 1u nj , ρ P t0, 1u

j 2
, δ P D, and δ " k{j, if δ ą ε and (1) dimpρ | σq ě Hp1{2 `ε ´δq and (2) σ " δ τ for some τ P P1, then there is a ν P P1 such that σρ " pδ,δq ν.

Proof. The sets A and B are defined the same as in the proof of Lemma 1.3:

A " tη P t0, 1u j 2 : Dτ P P1 pτ "δ σ and τ η P P1qu, and B " tπ P t0, 1u j 2 : dpπ, Aq ě δu. Now use Harper's Theorem to show that because |A| ą 2 j 2 ´1, we have log |B| ď Hp1{2´δqj 2 . Therefore, relative to σ, codes for elements of B can be given which have length Hp1{2 ´δqj 2 `Opj log jq, where Opj log jq bits are used to describe δ. The difference Hp1{2 `ε ´δq ´Hp1{2 ´δq is bounded away from zero by a fixed amount that does not depend on δ. Therefore, there is an N large enough that codes for elements of B are shorter than Hp1{2 ὲ ´δqj 2 , where the choice of N does not depend on δ.

In the construction itself, we define an infinite sequence pε 1 , ε 2 , . . . q so that ε i Ñ 0 and N " i witnesses Lemma 2.2 for ε i . Then we define (1) s j " dim pX ae rnj,nj`1q | X ae nj q and finally δ j " 1{2`ε j ´H´1 ps j q`Op1{jq to obtain the sequence pδ 1 , δ 2 , . . . q to be used for the definition of Q j and the proof that the Q j are nonempty. This produces Y P P1 with X "δ Y . It remains only to examine the relationship between the s j , the δ j , dimpXq, and dpX, Y q for X " δ Y . The following variations on Lemma 1.4 and Lemma 1.5 are well-known.

Lemma 2.3. For X, Y P 2 ω , letting δ i " dpX ae rni,ni`1q , Y ae rni,ni`1q q, dpX, Y q " lim sup

jÑ8 1 n j j´1 ÿ i"1 δ i i 2 .
Proof. Since n j grows slowly enough, both are equal to lim sup jÑ8 dpX ae nj , Y ae nj q.

Lemma 2.4. For X P 2 ω , letting s j be defined as in (1),

dimpXq " lim inf jÑ8 1 n j j´1 ÿ i"1 s i i 2 .
Proof. Since n j grows slowly enough, it suffices to show Kpσq "

j´1 ÿ i"1 s i i 2 `opn j q
considering only σ of length n j . One direction is immediate; the other uses j applications of symmetry of information and the fact that j log j ! n j (since we condition only on X ae nj and not its code, each application of symmetry of information introduces an error of up to log n j « log j.)

In our case, with X " δ Y , we have

δ i " 1{2 `εi ´H´1 ps i q ě dpX ae rni,ni`1q , Y ae rni,ni`1q q. so dpX, Y q ď lim sup jÑ8 1 n j j´1 ÿ i"1 δ i i 2 " lim sup jÑ8 1 n j j´1 ÿ i"1 p1{2 ´H´1 ps i qqi 2
because ε i Ñ 0. By Lemma 2.4 and the concavity of 1{2 ´H´1 pxq, this is bounded by 1{2 ´H´1 pdimpXqq, as required. This finishes the proof of Theorem 2.1.

This method can be extended to answer a question that was suggested to us by M. Soskova. Recall that a sequence X is called weakly s-random if it satisfies KpX ae n q ě sn ´Op1q.

Theorem 2.5. Every sequence of effective Hausdorff dimension s is coarsely equivalent to a weakly s-random.

Simply staying in a tree of s-randoms (direct generalization of Theorem 1.7) does not provide a strong enough lower bound on the number of possible extensions to use Harper's theorem, since we now need for more than half of the possible strings of a certain length to be available at each stage. To ensure this, we instead require our constructed sequence to buffer its complexity above the level needed to be s-random. Such a strategy was not a possibility in the 1-random case.

In the case of finite strings, Harper's Theorem can be used to show, essentially, that if x is a string of dimension s, then by changing it on ε fraction of its bits, its dimension can be increased to M ps, εq :" Hpminp1{2, H ´1psq `εqq.

We adapt the standard method to prove the following lemma, Case 2 of which is identical to Lemma 2.2.

Lemma 2.6. For all ε, there is an N such that for all j ě N , all σ P t0, 1u nj and ρ P t0, 1u

j 2
, all δ P D, t P D of length j, and all δ, if (1) p δ, δq P D and δ ě ε and (2) there is a τ P Pt with τ "δ σ, then, letting s " dimpρ | σq and t " M ps, δ ´εq `Op 1 j q, there is a ν P P p t,tq with ν " p δ,δq σρ.

Proof. Like before, let

A " tη P t0, 1u j 2 : Dτ "δ σ pτ η P P p t,tq qu and B " tπ P t0, 1u

j 2
: dpπ, Aq ě δu. Case 1. Suppose that 0 ď s ď Hp1{2 ´δ ´ε{2q. The upper bound is chosen so that t is bounded below 1 for s in this interval. Since τ exists, by considering only extensions of it, we can bound |A| ą 2 j 2 ´2tj 2 . Letting q " M ps, δ ´ε `ε{4q (note this q is chosen so that t ă q ă 1), for sufficiently large j we have

(2) |A| ą 2 j 2 ´V pj 2 , H ´1pqqq,
where V pn, rq is the size of a sphere of radius rn in 2 n (this uses the lower bound for V pn, rq mentioned in the introduction). How large j has to be for this bound to hold depends on the size of q ´t, which in general varies with s and δ. But since q ą t for all s, δ with ε ď δ ď 1 and s in the closed interval associated to this case, compactness allows us to bound q ´t away from 0 by a quantity that depends only on ε. Assuming j is large enough for (2) to hold, Harper's Theorem tells us that log |B| ď HpH ´1pqq ´δqj 2 " HpH ´1psq ´ε `ε{4qj 2 so B is either empty, or everything in B can be compressed (relative to σ) to length HpH ´1psq ´3ε{4qj 2 `Opj log jq, (where the Opj log jq is enough to code the parameters δ and t needed to define B as a c.e. set), and for large enough j the code length is less than sj 2 . How large j has to be depends on the difference s ´HpH ´1psq ´3ε{4q, but this can again be bounded in a way that depends only on ε. So for sufficiently large j, if the conditions are satisfied, then ρ R B, and the lemma holds.

Case 2. Suppose that Hp1{2 ´δ `ε{2q ď s ď 1. Because τ exists, |A| ě 2 j 2 ´1, so log |B| ď Hp1{2 ´δqj 2 (this is true regardless of the choice of s). Either B is empty, or this allows the construction of a similar code, with the needed largeness of j determined by s ´Hp1{2 ´δq, which is bounded away from 0 by Hp1{2 ´δ `ε{2q ´Hp1{2 ´δq for all s ě Hp1{2 ´δ `ε{2q. For δ P rε, 1{2s, this bound is strictly positive, so by compactness there is a uniform lower bound depending only on ε.

Choosing N large enough that j ě N works for both cases finishes the proof.

Now given an X with dimpXq " s, define the sequence s j as in (1). Suppose also that an infinite sequence ε Ñ 0 is given, decreasing slowly enough that N " i satisfies the previous lemma for ε i . Define the infinite sequence δ by δ i " 2ε i , and define t by letting t j be M ps j , δ j ´εj q " M ps j , ε j q rounded up to the nearest rational with denominator j. The previous lemma together with the usual compactness argument provides a sequence Y P Pt with dpX, Y q " 0 and thus dimpY q " s. We claim that by that by appropriately slow choice of ε, we can guarantee that Y comes out weakly s-random.

The idea is that while ε is held fixed above 0, by changing ε fraction of each new chunk, we make Y behave like a sequence of dimension strictly greater than s for as long as we like. This allows the production and maintenance of a buffer of extra complexity which is used to smooth out the bumps in our constructionthe logarithmic factors from the use of the complexity of pairs formula and the possibility for a mid-chunk decrease in the complexity of Y .

Proof. if Y is the join of a random with itself pt " 1{2q, and if s " 0, suppose X is such that dpX, Y q ď H ´1p1{2q. Then Y ae n can be given a description of length KpX ae n q `H´1 p1{2qn `n{4 `opnq.

Here the description first provides X ae n . Then for each i such that Xp2iq ‰ Xp2i`1q (there are at most H ´1p1{2qn such i), it gives Y p2iq. Then it gives a description of ti : Xp2iq " Xp2i `1q ‰ Y p2iqu, a subset of n{2 which has size at most H ´1 p1{2q 2 n, and therefore a description of length HpH ´1p1{2qq n 2 . Since H ´1p1{2q `1{4 ă 1{2, and for all n we have KpY ae n q ě n{2, we have dimpXq ą 0.

In a weaker sense, however, the bound from Proposition 3.1 is always optimal. Proposition 3.5. For all s ă t there are X, Y P 2 ω with dimpXq " s, dimpY q " t and dpX, Y q " H ´1pt ´sq.

Proof. This is similar to the proof of Theorem 3.3, once we obtain the analogous finite case. Let r " H ´1pt ´sq. Find a witness C for κpn, rq; then find some D Ď C of log-size sn `Oplog nq maximising the size of SpDq " Ť xPD Bpx, rq. Because we can guarantee to cover at least |D| |C| of the space with SpDq, we have log |SpDq| ě nt ´Oplog nq. This gives: Lemma 3.6. There are at least 2 nt n Op1q many strings y P t0, 1u n which are H ´1pt śq-close to a string of dimension at most s `Oplog n{nq.

Sequences X and Y as promised by Proposition 3.5 are constructed by chunks of size i 2 , as above. Having defined X ae nj and Y ae nj , we choose x j " X ae rnj,nj`1q and y j " Y ae rnj,nj`1q so that dimpx j q ď s `Oplog n{nq, dimpy j | Y ae nj q ě t ´Oplog n{nq (where n " j 2 ), and dpx j , y j q ď r.

Dimension s sequences and dimension t sequences

Finally we ask what density of changes are needed to turn a dimension s sequence into a dimension t sequence (where t ą s). By the results of this paper, it is equivalent to ask for the density of changes needed to turn a weakly s-random into a weakly t-random.

Theorem 2.1 can be generalized. Recall that Bernoulli randoms show that the following bound is optimal.

Theorem 4.1. For every sequence X with dimpXq " s, and every t ą s, there is a Y with dimpY q " t and dpX, Y q ď H ´1ptq ´H´1 psq.

In analogy with the proof of Theorem 2.1, in which the relative complexity of each chunk of X was raised to 1 via whatever distance was necessary, one might first consider raising the complexity of each chunk up to t. This fails because of a failure of concavity. Given an individual chunk whose relative complexity s i is less than t, the density of changes needed to bring it up to t is δ i " H ´1ptq ´H´1 ps i q. But when s i ą t, no changes are needed, so we should choose δ i " 0. However, the resulting function (mapping s i to δ i ) is not concave. So a tricky X could cause this strategy to use distance greater than H ´1ptq ´H´1 psq.

We use one of two different strategies, with the chosen strategy depending on the particular s ă t pair. The first strategy is simple: raise the complexity of each chunk as much as possible while staying within distance δ " H ´1ptq ´H´1 psq of the given chunk. This strategy clearly produces a Y with dpX, Y q ď δ, but showing that dimpY q ě t takes a little work and requires the assumption that p1 ´sqg 1 psq ď p1 ´tqg 1 ptq, where gptq " H ´1ptq.

The second strategy is informed by the following reasoning. If for some j, we have dimpX ae nj q « s, then we should hope to have arranged that dimpY ae nj q ě t, since if we do so, then we have made the effective dimension of Y large enough. If we have achieved this for Y ae nj and then X's next chunk is relatively random, we can make Y 's next chunk relatively random for free, so we may as well do so. This has the effect that pdimpX ae nj`1 q, dimpY ae nj`1 qq lies on or above the line connecting ps, tq to p1, 1q. In this case, our strategy is to use whatever density of changes are necessary to keep pdimpX ae nj`1 q, dimpY ae nj`1 qq on or above this line. Then it is clear that dimpY q ě t, but showing dpX, Y q ď δ requires a little work and the assumption that p1 ´tqg 1 ptq ď p1 ´sqg 1 psq, complementary to the assumption under which the first strategy works.

Proof of Theorem 4.1. Given X, let s i be defined as in (1), and define ŝj by

ŝj " 1 n j j´1 ÿ i"1 s i i 2 .
For notational convenience, define gptq " H ´1ptq.

Case 1. Suppose that p1 ´sqg 1 psq ď p1 ´tqg 1 ptq. We will construct Y P Pt, where t is the infinite sequence defined by

t i " M ps i , δq `Op1{iq.
(The small extra factor is just to round t i up to a fraction of the form k{i.) Let ε i Ñ 0 be an infinite sequence decreasing slowly enough that N " i satisfies Lemma 2.6 for ε i . Let δ be defined by δ i " δ `εi . By that lemma and the usual compactness argument, there is Y P Pt with dpX, Y q ď δ. We must show that if Y P Pt, then dimpY q ě t.

Let rpxq " M px, δq, so that t i ě rps i q. By Lemma 2.4,

dimpY q ě lim inf j 1 n j j´1 ÿ i"0 rps i qi 2 .
We would like it if rpxq were convex, so that we could conclude that if ŝj « s, then 1 nj ř j´1 i"0 rps i qi 2 ě rpŝ j q « rpsq " t. But it is not convex, so we use a convex approximation. Let ℓpxq be the tangent line to rpxq at s. Note that since r is increasing, ℓ has positive slope. Below we will show that ℓpxq ď rpxq on r0, 1s. Assuming this, we can finish the argument. Whenever ŝj ď s, we have ℓpŝ j q " ℓpsq ˘ε " t ˘ε, with ε vanishing in the limit infimum. On the other hand, if ŝj ą s, then since ℓ is increasing and each t i ě ℓps i q, we have 1 n j j´1 ÿ i"0 rps i qi 2 ě ℓpŝ j q ą ℓpsq " t, as required.

It remains to show that ℓpxq ď rpxq. The proof of the following lemma is elementary but not short; here we state and use it, but delay a proof sketch to the end of the section. Lemma 4.2. There is a point z P p0, 1q such that rpxq is convex on p0, zq and concave on pz, 1q.

We can assume t ă 1 (if t " 1, we are covered by Theorem 2.1), so in a neighborhood of s, rpxq " Hpgpxq `δq. We claim that r is convex at s. Consider the slope of r at s. We have r 1 pxq " H 1 pgpxq `δqg 1 pxq, so (using that H 1 pgpxqq " 1{g 1 pxq) r 1 psq " H 1 pgptqqg 1 psq " g 1 psq{g 1 ptq.

By the case assumption, r 1 psq is less than the slope of the line connecting ps, tq to p1, 1q. Since r 1 psq is also the slope of ℓ, it follows that ℓp1q ď 1, a fact we use later. If r were concave already at s (and therefore also onwards), its graph would lie below this line for all x ą s, so we would have rpxq ă 1 for all x P ps, 1q. But when gpxq `δ " 1{2, rpxq " 1, and this happens for some x P ps, 1q. Therefore, rpxq is convex at s, so s ď z.

By convexity of r on p0, zq, ℓpxq ď rpxq on r0, zs. Also, ℓp1q ď 1 by the case assumption, and rp1q " 1. Since ℓpzq ď rpzq and ℓp1q ď rp1q, and since ℓ is linear on rz, 1s while r is concave on that interval, ℓpxq ď rpxq on that interval. Therefore, ℓpxq ď rpxq on r0, 1s, completing the proof of this case.

Case 2. Suppose that p1 ´tqg 1 ptq ď p1 ´sqg 1 psq. Let ℓpxq " 1 ´t 1 ´s x `t ´s 1 ´s . This is the line containing ps, tq and p1, 1q. We will construct Y P Pt, where t is the infinite sequence defined by t i " ℓps i q `Op1{iq.

(Again, the extra factor is just to round t i up to a fraction of the form k{i.) By linearity, if each ps i , t i q is on or above the graph of ℓ, then ˜1 n j j´1 ÿ i"1

s i i 2 , 1 n j j´1 ÿ i"1 t i i 2
is also. By Lemma 2.4, the limit infimum of the first coordinate is dimpXq, and the limit infimum of the second coordinate is a lower bound for dimpY q. So if dimpXq " s, then dimpY q ě t as required. Considering also the density of changes, we need to find Y P Pt with dpX, Y q ď gptq ´gpsq.

Let ε Ñ 0 be an infinite sequence decreasing slowly enough that N " i satisfies Lemma 2.6 for ε i . Let δ be defined by δ i " gpt i q ´gps i q `εi .

Observe that M ps i , δ i ´εq `Op1{iq " t i . This is the complexity increase guaranteed by Lemma 2.6, so by that lemma and the usual compactness argument, there is Y P Pt with dpX, Y q ď lim sup

j 1 n j j´1 ÿ i"1 δ i i 2 .
Now, letting ppxq " gpℓpxqq ´gpxq, Proof sketch of Lemma 4.3. Letting ppxq " gpℓpxqq ´gpxq for ℓ with slope in r0, 1s, we show that p is concave. Since ℓp1q " 1, we write ℓpxq " ax `1 ´a. We need to show p 2 pxq " g 2 pax `1 ´aqa 2 ´g2 pxq is non-positive. When a " 1, p 2 pxq " 0, so defining kpa, xq " g 2 pax `1 ´aqa 2 ǵ2 pxq, it suffices to show that Bk Ba pa, xq is non-negative for pa, xq P p0, 1s 2 . We have Bk Ba pa, xq " g 3 pax `1 ´aqpx ´1qa 2 `2ag 2 pax `1 ´aq, which, with the substitution y " gpax `1 ´aq, simplifies to Bk Ba pa, xq " a `g3 pHpyqqpHpyq ´1q `2g 2 pHpyqq ˘.

So it suffices to show that this function is non-negative for all y P rgp1 ´aq, 1{2s.

Expanding the computation of g 3 and g 2 , we have Bk Ba pa, xq " f pyq{papH 1 pyqq 5 p1 ´yq 2 y 2 pln 2q 2 q where f pyq, which has the same sign as Bk{Ba, is f pyq " ˆ3 ´pln 2qp1 ´2yq log 2 ˆ1 y ´1˙˙p Hpyq ´1q `2pln 2qyp1 ´yq ˆlog 2 ˆ1 y ´1˙˙2

It suffices to show that f pyq ě 0 on rgp1 ´aq, 1{2s. Since f p1{2q " 0, it suffices to show that f 1 pyq ď 0. One may check that f 1 p1{2q " 0, so it suffices to show that f 2 pyq ě 0. We have f 2 pyq " phpyq `yp1 ´yqq{py 2 p1 ´yq 2 q, where hpyq " lnp2 ´2yq ´yp2 ´3y `2y 2 q lnp1{y ´1q.

It suffices to show that hpyq ě 0. Since hp1{2q " 0, it suffices to show that h 1 pyq ď 0. One may check h 1 p1{2q " 0, so it suffices to show that h 2 pyq ě 0. We have h 2 pyq " 3p1 ´yqy lnp1{y ´1q `p1 ´2yq 2yp1 ´yqp1 ´2yq ě 0, completing the proof.

This is, admittedly, an unusual use of "sphere"; we adopt it from[START_REF] Frankl | A short proof for a theorem of Harper about Hamming-spheres[END_REF].

Specifically, using the complexity of pairs formula repeatedly, and considering worst case mid-chunk complexities, we have KpY ae nj`k q ě j ÿ i"0

where k ă j 2 . So Y will be s-random if we can arrange that eventually j ÿ i"0

which is what the next lemma guarantees.

Lemma 2.7. For any constant c and any infinite sequence s P D, let

Then there is an infinite ε P E with ε i Ñ 0, and a constant b, such that for all j, j ÿ i"0 M ps i , ε i qi 2 ´cj 2 ą sn j ´b.

Proof. Observe that for any fixed ε, there is a d ą 0 such that M px, εq ě d `p1 ´dqx.

(On the closed interval r0, Hp1{2 ´εqs, M px, εq ą x, so by compactness, on this interval M px, εq ą x `d for some d. Outside this interval, M px, εq " 1.) By this bound,

M ps i , εqi 2 ě dn j `p1 ´dq

Since s ă 1, there is a δ such that d `p1 ´dqps ´δq ą s `δ. So for large enough N , we have for each j ą N ,

M ps i , εqi 2 ě dn j `p1 ´dqps ´δqn j ą ps `δqn j ą sn j `cj 2 .

All this was done for fixed ε, so rename this N as N ε . The sequence we want is defined by letting ε 0 " 1, and then let ε j " ε j´1 {2 if j ą N εj´1{2 , and otherwise ε j " ε j´1 . The constant b is chosen to absorb any irregularity that occurs for j ď N 1 .

Setting c large enough, choosing ε according to Lemma 2.7, and constructing Y using ε with Lemma 2.6 produces a Y which is coarsely similar to X and with KpY ae n q ą sn ´b. This completes the proof of Theorem 2.5.

Intermezzo: decreasing dimension

In the next section, we will generalise Theorem 2.1 to increasing dimension from s to some t ă 1. Now we discuss decreasing dimension. As discussed in the introduction, in one case we can meet the following naive bound. Proposition 3.1. For any X, Y P 2 ω , | dimpY q ´dimpXq| ď HpdpX, Y qq. Proof. Let s " dimpXq and δ " HpdpX, Y qq. For infinitely many n we have KpY ae n q ď ps `εqn `Hpδ `εqn `Oplog nq, where ε is arbitrary. The first term comes from the inequality KpX ae n q ď ps `εqn which holds infinitely often. The second term comes from a description of the symmetric difference X ae n ∆Y ae n , using the fact that eventually dpX ae n , Y ae n q ă δ `ε to bound the number of possible symmetric differences to 2 nHpδ`εq . Therefore, if dimpY q " 1 and dimpXq " s, then dpX, Y q ě H ´1p1 ´sq. We show that in this case, the bound is tight. This will be based on the finite case: Lemma 3.2. For any string y of length n and a given radius r, there is a string x in Bpy, rq with dimpxq ď 1 ´Hprq `Oplog n{nq.

Lemma 3.2 can be proved using tools from the Vereshchagin-Vitányi theory [START_REF] Vereshchagin | Rate distortion and denoising of individual data using Kolmogorov complexity[END_REF], which is surveyed in [VSar]. This is essentially the first part of Theorem 8 of [VSar], modified using the following facts. First, the class of Hamming balls satisfies the conditions of Theorem 8 (see [START_REF] Vereshchagin | Algorithmic statistics: forty years later[END_REF]Proposition 28]). Second, if V pn, rq is the size of a Hamming ball of radius r contained in 2 n , then logpV pn, rqq " Hprqn ˘Oplog nq (see [START_REF] Vereshchagin | Algorithmic statistics: forty years later[END_REF]Remark 11]). Finally, the complexity of a Hamming ball is within Oplog nq of the complexity of its center.

Another way to obtain Lemma 3.2 is by considering covering Hamming space by balls. For any n and r P p0, 1{2q, let κpn, rq be the smallest cardinality of a set C Ď t0, 1u

n such that t0, 1u n " Ť xPC Bpx, rq. Delsarte and Piret ( [START_REF] Delsarte | Do most binary linear codes achieve the Goblick bound on the covering radius?[END_REF], see [CHLL97, Thm.12.1.2]) showed that κpn, rq ă 1 `n2 n ln 2{V pn, rq, where recall from the introduction that V pn, rq is the size of the Hamming space of radius r. As mentioned above, log V pn, rq ě Hprqn ´Oplog nq (for fixed r), whence logpκpn, rqq ď p1 ´Hprqqn `Oplog nq; Lemma 3.2 follows by finding a witness for κpn, rq and giving appropriately short descriptions to all the strings in that witness. Now the counterpart to Proposition 3.1 follows.

Theorem 3.3. For any Y P 2 ω there is some X P 2 ω such that dimpXq ď s and dpX, Y q ď H ´1p1 ´sq.

Note that if Y is random, then it must be the case that dimpXq " s.

Proof. Let δ " H ´1p1 ´sq. Given any Y , we build X by initial segments. Split Y into chunks by cutting it at the locations n j as before. By Lemma 3.2, for each chunk y from Y , find a chunk x in Bpy, δq with dimpxq ď s `Oplog n{nq, where n " |y|, and append it to X. Then dpX, Y q ď δ, and dimpXq ď s, because each chunk satisfies these (with Op log n n q error in the latter case), and Lemma 2.3 and Lemma 2.4 apply.

On the other hand, Proposition 3.1 is not always optimal. This can be demonstrated with a simple error correcting code.

Proposition 3.4. There is a sequence Y P 2 ω of dimension 1{2 such that dimpXq ą 0 for all X with dpX, Y q ď H ´1p1{2q.

by the uniform continuity of g on r0, 1s, we may additionally assume that ε i decreases slowly enough that |x ´y| ă 1{i implies |gpxq ´gpyq| ă ε i , so that δ i ď pps i q `2ε i . Since

The proof of the concavity of p is elementary but not short. We just use the lemma here and give a sketch of the proof at the end of this section.

Lemma 4.3. The function p is concave on r0, 1s.

By the concavity of p, for each j we have

When ŝj ď s, we have ppŝ j q " ppsq ˘ε " δ ˘ε, with ε vanishing in the limit supremum. But when ŝj ą s, we still need to bound ppŝ j q ď δ " ppsq. Here we use the case assumption. We claim p is decreasing on rs, 1s, because p 1 pxq ď 0 is true exactly when

´s ´g1 pxq ď 0, which is satisfied when x " s by assumption, and therefore satisfied for x ą s because p is concave. Therefore, ppŝ j q ď δ for ŝj ą s, so dpX, Y q ď δ. Now we sketch the lemmas about convexity and concavity used above. The proofs use only undergraduate calculus, mostly of a single variable.

Proof sketch of Lemma 4.2. Given rpxq " M px, δq, we need to show there is a z P p0, 1q such that r is convex on p0, zq and concave on pz, 1q. It suffices to consider only what happens on the interval r0, Hp1{2 ´δqs, since r is increasing and rpxq " 1 for x ě Hp1{2 ´δq, continuing the concavity begun at z. For x in this interval, r 2 pxq " H 2 pgpxq `δqpg 1 pxqq 2 `H1 pgpxq `δqg 2 pxq Since these functions all reference gpxq, we make the substitution y " gpxq. Note that y P r0, 1{2 ´δs. With this substitution, r 2 pxq " H 2 py `δq{pH 1 pyqq 2 `H1 py `δqp´H 2 pyqq{pH 1 pyqq 3

Multiplying by lnp2qpH 1 pyqq 3 and dividing by H 2 pyqH 2 py `δq, r 2 pxq shares its sign with wpyq " f py `δq ´f pyq where f pyq " yp1 ´yq log 2 p1{y ´1q. When y " 0, wpxq " f pδq ą 0 (since δ ă 1{2). When y " 1{2 ´δ, wpxq " ´f p1{2 ´δq ă 0. (Perhaps neither r 2 nor f is strictly defined in these places, but the limits exist). So to show that r 2 pxq is positive on p0, zq and negative on pz, Hp1{2 ´δqq for some z in p0, Hp1{2 ´δqq, since g 1 pxq is positive, it suffices to show that w is strictly decreasing. Equivalently, f 1 py `δq ´f 1 pyq is negative; it suffices to show that f 1 pyq is strictly decreasing on p0, 1{2q; equivalently f 2 pyq is strictly negative on this interval. But f 2 pyq " ´p1 ´2yq{pln 2py ´y2 qq ´2 log 2 p1{y ´1q, which is negative, so we are done.