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Preface

The notion of algorithmic complexity (also sometimes called algorithmic en-
tropy) appeared in the 1960s in between the theory of computation, probability
theory, and information theory.

The idea of A. N. Kolmogorov was to measure the amount of information
in finite objects (and not in random variables, as it is done in classical Shannon
information theory). His famous paper [78], published in 1965, explains how this
can be done (up to a bounded additive term) using the algorithmic approach.

Similar ideas were suggested a few years earlier by R. Solomonoff (see [187]
and his other papers; the historical account and reference can be found in {103]).}
The motivation of Solomonoff was quite different. He tried to define the notion
of a priori probability. Imagine there is some experiment (random process) and
we know nothing about its internal structure. Can we say something about the
probabilities of different outcomes in this situation? One can relate this to the
complexity measures saying that simple objects have greater a priori probability
than complex ones. (Unfortunately, Solomonoff’s work become popular only after
Kolmogorov mentioned it in his paper.)

In 1965 G. Chaitiu (then an 18-year-old undergraduate student) submitted
two papers [28] and [29]; they were published in 1966 and 1969, respectively. In
the second paper he proposed the same definition of algorithmic complexity as
Kolmogorov.

The basic properties of Kolmogorov complexity were established in the 1970s.
Working independently, C. P. Schnorr and L. Levin (who was a student of Kol-
mogorov) found a link between complexity and the notion of algorithmic random-
ness (introduced in 1966 by P. Martin-Léf [115]). To achieve this, they introduced
a slightly different version of complexity, the so-called monotone complexity. Also
Solomonoff’s ideas about a priori probability were formalized in the form of prefiz
complezity, introduced by Levin and later by Chaitin. The notions of complexity
turned out to be useful both for theory of computation and probability theory.

Kolmogorov complexity became popular (and for a good reason: it is a basic and
philosophically important notion of algorithm theory) after M. Li and P. Vitdnyi
published a book on the subject [103] (first edition appeared in 1993). Almost
everything about Kolmogorov complexity that was known at the moment was cov-
ered in the book or at least mentioned as an exercise. This book also provided a
detailed historical account, references to first publications, etc. Then the books of
C. Calude [25] and A. Nies [147] appeared, as well as the book of R. Downey and
D. Hirschfeldt [49]. These books cover many interesting results obtained recently

1Kolmogorov wrote in [79], “I came to a similar notion not knowing about Solomonoff’s
work.”

xi



xii PREFACE

(in particular, the results that relate complexity and randomness with classical
recursion theory).

Our book does not try to be comprehensive (in particular, we do not say much
about the recent results mentioned above). Instead, we tried to select the most
important topics and results (both from the technical and philosophical viewpoints)
and to explain them clearly. We do not say much about the history of the topic:
as is usually done in textbooks, we formulate most statements without references,
but this does not mean (of course) any authorship claim.

We start the book with a section “What is this book about?” where we try to
give a brief overview of the main ideas and topics related to Kolmogorov complexity
and algorithmic randomness so the reader can browse this section to decide whether
the book is worth reading.

As an appendix we reproduce the (English translation} of a small brochure
written by one of the authors (V.U.), based on his talk for high school students
and undergraduates (July 23, 2005) delivered during the “Modern Mathematics”
Summer School (Dubna near Moscow); the brochure was published in 2006 by
MCCME publishing house (Moscow). The lecture was devoted to different notions
of algorithmic randomness, and the reader who has no timme or incentive to study
the corresponding chapters of the book in detail can still get some acquaintance
with this topic.

Unfortunately, the notation and terminology related to Kolmogorov complexity
is not very logical (and different people often use different notation). Even the same
authors use different notation in different papers. For example, Kolmogorov used
both the letters K and H in his two basic publications [78, 79]. In [78] he used
the term “complexity” and denoted the complexity of a string x by K(x). Later
in [79] he used the term “entropy” (borrowed from Shannon information theory)
for the same notion that was called “complexity” in [78]. Shannon information
theory is based on probability theory; Kolmogorov had an ambitious plan to con-
struct a parallel theory that does not depend on the notion of probability. In [79]
Kolmogorov wrote, using the same word entropy in this new sense:

The ordinary definition of entropy uses probability concepts, and
thus does not pertain to individual values, but to random val-
ues, i.e., to probability distributions within a group of values.
[...] By far, not all applications of information theory fit ratio-
nally into such an interpretation of its basic concepts. I believe
that the need for attaching definite meanings to the expressions
H(z|y) and I(z|y), in the case of individual values z and y that
are not viewed as a result of random tests with a definite law
of distribution, was realized long ago by many who dealt with
information theory.

As far as I know, the first paper published on the idea of
revising information theory so as to satisfy the above conditions
was the article of Solomonoff [187]. I came to similar conclu-
sions, before becoming aware of Solomonoff’s work in 1963-1964,
and published my first article on the subject [78] in early 1965.

-]
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The meaning of the new definition is very simple. Entropy
H(z|y) is the minimal [bit] length of a [...] program P that per-
mits construction of the value of z, the value of y being known,

H(z|y) = A(g}u)l_l_l(P).
This concept is supported by the general theory of “computable”
(partially recursive) functions, i.e., by theory of algorithms in
general.

[...] The preceding rather superficial discourse should prove
two general theses.

1) Basic information theory concepts must and can be
founded without recourse to the probability theory, and in such
a manner that “entropy” and “mutual information” concepts are
applicable to individual values.

2) Thus introduced, information theory concepts can form
the basis of the term random, which naturally suggests that ran-
domness is the absence of regularities.?

And earlier (April 23, 1965), giving a talk “The notion of information and the
foundations of the probability theory” at the Institute of Philosophy of the USSR
Academy of Sciences, Kolmogorov said:

So the two problems arise sequentially:

1. Is it possible to free the information theory (and the
notion of the “amount of information”) from probabilities?

2. It is possible to develop the intuitive idea of randomness
as incompressibility (the law describing the object cannot be
shortened)?

(The transcript of his talk was published in [85] on p. 126).

So Kolmogorov uses the term “entropy” for the same notion that was naied
“complexity” in his first paper, and denotes it by letter H instead of K.

Later the same notion was denoted by C (see, e.g., [103]) while the letter K
is used for prefix complexity (denoted by KP(z) in Levin's papers where prefix
complexity was introduced).

Unfortunately, attempts to unify the terminology and notation made by differ-
ent people (including the authors) have lead mostly to increasing confusion. In the
English version of this book we follow the terminology that is most used nowadays,
with few exceptions, and we mention the other notation used. For the reader’s
convenience, a list of notation used (p. xv) and index (p. 505) are provided.

A cknowledgments

In the beginning of the 1980s Kolmogorov (with the assistance of A. Semenov)
initiated a seminar at the Mathematics and Mechanics Department of Moscow
State (Lomonosov) University called “Description and computation complexity”;
now the seminar (still active) is known as the “Kolmogorov seminar”. The authors
are deeply grateful to their colleagues working in this seminar, including A. Zvonkin,

2The published English version of this paper says “random is the absence of periodicity”,
but this evidently is a translation error, and we correct the text following the Russian version.
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possible without them.
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cover, Olga Lehtonen who performed the cover design, and Victor Shuvalov who
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Basic notions and notation

This section is intended for people who are already familiar with some notions
of Kolmogorov complexity and algorithmic randomness theory and want to take
a quick look at the terminology and notation used throughout this book. Other
readers can (and probably should) skip it and look back only when needed.

The set of all integer numbers is denoted by Z, the notation N refers to the
set of all non-negative integers (i.e., natural numbers), R stands for the set of all
reals. The set of all rational numbers is denoted by Q. Dyadic rationals are those
rationals having the form m/2™ for some integer m and n.

The cardinality of a set A is denoted by |A|.

When the base of the logarithmic function is omitted, it is assumed that the
base equals 2, thus log z means the same as log, = (as usual, In z denotes the natural
logarithm).

We use the notation |z| for the integer part of a real number z (the largest
integer number that is less than or equal to z). Similarly, [z] denotes the smallest
integer number that is larger than or equal to z.

Orders of magnitude. The notation f < g+0O(1), where f and g are expressions
containing variables, means that for some ¢ the inequality f < g + ¢ holds for all
values of variables. In a similar way we understand the expression f < g + O(h)
(where h is non-negative): it means that for some ¢ for all values of variables, the
inequality f < g+ ch holds. The notation f = g+ O(h) (where h is non-negative)
means that for some ¢ for all values of variables we have |f — g| < ch. In particular,
f = O(h) holds if | f| < ch for some constant ¢; the notation f = Q(h) means that
|f| = ch for some constant ¢ > 0 (usually f is positive). The notation f = ©O(h)
means that c;h < |f| < c2h (again, usually f is positive).

B denotes the set {0,1}. Finite sequences of zeros and ones are called binary
strings. The set of all binary strings is denoted by E. If A is a finite set (an
alphabet), then A™ denotes the set of all strings of length n over the alphabet A,
that is, the set of all sequences of length n, whose terms belong to A. We denote
by A* the set of all strings over the alphabet A (including the empty string A of
length 0). For instance, = = B*. The length of a string z is denoted by I(z). The
notation ab refers to the concatenation of strings a and b, that is, the result of
appending b to a. We say that a string a is a prefiz of a string b if b = ax for some
string . We say that a is a suffiz of a string b if b = za for some string z. We say
that a is a substring of b, if b = zay for some strings z and y (in other words, a is
a suffix of a prefix of b or the other way around).

We also consider infinite sequences of zeros and ones, and 2 denotes the set of
all such sequences. The set of infinite sequences of elements of a set A is denoted
by A%, thus Q = B°. For a finite sequence x we use the notation £, for the set of
all infinite sequences that start with z (i.e., have = as a prefix). Sets of this form

XV



xvi BASIC NOTIONS AND NOTATION

are called intervals. The concatenation xzw of a finite sequence z and an infinite
sequence w is defined in a natural way.

In some contexts it is convenient to consider finite and infinite sequences to-
gether. We use the notation ¥ for the set of all finite and infinite sequences of zeros
and ones, i.e.,, ¥ = ZUQ, and X, denotes the set of all finite and infinite extensions
of a string x.

We consider computable functions whose arguments and values are binary
strings. Unless stated otherwise, functions are partial (not necessarily total). A
function f is called computable if there is a machine (a program, an algorithm)
that for all z, such that f(z) is defined, halts on input z and outputs the result
f(z) and does not halt on all inputs x outside the domain of f. We also consider
computable functions whose arguments and values are finite objects of different
type, like natural numbers, integer numbers, finite graphs, etc. We assume that
finite objects are encoded by binary strings. The choice of an encoding is not im-
portant provided different encodings can be translated to each other. The latter
means that we can algorithmically decide whether a string is an encoding of an
object and, if this is the case, we can find an encoding of the same object with
respect to the other encoding.

Sometimes we consider computable functions of infinite objects, like real num-
bers or measures. Such considerations require rigorous definitions of the notion of
computability, which are provided when needed (see below).

A set of finite objects (binary strings, natural numbers, etc.) is called com-
putably enumerable, or just enumerable, if there is a machine (a program, an algo-
rithm) without input that prints all elements from the set (and no other elements)
with arbitrary delays between printing consecutive elements. The algorithm is not
required to halt even when the set is finite. The order in which the elements are
printed can be arbitrary.

A real number « is computable if there exists an algorithm that computes
o with any given precision: for any given rational € > 0, the algorithm must
produce a rational number at distance at most € from « (in this case we say that
the algorithm computes the number). A real number « is lower semicomputable
if it can be represented as a limit of a non-decreasing computable sequence of
rational numbers. An equivalent definition: « is lower semicomputable if the set of
rational numbers that are less than o is enumerable. A sequence of real numbers
is computable if all its terms are computable, and given any n we are able to find
an algorithm computing the nth number in the sequence. The notion of a lower
semicomputable sequence of reals is defined in an entirely similar way (for any given
n we have to find an algorithm that lower semicomputes the nth number).

We consider measures (more specifically, probability measures, or probability
distributions) on Q. Every measure can be identified by its values on intervals Q.
So measures are identified with non-negative functions p on strings which satisfy
the following two conditions: p(A) = 1 and p(z) = p(x0) + p(z1) for all z. Such
measures are called measures on the binary tree. We consider also semimeasures
on the binary tree, which are probability measures on the space ¥ of all finite and
infinite binary sequences. They correspond to functions p such that p(A) =1 and
p(z) > p(x0)+p(z1). We consider also semimeasures on natural numbers, which are
defined as sequences {p;} of non-negative reals with ), p; < 1. It is natural to
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identify such sequences with probability distributions on the set N, which consists
of natural nunibers and of the special symbol L (undefined value).

Amoug all semimeasures {on the tree or on natural numbers) we distinguish
lower semicomputable ones. Both the class of lower semicomputable semimeasures
on the tree and the class of lower semicomputable semnimeasures on natural numbers
have a maximal semimeasure {up to a multiplicative constant). Any maximal lower
semicomputable semimeasure is called an a priori probability (on the tree or on
natural numbers). The a priori probability of a natural number n is denoted by
m(n); the a priori probability of a node 2 in the binary tree (that is, of the string z)
is denoted by a(x). We use also the notation m(z) for a binary string 2, which means
an a priori probability of the number of z with respect to some fixed computable
one-to-one correspondence between strings and natural numbers.

The plain Kolinogorov complexity is denoted by C(z), the prefix Kolmogorov
complexity is denoted by K (z) (and by K'(z) when we want to stress that we are us-
ing prefix-free description modes). The same letters are used to denote complexities
of pairs, triples, etc., and to denote conditional complexity. For instance, C(z|y)
stands for the plain conditional complexity of z when y is known, and m{z,y|z)
denotes the a priori probability of the pair (z,y) (that is, of the corresponding
number) when z is known. The monotone Kolmogorov complexity is denoted by
KM, and the a priori complexity (negative logarithm of the a priori probability on
the tree) is deuoted by KA. (In the literature monotone complexity is sometimes
denoted by Km and K,, and the a priori complexity is denoted by KM.) Finally,
the decision complexity is denoted by KR.

BB (n) denotes the maximal halting tinte of the optimal decompressor on inputs
of length at most n (if the optimal prefiz decompressor is meant, then we use the
notation BP(n)). The function BB(n) is closely related to the function B(n)
defined as the maximal natural number of Kolmogorov complexity at most n.

We use also several topological notions. The space N consists of natural
numbers and of a special element L (undefined value); the family of open sets
consists of the whole space and of all sets that do not contain L. This topological
space, as well as the space ¥ (where the family of open sets consists of all unions
of sets of the form ¥,), is used for the general classification of complexities. For
the spaces Q and ¥ and for the space of real numbers, we call a set effectively open
if it is a union of a computably enumerable family of intervals (sets of the form ¥,
for the second space and intervals with rational endpoints for the space of reals).

Most notions of computability theory (including Kolmogorov complexity) can
be relativized, which means that all involved algorithms are supplied by an external
procedure, called an oracle. That procedure can be asked whether any given number
belongs to a set A. That set is also called an oracle. Thus we get the notions of
“decidability relative to an oracle A”, “computability relative to A”, etc. In the
corresponding notation we use the superscript A, for example, CA(z).

In the chapter on classical information theory, we use the notion of Shannon en-
tropy of a random variable £. If the variable has k possible outcomes and py, ..., pg
are their probabilities, then its Shannon entropy H(€) is defined as — ), px log pi.
This definition makes sense also for pairs of jointly distributed random variables.
For such a pair the conditional entropy of a random variable £ when 7 is known is
defined as H(£,n)— H(n). The difference H(€)+ H(n)— H(&,n) is called the mutual
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information in random variables £ and 1 and is denoted by I(£:n). A similar no-
tation I(z:y) is used in algorithmic information theory. As I(z:y) is commutative
only up to a small error term, we usually say “the information in z about y” and
define this notion as C(y) — C(y|x).



INTRODUCTION

What is this book about?

What is Kolmogorov complexity?

Roughly speaking, Kolmogorov complexity means “compressed size”. Pro-
grams like zip, gzip, bzip2, compress, rar, arj, etc., compress a file (text, image,
or some other data) into a presumably shorter one. The original file can then be
restored by a “decompressing” program (sometimes both compression and decom-
pression are performed by the same program). Note that we consider here only
lossless compression.

A file that has a regular structure can be compressed significantly. Its com-
pressed size is small compared to its length. On the other hand, a file without
regularities can hardly be compressed, and its compressed size is close to its origi-
nal size.

This explanation is very informal and contains several inaccuracies—both tech-
nical and more essential. First, instead of files (sequences of bytes) we will consider
binary strings (finite sequences of bits, that is, of zeros and ones). The length of
such a string is the number of symbols in it. (For example, the string 1001 has
length 4, and the empty string has length 0.)

Here are the more essential points:

o We consider only decompressing programs; we do not worry at all about
compression. More specifically, a decompressor is any algorithm (a pro-
gram) that receives a binary string as an input and returns a binary string
as an output. If a decompressor D on input z terminates and returns
string y, we write D(x) = y and say that x is a description of y with
respect to D. Decompressors are also called description modes.

o A description mode is not required to be total. For some z, the compu-
tation D(z) may never terminate and therefore produces no result. Also
we do not put any constraints on the computation time of D: on somne
inputs the program D may halt only after an extremely long time.

Using recursion theory terminology, we say that a description mode is a partial
computable (=partial recursive) function from = to =, where = = {0, 1}* stands for
the set of all binary strings. Let us recall that we associate with every algorithm D
(whose inputs and outputs are binary strings) a function d computed by D; namely,
d(z) is defined for a string z if and only if D halts on z, and d(z) is the output of
D on z. A partial function from = to = is called computable if it is associated with
(=computed by) some algorithm D. Usually we use the same letter to denote the
algorithm and the function it computes. So we write D(z) instead of d(z) unless it
causes a confusion.

Assume that a description mode (a decompressor) D is fixed. (Recall that D is
computable according to our definitions.) For a string x consider all its descriptions,

1
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that is, all y such that D(y) is defined and equals x. The length of the shortest
string y among them is called the Kolmogorov complexity of x with respect to D:

Cp(z) = min{{(y) | D(y) = x}.

Here I(y) denotes the length of the string y; we use this notation throughout the
book. The subscript D indicates that the definition depends on the choice of the
description mode D. The minimum of the empty set is defined as +oo, thus Cp(z)
is infinite for all the strings x outside the range of the function D (they have no
descriptions).

At first glance this definition seenis to be meaningless, as for different D we ob-
tain quite different notions, including ridiculous ones. For instance, if D is nowhere
defined, then Cp is infinite everywhere. If D{y) = A (the empty string) for all y,
then the complexity of the empty string is 0 (since D(A) = A and I(A) = 0), and
the complexity of all the other strings is infinite.

Here is a more reasonable example: consider a decomnpressor D that just copies
its input to output, that is, D(x) = z for all x. In this case every string is its own
description and Cp(z) = l{x).

Of course, for any given string 2 we can find a description mode D that is
tailored to x and with respect to which - has small complexity. Indeed, let D(A) =
z. This implies Cp(z) = 0.

More generally, if we have some class of strings, we may look for a description
mode that favors all the strings in this class. For example, for the class of strings
consisting of zeros only we may consider the following decompressor:

D(bin(n)) = 000...000 (n zeros),

where bin{n) stands for the binary notation of natural number n. The length of
the string bin(n) is about log, n (does not exceed log,n + 1). With respect to
this description mode, the complexity of the string cousisting of n zeros is close
to logy n. This is much less that the length of the string (n). On the other hand,
all strings containing symbol 1 have infinite complexity Cp.

It may seem that the dependence of complexity on the choice of the decom-
pressor makes impossible any general theory of complexity. However, that is not
the case.

Optimal description modes

A description mode is better when descriptious are shorter. According to this,
we say that a description mode (decompressor) D, is not worse than a description
mode Dy if

Cp, (2) < Cp, (2) +¢

for some constant ¢ and for all strings z.

Let us comment on the role of the constant ¢ in this definition. We consider a
change in the complexity bounded by a constant as “negligible”. One could say that
such a tolerance makes the complexity notion practically useless, as the constant c
can be very large. However, nobody managed to get any reasonable theory that
overcomes this difficulty and defines complexity with better precision.

Example. Consider two description modes (decompressors) D; and Ds. Let
us show that there exists a description mode D which is not worse than both of
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them. Indeed, let
D(0y) = D1 (y).
D(1y) = Da(y).

In other words, we consider the first bit of a description as the index of a description
mode and the rest as the description (for this mode).

If y is a description of = with respect to D; (or D3), then Oy (respectively, 1y)
is a description of x with respect to D as well. This description is only one bit
longer, therefore we liave

C'D(J:) < CDI(.I') + 1,
Cp(z) < Cp,(z) +1

for all z. Thus the mode D is not worse than both D; and D>.

This idea is often used in practice. For instance, a zip-archive has a preamble;
the preamble says (among other things) which mode was used to compress this
particular file, and the compressed file follows the preamble.

If we want to use N different compression modes, we need to reserve initial
logy N bits for the index of the compression mode.

Using a generalization of this idea, we can prove the following theorem:

THEOREM 1 (Solomonoff-Kolmogorov). There is a description mode D that is
not worse than any other one: for every description mode D' there is a constant c
such that

Cp(z) < Cpi(z)+c

for every string x.
A description mode D having this property is called optimal.

PRrROOF. Recall that a description mode by definition is a computable function.
Every computable function lias a program. We assume that programs are binary
strings. Moreover, we assume that by reading the program bits fron left to right, we
can determine uniquely where it ends, that is, programs are “self-delimiting”. Note
that every programming language can be modified in such a way that programs are
self-delimiting. For instance, we can double every bit of a given program (changing
0 to 00 and 1 to 11) and append the pattern 01 to its end.

Define now a new description mode D as follows:

D(Py) = P(y),

where P is a program (iu the chosen self-delimiting programming language) and
y is any binary string. That is, the algorithm D scans the iuput string from the
left to the right and extracts a program P from the input. (If the input does not
start with a valid program, D does whatever it wants, say, it goes into an infinite
loop. The self-delimiting property guarantees that the decomposition of input is
unique: if Py = P’y for two programs P and P’, then one of the programs is a
prefix of the other one.} Then D applies the extracted program P to the rest of the
input (y) and returns the obtained result. (So D is just a “universal algorithm”, or
“interpreter”; the only difference is that program and input are not separated, and
therefore we need to use a self-delimiting programming language.)

Let us show that indeed D is not worse than any other description mode P. We
assume that the program P is written in the chosen self-delimiting programming
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language. If y is a shortest description of the string « with respect to P, then Py
is a description of 2 with respect to D (though not necessarily a shortest one).
Therefore, compared to P, the shortest description is at most {(P) bits longer, and

Cp(@) < Cp() + U(P).
The constant {{P) depends only on the description mode P (and not on z). g

Basically, we used the same trick as in the preceding example, but instead
of merging two description modes, we join all of them. Each description mode
is prefixed by its index (program, identifier). The same idea is used in practice.
A self-extracting archive is an executable file starting with a small program (a
decompressor); the rest is considered as an input to that program. This program
is loaded into the memory, and then it decompresses the rest of the file.

Note that in our construction, the optimal decompressor works for a very long
time on some inputs (as some programs have large running time) and is undefined
on some other inputs.

Kolmogorov complexity

Fix an optimal description mode D and call Cp(z) the Kolmogorov complezxity
of the string z. In the notation Cp(x) we drop the subscript D and write just C(z).

If we switch to another optimal description mode, the change in complexity is
bounded by an additive constant: for any two optimal description modes D, and
D, there is a constant ¢(D;, D3) such that

|CD1 (‘I) - CDz(I)l < C(Dls D2)
for all . Sometimes this inequality is written as
CD1 ((L’) = CDz (l) + O(l)v

where O(1) stands for a bounded function of z.

Could we then consider the Kolmogorov complexity of a particular string =
without having in mind a specific optimal description mode used in the definition
of C(z)? No, since by adjusting the optimal description mode, we can make the
complexity of x arbitrarily small or arbitrarily large. Similarly, the relation “string x
is simpler than y”, that is, C(z) < C(y), has no meaning for two fixed strings =
and y: by adjusting the optimal description mode, we can make any of these two
strings simpler than the other one.

One may then wonder whether Kolmogorov complexity has any sense at all.
Trying to defend this notion, let us recall the construction of the optimal description
mode used in the proof of the Solomonoff-Kolmogorov theorem. This construction
uses some programming language, and two different choices of this language lead
to two complexities that differ at most by a constant. This coustant is in fact the
length of the program that is written in one of these two languages and interprets
the other one. If both languages are “natural”, we can expect this constant to be
not that huge, just several thousands or even several hundreds. Therefore if we
speak about strings whose complexity is, say, about 10° (i.e., a text of a long and
not very compressible novel), or 108 (which is reasonable for DNA strings, unless
they are compressible much more than the biologists think now), then the choice
of the programming language is not that important.

Nevertheless one should always have in mind that all statements about Kol-
mogorov complexity are inherently asymptotic: they involve infinite sequences of
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strings. This situation is typical also for computational complexity: usually upper
and lower bounds for complexity of some computational problem are asymptotic
bounds.

Complexity and information

One can consider the Kolmogorov complexity of z as the amount of informa-
tion in z. Indeed, a string of zeros, which has a very short description, has little
information, and a chaotic string, which cannot be compressed, has a lot of informa-
tion (although that information can be meaningless—we do not try to distinguish
between meaningful and meaningless information; so, in our view, any abracadabra
has much information unless it has a short description).

If the complexity of a string x is equal to k, we say that x has k bits of
information. One can expect that the amount of information in a string does not
exceed its length, that is, C(z) < l(z). This is true (up to an additive constant, as
we have already said).

THEOREM 2. There is a constant ¢ such that
Clx)<l(z)+c
for all strings x.

PRrROOF. Let D(y) = y for all y. Then Cp(z) = I(z). By optimality, there
exists some ¢ such that
C(z) £Cpxz)+e=l(z)+c
for all z. O

Usually this statement is written as follows: C(z) < I(z) + O(1). Theorem 2
implies, in particular, that Kolmogorov complexity is always finite, that is, every
string has a description.

Here is another property of “amount of information” that one can expect: the
amount of information does not increase when algorithmic transformation is per-
formed. (More precisely, the increase is bounded by an additive constant depending
on the transformation algorithm.)

THEOREM 3. For every algorithm A there exists a constant ¢ such that
CA(z)) < C(z)+¢
for all  such that A(z) is defined.

PROOF. Let D be an optimal decompressor that is used in the definition of
Kolmogorov complexity. Consider another decompressor D’:

D'(p) = A(D(p)).

(We apply first D and then A.) If p is a description of a string z with respect to D
and A(z) is defined, then p is a description of A(z) with respect to D’. Let p be a
shortest description of z with respect to D. Then we have

Cp/(A(z)) < U(p) = Cp(z) = C(z).
By optimality we obtain
C(A(z)) < Cp/(Az)) +c < Cla) +c

for some ¢ and all z. O



6 INTRODUCTION. WHAT IS THIS BOOK ABOUT?

This theorem implies that the amount of information “does not depend on the
specific encoding”. For instance, if we reverse all bits of some string (replace 0
by 1 and vice versa), or add a zero bit after each bit of that string, the resulting
string has the same Kolmogorov complexity as the original one (up to an additive
constant). Indeed, the transformation itself and its inverse can be performed by an
algorithm.

Here is one more example of a natural property of Kolmogorov complexity. Let
z and y be strings. How much information does their concatenation zy have? We
expect that the quantity of information in zy does not exceed the sum of those in z
and y. This is indeed true; however, a small additive term is needed.

THEOREM 4. There is a constant ¢ such that for oll x and y
C(zy) £ C(z) +2log C(z) + Cly) + ¢

PROOF. Let us try first to prove the statement in a stronger form, without
the term 2log C(z). Let D be the optimal description mode that is used in the
definition of Kolmogorov complexity. Define the following description mode D’.
If D(p) = x and D(q) = y, we consider pq as a description of zy, that is, wc let
D'{pq) = xy. Then the complexity of zy with respect to D’ does not exceed the
length of pq, that is, I(p) + I(q). If p and g are niinimal descriptions, we obtain
Cp/(zy) € Cp(z)+ Cp(y). By optimality the same inequality holds for D in place
of D/, up to an additive constant.

What is wrong with this argument? The problem is that D’ is not well defined.
We let D'(pq) = D(p)D(q). However, D' has no means to separate p from q. It may
happen that there are two ways to split the input into p and ¢ yielding different
results:

p1q1 =paga but D(p1)D(q1) # D(p2)D(g2)-

There are two ways to fix this bug. The first one, which we use now, goes
as follows. Let us prepend the string pg by the length (p) of string p (in binary
notation). This allows us to separate p and g. However, we need to find where
I(p) ends, so let us double all the bits in the binary represeutation of /(p) and then
put 01 as separator. More specifically, let bin(k) denote the binary representation
of integer k, and let T be the result of doubling each bit in z. (For example,

bin(5) = 101, and bin(5) = 110011.) Let
D'(bin(l(p)) 01pq) = D(p)D(q)-

Thus I’ is well defined: the algorithm D’ scans bin(l(p)) while all the digits are
doubled. Once it sees 01, it determines [(p), and then scans I(p) digits to find p.
The rest of the input is g, and the algorithm is able to compute D(p)D(q).

Now we see that Cp:(zy) is at most 2{(bin(l(p))) + 2 + I(p) + I(g). The length
of the binary representation of I(p) is at most log, I{(p) + 1. Therefore, xy has a
description of length at most 2log, {(p) + 4 + I(p) + I(g) with respect to D’, which
implies the statement of the theorem. O

The second way to fix the bug mentioned above goes as follows. We could
modify the definition of Kolmogorov complexity by requiring descriptions to be
self-delimiting; we discuss this approach in detail in Chapter 4.
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Note also that we can exchange p and ¢ and thus prove that

Clzy) < C(z) + C(y) + 2log, C(y) + c.

How tight is the inequality of Theorem 4?7 Can C(zy) be much less than
C(z)+ C(y)? According to our intuition, this happens when z and y have much in
common. For example, if z = y, we have C(zy) = C(zz) = C(z) + O(1), since zz
can be algorithmically obtained from z and vice versa (Theorem 3).

To refine this observation, we will define the notion of the quantity of infor-
mation in z that is missing in y (for all strings = and y). This value is called
the Kolmogorov complezity of x conditional to y (or “given 3”) and is denoted by
C(z|y). Its definition is similar to the definition of the unconditional complexity.
This time the decompressor D has access not only to the (compressed) description,
but also to the string y. We will discuss this notion later in Section 2. Here we
mention only that the following equality holds:

C(zy) = C(y) + C(z|y) + O(logn)

for all strings = and y of complexity at most n. The equality reads as follows: the
amount of information in zy is equal to the amount of information in y plus the
amount of new information in z (“new” = missing in y).

The difference C(z) —C(z|y) can be considered as “the quantity of information
in y about z”. It indicates how much the knowledge of y simplifies z.

Using the notion of conditional complexity, we can ask questions like this: How
much new information does the DNA of some organism have compared to that of
another organism’s DNA? If d, is the binary string that encodes the first DNA and
ds is the binary string that encodes the second DNA, then the value in question is
C(d, |dg). Similarly we can ask what percentage of information has been lost when
translating a novel into another language: this percentage is the fraction

C'(original | translation)/C(original).

The questions about information in different objects were studied before the
invention of algorithmic information theory. The information was measured using
the notion of Shannon entropy. Let us recall its definition. Let £ be a random
variable that takes n values with probabilities py,...,p,. Then its Shannon entropy

H(¢) is defined as
=Y pi(—log; pi).

Informally, the outcome ha.vmg probablhty p; carries log(1/p;) = — logs p; bits of
information (=surprise). Then H(£) can be understood as the average amount of
information in an outcome of the random variable.

Assume that we want to use Shannon entropy to measure the amount of infor-
mation contained in some English text. To do this, we have to find an ensemble of
texts and a probability distribution on this ensemble such that the text is “typical”
with respect to this distribution. This makes sense for a short telegram, but for a
long text (say, a novel) such an ensemble is hard to imagine.

The same difficulty arises when we try to define the amount of information in
the genome of some species. If we consider as the ensemble the set of the genomes
of all existing species (or even all species that ever existed), then the cardinality of
this set is rather small (it does not exceed 2'°%° for sure). And if we consider all
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its elements as equiprobable, then we obtain a ridiculously small value (less than
1000 bits); for the non-uniform distributions the entropy is even less.

So we see that in these contexts Kolmogorov complexity looks like a more
adequate tool than Shannon entropy.

Complexity and randomness

Let us recall the inequality C(z) < I(z) + O(1) (Theorem 2). For most of
the strings its left-hand side is close to the right hand side. Indeed, the following
statement is true:

THEOREM 5. Let n be an integer. Then there are less than 2™ strings x such
that C(z) < n.

PRrOOF. Let D be the optimal description mode used in the definition of Kol-
mogorov complexity. Then only strings D(y) for all y, such that [(y) < n, have
complexity less than n. The number of such strings does not exceed the number of
strings y such that I(y) < n, i.e., the sum

1+244+8+... +27 1 =2"_1
(there are 2* strings for each length k < n). O

This implies that the fraction of strings of complexity less than n — ¢ among all
strings of length n is less than 2"~¢/2™ = 27¢. For instance, the fraction of strings
of complexity less than 90 among all strings of length 100 is less than 2710,

Thus the majority of strings (of a given length) are incompressible or almost
incompressible. In other words, a randomly chosen string of the given length is
almost incompressible. This can be illustrated by the following mental (or even
real) experiment. Toss a coin, say, 80000 times, and get a sequence of 80000 bits.
Convert it into a file of size 10000 bytes (8 bits = 1 byte). One can bet that no
compression software (existing before the start of the experiment) can compress the
resulting file by more than 10 bytes. Indeed, the probability of this event is less
than 2780 for every fixed compressor, and the number of (existing) compressors is
not so large.

It is natural to consider incompressible strings as “random” ones: informally
speaking, randomness is the absence of any regularities that may allow us to com-
press the string. Of course, there is no strict borderline between “random” and
“non-random” strings. It is ridiculous to ask which strings of length 3 (i.e., 000,
001, 010, 011, 100, 101, 110, 111) are random and which are not.

Another example: assume that we start with a “random” string of length 10000
and replace its bits by all zeros (one bit at a step). At the end we get a certainly
non-random string (zeros only). But it would be naive to ask at which step the
string has become non-random for the first time.

Instead, we can naturally define the “randomness deficiency” of a string z as
the difference [(z) — C(z). Using this notion, we can restate Theorem 2 as follows:
the randomness deficiency is almost non-negative (i.e., larger than a constant).
Theorem 5 says that the randomness deficiency of a string of length n is less than
d with probability at least 1 — 1/2¢ (assuming that all strings are equiprobable).

Now consider the Law of Large Numbers. It says that most of the n-bit strings
have frequency of ones close to 1/2. This law can be translated into Kolmogorov
complexity language as follows: the frequency of ones in every string with small
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randomness deficiency is close to 1/2. This translation implies the original state-
ment since most of the strings have small randomness deficiency. We will see later
that actually these formulations are equivalent.

If we insist on drawing a strict borderline between random and non-random
objects, we have to consider infinite sequences instead of strings. The notion of
randomness for infinite sequences of zeros and ones was defined by Kolmogorov’s
student P. Martin-Lof (he came to Moscow from Sweden). We discuss it in Section 3.
Later C. Schnorr and L. Levin found a characterization of randomness in terms of
complexity: an infinite binary sequence is random if and only if the randomness
deficiency of its prefixes is bounded by a constant. This criterion, however, uses
another version of Kolmogorov complexity called monotone complexity.

Non-computability of C and Berry’s paradox

Before discussing applications of Kolmogorov complexity, let us mention a fun-
damental problem that reappears in any application. Unfortunately, the function C
is not computable: there is no algorithm that given a string z finds its Kolmogorov
complexity. Moreover, there is no computable non-trivial (unbounded) lower bound
for C.

THEOREM 6. Let k be a computable (not necessarily total) function from =
to N. (In other words, k is an algorithm that terminates on some binary strings
and returns natural numbers as results.) If k is a lower bound for Kolmogorov
complezity, that is, k(z) < C(z) for all z such that k(z) is defined, then k is
bounded: all its values do not exceed some constant.

The proof of this theorem is a reformulation of the so-called Berry’s paradoz.
This paradox considers

the minimal natural number that cannot be defined by at most
fourteen English words.

This phrase has exactly fourteen words and defines that number. Thus we get a
contradiction.

Following this idea, consider the first binary string whose Kolmogorov com-
plexity is greater than a given number N. By definition, its complexity is greater
than N. On the other hand, this string has a short description that includes some
fixed amount of information plus the binary notation of N (which requires about
log, N bits), and the total number of bits needed is much less than N for large N.
That would be a contradiction if we knew how to effectively find this string given
its description. Using the computable lower bound k, we can convert this paradox
into the proof.

ProoF. Consider the function B(IN) whose argument NN is a natural number.
It is computed by the following algorithm:
perform in parallel the computations k(A), &(0), k(1), k(00),
k(01), k(10), k(11),... until some string z such that k(z) > N
appears; then return z.
If the function k is unbounded, then the function B is total and k(B(N)) > N

by construction for every N. As k is a lower bound for K, we have C(B(N)) > N.
On the other hand B(N) can be computed given the binary representation bin(N)
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of N, therefore
C(B(N)) < C(bin(N)) + O(1) < I(bin(N)) + O(1) < log, N + O(1)

(the first inequality is provided by Theorem 3 and the second one is provided by
Theorem 2; term O(1) stands for a bounded function). So we obtain

N < C(B(N)) < log, N + O(1),

which cannot happen if N is large enough. ]

Some applications of Kolmogorov complexity

Let us start with a disclaimer: the applications we will talk about are not real,
practical applications; we just establish relations between Kolmogorov complexity
and other important notions.

Occam’s razor. We start with a philosophical question. What do we mean
when we say that a theory provides a good explanation for some experimental data?
Assume that we are given some experimental data and there are several theories to
explain the data. For example, the data might be the observed positions of planets
in the sky. We can explain them as Ptolemy did, with epicycles and deferents,
introducing extra corrections when needed. On the other hand, we can use the
laws of the modern mechanics. Why do we think that the modern theory is better?
A possible answer: the modern theory can compute the positions of planets with
the same (or even better) accuracy given fewer parameters. In other words, Kepler’s
achievement is a shorter description of the experimental data.

Roughly speaking, experimenters obtain binary strings and theorists find short
descriptions for them (thus proving upper bounds for complexities of those strings);
the shorter the description, the better the theorist.

This approach is sometimes called “Occam’s razor” and is attributed to the
philosopher William of Ockham who said that entities should not be multiplied
beyond necessity. It is hard to judge whether he would agree with such an inter-
pretation of his words.

We can use the same idea in more practical contexts. Assume that we design
a machine that reads handwritten zip codes on envelopes. We are looking for a
rule that separates, say, images of zeros from images of ones. An image is given as
a Boolean matrix (or a binary string). We have several thousands of images and
for each image we know whether it means 0 or 1. We want to find a reasonable
separating rule (with the hope that it can be applied to the forthcoming images).
What does “reasonable” mean in this context? If we just list all the images in
our list together with their classification, we get a valid separation rule—at least
it works until we receive a new image—however, the rule is way too long. It is
natural to assume that a reasonable rule must have a short description, that is, it
must have low Kolmogorov complexity.

Often an explanation for experimental data is only a tool to predict the future
elements of the data stream. This aspect was the main motivation for Solomonoff
[187]; it is outside the scope of our book and is considered in the book of M. Hutter
[68].

Foundations of probability theory. The probability theory itself, being
currently a part of measure theory, is mathematically sound and does not need any
extra “foundations”. The difficult questions arise, however, if we try to understand
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why this theory could be applied to the real-world phenomena and how it should
be applied.

Assume that we toss a coin a thousand times (or test some other hardware
random nuimber generator) and get a bit string of length 1000. If this string contains
only zeros or equals 0101010101... (zeros and ones alternate), then we definitely
will conclude that the generator is bad. Why?

The usual explanation: the probability of obtaining a thousand zeros is negli-
gible (271990) provided the coin is fair. Therefore, the conjecture of a fair coin is
refuted by the experiment.

The problem with this explanation is that we do not always reject the generator:
there should be some sequence « of a thousand zeros and ones which is consistent
with this conjecture. Note, however, that the probability of obtaining the sequence
o as a result of fair coin tossing is also 271990, So what is the reason behind our
complaints? What is the difference between the sequence of a thousand zeros and
the sequence «?

The reason is revealed when we conipare the Kolmogorov complexities of these
sequences.

Proving theorems of probability theory. As an example, consider the
Strong Law of Large Numbers. It claims that for almost all (according to the the
uniform Bernoulli probability distribution) infinite binary sequences, the limit of
frequencies of ones in their initial segments equals 1/2.

More formally, let §2 be the set of all infinite sequences of zeros and ones.
The uniform Bernoulli measure on 2 is defined as follows. For every finite binary
string x, consider the set 1, consisting of all infinite sequences that start with x.
For example, Q4 = Q. The measure of 2, is equal to 274*), For example, the
measure of the set £;, that cousists of all sequences starting with 01, equals 1/4.

For each sequelice w = wowjws ... cousider the limit of the frequencies of ones
in the prefixes of w, that is,

w0+w1+...+wn_1

lim
n—oo0 n
We say that w satisfies the Strong Law of Large Numbers (SLLN) if this limit exists
and is equal to 1/2. For instance, the sequence 010101 ..., having period 2, satisfies

the SLLN, and the sequence 011011011.. ., having period 3, does not.

The SLLN says that the set of sequences that do not satisfy SLLN has measure
0. Recall that a set A C 2 has measure 0 if for all ¢ > 0 there is a sequence of
strings zg, 1, Z2,... such that

ACQ, U0, UQy U...
and the sum of the series
27H@0) 4 o=l(@) 4 g=llee)

(the sum of the neasures of ;) is less than e.

One can prove SLLN using the notion of a Martin-L6f random sequence men-
tioned above. The proof consists of two parts. First, we show that every Martin-Lof
random sequence satisfies SLLN. This ‘can be done using Levin—Schnorr random-
ness criterion (if the limit does not exist or differs from 1/2, then the complexity
of some prefix is less than it should be for a random sequence).

The second part is rather general and does not depend on the specific law of
probability theory. We prove that the set of all Martin-Lo6f non-random sequences
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has measure zero. This implies that the set of sequences that do not satisfy SLLN
is included in a set of measure 0 and hence has measure 0 itself.

The notion of a random sequence is philosophically interesting in its own right.
In the beginning of twentieth century Richard von Mises suggested using this no-
tion (he called it in German Kollektiv) as a basis for probability theory (at that
time the measure theory approach had not yet been developed). He considered the
so-called “frequency stability” as a main property of random sequences. We will
consider von Mises’ approach to the definition of a random sequence (and subse-
quent developments) in Chapter 9.

Lower bounds for computational complexity. Kolmogorov complexity
turned out to be a useful technical tool when proving lower bounds for computa-
tional complexity. Let us explain the idea using the following model example.

Consider the following problem. Initially, a string x of length n is located in
the n leftmost cells of the tape of a Turing machine. The machine has to copy =z,
that is, to get zz on the tape (the string z is intact and its copy is appended), and
halt.

Since the middle of the 1960s it has been well known that a (one-tape) Turing
machine needs time proportional to n? to perform this task. More specifically, one
can show that for every Turing machine M that can copy every string z, there
exists some € > 0 such that for all n there is a string z of length n whose copying
requires at least en? steps.

Consider the following intuitive argument supporting this claim. The number
of internal states of a Turing machine is a constant (depending on the machine).
That is, the machine can keep in its memory only a finite number of bits. The
speed of the head movement is also limited: one cell per step. Hence the rate of
information transfer (measured in bit- cell/ step) is bounded by a constant depending
on the number of internal states. To copy a string z of length n, we need to move n
bits by n cells to the right; therefore, the number of steps should be proportional
to n? (or more).

Using Kolmogorov complexity, we can make this argument rigorous. A string
is hard to copy if it contains maximal amount of information, i.e., its complexity is
close to n. We consider this example in detail in Section 8.2 (p. 233).

A combinatorial interpretation of Kolmogorov complexity. We con-
sider here one example of this kind (see Chapter 10, p. 313, for more detail). One
can prove the following inequality for the complexity of three strings and their
combinations:

2C(zyz) < C(zy) + C(zz) + C(yz) + O(logn)

for all strings z,y, z of length at most n.

It turns out that this inequality has natural interpretations that are not related
to complexity at all. In particular, it implies (see [65]) the following geometrical
fact:

Consider a body B in a three-dimensional Euclidean space with coordinate axes
OX,0Y, and OZ. Let V be B’s volume. Consider B’s orthogonal projections onto
coordinate planes OXY, OXZ, and OY Z. Let Sgy, Sy, and Sy, be the areas of

these projections. Then

V2 <8y 8z Sy
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Here is an algebraic corollary of the same inequality. For every group G and
its subgroups X, Y, and Z, we have
[ XNY|-|[XNnZ|-YNZ|

|G| '
where |H| denotes the number of elements in H.

Gobdel incompleteness theorem. Following G. Chaitin, let us explain how
to use Theorem 6 in order to prove the famous Gddel incompleteness theorem. This
theorem states that not all true statements of a formal theory that is “rich enough”
(the formal arithmetic and the axiomatic set theory are two examples of such a
theory) are provable in the theory.

Assume that for every string x and every natural number n, one can express
the statement C(z) > n as a formula in the language of our theory. (This statement
says that the chosen optimal decompressor D does not output z on any input of
length at most n; one can easily write this statement in formal arithmetic and
therefore in set theory.)

Let us generate all the proofs (derivations) in our theory and select those of
them which prove some statement of the form C(z) > n where z is some string
and n is some integer (statements of this type have no free variables). Once we
have found a new theorem of this type, we compare n with all previously found n’s.
If the new n is greater than all previous n’s, we write the new n into the “records
table” together with the corresponding z,.

There are two possibilities: either (1) the table will grow infinitely, or (2) there
is the last statement C(X) > N in the table which remains unbeaten forever. If (2)
happens, there is an entire class of true statements that have no proof. Namely, all
true statements of the form C(z) > n with n > N have no proofs. (Recall that by
Theorem 5 there are infinitely many such statements.)

In the first case we have infinite computable sequences of strings xg, z1, 25 ...
and numbers ng < n3 < np < ... such that all statements C(z;) > n; are provable.
We assume that the theory proves only true statements; thus, all the inequalities
C(z;) > n,; are true. Without loss of generality, we can assume that all z; are
pairwise different (we can omit z; if there exists j < i such that z; = z;; every string
can occur only finitely many times in the sequeuce xg,z1,Z> ... since n; — 0o as
i = 00). The computable function k, defined by the equation k(z;) = n;, is then an
unbounded lower bound for Kolmogorov complexity. This contradicts Theorem 6.

XNy nzP?>



CHAPTER 1

Plain Kolmogorov complexity

1.1. Definition and main properties

Let us recall the definition of Kolmogorov complexity from the introduction.
This version of complexity was defined by Kolmogorov in his seminal paper [78].
In order to distinguish it from later versions we call it the plain Kolmogorov com-
plexity. Later, starting from Chapter 4, we will also consider other versions of
Kolmogorov complexity, including prefix versions and monotone versions, but for
now by Kolmogorov complexity we always mean the plain version.

Recall that a description mode, or a decompressor, is a partial computable
function D from the set of all binary strings = into =. A partial function D is
computable if there is an algorithm that terminates and returns D(z) on every
input z in the domain of D and does not terminate on all other inputs. We say
that y is a description of x with respect to D if D(y) = z.

The complexity of a string = with respect to description mode D is defined as

Cp(z) = min{l(y) | D(y) = z}.

The minimum of the empty set is +o0.

We say that a description mode D; is not worse than a description mode Dy
if there is a constant ¢ such that Cp, (z) < Cp,(z) + ¢ for all  and write this as
Cp,(z) £ Cp,(z) + O(1).

A description mode is called optimal if it is not worse than any other description
mode. By the Solomonoff-Kolmogorov universality theorem (Theorem 1, p. 3)
optimal description modes exist. Let us briefly recall its proof. Let U be an
interpreter of a universal programming language, that is, U(p, z) is the output of
the program p on input z. We assume that programs and inputs are binary strings.
Let

D(pz) = Up, 2).
Here p +— p stands for any computable mapping having the following property:
given p we can effectively find p and also the place where $ ends (in particular, if p
is a prefix of §, then p = ¢). This property implies that D is well defined. For any
description mode D’ let p be a program of D’. Then

Cp(z) £ Cp/(z) + U(p).

Indeed, for every description y of x with respect to D’ the string py is a description
of z with respect to D.

Fix any optimal description mode D, and let C(z) (we drop the subscript)
denote the complexity of  with respect to D. (As we mentioned, in the first paper
of Kolmogorov [78] the letter K was used, while in his second paper [79] the letter
H was used. We follow here the notation used by Li and Vitanyi [103].)

15
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As the optimal description mode is not worse than the identity function z — ,
we obtain the inequality C(z) < I(z) + O(1) (Theorem 2, p. 5).

Let A be a partial computable function. Comparing the optimal description
mode D with the description mode y — A(D(y)), we conclude that

C(A(z)) < C(z) + O(1),

showing the non-growth of complexity under algorithmic transformations (Theo-
rem 3, p. 5).

Using this inequality, we can define Kolmogorov complexity of other finite ob-
jects, such as natural numbers, graphs, permutations, finite sets of strings, etc.,
that can be naturally encoded by binary strings.

For example, let us define the complexity of natural numbers. A natural num-
ber n can be written in binary notation. Another way to represent a number by a
string is as follows. Enumerate all the binary strings in lexicographical order

A,0,1,00,01,10,11, 000,001, 010,011, 100, ...

using the natural numbers 0,1,2,3,... as indexes. This enumeration is more con-
venient compared to binary representation as it is a bijection. Every string can be
considered as an encoding of its index in this enumeration. Finally, one can also
encode a natural number n by a string consisting of n ones.

Using either of these three encodings, we can define the complexity of n as
the complexity of the string encoding n. Three resulting complexities of n differ
at most by an additive constant. Indeed, for every pair of these encodings there
is an algorithm translating the first encoding into the second one. Applying this
algorithm, we increase the complexity at most by a constant. Note that the Kol-
mogorov complexity of binary strings is defined up to an additive constant, so the
choice of a computable encoding does not matter.

As the length of the binary representation of a natural number n is equal to
logn + O(1), the Kolmogorov complexity of n is at most logn + O(1). (By log we
denote binary logarithms.)

Here is another application of the non-growth of complexity under algorithmic
transformations. Let us show that deleting the last bit of a string changes its
complexity at most by a constant. Indeed, all three functions z — z0, x — z1,
z — (z without the last bit) are computable.

The same is true for the first bit. However this does not apply to every bit of
the string. To show this, consider the string x consisting of 2™ zeros; its complexity
is at most C(n) +O(1) < logn + O(1). (By log we always mean binary logarithm.)
There are 2™ different strings obtained from z by flipping one bit. At least one of
them has complexity n or more. (Recall that the number of strings of complexity
less than n does not exceed the number of descriptions of length less than n, which
is less than 2"; see Theorem 5, p. 8.)

Incrementing a natural number » by 1 changes C'(n) at most by a constant.
This implies that C(n) satisfies the Lipschitz property: for some ¢ and for all m, n,
we have |C(m) — C(n)| < c|m — n.

Prove a stronger inequality: |C(m)— C(n)| < |m —~n|+ ¢ for some ¢ and for
all m,n € N, and, moreover, |C(m) — C(n)| < 2log|m —n|+ c (the latter inequality
assumes that m # n).
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Several times we have used the upper bound 2" for the number of strings x
with C(z) < n. Note that, in contrast to other bounds, it involves no constants.
Nevertheless this bound has a hidden dependence on the choice of the optimal
description mode: if we switch to another optimal description mode, the set of
strings z such that C(z) < n can change!

@ Show that the number of strings of complexity less than n is in the range
[27~¢; 2"] for some constant ¢ for all n.

(Hint: The upper bound 2" is proved in the introduction, the lower bound is
implied by the inequality C(z) < l(z)+c: the complexity of all the strings of length
less than n — ¢ is less than n.)

Show that the number of strings of complexity ezactly n does not exceed 2™
but can be much less: e.g., it is possible that this set is empty for infinitely many n.

(Hint: Change an optimal description mode by adding 0 or 11 to each descrip-
tion so that all descriptions have even length.)

@ Prove that the average complexity of strings of length n is equal to n4+O(1).

(Hint: Let oy denote the fraction of strings of complexity n—k among strings of
length n. Then the average complexity is by >, kay less than n. Use the inequality
ay < 27% and the convergence of the series Y k/2*.)

In the next statement we establish a formal relation between upper bounds of
complexity and upper bounds of cardinality.

THEOREM 7. (a) The family of sets S,, = {z | C(z) < n} is enumerable, and
|Sn| < 2" for all n. Here |S,| denotes the cardinality of S,,.

(b) If Vi, (n=0,1,...) is an enumerable family of sets of strings and |V,| < 2"
for all n, then there exists ¢ such that C(z) <n+c for alln and all z € V,,.

In this theorem we use the notion of an enumerable family of sets. It is de-
fined as follows. A set of strings (or natural numbers, or other finite objects) is
enumerable (= computably enumerable = recursively enumerable) if there is an al-
gorithm generating all elements of this set in some order. This means that there
is a program that never terminates and prints all the elements of the set in some
order. The intervals between printing elements can be arbitrarily large; if the set is
finite, the program can print nothing after some time (unknown to the observer).
Repetitions are allowed, but this does not matter since we can filter the output and
delete the elements that have already been printed.

For example, the set of all n such that the decimal expansion of v/2 has exactly
7 consecutive nines is enumerable. The following algorithm generates the set: com-
pute decimal digits of \/2 starting with the most significant ones. Once a sequence
of consecutive n nines surrounded by non-nines is found, print n and continue.

A family of sets V,, is called enumerable if the set of pairs {{n,z) | z € V,,}
is enumerable. This implies that each of the sets V,, is enumerable. Indeed, to
generate elements of the set V,, for a fixed n, we run the algorithm enumerating the
set {(n,z) | z € V,,} and print the second components of all the pairs that have n
as the first component. However, the converse statement is not true. For instance,
assume that V,, is finite for every n. Then every V,, is enumerable, but at the same
time it may happen that the set {(n,z) | z € V},} is not enumerable (say V,, = {0}
if n € S and V,, = & otherwise, where S is any non-enumerable set of integers).
One can verify that a family is enumerable if and only if there is an algorithm that
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given any n finds a program generating V,,. A detailed study of enumerable sets
can be found in every textbook on computability theory, for instance, in [184].

Proor. Let us prove the theorem. First, we need to show that the set
{{n,z) |z € S} = {{n.2) | C(z) < n},

where n is a natural number and z is a binary string, is enumerable.

Let D be the optimal decompressor used in the definition of C. Perform in
parallel the computations of D on all the inputs. (Say, for k =1,2,... we make k
steps of D on k first inputs.) If we find that D halts on some y and returns z, the
generating algorithm outputs the pair ({(y) + 1,z). Indeed, this implies that the
complexity of z is less than [{y) + 1, as y is a description of z. Also it outputs all
the pairs (I(y) + 2,z), {{(y) + 3,z) - - - in parallel to the printing of other pairs.

For those familiar with computability theory, this proof can be compressed to
one line:

Clz)<n<e y(y) <nAD(y) =z).
(The set of pairs (z,y) such that D(y) = z is enumerable, being the graph of
a computable function. The operations of intersection and projection preserve
enuierability.)

The converse implication is a bit harder. Assume that V,, is an enumerable
family of finite sets of strings and |V,| < 2. Fix an algorithm generating the
set {(n,z) | z € V,}. Consider the description mode Dy that deals with strings
of length n in the following way. Strings of length n are used as descriptions of
strings in V,,. More specifically, let x; be the kth string in V;, in the order the
pairs (n,z) appear while generating the set {(n,z) | z € V,,}. (We assume there
are 10 repetitions, so xo, 21, Z2, . . . are distinct.) Let y; be the kth string of length
n in lexicographical order. Then yy is a description of zy, that is, D(yx) = zx. As
|Va| < 2™, every string in V,, gets a description of length n with respect to D.

We need to verify that the description mode Dy defined in this way is com-
putable. To compute Dy (y), we find the index k of y in the lexicographical ordering
of strings of length I(y). Then we run the algorithm generating pairs (n,z) such
that z € V,, and wait until k different pairs having the first component I(y) appear.
The second component of the last of them is Dy (y).

By construction, for all z € V;, we have Cp,, () < n. Comparing Dy with the
optimal description mode, we see that there is a constant ¢ such that C{z) <n+c
for all z € V,,. Theorem 7 is proven. O

The intuitive meaning of Theorem 7 is as follows. The assertions “the number of
strings with a certain property is small” (is less than 2*) and “all the strings with a
certain property are simple” (have complexity less than ¢) are equivalent provided
the property under consideration is enumerable and provided the complexity is
measured up to an additive constant (and the number of elements is measured up
to a multiplicative constant).

Theorem 7 can be reformulated as follows. Let f(z) be a function defined on all
binary strings and which takes as values natural numbers and a special value +oo.
We call f upper semicomputable, or enumerable from above, if there is a computable
function (z,k) — F(z, k) defined on all strings = and all natural numbers k such
that
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and
f(z) = lim F(z,k)
k—oo

for all z. The values of F' are natural numbers as well as the special constant +oc.
The requirements imply that for every k the value F(x,k) is an upper bound of
f(z). This upper bound becomes more precise as k increases. For every z there
is a k for which this upper bound is tight. However, we do not know the value of
that k. (If there is an algorithm that given any z finds such k, then the function f
is computable.) Evidently, any computable function is upper semicomputable.

A function f is upper semicomputable if and only if the set

Gr={(z,n) | f(z) <n}

is enumerable. This set is sometimes called the “upper graph of f”, which explains
the strange names “upper semicomputable” and “enuinerable from above”.

Let us verify this. Assume that a function f is upper semicomputable. Let
F(z,k) be the function from the definition of semicomputability. Then we have

flz) <n& Ik F(z, k) <n.

Thus, performing in parallel the computations of F(z,k) for all z and k, we can
generate all the pairs in the upper graph of f.

Assume now that the set G is enumerable. Fix an algorithm enumerating this
set. Then define F(z,k) as the best upper bound of f obtained after k steps of
generating elements in Gy. That is, F(z, k) is equal to the minimal n such that
the pair {(z,n + 1) has been printed after k steps. If there is no such pair, let
F(z,k) = 4oo.

Using the notion of an upper semicomputable function, we can reformulate
Theorem 7 as follows.

THEOREM 8. (a) The function C is upper semicomputable and
{z | C{z) < n}| < 27

for all n.
(b) If a function C' is upper semicomputable and |{z | C'(z) < n}| < 2™ for
all n, then C(z) < C'(z) + ¢ for some ¢ and for all x.

Note that the upper bound 2" of the cardinality of |{z | C'(z) < n}| in item
(b) can be replaced by a weaker upper bound O(2").

Theorem 8 allows us to define Kolmogorov complexity as a minimal (up to an
additive constant) upper semicomputable function k that satisfies the inequality

{z | k(z) <n}| < O@2").

One can replace the requirement of minimality in this definition by some other prop-
erties of C. In this way we obtain the following axiomatic definition of Kolmogorov
complexity [173]:

THEOREM 9. Let k be a natural-valued function defined on binary strings. As-
sume that k satisfies the following properties:

(a) k is upper semicomputable (enumerability axiom);

(b) for every partial computable function A from = to Z, the inequality

k(A(z)) < k(z)+ ¢
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is valid for some ¢ and all x in the domain of A (the axiom guarantees that com-
plexity does not increase);

(c) the number of strings x such that k(z) < n is in the range [2"%;2"F<]
for some ¢y, ¢z and for any n (calibration axiom).

Then k(z) = C(z) + O(1), that is, the difference |k(z) — C(z)| is bounded by a
constant.

PRrRoOF. Theorem 8 implies that C(z) < k(x)+O(1). So we need to prove that
k(z) < C(z)+ O(1).

LEMMA 1. There is a constant ¢ and a computable sequence of finite sets of
binary strings
MoyC M, CM;C---
with the following properties: the set M; has exactly 2 strings and k(z) < i+c for
all x € M; and all .

Computability of My, My, Ms, ... means that there is an algorithm that given
any 1 computes the list of elements of M;.

PROOF. By axiom (c) there exists a constant ¢ such that for all i the set
Ai={z|k(z)<i+c}

has at least 2¢ elements. By item (a) the family A; is enumerable. Remove from
A; all the elements except 2° strings generated first. Let B; denote the resulting
set. The list of the elements of B; can be found given : we wait until the first 2°
strings are generated. The set B; is not necessarily included in B;;;. To fix this
we define M; inductively. We let My = By, and we let M;; be equal to M; plus
any 2° elements of B;,; that are outside M;. Lemma 1 is proven.

LEMMA 2. There is a constant ¢ such that k(z) < I(z) + ¢ for all x (recall that
[(z) denotes the length of x).

PRrROOF. Let My, My, M, ... be the sequence of sets from the previous lemma.
There is a computable one-to-one function A defined on the union of all M; that
maps M;yy \ M; onto the set of binary strings of length i. (Recall that the set
M;yy \ M; has exactly 2¢ strings.) By item (b) we have k(A(y)) < k(y) + ¢ for
some ¢’ and all z. For all z of length ¢ there is y € M;41 \ M; such that A(y) = z,
hence k(z) < k(y) + ¢’ <7+ ¢ for some ¢ and all i. Lemma 2 is proven.

Let us finish the proof of the theorem. Let D be the optimal description mode,
and let p be a shortest description of 2 with respect to D. Then

k(z) = k(D(p)) < k(p) + O(1) < I(p) + O(1) = C(z) + O(1).

Note that we have used property (b) twice: in the proof of Lemma 2 and just
now. O

E Assume that strings over the alphabet {0,1,2,3} are used as descriptions.
Prove that in this case the Kolmogorov complexity, defined as the length of the
shortest description (with respect to an optimal description mode), is equal to half
of the regular complexity (up to an additive constant).

E’):l (Continued) Formulate and prove a similar statement for the n-letter al-
phabet.
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@ Assume that f: N — N is a total computable increasing function and
lininf f(n+1)/f(n) > 1.

Let A, be an enumerable family of finite sets such that |A,,| < f(n) for all n. Prove
that there is a constant ¢ such that C(z) < log f(n) + ¢ for all n and all z € A,,.

Prove that for some constant ¢ and for every n the following holds. For
every string x of length n one can flip a bit in z so that the resulting string y
satisfies the inequality C(y) < n —logn +c.

(Hint: For a given natural k consider a Boolean matrix of size k x (2¢ —1) whose
columns are all non-zero strings of length k. (Such matrix is used for Hamming
codes.) Consider the linear mapping B2"~! — B* defined by this matrix, where
B denotes the field {0,1}. It is easy to verify that for every vector = one can flip
one bit in z so that the resulting string y is in the kernel of this mapping, and
the elements of the kernel have complexity at most 2 — k + O(1). This gives the
desired result for n = 2 — 1; if n does not have the form 2* — 1, we can flip one of
the first 2% — 1 bits for an appropriate k.)

1.2. Algorithmic properties

The function C is upper semicomputable. On the other hand, it is not com-
putable and, moreover, it has no unbounded computable lower bounds (Theorem 6,
p. 9).

This implies that all optimal description modes are necessarily non-total, that
is, some strings describe nothing. Indeed, if a description mode D is total, then we
can compute Cp(z) just by trying all descriptions in lexicographical order until we
find the shortest one.

At first glance, this contradicts to our intuition: the bigger the domain of D,
the better D is. If the optimal decompressor D is undefined on some string ¥, then
we can define another description mode D' as follows. Let D'(y) be equal to a
string z of complexity (with respect to D) greater than I(y), and let D’ coincide
with D on all other strings. The description mode D’ is a bit better than D, as the
complexity of all strings except z remains the same while the complexity of z has
been decreased.

There is no formal contradiction here, as D is still not worse than D’ (they differ
only at one point, the difference between the complexities is bounded by a constant,
and both D and D’ are optimal). However, this is still a bit strange. This obser-
vation was made by Yu. Manin in his book Computable and non-computable [114]
(by the way, in this book he also discussed the computational power of quantum
mechanics long before quantum computing became fashionable).

A similar argument shows that the domain of every optimal description mode
is undecidable. (The set of strings is called decidable, or computable, if there is an
algorithm that for any given string decides whether it belongs to the set or not.)
Indeed, if there were an algorithm deciding whether D(z) is defined or not, then
there would be a total computable extension of D (for example, let D(z) = 0 for all
z outside the domain of D). This extension would be a total optimal description
mode, but this is impossible as we have seen.

As a byproduct we get an algorithm whose domain is undecidable. This is one
of the central theorems in computability theory (see, for example, [184]).
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In general the notion of Kolmogorov complexity has a number of connec-
tions with computability theory. Recently, many interesting facts were discovered;
see [147, 49]. We consider here only two basic examples (a simple set of simple
strings and the complexity of large numbers).

1.2.1. Simple strings and simple sets. In this section, the word “simple”
has two unrelated meanings. First, when applied to strings, it means that the
Kolmogorov complexity of the string is small. Second, it is applied to sets of
strings. The notion of a simple set was introduced by the American logician Emil
Post and has no relation to Kolmogorov complexity.

DEFINITION. An enumerable set A is simple (according to Post) if its comple-
ment is infinite but has no infinite enumerable subset.

Call a string z simple if C(z) < I(z)/2.
THEOREM 10. The set of all simple strings is simple in the sense of Post.

ProoF. That set S of all simple strings is enumerable. Indeed, the function
C is upper semicomputable, and if C(z) is less than |z|/2, this can be seen while
approximating C(z) from above.

The number of strings of complexity less than n/2 does not exceed on/2 There-
fore the fraction of simple strings among strings of length n is negligible, and the
complement of S is infinite. )

Assume now that the complement of S has an infinite enumerable subset U/. We
can use U to obtain a computable unbounded lower bound of C. To find a string of
complexity greater than ¢, we can generate elements of U until we find a string u; of
length greater than 2t. As U is infinite, there is such a string. The complexity of u,
is greater than ¢; otherwise, u; is simple. Without loss of generality we can assume

that the strings us, t = 1,2,... are pairwise different. Thus the function u; > ¢
is a computable unbounded lower bound for C. This contradicts to Theorem 6
(page 9). O

Note that the choice of the threshold I(z)/2 in the definition of a simple string
was not essential. The proof of Theorem 10 would work as well with I(z) — 1 or
loglog!{z) in place of {(x)/2.

1.2.2. Complexity of large numbers. Let us identify a natural number m
with the binary string having index m in the standard enumeration of binary strings.
In this way C becomes a function of a natural argument. The function C(m) goes
to infinity as m — oo. Indeed, for all n there are only finitely many integers of
complexity less than n. However, the convergence is not effective. That is, there is
no algorithm that, for every given n, finds a number N such that the complexity
of N and of all larger numbers is bigger than n. Indeed, such an algorithm would
provide an effective way to describe the number N, whose complexity is at least n,
by logn + O(1) bits. We have seen this in the proof of Theorem 6 (p. 9).

In this section, we study in detail the rate of convergence of C to infinity.
Following Chaitin [31], we consider for every natural n the largest number B(n)
whose complexity is at most n:

B(n) = max{m € N| C(m) < n}.

The function n — B{n) may be called the modulus of the convergence of C(m) to
infinity (see Figure 1). Indeed, C{z) > n for all z > B(n) (and B (n) is the minimal
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C(m),

n+lr------SA-Nc-N-f-------
nr--—-——-——-f-———--M_——

n—1f---

B(n—-1) B(n)=B(n+1)

FIGURE 1. The definition of B(n): the value C(m) does not exceed
n—1 for m = B(n—1) (the case when C(B(n—1)) = n—1 is shown),
and C(m) > n for all m > B(n — 1). At the point m = B(n),
the value of C' does not exceed n (the case when C(B(n)) = n
is shown), and C(m) > n for all m > B(n). The case when
C(m) is even greater than n + 1 for all m > B(n) is shown, thus
B(n + 1) = B(n). For m € (B(n — 1), B(n)], the value of the
function C5(m) is equal to n.

number with this property). Note also that it can happen (for small values of n)
that C'(m) > n for all m. In this case we let B(n) = —1.
The function B can be considered as an inverse function to the function

C>(N) =min{C(m) | m > N}.

The function C5 grows very slowly. It takes the value n between B(n — 1) and
B(n), more precisely, on the interval (B(n — 1), B(n)]. The slow increase of C
corresponds to the fast increase of B. The latter can be illustrated by the following
result.

THEOREM 11. Let f be a computable function from N to N. Then B(n) = f(n)
for all but finitely many n.

Note that f may be a partial function. In this case we claim that B(n) > f(n)
for all sufficiently large n that are in the domain of f.

PROOF. As algorithmic transformations do not increase complexity, for some
constant ¢ for all n we have
C(f(n)) < C(n)+0(1) <logn+ec.

On the other hand, the definition of B and the inequality f(n) > B(n) imply
C(f(n)) > n. Thus
n < C(f(n)) <logn+c
whenever f(n) > B(n). This can happen only for finitely many n. a
Let us reformulate the definition of B(n) as follows. Let D be the optimal

description mode used in the definition of Kolmogorov complexity. Then B(n) is
the maximal value of D on strings of length at most n:

B(n) = max{D(z) | l(z) < n}.

Recall that we identify natural numbers and binary strings and consider the values
of D as natural numbers. The minimum of the empty set is defined as —1.
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Consider now any partial computable function d: Z — N in place of D, and let
Bg(n) = max{d(z) | {(z) < n and d(z) is defined}.

The next theorem shows that the function B is the largest function among all
functions Bgq in the following sense:

THEOREM 12. For every function d there is a constant ¢ such that
By(n) < B(n+c¢)
for alln.

PRrooOF. For every z of length at most n, the complexity of d(z) is less than
n + ¢ for some constant ¢. Indeed, the complexity of d(z) exceeds at most by a
constant the complexity of z, which is less than n + O(1). Hence d(z) does not
exceed the largest number of complexity n + ¢ or less, i.e., B(n + ¢). O

This (trivial) observation is useful in the following special case. Let M be an
algorithm, and let X be a set of binary strings. A halting problem for M restricted
to X is the following problem: given a string z € X, find out whether M terminates
on z or not.

A classical result in computability theory states that for some algorithm M the
unrestricted halting problem (X = E) for M is undecidable.

We are interested now in the case when X is the set of all strings of bounded
length. Fix some algorithm M and consider the running time t(z) of M for some
input z. If M does not halt on z, then ¢{(z) is undefined. Thus the domains of ¢
and M coincide. By definition, B;(n) is the maximal running time of M on inputs
of length at most n. If we know B;(n) or any larger number m, we can solve the
halting problem for M and every input z of length at most n: Run M on input z;
if the computation does not terminate after m steps, it never terminates.

We have seen that B;(n) < B(n+ c¢) for some constant ¢ (depending on M).
Therefore, the knowledge of B (n + ¢) or any greater number is enough to solve the
halting problem of M on inputs of length at most n. In other words, the following
holds:

THEOREM 13. For every algorithm M there is a constant ¢ and another
algorithm A having the following property. For every n and for every number
t > B(n + c¢), the algorithm A, given n and t, produces the list of all strings z
of length at most n such that M halts on input x.

This theorem says that the halting problem for inputs of length at most n is
reducible to the problem of finding a number greater than B(n + c).

If M is the optimal decompressor D, then the converse is also true: given n
and the list of all strings z of length at most n in the domain of D, we can find
B(n).

Continuing this argument, we can prove the following result:

THEOREM 14. Let BB(n) denote the mazimal running time of the optimal
decompressor D on strings of length at most n (in the domain of D). Then

BB(n) < B(n+c¢) and B(n)< BB(n+c¢)

for some ¢ and all n.
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PrROOF. Let o be the most time-consuming description of length at most n,
that is, the string z of length at most n in the domain of D that maximizes the
running time of D on z. Knowing n and oy, one can generate the list of all strings
of length at most n in the domain of D, and hence the number BB(n). Both n and
o, can be encoded in one string of length n + 1, the string 0---0lca, (there are
n— (o) zeros in the beginning). Therefore, the Kolmogorov complexity of BB (n)
is at most n + O(1), and BB(n) < B(n + ¢) for some ¢ and all n.

Let us prove the second inequality of the theorem showing that every t > BB (n)
has complexity at least n — O(1). Assume that ¢ has a description u of length k;
we need to show that k > n — O(1). Knowing u and n, one can effectively obtain
a string of complexity greater than n. Indeed, we reconstruct ¢ (from u) and
wait ¢ steps for every description of size at most n. This gives us all strings of
complexity at most n, and we can take some other string. By definition of B(n)
we conclude that the pair (u,n) has complexity at least n — O(1). On the other
hand, this pair can be described using k + O(log(n — k)) bits if we join the self-
delimited description of 7 — k and u. Therefore, k + O(log(n —k)) = n — O(1), and
(n — k) — O(log(n — k)) < O(1), hence n — k € O(1). (We assumed that n > k;
otherwise, there is nothing to prove.) O

This theorem shows that, within an additive constant in the argument, B (n)
is the maximal running time of the optimal decompressor on descriptions of length
at most n. A similar function appeared in the literature under the name of “busy
beaver function”. It was introduced by T. Radé [150] and is defined usually as the
maximal number of ones on the tape of Turing machine with n states and binary
tape alphabet (1 and blank) after it terminates (starting with blank tape).

More generally, given n and any object from the following list, we can find any
other object from the list for a little bit smaller value of n:

(a) the list of all strings of Kolmogorov complexity at most n with their
Kolmogorov complexities;
(b) the number of such strings;
(c) B(n);
(d) BB(n);
(e) the list of all strings of length at most n in the domain of the optimal
decompressor (the halting problem for the optimal decompressor restricted
to inputs of length at most n);
(f) the number of such strings;
(g) the most time-consuming input of length at most n for the optimal de-
COMPIessor;
(h) the graph T, of the function C(z) on strings z of length n;
(i) the lexicographically first string 7, of length n with Kolmogorov com-
plexity at least n (it exists since the number of strings of complexity less
than n is less than 2™).

More specifically, the following statement holds.

THEOREM 15. The complezity of every object in (a)-(i) is equal to n+ O(1).
These objects are equivalent to each other in the following sense: Let X, and Yy,
be objects described in two items among (a)—-(i). Then there is a constant ¢ and an
algorithm that given n and X, finds Yp—..
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PRroOF. The equivalence of (d), (e), (f), and (g) is easy. Each of the objects (d),
(e), (f), and (g) together with n determines the list of all terminating computations
of the optimal decompressor D on strings of length at most n. Indeed, knowing
BB(n), we can run D on all inputs of length at most n for BB (n) steps. Knowing
(e), that is, the list of strings of length at most n in the domain of D, we can run
D on all those strings until all the computations terminate (and we know that this
happens). Knowing (f), the number of strings of length at most n on which D
terminates, we run D on all strings of length at most n until the desired number
of computations do terminate. Knowing the string (g), we run D on that string,
count the number of steps t, and then run D on all other strings of length at most
n for t steps.

Conversely, the list of all halting computations of the optimal decompressor D
on strings of length at most n together with n identifies each of the objects (d)-(g)
as well as the objects (a)—(c). Therefore, by transitivity (which is easy to check),
all the objects (d)—-(g) are equivalent.

Let us prove now that (a)~(c) are equivalent to each other and equivalent to
(d)-(g). Given the list of strings of complexity at most n, we can find the number
of them (so (a)— (b)) and the largest number of complexity at most n (so (a)—(c)).

It is not that easy to find (a) given (b) and n. Given n and the number of strings
of complexity at most n, we can reconstruct the list of these strings (generating
them until we obtain the desired number of strings) and find a maximal number
among them ((b)—(c)). But we still do not know the Kolmogorov complexity of
the generated strings. We will prove the implication (c)—(a) indirectly, by showing
(¢c)—(d); we know already that (d) implies (a). This will prove that all objects
(a)-(g) are equivalent.

The implication (¢)—(d) follows from Theorem 14. We know that B(n) is an
upper bound for BB(n — ¢) (for appropriate ¢). Thus, given n and B{n), we can
find BB(n —c) as follows: run D on all inputs of length at most n — ¢ within B(n)
steps. Then find BB (n — ¢) as the number of steps in the longest run.

It remains for us to consider the objects (h) and (i). The implication (a)—(h)
is easy. Indeed, for some constant ¢ the complexity of every string of length n — ¢
does not exceed n. If we know the list (a) and n, then removing all the strings of
length different from n — ¢ from the list, we get (h) for n —c.

The conversion (h)— (i) is straightforward.

Thus it remains to prove (i)—(a). It is enough to show that, given the lex-
icographically first string ~y, of length n and complexity at least n, we can find
BB(n — O(1)) or a number greater than BB(n — O(1)). This can be done as
follows.

Given 7y, find n, and for each string z of length n preceding 7, in lexicographi-
cal order, find a description p; of z that has length n or less, and find out the running
time t; of D on p,. (Note that p; may be not the shortest description of z.) Let T
be the maximum of t; for those z. We claim that T > BB(n — ¢) for some ¢ that
does not depend on 7. Assume that this inequality is false, that is, T < BB(n—c¢).
We will prove that then c is small. Consider the most time-consuming description
an_c of length at most n — ¢; let n — ¢ — d be its length. Given ay,_. and c+d, we
can find n and BB (n —c¢). From this we can find ,: run D on all strings of length
at most n within BB (n — c) steps. Consider all the strings of length n for which
we have found descriptions of length n or less. Then +, is the lexicographically
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first remaining string (since T' < BB (n — ¢) according to our assumption). As the
complexity of <y, is at least n, we have n < C(v,) < (n—c—d) +2log(c+d)+0(1),
hence (c+d) = O(1). .

We have thus proven the equivalence of objects (a)-(h). It remains to prove
that the complexity of each of them is n + O(1).

Let X, be one of objects (a)—(h). We have just proven that X,, can be obtained
from “yp4. and n (actually, we do not need n, as n = {{v,+.) — ¢). Therefore,
C(Xn) < Clnse) + O(1) < n+ O(1).

To prove the lower bound of C(X,), let n — d be the complexity of X,,. For
some constant ¢ the string ,_. can be obtained from the shortest description of
X, of length n — d and from d (note that n can be retrieved from the length of
the shortest description and d). Thus, n — ¢ < C(yn—¢) € (n—d) + 2logd + O(1).
Therefore, d < 2logd + ¢+ O(1) and, hence, d = O(1). O

The objects in Theorem 15 depend on the choice of the optimal decompres-
sor. In the proof we assumed that the sanie optimal decompressor is used in all the
items (a)—(h). Prove that the statement of the theorem remains true if different
decompressors are used.

@ Prove that the complexity of all the objects in Theorem 15 becomes O(log n)
if we relativize the definition of Kolmogorov complexity by 0’, that is, if we allow
the decompressor to query the oracle for the halting problem.

We have seen that there exist a constant ¢ and an algorithm A that, given the
string <,, solves the halting problem for the optimal decompressor on inputs of
length at most n — ¢. This means that given an “oracle” that finds -, for every
given n, we can solve the halting problem. The same can be done given an oracle
deciding whether a given string z is incompressible, that is, C(z) > I(z). Indeed,
using that oracle, we can find ~, by probing all strings of length n.

Using the terminology of computability theory, we can say that the halting
problem is Turing reducible to the set of incompressible strings (or its complement,
the set of compressible strings). This implies that the halting problem is also
reducible to the “upper graph” of C, that is, to the set {({z,k) | C(z) < k}. Using
the terminology of computability theory, we say that the set of compressible strings
(as well as the upper graph of C) is Turing complete in the class of enumerable sets
(this means that it is enumerable and that the halting problem is Turing reducible
to it).

Find some upper bound for the number of oracle queries for the set

{(z,k) | C(z) < k}

needed to solve the halting problem for a fixed machine M and for all strings of
length at most n.

Let f be a computable partial function from N to N. Prove that there
is a constant ¢ such that for all n, such that f(B(n)) is defined, the inequality
B(n+c) = f(B(n)) is true.

(Hint: The complexity of f(B(n)) is at most n + O(1).)

Call a set U r-separable [137] if every enumerable set V disjoint with U
can be separated from U by a decidable set, that is, there is a decidable set R that
includes V and is disjoint with U.
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(a) Prove that the the set {(z,k) | C(z) < k} (the upper graph of C) is an
r-separable set. The set of compressible strings is r-separable, too.

(Hint: Assume that the upper graph of C' is disjoint with some enumerable set
V. The set of the second components of pairs in V is finite, otherwise we get an
unbounded computable lower bound for C. That is, V is included in a horizontal
strip of finite height. The intersection of the strip with the upper graph is finite.)

(b) We say that a set U, is m-reducible to a set Uy if there is a total computable
function f such that U, = f~}(Uz). Prove that if U, is r-separable and U, is m-
reducible to U, then U; is r-separable as well.

(Hint: If V is an enumerable set disjoint with Uy, then f(V) is an enumerable
set disjoint with Us. If R is a decidable set separating f(V) and Us, then f~!(R)
is a decidable set separating V' and U;.)

(c) Prove that there is an enumerable set that is not r-separable (such a set
does not m-reduce to the upper graph of C).

(Hint: There is a pair of disjoint enumerable inseparable sets.)

Following [74], prove that the following problems are equivalent: “for a
given integer n find some string of complexity at least n” and “for a given algorithm
without input find some string that is different from its output” (if the algorithm
does not terminate, any string is OK). An oracle that fulfills one of these tasks can
be used to (effectively) fulfill the other.

(Hint: Given an algorithm, we can provide an upper bound for the complex-
ity of its output—it is bounded by complexity (and therefore the length) of the
algorithm itself. On the other hand, to provide a string of high complexity means
to provide a string which is guaranteed to be different from the outputs of finitely
many algorithms. At first, this looks like a more difficult task than for one algo-
rithm (as the oracle does). However, the following trick helps: we may assume that
the outputs are tuples and construct a tuple that differs from the output of ith
algorithm in sth position.)

(Continued) Prove that both these problems are equivalent to the problem
of computing a fixed-point free function: “for every algorithm construct another
algorithm that computes a different function” (not the same as the first one).

(Continued) Prove that an enumerable oracle can solve these problems if
and only if it solves the halting problem (M. Arslanov proved this result without
using Kolmogorov complexity).

(Hint: Assume that an enumerable oracle A allows us to compute strings of
arbitrarily high complexity. Then let us compute a string of complexity at least n
using this oracle, and look at all elements of A that were questioned during this
computation. How many steps are needed to enumerate all this elements? This is
a big number: any T greater than this number, has Kolmogorov complexity of at
least n, since T-approximation of A can be used instead of A. On the other hand,
having an oracle for A, we can find T for a given n.)

Kolmogorov complexity and functions B and BB turn out to be useful in
studying the so-called “generic” and “coarse” algorithms that solve the halting
problem for most inputs (the fraction of errors converges to zero); see [11]. The
versions of these functions based on prefix complexity were introduced by Gécs [57];
see also [4] for recent results related to the busy beaver functions for different
versions of Kolmogorov complexity.
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We have shown only several (simple) examples that show how Kolmogorov com-
plexity is related to computability theory (also called recursion theory). This area
is now actively growing, so we refer the interested reader to two recent monographs
[147] by A. Nies and [49] by R. Downey and D. Hirschfeldt.

Theorem 15 selects some very special objects among all objects of complexity n
(in fact, one object up to equivalence is described above). At first glance, this seems
strange: our intuition says that all random (incompressible) strings of length n
should be indistinguishable, and any special property of a string could be used to
compress it. However, we have found a very special random string =y, of length n.
This paradox can be explained as follows: the individual properties of ~, do allow
us to find a short description for <y, but we need the oracle for 0’ to decompress
that description.

We will come back to this question in Section 5.7, which discusses “the number
of wisdom” €2, and in Section 14.3, which studies two-part descriptions.

Finally, let us note that although all the objects in Theorem 15 are equivalent,
they have very different lengths. The lengths of (a), (b), (€)-(i) are about n while
the length of (¢) and (d) grows faster than every computable function of n.



CHAPTER 2

Complexity of pairs and conditional complexity

2.1. Complexity of pairs

As we have discussed, we can define complexity of any constructive object using
(computable) encodings by strings. In this section we deal with pairs of strings. A
pair z,y can be encoded, e.g., by a string [z,y] = Z0ly; here T stands for z with
doubled bits. Any other computable encoding z,y — [z, y] could be used (of course,
we need that [z,y] # [2/,¥] if ¢ # 2’ or y # 3’). Any two encodings of this type
are equivalent (there are translation algorithms in both directions), so Theorem 3
(p. 5) guarantees that complexities of the different encodings of the same pair differ
by O(1).

Let us fix some encoding [z,y]. The Kolmogorov complexity of a pair z,y is
defined as C(|z,y]) and is denoted by C(z,y). Here are some evident properties:

o C(z,z) = C(z)+ O(1);
e C(z,y) = C(y.z) + O(1);
e C(z) < C(z.9) + O(1); C(y) < C(z,) + O(1).

The following theorem gives an upper bound for the complexity of a pair in
terms of complexities of its components:

THEOREM 16.

Clz,y) < Clx) + 210g C(x) + C(y) + O(1);

C(z,y) < C(z) + logC(z) + 2loglog C(z) + C(y) + O(1);

C(z,y) € C(z) + log C(z) + loglog C(z) + 2log log log C(z) + C(y) + O(1);

(We can continue this sequence of inequalities indefinitely. Also, one can ex-
change z and y.)

Proor. This proof (for the first inequality) was already explained in the in-
troduction (Theorem 4, p. 6). The only difference is that we considered the con-
catenation zy instead of a pair. Let us repeat the argument for pairs.

A computable mapping z — £ (here z and £ are binary strings) is called a
prefiz-free encoding, if for any two different strings = and y the string £ is not a
prefix of the string §. (In particular, Z # ¢ if z # y.) This guarantees that both u
and v can be uniquely reconstructed from v.

An example of a prefix-free encoding is  — Z01, where T stands for z with
doubled bits. Here the block 01 is used as a delimiter. However, this encoding is
not the most space-efficient one, since it doubles the length. A better prefix-free
encoding is

z +— & = bin(l(z)) 01z,

31



32 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

where (bin(I(z)) is the binary representation of the length I(z) of the string z).
Now

1(2) =1(z) + 2logl(z) + O(1).
This trick can be iterated: for any prefix-free encoding z — Z, we can construct
another prefix-free encoding

T bin/(l(\a:))z.

Inide/e\d, if bin(l(z))z is a prefix of bin/(l(\y))y, then one of the strings bin(l(z)) and
bin(l(y)) is a prefix of the other one, and therefore bin({(z)) = bin(i(y)). Therefore
z is a prefix of y, and I(z) = l(y), so z = y. (In other words, we uniquely determine
the length of the string, since a prefix-free code is used for it, and we then get the
string itself knowing where it ends.)

In this way we get a prefix-free encoding such that

I(z) = l(z) + logl(z) + 2loglogi(z) + O(1),
then (one more iteration)
1(2) = l(z) + logl(z) + loglogl(z) + 2loglog logl(z) + O(1),

etc.
Now we return to the proof. Let D be the optimal decompressor used in the
definition of Kolmogorov complexity. Consider a decompressor D’ defined as

D'(pq) = [D(p), D(a)],

where p is a prefix-free encoding and [, ] is the encoding of pairs (used in the
definition of pairs complexity). Since p is a prefix-free encoding, D’ is well defined
(we can uniquely extract p out of pg).

Let p and ¢ be the shortest descriptions of z and y. Then pq is a description
of [z,y], and its length is exactly as we need in our theorem. (The more iterations
we use for the prefix-free encoding, the better bound we get.) a

Theorem 16 implies that
C(z,y) < C(z) + C(y) + O(logn)

for strings z and y of length at most n: one may say that the complexity of a
pair does not exceed the sum of the complexities of its component with logarithmic
precision.

Suggest a natural definition for the complexity of a triple. Show that
C(z,y,2) < C(z) + C(y) + C(z) + O(log n) for every three strings z,y, z of length
at most n.

A natural question arises: is it true that C(z,y) < C(z) + C(y) + O(1)?

A simple argument shows that this is not the case. Indeed, this inequality would
imply C(z,y) < l(z) + I(y) + O(1). Consider some N. For each n =0,1,2,..., N,
we have 27 strings z of length n and 2V~ strings y of length N — n. Combining
them, we (for a given n) obtain 2/ different pairs (z,4). The total number of pairs
(alln=0,1,..., N give different pairs) is (N + 1)2%.

Assume that indeed C(z,y) < l(z)+1(y) + O(1) = N+ O(1) for all these pairs.
Then we get (N +1)2% different strings [z, y] of complexity at most N +O(1), but
this is impossible (Theorem 7, p. 17, gives the upper bound O(2V)).
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Prove that there is no constant ¢ such that
C(z,y) < C(z) +1og C(z) + C(y) + ¢

for all z and y.
(Hint: Replace C in the right-hand side by [ and count the number of corre-
sponding pairs.)

(a) Prove that
Z 9-H8) < 1
TEZ
for any prefix-free encoding z — & (here Z is the set of all binary strings).
(b) Prove that if a prefix-free encoding increases the length of an n-bit string
at most by f(n), ie., if 1(&) < l(z) + f(i(z)), then 3" 277" < co.
This problem explains why a coefficient 2 appears in Theorem 16 (p. 31): the

series
1 1 1
2.5 LnlognP 2 nlognoglogn®’

converge, while the series
1 1 1
2w 2nlogn’ 2 niognloghgn’
diverge.

The following problem describes functions that can be used for bounds similar
to Theorem 16.

Let f: N — N be a non-decreasing total computable function. Prove that
the following three properties are equivalent:

(a) C(z,y) < C(z) + C(y) + £(C(z)) + O(1);

(b) C(z,y) < Uz) +U(y) + f(i(z)) + O(1);

(c) 3,277 < oo

(Hint: .(a) obviously implies (b); to get the reverse implication, consider the
shortest descriptions. To derive (a) from (c), one can count pairs with I(z) +
F(l(z)) +1(y) < n; one can also use results about prefix complexity (see Chapter 4,
Problem 107). Finally, to derive (¢) from (b), note that the right-hand side in (b)
is at most n + O(1) if I(z) = k and I(y) = n — k — f(k), for k+ f(k) < n. So the
number of such pairs is at least y_ 2k2n—*—f(%) = 27 5~ 2-F(¥) where the sum is
taken over all k such that &+ f(k) < n.)

Prove that all the inequalities of Theorem 16 become false if the coefficient
2 is replaced by 1 but remain true with the coefficient 1+ ¢ for any £ > 0.
(Hint: See the preceding problem.)

Prove that
C(z,y) € C(z) +log C(z) + C(y) + log C(y) + O(1).

@ (Continued) Prove a stronger inequality:
Clz,y) < C(z) + C(y) + 10g(C(z) + C(y)) + O(1).

(Note that C(z) + C(y) can be replaced by max(C(x),C(y)). This gives a factor
at most 2, which makes O(1) after taking logarithms.)
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Prove that C(z, C(z)) = C(z) + O(1).
(Hint: C(z,C(x)) = C(z) + O(1) for evident reasons. On the other hand, the
shortest description of z determines both z and C(z).)

Prove that if C(z) < n and C(y) < n, then C(z,y) < 2n+ O(1).

2.2. Conditional complexity

When transmitting a file, one could try to save communication charges by
compressing that file. The transmission could be made even more effective if an old
version of the same file already exists at the other side. In this case we need only
describe the changes made. This could be considered as a kind of motivation for
the definition of conditional complexity of a given string x relative to a (known)
string y.

A conditional decompressor is a computable function D of two arguments,
the description and the condition (both arguments and the value of D are binary
strings). If D(y, z) = z, we say that y is a (conditional) description of z when z is
known (or relative to z). The complexity Cp(z|z) is then defined as the length of
the shortest conditional description:

Cp(z|z) = min{l(y) | D(y, 2) = z}.
We say that (conditional) decompressor Dy is not worse than Do if
Cp,(z]2) £ Cp,(z|2)+c
for some constant ¢ and for all z and 2. A conditional decompressor is optimal if
it is not worse than any other conditional decompressor.

THEOREM 17. There exist optimal conditional decompressors.

ProoF. This conditional version of the Solomonoff- Kolmogorov theorem can
be proved in the same way as the unconditional one (Theorem 1, p. 3).

Fix some programming language where one can write programs for computable
functions of two arguments, and let

D(py, z) = p(y, 2),
where p(y, z) is the output of program p on inputs y and z, and p is the prefix-free
encoding of p.
It is easy to see now that if D’ is a conditional decompressor and p is a program
for D', then
Cp(z]2) < Cpi(z]2) + 1(p).
The theorem is proved. O
Again, we fix some optimal conditional decompressor D and omit index D in
the notation.
Let us start with some simple properties of conditional complexity.
THEOREM 18.
C(z|y) < C(z) + O(1);
C(z|x) = O(1);
C(f(z,y)y) < Clz|y) + O(1);
Clzly) < C(zlg(y)) + O(1).
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Here ¢ and f are arbitrary computable functions (of one and two arguments,
respectively) and the inequalities are valid if f(z,y) and g(y) are defined.

ProoF. First inequality: Any unconditional decompressor can be considered
as a conditional one that ignores the second argument.

Second inequality: Consider D such that D(p, z) = z.

Third inequality: Let D be the optimal conditional decompressor used to define
complexity. Consider another decompressor D’ such that

D'(p,y) = f(D(p,y).y),
and apply the optimality property.
A similar argument works for the last inequality, but D’ should be defined in
a different way:
D'(p,y) = D(p, 9(y))-

The theorem is proven. O

@ Prove that conditional complexity is “continuous as a function of its second
argument”: C(z|y0) = C(z|y) + O(1); C(z|yl) = C(z|y) + O(1). Using this
property, show that for every string = and for every non-negative integer I < C(z)
there exists a string y such that C{z|y) =1+ O(1).

A similar argument based on two-dimensional topology is used in [156].

Prove that for any fixed y the function z — C(z|y) differs from C at most
by 2C(y) + O(1).

Prove that C([z, z]|[y,2]) < C(z|y) + O(1) for any strings z,y,z (here
[, -] stands for the computable encoding of pairs).

Fix some “reasonable” programming language. (Formally, we require the
corresponding universal function to be a Gédel one. This means that a translation
algorithm exists for any other programming language; see, e.g., [184].) Show that
the conditional complexity C(z|y) is equal (up to an O(1) additive term) to the
minimal complexity of a program that produces output x on input y.

(Hint: Let D be an optimal conditional decompressor. If we fix its first argu-
ment p, we get a program of complexity at most I(p) + O(1). On the other hand,
if program p maps y to z, then C(z|y) = C(p(y)|y) < C(p) + O(1).)

This interpretation of conditional complexity as a minimal complexity of a
program with some property will be considered in Chapter 13.

If we restrict ourselves to total programs (that terminate on all inputs), we
get an essentially different notion of conditional complexity that can be called total
conditional complexity.

Show that the notion of total conditional complexity CT(x|y), the minimal
(plain) complexity of a total program that maps y to z, is well defined (i.e., it
changes at most by O(1) when we change the programming language in a reasonable
way). Prove that

Clzly) < CT(z|y) < C(z)
with O(1)-precision.

Show that the total complexity sometimes exceeds significantly the usual
conditional complexity: for every n there exist two n-bit strings # and y such that

C(z|y) = O(1) while CT(z|y) = n.
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(Hint: Let us enumerate all programs of complexity less than n defined on all
n-bit strings, and maintain two n-bit strings x and y with the following property:
none of the programs found maps y to z. When a new program is found that
maps y to x, we choose a fresh value of y and then choose an appropriate z. This
process is effective if n (=leugth of y) is given, it defines a partial function y — z,
so C(z|y) = O(1) for every pair selected.)

Let z and y be bit strings such that CT(z|y) < n and CT(y|z) < n.
Prove that there exists a program of a computable permutation of the set of bit
strings that maps z to y and has complexity at most 2n + O(1).

(Hint: Tt is easy to construct a string v of length 2n + O(1) that encodes a
pair of total programns f that maps z to y and g that maps y to z. We may
assume without loss of generality that z and y have 0 as their first bits. Consider
a binary relation R on the set of strings that have first bit 0, defined as R(u,v) :
(f(u) =v) and (g(v) = u)). This is a decidable one-to-one correspondence between
decidable sets of strings with infinite complements, and it can be easily extended
to a computable permutation.)

@ Show that the upper bound in the preceding problem cannot be improved
significantly: for every k there are two strings = and y of length n = 2k + O(1)
such that C(z),C(y) < k + O(1) (and therefore CT(z|y), CT(y|z) < k + O(1)),
but every permutation of n-bit strings that maps z to y has complexity at least 2k.

(Hint: Let us first select (arbitrarily) 2* strings y and pair them with some
string . Let us enumerate computable permutations of n-bit strings that have
complexity less than 2k. If and when all selected pairs are served by some of these
permutations, choose a new string x that is connected (by existing permutation)
with at most half of the selected y-strings. After that Q(2*) new permutations are
needed to connect new z to all y-strings. Therefore at most 22%/Q(2%) = O(2F)
z-strings will be used, so the final z and y have complexity at most k£ + O(1). The
selection of x connected with at most half of selected y-strings is always possible,
since each of the y-strings is connected with a small fraction of z-strings, and we
can change the order of summation in the double sum. Note that this argument
may be used to guarantee that one of the strings = and y belongs to a given set of
2% strings.)

See [136] for the detailed proofs of these results about total conditional com-
plexity.

Many properties of unconditional complexity have conditional counterparts
with essentially the same proofs. Here are some of these counterparts.

e Function C(-|-) is upper semicomputable (this means that the set of triples
{z,y,n) such that C(z|y) < n is enumerable).

e For any y and n the set of all strings z such that C(z|y) < n has cardi-
nality less then 2™.

e For any y and n there exists a string = of length n such that C(z|y) = n.

Prove that for any strings y and z and for any number n there exists a
string z of length n such that C(z|y) >n—1 and C(z|z) > n— 1.
(Hint: Both requirements are violated by a minority of strings.)
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THEOREM 19. Let (z,y) — k(z,y) be an upper semicomputable function such
that the set {z | k(z,y) < n} has cardinality less than 2" for any string y and
integer n. Then C(z|y) < k(z,y) + ¢ for some ¢ and for all x and y.

The proof repeats the proof of Theorem 8.
Using conditional complexity, we get a stronger inequality for the complexity
of pairs (compared with Theorem 16, p. 31):

THEOREM 20.
C(z,y) < C(z) + 2log C(z) + C(y|z) + O(1).

PrROOF. Let D) be an optimnal unconditional decompressor, and let Dy be an
optimal conditional decompressor. Construct a new unconditional decompressor
D’ as follows:

D'(pq) = [D1(p), D2(g, Dr(p))]-

Here p stands for the prefix-free encoding of p, and [, ] is a computable encoding
of pairs used in the definition of the complexity of pairs. Let p be the shortest
D, -description of z, and let g be the shortest Dj-description of y conditional to z.
Then the string pq is a Dj-description of [z,y]. Therefore,

C(z,y) < Cpr(z,y) + O(1) < U(B) + Ug) + O(1).

As we have seen, one can choose a prefix-free encoding in such a way that [(p) is
bounded by I(p) + 2logl(p) + O(1) (see the proof of Theorem 16, p. 31), and we
get a desired inequality. O

As before, we may replace 2log C(z) by log C(z) + 2loglog C(z), etc., getting
a better bound. We also can use conditional complexity in the logarithmic term
and write

C(z,y) < C(z) + C(y|z) + 2log Cy|z) + O(1).
(In the proof we should then replace D' (pg) by D’(gp).)

Prove that
C(z|2) < Clz|y)+2log Clz|y) + C(y|z) + O(1)

for all z,y, z (a sort of triangle inequality).

If we are not interested in the exact form of the additional logarithmic term,
the statement of Theorem 20 can be reformulated as

C(z,y) < C(z) + C(y|z) + O(logn)

for all strings z,y of length at most n.
It turns out! that this inequality is in fact an equality.

THEOREM 21 (Kolmogorov-Levin).
Clz,y) = C(z) + Cly|z) + O(logn)
for all strings z,y of length at most n.
IThis is the first non-trivial statement in this chapter, and probably the first non-trivial

result about Kolmogorov complexity; it was proven independently by Kolmogorov and Levin and
published in (79, 225].
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FIGURE 2. The section A; of the set A of all simple pairs

PROOF. Since we already have one inequality, we need to prove only that
C(z,y) > C(z) + C(y|z) + O(logn)

for all 2 and y of length at most n.

Let z and y be some strings of length at most n. Let a be the complexity
C(z,y) of the pair {z,y). Consider the set A of all pairs whose complexity does not
exceed a. Then A is a set of cardinality O(2%) (in fact, at most 2*!) and (z,y) is
one of its elements.

For each string t consider the “vertical section” A; of A:

Ay ={u| {t,u) € A}

(see Figure 2). The sum of the cardinalities of all A; (over all strings t) is the
cardinality of A and does not exceed O(2¢). Therefore there are few “large” sections
Ay, and this is the basic argument we need for the proof.

Let m be equal to |log, |A;|] where z is the first component of the pair (z, y)
we started with. In other words, assume that cardinality of A, is between 2™ and
2m+1 Let us prove that

(1) C(y|x) does not exceed m significantly;

(2) C(x) does not exceed a — m significantly.

We start with (1). Knowing a, we can enumerate the set A. If we know also z,
we can select only pairs whose first component equals . In this way we get an
enumeration of A;. To specify y, it is enough to determine the ordinal number of y
in this enumeration (of A;). This ordinal number takes m+ O(1) bits, and together
with a we get m + O(logn) bits for the conditional description of y given z. Note
that a = C(z,y) does not exceed O(n) for strings = and y of length n. Therefore,
we need only O(logn) to specify a and n, and

C(y|z) £ m+ O(logn).

Now let us prove (2). Consider the set B of all strings ¢ such that the cardinality
of A; is at least 2™. The cardinality of B does not exceed 29! /2™; otherwise, the
sum |A| = )" |A;] would be greater than 2!, We can enumerate B if we know a
and m. Indeed, we should enumerate A and group together the pairs with the same
first coordinate. If we find 2™ pairs with the same value of the first coordinate, we
put this value into B. Therefore, the string = (as well as every element of B) can
be specified by (@ — m) 4+ O(logn) bits: a — m + 1 bits are needed for the ordinal
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number of z in the enumeration of B, and O(logn) is used to specify a and m. So
we get

C(z} € (a —m) + O(logn),
and it remains to add this inequality and the preceding one. O

This theorem can be considered as the complexity counterpart of the following
combinatorial statement. Let A be a finite set of pairs. Its cardinality is (obviously)
bounded by the product of the cardinality of A’s projection onto the first coordinate
and the maximal cardinality of the sectious A,. This corresponds to the inequality
C(z,y) < C(z) + C(y|z) + O(logn). The reverse inequality needs a more subtle
interpretation. Let A be a set of pairs, and let p and ¢ be some numbers such
that the cardinality of A does not exceed pg. Then we can split A into parts P
and @ with the following properties: the projection of P onto the first coordinate
has at most p elements, while all the sections @, of @ (for element in Q, the first
coordinate equals z) have at most g elements. (Indeed, let P be the union of all
sections that have more than ¢ elements. The number of such sections do not exceed
p. The remaining elements form @.) We return to this combinatorial translation
in Chapter 10.

Note that in fact we have not used the lengths of  and y, only their complex-
ities. So we have proved the following statement:

THEOREM 22 (Kolmogorov-Levin, complexity version).
C(z,y) = C(z) + C(y|z) + O(log C(z,y))
for all strings z and y.

@ Give a more detailed analysis of the additive terms in the proof, and show

that
C(z) + Cly|z) < C(z,y) + 3log C(z,y) + O(loglog C(z,y)).

Show that if C(x,y|k,1) < k+1, then C(z|k,1) < k+O(1) or C(y|z, k,1) <
1+ 0(1).

(Hint: This is what we actually proved in the proof of Theorem 22.)

Show that O(logn) terms are unavoidable in the Kolmogorov-Levin the-
orem in both directions: for each n there exist strings z and y of length at most n
such that

C(z,y) 2 C(z) + C(y|z) + logn — O(1)
as well as strings x and y of length at most n such that
Clz,y) £ C(z) + C(y|z) — logn + O(1).

(Hint: For the first inequality we can refer to the remark after Theorem 16
(p. 31). For the second note that C(z,l(z)) = C(z) for every z, while C(z|i(z))
can be equal to I(z) + O(1) and C(z) + O(1). Then we can take a random length
between n/2 and n and a random string of this length.)

Prove that changing one bit in a string of length n changes its complexity
at most by logn + O(loglogn). Prove the same for the conditional complexity
As we have seen in Problem 7 (p. 21), for every m-bit string z there exists
another string =’ of the same length that differs from z in one position only such
that C(z') < n —logn + O(1) (and therefore C(z'|n) < n —logn + O(1)). In
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particular, if z is incompressible (given n), one can change one bit in z and decrease

One can also move in the other direction: if C(z|n) is small enough (this means
that C(z|n) £ an for some positive constant &), we can increase this complexity
by changing one bit in n: there exists some « > 0 such that for each n-bit string z
with C(z|n) < an one can change one bit in = and get another n-bit string z’ such
that C(z’|n) > C(z|n). (The proof of this statement requires a more involved
combinatorial argument [24] than the decrease in complexity.)

Fix some unconditional decompressor D. Prove that for some constant ¢
and for all integers n and k the following statement is true: if some string = has at
least 2% descriptions of length at most n, then C(z|k) <n —k+c.

(Hint: Fix some k. For each n consider all strings z that have at least 2*
descriptions of length at most n. The number of these strings does not exceed
2"~* and we can apply Theorem 19, p. 36.)

Using this problem, we can prove the following statement about unconditional
complexity (see [103, Exercises 4.3.9, 4.3.10]):

Let D be some optimal unconditional decompressor. Then there exists
some constant ¢ such that for any string  the number of shortest D-descriptions
of z does not exceed c.

(Hint: The previous problems show that C(z) < n —k 4+ 2logk + O(1), so for
C(z) = n, we get an upper bound for k.)

Prove that there exists a constant ¢ with the following property: if for
some z and n the probability of the event C(z|y) < k (all strings y of lengths n
are considered as equiprobable here) is at least 27¢, then C(z|n,l) <k +1+c.

(Hint: Connect each string y of length n to all strings z such that C(z|y) < k.
We get a bipartite graph that has O(2"t*) edges. In this graph the number of
vertices  that have degree at least 2"~! does not exceed O(2%*!). Note that
C(z|n,1) does not include k—this is not a typo!)

This problem could help us in finding the average value of C(z|y) for given z
and all strings y of some length n. It is evident that C(z|y) < C(z|n)+O(1) since
n = I(y) is determined by y. It turns out that for most strings y (of given length)
this inequality is close to an equality:

Prove that there exists some constant ¢ such that for each string x and for
all natural numbers n and d the fraction of strings y such that C(z|y) < C(z|n)—d
(among all strings of length n) does not exceed cd?/2¢. Using this statement, prove
that the average value of C(z|y) taken over all strings y of a given length n equals
C(z|n) + O(1) (the constant in O(1) does not depend on z and n).

Prove that C(z|k) < k implies C(zx) < k+ O(1).

(Hint: See Theorem 7. One can also note that if a conditional description of =
given k has length k, then k is known anyway, and if this description is shorter, we
have enough space to specify the difference between k and the description length.)

A similar (though not identical) statement:
Prove that C(z) = C(z|C(z)) + O(1).

(Hint: Assume that z has a conditional description g with condition C(z) that
is shorter than C(z). Then one can specify = by providing ¢ and the difference
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C(z) — (g), and we get a description of z that is shorter than C(z)—a contradic-
tion.)

Prove that for every n there exists an n-bit string « such that
C(C(z)|xz) =logn — O(1).

(This is a maximal possible value, since C(z) < n for n-bit string z.)

This result (in a bit weaker form) was proven long ago by P. G4cs [55]. Re-
cently E. Kalinina and B. Bauwens suggested a simple game-theoretic proof of this
statement. Here is a sketch of their argument (see [6] for details). Consider a
rectangular game board of width 2™ and height n. Two players, White and Black,
make alternating moves and place pawns of their respective colors into the board
cells. Unlike chess, each cell may contain both white and black pawns (at most
one of each color). At each move a player may place several pawns into different
cells (or no pawns at all); after a pawn is placed, it cannot be moved or removed.
Also Black can irreversibly mark some cells. The players should obey the following
restrictions:

(a) each of the players can place at most 2¢ pawns at row i (the bottom row
has number 0, the upper row has number n — 1);

(b) Black can mark at most half of the cells in each column.

A white pawn is declared killed if its cell is marked or if there is a black pawn
below it (in the same column). The game does not end formally (though it is
essentially a finite game); White wins if in the limit there is at least one non-killed
white pawn.

White has a winning strategy in this game: place a pawn in the top row and
wait until it is killed. If it is killed by the black pawn below, switch to the next
column (for example, White can go from left to right starting with the leftmost
column). If the pawn was killed by marking its cell, White places another pawn
just below the first one, etc. (We may assume that Black makes only the move
needed to kill White’s pawn; since only the limit position matters in the game, all
of Black’s other moves can be postponed.) Recall that Black can mark at most half
of the column, so Black is forced to put some pawn in the column at soine point.
It cannot be done in all columns, since the sum of 2¢ for all rows is less (by 1) than
the width of the table. Note also that White will not violate restrictions on the
number of pawns in each row, since in all the columns (except the currently active
one) under each white pawn (in row ) there is a black pawn (in some row j < i),
and the sum of 27 for all j < i is less that 2¢ and there is a space for one more
white pawn.

After a winning strategy for White is described, consider the following “univer-
sal” strategy for Black: the cell (x,) is marked as soon as we find that C(i|z) <
logn — 1; a black pawn in placed at (z,7) when a conditional description of z
(given n) of length 7 is found. It is easy to check that Black obeys the game rules.
White wins, and a live white pawn at the cell (z,7) means that C{z|n) > ¢ and
C(i|z) = logn — 1. Since the actions of White (playing against the computable
strategy of Black) are computable, we conclude that C(z|n) < ¢+ O(1): the set of
white pawns in row i is enumerable and it contains at most 2¢ elements.

This argument shows that C(C(z|n)|z) > logn — 1 (not exactly what we
wanted). To get the desired result, we should change the game and consider in
parallel boards of all sizes.
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Prove that for some constaut ¢ for any string a and for every number n,
there exists a string y of length 7 such that

Czy) 2 Clz|n)+n—c

(Hint: For a given n the number of strings z, such that C(zy) < k for any y of
length n, does not exceed 2% /2, and this property is enumerable. So we can apply
Theorem 19 (p. 36).)

Let f be a function with natural arguments and values. Assume that
f(ny+eh < f(n+h) < f(n)+(1-¢€)h

for some £ > 0 and for all n and h. Prove that there exist an infinite bit sequence
w whose n-bit prefix has complexity f(n)+ O(1) for every n.

(Hint: Let us add blocks of length h where & is large enough. Each new block
being added to au n-bit prefix increases complexity by more than f(n + h) — f(n)
or by less than f(n + h) — f(n), depending on the current situation (whether we
are below or above the boundary). To find a block with a big complexity increase,
we may use the previous problem; for a block with a small increase, we can use a
block of zeros. Note that (large cuough) h is fixed, so it is enough to control the
complexity on the blocks’ boundaries.)

Prove that an infinite sequence xox), x> - - - of zeros and ones is computable
if and only if the values C(2¢ - - - @, _) | n) (the complexities of its prefixes conditional
to their lengths) remain bounded by a constant. '

(Hint: Consider an infinite binary tree. Let S be the enumerable set of vertices
(binary strings) that have conditional complexity (w.r.t. their length) less than
some constant ¢. The horizontal sections of S have cardinality O(1). We need to
derive from this that each infinite path that lies entirely inside S is computable.
We may assume that S is a subtree (only the strings whose prefixes are in S remain
in .S).

Let w be an infinite path that goes through S only. At each level n we count
vertices in S on the left of w (I, vertices) and on the right of w (r,, vertices). Let
L =limsupl, and R = limsupr,. Let N be the level such that L and R are never
exceeded after this level. Knowing L, R, and N, we can compute arbitrarily large
prefixes of w. We should look for a path 7 in a tree such that at some level above
N there are at least L elements of S on the left of 7 and at some (possibly other)
level above N there are at least R elements on the right of 7. When such a path 7
is found, we can be sure that its initial segnient (up to the first of those two levels)
coincides with w. This result was published in [108] (attributed to A.R. Meyer).)

Prove that in the previous problem a weaker assumption is sufficient:
instead of C'(zg - - Zn—1|n) = O(1), we can require that C(zg -z, ) < logn+c¢
for some ¢ and for all n.

(Hint: In this case we get an enumerable set S of strings (=tree vertices) with
the following property: the number of vertices below level N is O(N). This means
that the average number of vertices per level is bounded by a constant. To use the
previous problem, we need a bound for all levels and not for the average value. We
can achieve this if we consider only vertices z € S that have an extension of length
2l(z) that goes entirely inside S. This result was published in [33].)

Following Problem 48, we can suggest different definitions of the complexity
notion for computable bit sequences:



2.2. CONDITIONAL COMPLEXITY 43

e A minimal complexity of a program that, given n, computes zg -« x,_,.
We can also cousider a program that computes x,, for input n, which gives
the same (up to O(1)) complexity. We denote this complexity by C(z).

¢ A minimal complexity of a program that, given n, computes zg - - - z,, for
all sufficiently large n. For other n (finitely many of them) this program
may provide a wrong answer or never terminate. Complexity defined in
this way is denoted by Coo(2).

e max{C(zg - xp—)|n)|n=01,...}, denoted by M(zx).

e limsup,, . C(zo - Tn_1|n), denoted by My (z).

There are evident relations between the notions
Meo(z) < M(z) < C(z)
(up to O(1) additive term) and
Moo (z) < Coo(w) < C(x)
(with the same precision).

Prove that there exists a computable bit sequence z such that Coo () is
much less than A (z) (and, therefore, much less than C(z)). More precisely, there
exists a sequence z™ of computable sequences such that Coo (z™) = O(logm) and
M((z™) > m.

(Hint: Consider the sequence 2™ = ,,,000-- -, where ¥, is the lexicograph-
ically first string of length m that has conditional complexity (given m) at least
n.)

Prove that for some computable sequence z the value of M(x) is much
less than C(z). More precisely, there exist a sequence 2™ of comnputable sequences
such that M (z™) = O(logm) and C(z™) = m.

(Hint: Consider the sequence z™ = (18B(™)000- - - ), where the number of ones
before trailing zeros equals BB {m), defined on p. 24.)

Prove that Coo(z) € 2My (z) + O(1).

(Hint: Use the same argument as in Problem 48.)
In fact, the constant 2 in the preceding problem is optimal, as shown in [52].

Consider strings of length n that have complexity at least n (incompressible
strings).

(a) Prove that the number of incompressible strings of length n is between 2" ¢
and 2™ — 2"7¢ (for some c and for all n).

(b) Prove that the cardinality of the set of incompressible strings of length n
has complexity n — O(1) (note that this implies the statement (a)).

(c) Prove that if a string z of length 2n is incompressible, then its halves z;
and z2 (of length n) have complexity n — O(1).

(d) Prove that if a string x of length n is incompressible, then each of its
substrings of length & has complexity at least & — O(logn).

(e) Prove that for any constant ¢ < 1 all incompressible strings of sufficiently
large length n contain a substring of |clog, n] zeros.

(Hints: (a) There is at most 2™ — 1 descriptions of length less than n, and part
of them is used for shorter strings: Any string of length n — d (for some d) has
complexity less than n. This gives a lower bound for the number of incompressible
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strings. To prove the upper bound, note that strings of length n that have a prefix
of k zeros could be described by 2logk + (n — k) bits.

(b) Let ¢ be the shortest description of the number of incompressible strings. If
t has n — k bits, then knowing ¢ and log k additional bits, we can reconstruct first n
and then the list of all incompressible strings of length n, so the first incompressible
string has complexity less than n, a contradiction.

(c) If one part of the string is has a short description, the entire string has a
short description that starts with prefix-free encoding of the difference between the
length and complexity of the compressible part.

(d) If a string has a simple substring, then the entire string can be compressed
(we need to specify the substring, its position, and the rest of the string).

(e) Let us count the number of strings of length n that do not contain & zeros in
a row: a recurrent relation shows that this number grows like a geometric sequence
whose base is the maximal real root of the equation z = 2 — (1/z*), and we can
get a bound for complexity of strings that do not have k zeros in a row.)

Prove that (for some constant c) for every infinite sequence zoz 22+ of
zeros and ones there exist infinitely many n such that

C(zozy  Zp-1) < n—logn+ec.
Prove that there is a constant ¢ and the sequence zgx; 25 - -+ such that
C(zozy - Tp—1) 2n—2logn —c
for all n.
(Hint: The series Y 1/n diverges while the series ) (1/n%) converges. For
details see Theorem 95 and 99.)
This result was published by Martin-Lof [117] for conditional complexity (and

a reference to an earlier unpublished work in Russian was given for unconditional
complexity; see also [225, Theorem 2.6]).
@ For a string z of length n let us define d(z) and d.(z) as follows:
diz)=n—-C(z) and d.(z)=n-C(z|n).
Show that they are rather close to each other:
de(z) — 2log de(z) — O(1) < d(z) < de(z) + O(1).

(Hint: We need to show that C(z|n) = n—d implies C(z) < n—d+2log d+O(1).
Indeed, let us take the conditional description of = of length n — d and put it after
the self-delimiting description of d that has size 2log d+ O(1). Knowing this string,
we can reconstruct d, then n, and finally z.])

Prove that d(zy) = d(z)+d(y|z)+O(log d(zy)) for every two n-bit strings
z and y. (Here d(u) = l(u) — C(u).)

(Hint: Use Problem 36.)

The intuitive meaning of the difference between length and complexity as a
kind of “randomness deficiency” is discussed (for different complexity versions) in
Chapter 5 and Chapter 14.

Prove that for sufficiently large values of a constant ¢ the enumerable set
of pairs (z,y) such that C(z|y) < c is Turing complete (one can solve the halting
problem using an oracle for such a set).

(Hint: Use Problem 15 and the fact that the output of a program has O(1)
conditional complexity given the program.)
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2.3. Complexity as the amount of information

As we know (Theorem 18), the conditional complexity C'(y|z) does not exceed
the unconditional one C(y) (up to a constant). The difference C(y) — C(y|z) tells
us how the knowledge of ¥ makes z easier to describe. So this difference can be
called the amount of information in x about y. We use the notation I(z:y).

Theorem 18 says that I(z:y) is non-negative (up to a constant): there exists
some ¢ such that I(z:y) > c for all z and y.

Let f be a computable function. Prove that I(f(z):y) < I(z:y) + c for
some c¢ and for all z,y such that f(z) is defined.

A generalization of this statement to probabilistic algorithms is possible.

Let f(z,r) be a computable function of two arguments, and let r be chosen
at random uniformly among n-bit strings for some n. Then for each [ the probability
of the event

I{f(z,r):y) > I{z:y) + !
does not exceed 21+O(C(M)+CW),

(Hint: Use the conditional version of Problem 41.)

These properties of information can be described as conservation laws for in-
formation (about something) in algorithmic or random processes. As Levin once

put it, “by torturing an uninformed person you do not get any evidence about the
crime.” He discusses this property (for different notions of information) in [100].

Recall that
C(z,y) = C(z) + Cly|z) + O(log C(z,y))
(Theorem 22, p. 39). This allows us to express conditional complexity in terms of
an unconditional one: C(y|z) = C(z,y) — C(z) + O(log C(z,y)). Then we get the
following expression for the information:

I{z:y) = C(y) - Cly|z) = C(z) + Cly) — C(z,y) + O(log C(z, y)).
This expression immediately implies the following theorem:

THEOREM 23 (Information symmetry).
I(z:y) = I(y:z) + O(log C(z, y))-

So the difference between I(z:y) and I(y:z) is logarithmically small compared
to C(z,y). The following problem shows that at the same time this difference could
be comparable with the values I(z:y) and I(y:z) if they are much less than C(z, y).

Let z be a string of length n such that C'(z|n) > n. Show that

I(z:n) = C(n)+ O(1) and I(n:z) = O(1).

The property of information symmetry (up to a logarithmic term) explains
why I(z:y) (or I(y:z)) is sometimes called mutual information in two strings x
and y. The connection between mutual information, conditional and unconditional
complexities, and pair complexity can be illustrated by a (rather symbolic) picture
(see Figure 3).

It shows that strings x and y have I{z:y) = I(y:z) bits of mutual information.
Adding C(z|y) bits (information that is present in z but not in y, the left part),
we obtain

I(y:z) + Cz|y) = (C(z) — C(z|y)) + Clz|y) = C(z)
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x

FIGURE 3. Mutual information and conditional complexity

x Yy
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FIGURE 4. Common information in overlapping substrings

bits (matching the complexity of x). Similarly, the central part together with
C(y|z) (the right part) give C(y). Finally, all three parts together give us

Clzly) +I(z:y) + Cly|z) = C(z) + Cly|z) = Clz|y) + Cy) = C(z.y)

bits (all equalities are true up to O(logn) for strings = and y of length at most 7).

In some cases this picture can be understood quite literally. Consider, for
instance, an incompressible string r = ry -+ -7, of length n, so C(ry---71n) = n.
Then any substring « of z has complexity I(u) up to O(logn) terms. Indeed, since
u is a substring of r, we have r = tuv for some strings ¢,v. Then

I(r)=C(r) < C{t) + Clu) + Clv) <) + l(u) + I(v) = U(r)

(up to a logarithmic error), and therefore all the inequalities are equalities (with
the same logarithmic precision).

Now take two overlapping substrings = and y (Figure 4). Then C(z) is the
length of z and C(y) is the length of y (up to O(logn)).

The complexity C(z,y) is equal to the length of the union of segments (since
the pair (z,y) is equivalent to this union plus information about lengths requiring
O(logn) bits).

Therefore, conditional complexities C(x|y), C(y|z) and the mutual informa-
tion I(z:y) are equal to the lengths of the corresponding segments (up to O(logn)).

However, the mutual information cannot always be extracted in the form of
some string (like it happened in our example, where this common information is
just the intersection of strings = and y). As we will see in Chapter 11, there exist
two strings z and y that have large mutual information I(z:y) but there is no string
z that represents (materializes) this information in the following sense: C(z|z) = 0,
C(z|y) ~ 0 (all information that is present in z is also present both in z and in y),
and C(z) =~ I(z:y) (all mutual information is extracted). In our last example we
can take the intersection substring for z, but in general this is not possible.

Prove that for any string x of length at most n the expected value of the
mutual information I(z:y) in = and the random string y of length n is O(logn).
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Now we move to triples of strings instead of pairs. Here we have an important
tool that can be called relativization: most of the results proved for unconditional
complexities remnain valid for conditional complexities (and proofs remain valid with
minimal changes). Let us give some example of this type.

A theorem about the complexity of pairs (p. 31) says that

C(z,y) < C(z) + 2log C(z) + C(y) + O(1).

Replacing all complexities by conditional ones (with the same condition z in all
cases), we get the following inequality:

C(z,y|z) € C(z|2) + 2log C(z|z) + Cly| z) + O(1).

By conditional complexity of a pair z,y relative to z we mean, as one can expect,
the conditional complexity of its encoding: C(z,y|z) = C([z,y]|2). As for un-
conditional complexity, the choice of encoding is not important (the complexity
changes by O(1)).

The proof of this relativized inequality repeats the proof of the unrelativized
one: we combine the description p for z (with condition z) and the description ¢ for
y (with condition z) into a string pq that is a description of [p, q] (with condition z)
relative to some suitable conditional decompressor.

This is nothing really new. However, we may express all the conditional com-
plexities in terms of unconditional ones: recall that C(z,y|z) = C(z,y, z) — C(z)
and C(z|2z) = C(x, 2)—C(z), C(y|2) = Cly, z) — C(z) (with logarithmic precision).
Then we get the following theorem:

THEOREM 24.

Cz.y,2) + C(2) € C(z,2) + C(y, z) + O(logn)
for all strings x.y. z of complexity at most n.
Sometimes this inequality is called the basic inequality for complexities.
The same relativization can be applied to Theorem 21 (p. 37) that relates

the complexity of a pair and conditional complexity. Then we get the following
statement:

THEOREM 25.

C(z,y|z) = Cle|2) + Clyla, ) + O(logn)
for all strings x.y, z of complexity at most n.

ProOOF. We can follow the proof of Theorem 21, replacing unconditional de-
scriptions by conditional ones (with z as the condition). Doing this, we replace
C(y|z) by C{y|z,z). One can say that now we work in three-dimensional space
with coordinates x,y, z and apply the same arguments simultaneously in all planes
parallel to the zy plane.

If this argument does not look convincing, there is a more formal one. Express
all the conditional complexities in terms of unconditional ones:

C(z,ylz) = C(z,y,2) - C(2),
and for the right-hand side
C(z|z) + Clylz,2) = C(z,2) - C(2) + C(y, 2, 2) — C(z, 2).

We see that both sides coincide (up to O(logn)). (A careful reader may note that
this simplified argument gives larger hidden constants in O(logn)-notation.) |
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Prove that in Theorem 25 the weaker assumption “C(z|z) and C(y|z,2)
do not exceed n” is sufficient.

We also relativize the definition of mutual information and let I(z:y|z2) be the
difference C(y|z) — C(y|z,z). As for the case of (unconditional) information, this
quantity is non-negative (with O(1) precision). Replacing conditional complexities
by the expressions involving unconditional ones (with logarithmic precision), we
can rewrite the inequality I(x:y|z) = 0 as

C(y]z) - C(yl'T: z) = C(ya z) - C(Z) - C(y,z,z) + C(ZL‘,Z) = 0.

So we get the basic inequality of Theorem 24 again.

In fact, almost all known equalities and inequalities that involve complexities
(unconditional and conditional) and information (and have logarithmic precision)
are immediate consequences of Theorems 21 and 24. The first examples of linear
inequalities for complexities that do not follow from basic inequalities were found
fairly recently (see [222, 223]) and they are rather complicated and not very intu-
itive. We discuss them in Section 10.13; we conclude our discussion here with two
simple corollaries of basic inequalities.

Independent strings. We say that strings z and y are “independent” if
I(z:y) = 0. We need to specify what we mean by “~”, but we always ignore the
terms of order O(logn) where n is the maximal length (or complexity) of the strings
involved.

Independent strings could be considered as some counterpart of the notion of
independent random variables, which is central in probability theory. There is a
simple observation: if a random variable £ is independent with the pair of random
variables {a, ), then ¢ is independent with @ and with 3 (separately).

The Kolmogorov complexity counterpart of this statement (if a string x is
independent with a pair (y, z), then z is independent with y and z is independent
with z) can be expressed as the inequality

I(z:(y,2)) > I(z:y)

(and the similar inequality for z instead of y). This inequality is indeed true (with
logarithmic precision), and it is easy to see if we rewrite it in terms of unconditional
complexities,

which after cancellation of similar terms gives a basic inequality (Theorem 24). (In
classical probability theory one may also apply a similar inequality for Shannon
entropies.)

Complexity of pairs and triples. On the other hand, to prove the following
theorem (which we have already mentioned on p. 12), it is convenient to replace
unconditional complexities by conditional ones:

THEOREM 26.
2C(z,y,2) < C(z,y) + C(z,2) + C(y, 2) + O(logn)
for all strings x,y, z of complexity at most n.

PrOOF. Moving C(z,y) and C(z,z) to the left-hand side and replacing the
differences C(z,y,2) — C(z,y) and C(z,y,z) — C(z, z) by conditional complexities
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C(z|z,y) and C(y|z, z), we get the inequality
C(z|z,y) + Cly|z,2) < C(y,z) + O(logn).

It remains to rewrite the right-hand side of this inequality as C(y) + C(z|y), and
note that C(z|z,y) < C(z|y) and C(y|z,2) < C(y). O

Instead we could just add two inequalities (the basic one and the inequality for
the complexity of a pair):

C(z,y,2) + C(y) < C(z,y) + C(y, 2) + O(logn),
Cl(z,y,2) < Cly) + C(z,z) + O(logn),

and then cancel C(y) in both sides. (This proof, as well as the previous one, has
an important aesthetic problem: both treat z,y, z in a non-symmetric way while
the statement of the theorem is symmetric.)

We return to the inequality of Theorem 26 and refer to its geometric conse-
quences in Chapter 10.

We can provide a more systematic treatment of the different complexity quan-
tities related to three strings as follows. There are seven basic quantities: three
of them are complexities of individual strings, another three are complexities of
pairs, and one more is the complexity of the entire triple. Other quantities such as
conditional complexity and mutual information can be expressed in terms of these
seven complexities. To understand better what requirements these seven quanti-
ties should satisfy, let us make a linear transformation in the seven-dimensional
space and switch to new coordinates. Consider seven variables a), a2, ...,a7 that
correspond to the seven regions shown in Figure 5.

T Yy

75
/6
o,

FIGURE 5. New coordinates ay, a9, ...,a7

Formally, the coordinate transformation is given by the following equations:

C(z) = a1 + a2 + a4 + as,

C(y) = a2 + a3 + as + as,

C(z) = a4 + a5 + ag + ar,

C(z,y) = a1+ a2+ as + a4 + as + ag,

C(z,z) = a1 + a2 + a4 +as +as + ar,

C(y,z) = as + a3 + a4 + a5 + ag + a7,
)

C(z,y,2) = a1 + a2 + a3 + as + as + ag + ar.
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Indeed, it is easy to see that these equations deterinine an invertible linear transfor-
mation of R”: each 7-tuple of complexities corresponds to unique value of variables
aly,...,0a7.

Conditional complexities and expressions for mutual information are combi-
nations of complexities and therefore could be rewritten in new coordinates. For
example,

I(z:y) = C(z)+ C(y) — C(z,y) = a2 + a5 and C(z|y) = C(z,y) — C(y) = a) +aa.

What is the intuitive meaning of these new coordinates? It is easy to see that
a, = C(z|y, z) (with logarithmic precision). The meaning of a3 (and a7) is similar.
The coordinate ap (with the same precision) is I{(z:y|z); coordinates a4 and ag
have similar meaning (see Figure 6). In particular, we conclude that for any strings
z,y, z the corresponding values of coordinates a,, a2, a3, a4, ag, a7 are non-negative
(up to O(logn) for strings z,y, z of complexity at most n).

G

F1GURE 6. The complexity interpretation of new coordinates

)

The coordinate as is more delicate. Informally, we would like to understand
it as the “amount of mutual information in three strings z,y,2”. Sometimes the
notation I(z:y:z) is used. However, the meaning of this expression is not quite
clear, especially if we take into account that as can be negative.

Consider the following example where a5 < 0. Let z and y be two halves of
an incompressible string of length 2n. Then C(z) = n, C(y) = n, C(z,y) = 2n,
and I(z:y) = 0 (up to O(logn)). Consider a string z of length n which is a bitwise
sum modulo 2 of z and y (XOR-operation). Then each of the strings z,y, z can
be reconstructed if two others are known; therefore, the complexities of all pairs
C(z,y),Cly, z), C(z, z) are equal to 2n (again up to O(logn)), and the complexity
C(z,y, z) is also 2n. The complexity of z is equal to n (it cannot be larger, since
the length is n; on the other hand, it cannot be smaller, since z and y form a pair
of complexity 2n).

The values of a;,...,a7 for this example are shown in Figure 7.
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FIGURE 7. Two independent incompressible strings of length n
and their XOR

Note that even if a5 is negative, the sums as + a2, as + a4 and as + ag, being
mutual information cxpressions for pairs, are non-negative. (In our examples these
sums are equal to 0.)

This example corresponds to the simple case of secret sharing of secret z be-
tween two people: if one of thein knows z and the other one knows y, then neither of
them has any information about z in isolation (since I{z:2) = 0 and I(y:z) = 0)),
but together they can reconstruct z as a bitwise sunt of z and y.

One can check that we have already given a full list of inequalities that are
true for complexities of three strings and their combinations (all a;, except for as,
are non-negative, as well as the three sunis mentioned above). We return to this
question in Chapter 10.

Our diagram is a good mnemonic tool. For example, consider again the in-
equality

C(z,y.2) < C(z,y) + Clz,2) + Cy, 2).
In our new variables it can be rewritten as az + a4 + a5 + ag = 0 (you can easily
check it by counting the multiplicity of each a; in both sides of the inequality). It
remains to note that as + a5 = 0, ay = 0, and ag = 0. (Alas, the symmetry is
broken again!)

Prove that I{zy:z) = I{z:z) + I{y:z|z) + O(logn) for strings z,y, z of
complexity at most n.

(Hint: Use the diagram.)

This problem shows that information in zy about z can somehow be split into
two parts: information in z about z and information in y about z (when z is
known). This is somehow similar to the equality C(z,y) = C{z)+ C(y|z), but now
complexity is replaced by the quantity of information about z. As a corollary we
immediately get that if 2y is independent with z, then « is independent with z and,
at the same time, y is independent with 2 when x is known. (Here independence
means that mutual information is negligible.) A symmetric argument shows that y
is independent with z and z is independent with z when y is known.

Show that properties “z is independent with y” and “z is independent
with y when z is known” are quite different: each of them can be true when the
other is false.

We say that strings z,y, 2, t form a Markov chain (a well-known notion in
probability theory now transferred to algorithmic information theory) if I{z:z|y)
and I({z,y):t|z) are negligible. (Of course, we need to specify what is “negligible”
to get a formal definition.) Show that the reversed sequence of strings also forms a
Markov chain, i.e., that I{t:y|z) and I({t,z):z|y) are negligible.
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(Hint: Since I((z,y):t|z) = I{y:t|z) + I(z:t|y, z), the left-hand side in this
equality is zero if and only if both terms in the right-hand side are zero; and the
second term in the right-hand side does not change when the order of z,¥, z,t is
reversed.)



CHAPTER 3

Martin-Lof randomness

Here we interrupt the exposition of Kolmogorov complexity and its properties
to define another basic notion of the algorithmic information theory, the notion
of a Martin-L6f random (or “typical”) sequence. This chapter does not refer to
the preceding one, which is not used again until Chapter 5 where we characterize
randomness in terms of Kolmogorov complexity.

Let us recall some basic facts of measure theory for the case of the Cantor space
of infinite sequences of zeros and ones.

3.1. Measures on

Consider the set £ = BY whose elements are infinite sequences of zeros and
ones. This set is called Cantor space. For a binary string z we consider a set 2, of
all infinite sequences that have initial segment z. For example, Qo is the set of all
sequences that start with two zeros, and 54 = Q (where A is the empty string).

The sets §2,, are called intervals. All intervals and all unions of arbitrary families
of intervals are called open subsets of Q. In this way we get a topology on 2, and
this topology corresponds to a standard distance function on 2 defined as follows:
the longer the common prefix two sequences w = wow; -+ - and w’ = wyw} - - - have,
the smaller the distance between them:

dw,w')=27",
where n is the smallest index such that w, # wl,.

Prove that topological space 2 is homeomorphic to the Cantor set on the
real line. (This set is obtained from [0,1] by deleting the middle third, then the
middle third of two remaining segments and so on.)

However, we are interested in measure theory rather than topology. A family
of subsets of 2 is called a o-algebra if it is closed under finite or countable unions
and intersections, and under negation (taking the complement).

A minimal o-algebra that contains all intervals €2, (and therefore all open sets)
is called the algebra of Borel sets.

Consider an arbitrary o-algebra that contains all intervals. Let p be a function
that maps every set in this o-algebra into a non-negative real number, and has the
following property (called o-additivity):

if a set A is a union of a countable or finite family of disjoint
sets Ag, Ay, As, ... that belong to the o-algebra on which u is
defined, then

1(A) = p(Ag) + p(Ar) + p(Ag) + - -

(the right-hand side is a finite sum or a converging series with
non-negative terms).

53
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Then p is called a measure on Q, and the value u(A) is called the measure of the
set A. The set A for which u(A) is defined, is called p-measurable.

A measure p such that u(2) = 1 is called a probability distribution on .
Elements of the o-algebra that is the domain of u are called events, and u(A) is
called the probability of the event A.

Any measure is monotone (A C B implies pu(A) < p(B)). Indeed,

w(B) — p(A) = p(B\ A) > 0.

Another important property of measures is continuity: if a set B is a union of
increasing sequence of sets

BocB, CByC:--,

then u(B,) tends to u(B) as n — oo. (Indeed, let us apply the additivity property
to all sets A; = B; \ B;_1 and then to all sets A; such that ¢ < n.) A similar
property holds for decreasing sequences of sets.

For any measure p on 2 let us consider a function p defined of binary strings
as

p(z) = p(Qs).

This function has non-negative real values and satisfies the additivity property

p(z) = p(z0) + p(x1)

for any string z. (Indeed, the interval £, is the union of its two halves .0 and
Q1, which are disjoint sets.)

As we know from measure theory (the Lebesgue theorem), an inverse transition
is possible. Namely, for every additive function p on binary strings that has non-
negative real values, the Lebesgue theorem provides a measure 1 such that p(Q,) =
p(z) for all binary strings z.

The measure provided by the Lebesgue theorem has the following additional
property: if u(A) = 0 for some set A and B C A, then u(B) is defined (and therefore
u(B) = 0). In the sequel we consider only measures that have this additional
property.

We do not explain the Lebesgue construction here but refer the reader to any
textbook in measure theory, e.g., [81, 63]. However, let us recall the definition
of sets having measure 0, since the Martin-Lof definition of randomness uses its
effective version.

Let p be an additive non-negative real-valued function on strings. We call p(x)
the measure of the interval ;. A subset A C Q is a null set (a set of measure 0)
if for every € > 0 there exist a finite or countable family of intervals that cover A
and have total measure at most €.

In other words, a set A is a null set if there exists a function (e,%) — z(e, 1)
(the first argument is a positive real, the second argument is a non-negative integer;
values are binary strings) such that

e AC QI(E,O) U Qz(s,l) U Q$(5’2) .-+ and

o p(x(e,0)) +p(z(e, 1))+ plz(e,2))+ - < €
for every positive €. Note that the family of intervals can be finite, since we do not
require the function z to be total (undefined values are skipped both in the union
and in the sum).
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3.2. THE STRONG LAW OF LARGE NUMBERS

Here are some siniple but useful observations:

e The definition does not change if we restrict ourselves to rational values
of € (or even let € = 27F for integer k).

e Any subset of a null set is a null set.

¢ A finite or countable union of null sets is a null set. (Indeed, to cover the
union by a family of intervals of total measure less than €, we combine
the covers of its parts that Liave measure less than £/2,¢/4,¢/8, etc.).

e Assume that p is chosen in such a way that any singleton is a null set
(it is equivalent to the following property: for any infinite sequence w =
wowws - -+ the limit of p(wo - -wy) (as n — 00) equals 0). Then every
finite or countable set is a null set.

A uniform measure on § assigns to each interval Q, the number 274®).
p(z) = 27" for all strings z of length n.

The uniform measure is closely related to the standard measure on R (or, more
precisely, on [0, 1]). Formally, the measure of a set A C  is equal to the measure
of the set of reals whose binary expansions are elements of A. (In fact, the cor-
respondence between infinite binary fractions and reals in [0, 1] is not a bijection,
since numbers of the form k/2! for integer k and ! have two representations, e.g.,
0.01111--- = 0.10000---. But this happens only for a countable family of reals,
and measure theory easily ignores this.)

Indeed, the reals, whose binary expansions start with z, form an interval, and
the length of this interval is 27" where n is the length of z. This implies that for
every interval I C [0,1] the uniform measure of the sequences that represent reals
in I is equal to the length of the interval I.

Probability theory describes the uniform distribution as the probability distri-
bution for the outcomes of independent fair coin tossing. Indeed, for n independent
fair coin tossings, all 2" binary strings of length n appear with the same probability
27", The set Q is the event “a random sequence of zeros and ones starts with z”,
and this event has probability 2.

Similarly, we may consider a biased coin assuming that coin tossings are still in-
dependent. The corresponding measure (probability distribution) is called Bernoulli
measure (or Bernoulli distribution) with parameters ¢, p (probabilities of 0 and 1
respectively; we assume that p,q > 0, and p+ q = 1).

With respect to this distribution, the event “sequence w starts with a string
x” has probability ¢“p” where u and v are the numbers of zeros and ones in z. In
other words, we consider a function

T qu(z)pu(z).‘

where u(z) and v(z) stand for the numbers of zeros and ones in z, respectively. (It
is easy to check that this function has the additivity property.)

3.2. The Strong Law of Large Numbers

To see all these notions in action, let us state and prove the so-called Strong
Law of Large Numbers (SLLN).

Fix some p,q > 0 such that p+¢ = 1. Let A, be the set of all infinite sequences
wowiws - - - of zeros and ones such that the limit frequency of ones exists and is equal
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to p, i.e.,
. wWotwytcerFwna
lim =p

n—00 n

THEOREM 27. The set A, has measure 1 with respect to Bernoulli distribution
with parameters p and q.

In other words, the complement of A, i.e., the set of all sequences that either
do not have limit frequency at all or have a limit frequency different from p, is a
null set (according to this distribution).

PROOF. We prove this theorem for the uniform case (i.e., for p = ¢ = 1/2) by
an explicit calculation. The general case is left as an exercise (see also Section 9.6).

Let us consider first a finite number of coin tossings and fix some n. All
binary strings of length n have the same probability. We claim that most of them
have approximately n/2 ones. Assume that some threshold € is fixed. How many
sequences have more than (1/2 + €)n ones? The answer can be found using the
Pascal triangle: we have to sum up all the terms in the nth row starting from some
point that is slightly on the right of the midpoint. In this part we have a decreasing
sequence of less than n terms, so the sum in question is bounded by the first term
multiplied by n. (We do not need to be very accurate in our bounds and ignore
factors that are polynomial in n. So we can omit the factor n in our bound.)

The first term of the sum is the binomial coefficient

n!
kl(n—k)V’
where k is the smallest integer not less than (1/2 4 &)n. We use Stirling’s approxi-
mation

m! = /@2 ¥ o(1))m (%)m

where e is the base of natural logarithms. Ignoring polynomial (in n) factors and
using the notation u = k/n, v = (n — k)/n, we get

n! ~ (n/e)™ _ n"

El(n —k)! ~ (k/e)k((n—k)/e)n* — kk(n —k)n—F

n" 1 "
= = 2 (u,v)n y
(un)en(vn)vm yvnyvn

where
H(u,v) = —ulogu — vlogw.

The value H(u,v) is called the Shannon entropy of a random variable that has two
values whose probabilities are u and v. (We study Shannon entropy in Chapter 7.)
Figure 8 shows the corresponding graph (note that v = 1 — u). It is easy to check
that H(u,1 — u) achieves its maximal value (equal to 1) only at u = 1/2.

Now we see that the number of binary strings of length n that have frequency of
ones greater than (1/2 + ¢) does not exceed poly(n)2H (1/2+€:1/2=€)n and therefore
is bounded by 2¢"t°(") where c is some constant less than 1 (depending on ¢).
Therefore, the fraction of these strings (among all strings of length n) exponentially
decreases as m increases. The same is true for the strings that have frequency of
ones less than(1/2 — €).
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FIGURE 8. Shannon entropy as a function of u

Let us see where we are. For each fixed € > 0 we have proved the following
statement:

LEMMA. The fraction of strings of length n where frequency of ones differs
from 1/2 at least by € (among all strings of length n) does not exceed some &, that
decreases exponentially as n increases.

This lemma (without any specific claims for the fast convergence d, — 0) is
called the Low of Large Numbers. To prove the Strong Law of Large Numbers we
need to know that the series )", 4y, is convergent.

We need to prove that the set A/, of all sequences that have limit frequency
of ones equal to 1/2 has measure 1. In other words, we need to prove that the
complement of this set (we denote this complement by B) is a null set.

According to the definition of limit, the set B is the union (over all € > 0) of
the sets B,. Here B, is the set of all sequences such that frequency of ones in their
prefixes exceeds 1/2 + € (or is less than 1/2 — ¢) infinitely many times.

Evidently, we can consider only a countable set of different € (e.g., only rational
values), and the countable union of null sets is a null set. Therefore it remains to
prove that the set B, is a null set for each e.

The set B consists of the sequences that have arbitrarily long “bad” prefixes.
Here a bad prefix is a string where the frequency of ones differs from 1/2 by more
than €. Therefore, for each N the set B, is covered by the family of intervals
Q. where z ranges over all bad strings of length at least N. The total (uniform)
measure of all these intervals does not exceed

ON +ON+1 +ONg2 4+,

and this sum can be made small since the series ), J; is convergent.

(Probability theorists call this argument the Borel-Cantelli lemma. In its gen-
eral form this lemma says that if the sum of measures of some sets Ag, 4;,... is
finite, then the set of all points that belong to infinitely many A; is a null set.) O

One can get a bound for the number of bad strings of length n without Stirling’s
approximation. We do it separately for bad strings that have too many and too few
ones. For example, let us consider the set of all “bad” strings that have frequency
of ones greater than 1/2+¢. To get a bound for the cardinality of this set, consider
two distributions (measures) on the set of all strings of length n. The first one,
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called L, is the uniform distribution: all strings have probability 27". The second
one, called S, is biased (ones are more likely than zeros) and corresponds to n
independent coin tosses where one appears with probability p = 1/2 + £. In other
words, S(z) = ¢“p" for a string = that has u zeros and v ones (here g =1/2 — ¢ is
the probability of zero outcome). The ratio S(x)/L(z) increases when the number
of ones in z increases, and for all bad strings this ratio is at least 27/2HPa)n,
Therefore, the total L-measure of all bad strings does not exceed their total S-
measure divided by this lower bound. Recalling that the total S-measure of all bad
strings does not exceed 1, we conclude that the total L-measure (i.e., the fraction)
of all bad strings does not exceed 27 (9" /97, So we get another proof of our bound,
which is less technical (though more difficult to find). This proof works not only for
the uniform Bernoulli measure (p = 1/2), but also for arbitrary p (after appropriate
changes).

Prove the Strong Law of Large Numbers for arbitrary p.

(Hint: Let pg and go be fixed positive reals such that pg + g¢ = 1. Then
the expression —pg logp — go log g, where p, g are arbitrary positive reals such that
p+ ¢ =1, is minimal when p = pg, ¢ = go. See also Section 9.6, p. 275.)

People often say that “the Strong Law of Large Numbers guarantees that in
every random sequence (with respect to uniform Bernoulli measure) the frequency
of ones tends to 1/2.” (The case of non-uniform Bernoulli measures is similar.)
However, in this sentence the word “random” should not be understood literally:
the phrase “every random sequence satisfies o (for some condition «) is an id-
iomatic expression that means that the set of all sequences that do not satisfy « is
a null set.

A natural question arises: Can we define the notion of a random sequence in
such a way that this idiomatic expression can be understood literally? Let us fix
some distribution on 2, say, the uniform Bernoulli distribution. We would like to
find some subset of 2 and call its elements “random sequences”. Our goal would
be achieved if for any condition « the following two statements were equivalent:

e all random sequences satisfy the condition «;
e the set of all sequences that does not satisfy « is a null set.

In other words, the sets of measure 1 should be exactly those sets that contain
all random sequences (and, maybe, some non-random ones).

One more reformulation: the set of all random sequences should be the smallest
(with respect to inclusion) set of measure 1, and the set of non-random sequences
should be the largest (with respect to inclusion) null set. Now it easy to see that
our goal cannot be achieved. Indeed, any singleton in €2 is a null set. However, the
union of all these singletons is the entire space (2.

In 1965 Per Martin-Lo6f (a Swedish mathematician who was Kolmogorov’s stu-
dent at that time) found that we can save the game if we restrict ourselves to
“effectively null sets”. There exists a largest (with respect to inclusion) effectively
null set, and therefore we can define the notion of a random sequence is such a
way that any condition « is satisfied for all random sequences if and only if the
set of all sequences that do not satisfy « is an effectively null set. The Martin-Lof
construction is explained in Section 3.3.
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3.3. Effectively null sets

Let a measure on § be fixed, and let p(z) be the measure of the interval €.

We say that a set A C § is an effectively null set (with respect to the given
measure) if for every € > 0 one can effectively find a family of intervals that cover
A and whose total measure does not exceed «.

Some details should be specified in this definition. First, we consider only
rational values of ¢ (otherwise it is not clear how € could be given to an algorithm).
Second, we need to specify how the sequence of intervals (that cover A) is generated.
We do this as follows:

DEFINITION. A set A C Q is called an effectively null set (with respect to a
given measure) if there exists a computable function z(-,-) whose first argument is
a positive rational number, its second argument is a natural number and values are
binary strings, such that

(1) AcC Q:c(e,O) U Q:c(e,l) U Q:c(s,z) Ty

(2) p(z(e,0)) + p(z(e, 1)) + p(x(e,2)) +--- < €
for any rational € > 0. Note that we do not require the function z to be total; if
z(g,1) is undefined, the corresponding term (in both conditions) is omitted.

Show that we get an equivalent version of the definition if we consider an
algorithm that gets ¢ > 0 as an input and enumerates a set of binary strings (by
printing its elements with arbitrary delays between elements) such that intervals
Q, for generated z cover A and have total measure (the measure of the union of
the intervals) at most €. (Note that the total measure can be much smaller than
the sum of measures, if the intervals are not disjoint.)

Show that we get an equivalent definition if we consider only rational
numbers of the form 2% (for integer k) instead of all rational . Show that the
definition does not change if we replace the sign < by < in the second inequality.

(Hint: Subtract from each interval its part covered by previous intervals, pos-
sibly splitting it into several intervals.)

Show that we get an equivalent definition if we require that for each € > 0
the domain of the function ¢ — (e, ) is an initial segment of N (or N itself).

Show that we get an equivalent definition if we require that the family of
intervals is decidable (instead of being enumerable).

(Hint: An interval can be split into small parts, so we may assume that intervals
in the sequence have non-increasing length, and the family of intervals becomes
decidable.)

Let us give some examples of effectively null subsets of Q (with respect to the
uniform measure).

A singleton, whose only element is a sequence of zeros, is an effectively null set.
Indeed, for every € > 0, we find an integer k such that 2% < ¢, and consider a
covering that consists of one interval Q..o (corresponding to the string of k zeros).

Formally speaking, z(g,0) = 0%, where 0* stands for the sequence formed by
k zeros, and k is the smallest integer such that 27% < e. The values z(e, i) are
undefined for ¢ > 0.

In this example the sequence 0000--- can be replaced by an arbitrary com-
putable sequence of zeros and ones; we need only consider its prefix of length k
instead of 0*.
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However, for non-computable sequences the situation could be different:

Prove that there exists a sequence w € € such that singleton {w} is not
an effectively null set.

(Hint: Consider all computable functions z that satisfy the second condition of
the definition of an effectively null set. There are countably many such functions.
For each of them consider the largest set A that satisfies requirement (1) of the
definition (i.e., the intersection of the unions of coverings over all £). This set is an
(effectively) null set, and the union of a countable family of those sets is a null set.
Therefore, there exists a sequence w which does not belong to this union.)

Let us note that the statement of this problem is a straightforward corollary
of the Martin-Lof theorem on the existence of the largest effectively null set (The-
orem 28, p. 61) proved later in this section, and the hint follows its proof. As we
will see later, the set {w} is an effectively null set if and only if the sequence w is
not “Martin-Lof random”.

It is easy to construct a non-computable sequence w such that the singleton {w}
is an effective null set. Indeed, consider any sequence of the form w = 0707070 - -
(each second term is zero, the rest is arbitrary). Let us show that {w} is indeed an
effectively null set. To find a covering with total measure 2~", consider all strings
of length 2n that are formed by n arbitrary bits interleaved with n zeros (as in w).
There are 2™ strings of this form, and each corresponds to an interval of length
2727 g0 the total measure is 2~ ™.

In fact we have proved a bit more: the set of all sequences that have only
zeros at even positions is an effectively null set. Therefore, each of its subsets (in
particular, every singleton) is an effectively null set.

Let us now return to the definition of an effectively null set and separate the
requirements used in this definition. We say that a computable function z is “regu-
lar” if is satisfies the requirement (2). The requirement (1) then says that for every
rational £ > 0 the set A is a subset of the union

Qz(e,0) Us(e1) U Qsg(e,2) - -

Therefore, a regular function “serves” all the subsets of the set

) (Qae,0) Y ety U Qaerzy ) = [ ) Qateiy-

e>0 >0 4
So for each (computable) regular function x we get an effectively null set (defined
by the formula above), and effectively null sets are all these sets (for all regular
functions) and all their subsets, and that’s all.

Before we formulate the Martin-Lof theorem, let us give the definition of a
computable measure on the set €.

A real number « is called computable if there exists an algorithm that computes
rational approximations to a with any given precision. Formally, « is a computable
real if there exists a computable function ¢ + a(e) defined on all positive rational
numbers and having rational values such that

o —ale)| < e

for all rational £ > 0.

Show that we get an equivalent definition if we additionally require that
all approximations given by @ are approximations from below, ie., a(e) < a
for all .
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(Hint: We can transform any approximation to the approximation from below
losing only factor 2 in precision.)

Prove that the sum, difference, product, and quotient of two computable
reals are computable reals.

Prove that e (the base of natural logarithms) and 7 are computable.

Prove that elementary functions (roots, sine, exponent, logarithm, etc.)
preserve computability, i.e., have computable values for computable arguments.
(We assume, of course, that the base is computable in the cases of logarithms and
exponents.)

A measure u on Q is computable if measures of all intervals are computable
reals, and, moreover, we can effectively find an approximation algorithm for p(;)
given z. Here is a formal definition:

DEFINITION. A measure p on the set Q is computable if there exists a com-
putable function {z, &) — a(z,€), defined for all strings = and all positive rational
numbers ¢, such that

|u(Qe) — alz,€)| < e
for all z and e.

This definition does not assume that the measure of the entire space Q2 equals 1,

but in fact we will use it only in this case (i.e., for probability distributions).

THEOREM 28. Let i be a computable measure on Q. Then there exists a largest
effectively null set with respect to pu. In other words, the union of all effectively
u-null sets is an effectively p-null set.

PROOF. As we have seen, for each regular function z we get a corresponding
effectively null set. Since there is countably many regular functions, we get count-
ably many effectively null sets, and their union contains every effectively null set.
Therefore, the union of all effectively null sets is a null set. (When speaking about
null sets and effectively null sets, we have in mind measure pu.)

However, we need more: we have to prove that this union is an effectively null
set. To achieve this goal, we enumerate all regular functions and then use the
effective version of the theorem that says that the countable union of null sets is a
null set.

For technical reasons it is convenient to change a bit the definition of a regular
function. Namely, we now say that a computable function z(-,-) is regular if all the
finite partial sums of the series

p(z(e,0)) + p(z(e, 1)) + p(z(e,2)) + - -
are less than € (note the strict inequality). Here p(z) stands for u(2;). This makes
our requirements for regular functions a bit stronger (if all partial sums are less
than g, the sum of the series does not exceed e, but the reverse is not always true).
However, the notion of the effectively null set is not affected, since we always can
replace € by (say) €/2.

In the sequel the regular functions are understood in this modified sense (in
fact, regular functions are used only locally in the proof of the Martin-Lof theorem).

The following lemma allows us to enumerate all regular functions.

LEMMA. There exists a computable (partial) function
(g,€,1) = X(g,,4)
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(where q and i are natural numbers, € is a positive rational number) such that for
any fized q we get a regular function X, (of two remaining arguments), and all
reqular functions can be obtained in this way.

PROOF. Let us enumerate all programs for the functions of two arguments
(whether these functions are regular or not); we get a computable sequence of
programs, and the gth term of this sequence is called the “gth program” in the rest
of the proof.

Then we define X(q,¢,1) as the output of the gth program on input &, 7, assum-
ing that some conditions are met; otherwise X (q,€,4) is undefined. The conditions
guarantee that all X, are regular, and that regular functions are untouched.

To compute X (g,€,4), we apply the gth program in parallel to all pairs

(g,0), (g, 1),...,

(starting with one step of the first computation, then making two steps of the first
two computations, etc.).

When some computation terminates with some output, we interrupt this pro-
cess to verify that strings obtained so far do not violate the regularity condition.
This means that we start to compute more and more precise approximations to p(z)
for all of these strings until we could guarantee that the sum of all of these p(z) is
less then e (this happens if the sum of approximations is less than & minus the sum
of approximation errors). (Since y is computable, we can compute approximations
to p(z) for any z with any precision.)

It is possible that we do not return from this interruption; this happens if the
sum of measures is not less than &.

Now X (q,€,1) is defined as the output of the gth program on (g, %) if this output
appears and passes the test during the process described.

If the gth program computes a regular function, the verification will never fail
and X, coincides with this function. On the other hand, for every g the function
Xq is regular: if for some € the gth program (applied to € and all ¢ = 0,1,2,...)
generates strings whose total measure is too large, only finitely many of the strings
will be let through, and their total measure is still less than €. The lemma is proven.

Explain why we need to change the definition of correctness.
(Answer: If the sum consists of a finite number of terms and their sum is
exactly €, we may never know this.)

Now we finish the proof of the Martin-Lof theorem. Let X be the function
provided by the lemma. For all ¢ = 0,1,2,... consider the effectively null set Z,
that corresponds to the regular function X,. Every effectively null set by definition
is a subset of Z; for some ¢. It remains to show that the union Zo UZ, U--- is an
effective null set.

We do the same trick that is used to prove that a countable union of null sets
is a null set. To find a covering of total measure less that € for Uq Zg4, we combine
the (¢/2)-covering for Zy with (e/4)-covering for Z,, etc.

More formally, we consider a function z(e, ), that is defined as

z(e, [q, K]) = X (q,€/277, k).

Here [g, k] stands for the number of pair ¢,k under some computable bijection
between N2 and N. O
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Now we are ready to give the definition of the Martin-L6f random sequence.
Assume that some computable measure p on the set €2 is fixed.

DEFINITION. A sequence w is called Martin-Lof random (ML-random) with
respect to p if w does not belong to the largest effectively null set (with respect to
1) provided by Theorem 28.

Reformulation: A sequence is Martin-L&f random if it does not belong to any
effectively null set.

One more version: A sequence w is Martin-L6f random if the singleton {w} is
not an effectively null set.

A digression: terminology. The notion of Martin-L6f randomness is a
refinement of the intuitive idea of a “typical sequence”. One could say that a
sequence is “typical” if it does not have any regularities or special features which
separate it from most sequences. (If somebody says that “Mr. X is a typical math
professor”, she probably means that Mr. X has no special characteristics that make
him different from the majority of math professors.) A “special feature” is a feature
that is possessed only by a negligible fraction of the objects considered (sequences).
For example, if a sequence w starts with 0, this is not a special feature, since half
of the sequences start with 0. On the other hand, if each other term of w is zero,
this is indeed a special feature.

This informal idea is implemented in the Martin-Lof definition: a special fea-
ture is a feature that corresponds to an effectively null set, and therefore typical
sequences are sequences that do not belong to any effectively null set, i.e., Martin-
Lof random sequences.

It would be more logical to use the word “typical” for Martin-Lof’s definition
and reserve the word “random” for a more general intuitive notion that can be
formalized in different ways (and the idea of a typical sequence is one of them).
However, the attempts to introduce a new, more logical, terminology often make
the situation worse. (Authors have to confess that this can be said about their own
attempts!) And there is already a lot of confusion—the term “random sequence”
is already used in different ways.

So we keep the term Martin-Léf random sequence (ML-random sequence) for
the definition given above and keep the general term random sequence for a vague
philosophical notion of randomness that needs additional clarification to become a
mathematical notion. (End of digression.)

The following statement is a trivial corollary of the Martin-Lof theorem; how-
ever, it deserves careful consideration since it looks counterintuitive.

THEOREM 29. A set A C § is an effectively null set if and only if all its
elements are not Martin-Léf random (are non-typical).

In particular, the set of all non-ML-random sequences is the largest effectively
null set, and the set of all ML-random sequences has measure 1.

PROOF. Indeed, any element of any effectively null set is not ML-random by
definition; on the other hand, if all elements of some set A are not ML-random,
then A is a subset of the largest effectively null set, and therefore A is an effectively
null set. a
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What is strange here? Intuitively, a set A is a null set if it has “few elements”;
the nature of these elements does not matter much. Any singleton {w} C Qis a
null set, and this does not depend on the properties of the sequence w.

On the other hand, now we see that if we replace null sets by effectively null
sets, the situation changes drastically: We may put as many non-ML-random (non-
typical) sequences in a set as we wish, and it would remain an effectively null
set. But just one ML-random (typical) sequence added is enough to destroy this
property.

For example, recall that any computable sequence forms an effectively null
singleton (with respect to uniform measure). We immediately get the following
corollary:

THEOREM 30. The set of all computable sequences of zeros and ones is an
effectively null subset of Q0 (with respect to the uniform measure).

It is interesting to note that this observation was made before Martin-Lof gave
the definition of randomness, while developing the constructive version of calculus
(the Zaslavsky construction [221] is used for many counterexamples; it deals with
real numbers instead of bit sequences).

In the next section we explore the properties of ML-random sequences (with re-
spect to the uniform measure). We end this section with the following nice criterion
for ML-randomness which is attributed to R. Solovay in [34].

THEOREM 31. A sequence w is not ML-random with respect to a computable
measure i if and only if there exists s computable sequence of intervals with a finite
sum of measures that covers w infinitely many times, i.e., a computable sequence
of binary strings xo, 1, Z2,... such that

Zﬂ(ﬂn) <o

and w € Q, for infinitely many 1.

ProOOF. Assume that w is not ML-random. Then for each € we can effectively
find a computable sequence of intervals that covers {w} and has a sum of measures
less than €. Then we combine these sequences for ¢ = 1,1/2,1/4,1/8,... and get
a computable sequence of intervals with a sum of measures not exceeding 2 that
covers w infinitely many times (at least once for each ¢).

On the other hand, assume that there is a computable sequence xg, z1, Z2, . ..
of strings such that the sum of measures of corresponding intervals £2;, does not
exceed some constant ¢ and infinitely many of them contain w. We may assume
without loss of generality that c is a rational number. To find a covering for w that
has a sum of measures less than ¢, we consider the set My of all sequences in §2
that are covered at least NV times. Here N is a positive integer such that ¢/N < e.
It is easy to see that My can be represented as the union of a computable sequence
of disjoint intervals (while reading zo,z1, ..., we discover more and more elements
of My and add respective intervals as they appear). Therefore the set {w} is an
effectively null set and the sequence w is not ML-random. O

REMARK. This result is a constructive version of the Borel-Cantelli lemma (if
the sum of measures of sets Ag, A1, ... is finite, then the set of all points that belong
to infinitely many A; is a null set), and our argument is an effective version of a
classical proof of the Borel-Cantelli lemma. However, we should be careful since
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not any classical proof can be effectivized. The standard proof (since the series is
converging, its tails could be made as small is needed) does not work here, since
there is no way to find an appropriate tail given e.

Martin-Lof randomness is defined for computable measures: we used com-
putability to prove that the largest effectively null set exists. One could reformulate
the definition and call a sequence random (for an arbitrary measure p on Q) if it
does not belong to any effectively null set. For this notion B. Kjos-Hansen sug-
gested the name Hippocratic randomness (and P. Gécs suggested the more neutral
name blind randomness). This is not the only existing notion of randomness with
respect to non-computable measures; we do not go into detail here and mention
only that one can use uniform tests of randomness (following Levin and Gécs, see
[13)).

Prove that for an upper semicomputable measure there exists the largest

effectively null set. (We do not assume here that the measure of the entire Q equals
1; otherwise, all upper semicomputable measures would be computable.)

Construct an example of a (non-computable) measure for which there is
no largest effectively null set.

(Hint: Construct a measure that has two properties at the same time: (1) every
computable sequence forms a singleton that is an effective null set (moreover, some
prefix already has measure zero); (2) every algorithm that pretends to generate an
effectively null set either gives an interval whose measure is too big or does not
cover some computable sequence. This can be done by a diagonal argument where
we consider one by one all the computable sequences and all possible algorithms.)

Show that there is a non-computable measure for which there exists the
largest effectively null set.

(Hint: Consider a non-computable measure that is very close to the uniform
one (say, at most twice as large and at most twice as small for all sets).)

3.4. Properties of Martin-Léf randomness

The Strong Law of Large Numbers also provides an example of an effective null
set (with respect to the uniform measure).

THEOREM 32. A set of all bit sequences that do no have limit frequency 1/2 s
an effectively null set with respect to the uniform measure.

PROOF. It is enough to prove that for every rational ¢ > 0 the set of all
sequences such that frequency of ones is greater than 1/2 + ¢ infinitely many times
(or less than 1/2 — ¢ infinitely many times) is an effective null set.

Indeed, the upper bound for the measure of this set achieved in the proof of
the Strong Law of Large Numbers in the previous section (Theorem 27, p. 56) is
effective: the set of intervals was the set of all sufficiently long strings with large
frequency deviation, and its total measure was effectively bounded by a tail of the
converging geometric series. O

The statement of this theorem can be reformulated as the property of individual
ML-random sequences:
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THEOREM 33. Let w = wow, +-- be an ML-random sequence with respect to the
uniform measure. Then

. wyptwr -t wno 1
lim = —

n—o00 n 2°

A similar statement is true for arbitrary Bernoulli measure. Let p and q be
computable positive reals such that p + ¢ = 1. Consider the Bernoulli measure
with parameters g and p (the sequence of independent coin tossing with success
probability p). It is easy to check that this is a computable measure (since p and ¢
are computable).

THEOREM 34. Any ML-random sequence with respect to Bernoulli measure
with computable parameters q,p has limit frequency p.

PROOF. Indeed, the upper bound for the probability of large deviations (ob-
tained by comparing the given Bernoulli measure with the other one with shifted
p, see Problem 67, p. 58), gives an explicit bound and an explicit set of intervals,
so we get an effectively null set. a

There are several other properties of ML-randomness with respect to the uni-
form measure:

THEOREM 35. Let w be an ML-random sequence with respect to the uniform
measure. Then any other sequence which is obtained from w by a finite number of
insertions/deletions/changes is also ML-random.

ProOF. It is enough to show that adding a zero/one in the beginning of an
ML-random sequence or deleting the first term of an ML-random sequence gives an
ML-random sequence. Indeed, assume that sequence w is not ML-random, i.e., it
forms an effectively null singleton: for each € one can effectively construct a covering
by intervals with total measure less than €. Let us add zero at the beginning of
all these intervals (i.e., the corresponding strings). We get a covering for Ow whose
measure is twice as small. This argument shows that if w is not ML-random, then
Ow is not ML-random either. (A similar argument works for 1w.)

On the other hand, if we delete the first bit of all strings that form a covering
for w, we get a family of intervals of measure twice as large that covers w’ (obtained
from w by deleting the first bit). Therefore, ' is not ML-random either. O

Prove that by replacing all zeros by ones and vice versa in an ML-random
sequence (with respect to the uniform measure) we get an ML-random sequence.

The following problem shows that a computable subsequence of an ML-random
sequence is ML-random.

Let ng,n1,ne,... be a computable sequence of different integers (n; # n;
if i # j). Let w = wowiwy - - - be an ML-random sequence. Then its subsequence

w|n = WpoWwn, Wn, * -

is ML-random.

(Hint: Any interval ) in a cover for w|n produces a finite family of intervals
whose union is the set of sequences whose (ng,n1,...,n;—1)-subsequence coincides
with x (here 1 is the length of the string z). The total measure of these intervals
equals 27%, the measure of ;.)
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More general selection rules are considered in Chapter 9 (p. 261) where the fre-
quency approach to the notion of randomness (von Mises’ approach) is considered.

Let w be an ML-random sequence with respect to the uniform measure.
Let us split w into two-bit blocks and then replace blocks 00 by zeros and blocks 01,
10 and 11 by ones. Prove that the resulting sequence is ML-random with respect
to Bernoulli measure with parameters 1/4,3/4.

(Hint: We described a transformation F': Q — 2. The preimage of any open set
U is open, and the uniform measure of that preimage equals the (1/4, 3/4)-measure
of the set U.)

(Continued) Prove that every ML-random sequence with respect to the
non-uniform Bernoulli (1/4,3/4)-measure can be obtained in this way from a se-
quence that is ML-random with respect to the uniform measure.

(Hint: For any open set B C {2, consider the set B’ of all sequences w such that
F~1({w}) C B (the set of sequences that do not have a preimage outside B, i.e.,
the complement to the image of the complement of B). The image of a compact set
is a compact set; therefore, B’ is open. Show that if B is a union of an enumerable
family of intervals, then B’ is also a union of enumerable family of intervals, and
the Bernoulli measure of B’ does not exceed the uniform measure of B. See also
the proof of a more general statement (Theorem 123, p. 181).)

What can be said about the complexity of an ML-random sequence (with re-
spect to the uniform measure) from the viewpoint of recursion theory? We know
already that an ML-random sequence is not computable. It also cannot be a char-
acteristic function of an enumerable (recursively enumerable, computably enumer-
able) set.

THEOREM 36. Let A be an enumerable set of natural numbers. Consider its
characteristic sequence agayaz -+ (a; =0 fori ¢ A and a; =1 fori € A). This
sequence is not ML-random.

PROOF. Let k be an arbitrary natural number. Let us enumerate the set A
and see what happens with k first bits of its characteristic sequences. As (the
current version of) A increases, we get more and more ones in this k-bit prefix. In
this way we get at most k + 1 candidates; at some point we come to a final (true)
one, but we never know that this happened already. Anyway, the set of candidates
is enumerable and the number of candidates does not exceed k + 1 (since k-bit
prefix can have 0 - - - k ones). The total measure of these intervals is (k +1)/2* and
therefore can be made arbitrarily small. (Note that the definition of the effectively
null set allows us to enumerate the intervals that form a covering, and this is exactly
what we can do in our case.) O

A natural question arises: In what sense can one explicitly provide an ML-
random sequence? As we have seen, neither computable sequences nor character-
istic sequences of enumerable sets are random. If you are familiar with the basics
of the recursion theory (see, e.g., [184]), you may appreciate the following result:
There exists an ML-random sequence that belongs to the class 32 NIl of the arith-
metic hierarchy (this class can be also described as the class of all 0’-computable
sequences).

THEOREM 37. There ezists a 0'-computable sequence that is ML-random with
respect to the uniform measure.
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PROOF. It is enough to show that for any enumerable set of strings {zg, 21, ...}
such that 3 274®:) < 1/2 there exists a 0’-computable sequence that does not have
any of z; as a prefix. (Indeed, the largest effective null set has such a covering with
total measure less than 1/2, and any sequence that is not covered is ML-random.)

The intervals Q,, are divided into two groups: some of them belong to the left
half of §2 (i.e., z; starts with 0) and some belong to the right half. Total measure of
both groups at most 1/2. Therefore, at least one of the groups has total measure
at most 1/4. However, looking at the sequence z;, we cannot find out which half
has this property (since at any moment a new large interval can arrive).

However, the 0’-oracle allows us to make this choice, since the event “measure
exceeds 1/4” is enumerable. Then we divide this half into two parts of size 1/4
each and choose one of them where the total measure of corresponding intervals
does not exceed 1/8, and so on.

In this way we get a 0’-computable sequence with the following property: Each
part of its prefix is at most half-covered by our intervals. In particular, no prefix
of this sequence can appear in the sequence z;, and this is what we need. O

A similar but more geometric argument can be given if we consider reals in [0, 1]
instead of binary sequences. A point z € [0,1] is ML-random with respect to the
Lebesgue measure on [0, 1] if its binary representation is ML-random with respect to
the uniform measure on the Cantor space. (A point can have two representations,
but in this case both are computable and non-random, so we may ignore this
problem.) One can also give an equivalent definition of randomness directly. A set
X C [0,1] is called an effectively null subset of [0,1] if there exists an algorithm
that for every rational € > 0 enumerates a cover of X that consists of intervals
with rational endpoints whose sum of measures is less than €. Then an ML-random
real is a real not contained in any effectively null subset of [0,1]. All this is just
a simple reformulation of corresponding notions and results for Cantor space since
the only difference is that some numbers have two representations (but this happens
only for countably many computable reals), and we consider intervals with rational
endpoints instead of intervals with dyadic-rational endpoints (this does not matter
since we can split an interval with rational endpoints into a computable sequence
of dyadic intervals). In particular, the following statement is true:

Prove that there exists the largest effectively null subset of [0,1] and its
elements are reals whose binary representations are not ML-random with respect
to the uniform measure in Cantor space.

Now we can point out an explicit ML-random point. Consider an enumerable
family of open intervals that have total length less than 1 and cover all non-ML-
random points. The union of this intervals is an open set which is a proper subset
of [0,1]. Its complement is a closed set, and this closed set has a minimal point.
By construction this point is ML-random.

Prove that the minimal point that is not covered by an enumerable family
of open intervals with rational endpoints is lower semicomputable, i.e., it is a limit of
an increasing computable sequence of rational numbers (and therefore is computable
with the oracle for the halting problem 0).

(See Section 5.7 (p. 157) for more detail about random reals and for an alter-
native construction of a lower semicomputable ML-random real.)
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The proof of Theorem 37 given above is a relativized version of the following
result:

Assume that xo, ), 22, . .. is a computable sequence of binary strings, and
assume the sum
Z 9~i(z:)
i

is less than 1 and is a computable real number. Then there exists a computable
sequence of zeros and ones that has neither of x; as its prefix.

(Hint: Let this sum be less than some rational S < 1. By induction construct
a computable sequence wowiwsy - - - with the following property: the fraction of the
set U = |J§;, among the sequences that have prefix wp - - - wy, is less than S.)

This problem is related to the definition of randomness suggested by C. Schnorr
in [166]. He gave a more restrictive definition of an effectively null set than Martin-
Lof. The additional requirement is that for every (rational) € > 0, the total measure
of corresponding intervals is not only less than € but is also a computable real
(and the approximation algorithm computably depends on ¢). This requirement
is equivalent to the following one: for every € > 0 and § > 0, one can effectively
find out how many terms in the series ), p(z(e,)) are needed to make the tail
less than §. (For a series with non-negative terms the computability of the sum is
equivalent to computable convergence.)

By Schnorr effectively null sets we mean the effectively null sets according
to this modified definition. (Schnorr calls them total rekursive Nullmenge, see
Definition 8.1 in [166]; effectively null sets (as in the Martin-Lof definition) are
called rekursive Nullmenge, see Definition 4.1 in [166].)

Let us change the definition of an effectively null set in another way: now
we require that the total measure of all intervals in the covering is exactly €. Show
that this definition is equivalent to the definition of a Schnorr effectively null set.
(One can also consider the measure of the union of all intervals instead of the sum
of measures.)

Problem 87 shows that for every Schnorr effectively null set there exists a com-
putable sequence outside this set. (For simplicity let us consider the case of uniform
measure.) On the other hand, every computable sequence (i.e., the singleton made
of it) is a Schnorr effectively null set. Therefore, none of the Schnorr effectively
null sets is the largest one in the class (in other words, the union of all Schnorr
effectively null sets is not a Schnorr effectively null set). Nevertheless we can call a
sequence which does not belong to any Schnorr null set a Schnorr random sequence
(or Schnorr typical sequence).

Since now we have fewer effectively null sets, we may get the broader class of
random sequences, and this is indeed the case. The following problem (together
with the results of Chapter 5) guarantees that there exist Schnorr random sequences
that are not ML-random.

Prove that there exists a Schnorr random sequence w = wowiws - - - whose
prefixes have logarithmic complexity, i.e., C{wg - - - wp—1) = O(logn).

(Hint: Problem 87 shows how one can construct a computable sequence that
does not belong to a given Schnorr effectively null set. At some point of this
construction we can take into account another Schnorr effectively null set and get
a computable sequence that does not belong to both. (Indeed, we need to take a
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sufficiently small cover for the second set that does not go out of the safety margin
in the construction for the first set.) Moreover, we can consider infinitely many
Schnorr effectively null sets in this way (adding them one after another). This
will not give us a computable Schnorr random sequence (it does not exist at all),
because we need additional information that tells us which algorithms correspond to
Schnorr effectively null sets and which do not. But if we postpone the introduction
of a new algorithm until the moment when the constructed prefix of our sequence
is rather long, this additional information is logarithmic compared to the prefix
length.)

We return to Schnorr’s definition of randomness in Section 9.8 where it is
reformulated in terms of computable martingales.

Prove that a sequence w is not Schnorr random if and only if there exists a
computable sequence of strings zg, z1, . . . such that the series ), p(z;) computably
converges (has a computable sum) and infinitely many of z; are prefixes of w.

(Hint: This is a version of Theorem 31 for Schnorr randomness and can be
proven in a similar way. In fact, in this case even the standard proof of the Borel-
Cantelli lemma works.)

Another version of effectively null sets is obtained if we consider only finite
families of intervals (each family is presented as the list of all intervals in the
family): Given a rational £, the algorithm should output a finite list of intervals
that cover the set and have a sum of measures less than €. This corresponds to the
Jordan construction of measure often used in elementary calculus textbooks. In
this way we get a smaller class of null sets (e.g., a null set cannot cover all rational
points).

Prove that a set is an effectively null set in this sense if and only if it is
contained in the complement of some effectively open set of measure 1.

The sequences not covered by any effectively null sets in this sense (=contained
in every effectively open set of full measure) are called Kurtz random. In this
definition we again restrict the class of effectively null sets and therefore enlarge
the class of random sequences. Indeed we get more random sequences, as the
following problem shows.

Show that every Schnorr random sequence (with respect to uniform mea-
sure) satisfies the Strong Law of Large Numbers, but there exists a Kurtz random
sequence that does not.

(Hint: The proof of the Strong Law of Large Numbers gives a cover with a
computable sum of measures since the series converges exponentially fast. For the
second part, one can consider generic sequences; see Section 5.9, p. 178.)

3.5. Randomness deficiencies

Martin-Lo6f’s definition requires that for an effectively null set A there is an
algorithm that, given € > 0, produces a cover of A by intervals whose total measure
does not exceed €. The union of these intervals in an open set of measure at most ¢.

In general, the unions of computable sequences of intervals are called effectively
open sets. As in the definition of effectively null sets (p. 59), we allow the com-
putable sequence to be non-total, so the empty set is also effectively open. In other
words, an effectively open set is a union of an enumerable family of intervals.

Now the definition of an effectively null set can be reformulated as follows:
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THEOREM 38. A set A is an effectively null set with respect to a measure p if
and only if A C [, U, for some uniformly effectively open sets U, with u(U,) <
27". We may assume also that Uy DUs D -+ .

Speaking about uniformly effectively open sets, we mean that there exists an
algorithm that, given n, enumerates a family of intervals whose union is U,.

PRrROOF. There are several differences between this definition and the one we
used earlier. The first difference (a trivial one) is that we use only € = 27",

Second, we speak here about the measure of an effectively open set, not about
the sum of measures of intervals whose union it is. This does not matter either, since
we may assume without loss of generality that the intervals forming an effectively
open set are disjoint. (When a new interval appears, we subtract all the intervals
that appeared earlier and split the rest into a union of disjoint intervals.) For
disjoint intervals the sum of measures is equal to the measure of their union.

Finally, we require that U;1; C U;. To achieve this, we can consider the
sequence Uy, Uy N Uy, Uy NU; N Us, ... instead of the original one. One needs to
check only that the intersection of a finite number of effectively open sets Uy N- - -NU,
is an effectively open set (and the corresponding algorithm can be effectively found
given the algorithms for U;). Indeed, assume that we have two algorithms that
enumerate intervals for Uy and U,. At every stage the current approximations for
Uy and Us are finite unions of intervals, and their intersection is also a finite union
of intervals. Let us add all the intervals of this intersection to the enumerable set
of intervals for Uy, N Uz. (We can also make the intervals for Uy N Uy disjoint, see
above.) O

In fact, Martin-Lof gave his definition of randomness in this form in [115]; a
family U, with these properties was called a randomness test. Given such a test,
we can define the randomness deficiency of a sequence w as the maximal ¢ such
that w € U;. The randomness deficiency of a sequence w is infinite when w belongs
to all U;. In this version, the test not only says that all elements of (), U; are non-
random, but also says for other sequences how close they are to non-randomness
(the deficiency increases as the sequence get closer).

We know that there exists a universal test such that the set (), U; is maximal.
Martin-Lof noted that one can construct a test that is universal even in a stronger
sense:

THEOREM 39. There ezists a randomness test that corresponds to the mazimal
deficiency function (up to an additive constant).

PROOF. In fact we just need to look more closely at the construction given
above: randomness tests

vt:Ul U DU D -
U:UZDUDUZD -
U U3DUDUSD -

can be combined into a test

(Us UUZU--UUE U ) D(UFUUZ U UUE U ) D e
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It is indeed a test: the measures of the sets are bounded by 1/4 +1/8 + -+ < 1/2
(the first one), 1/8+1/16+- - < 1/4 (the second one), etc. The deficiency function
for this combined test is at least d* —i for every i, where d° is the deficiency function
for ith test. O

The deficiency function can be considered as a compact representation of a
decreasing family U,. We consider a function whose values are natural numbers
and +oo, and for every finite n the set U,, of all w where the function exceeds n is
effectively open (uniformly in n).

One can slightly extend this class of functions allowing non-integer values.
We say that a function u defined on €2 and having non-negative real values (plus
a special value +oo) is lower semicomputable if for every rational r the set
{w | u(w) > r} is effectively open uniformly in r.

The following statement provides an equivalent definition of lower semicom-
putable functions on £2. Let us first consider basic functions on the Cantor space
Q that have rational values and depend only on some finite prefix of the argument.
To specify a basic function, we say how many input bits it needs to read (the length
of the prefix) and provide a table that specifies the output value for every combi-
nation of input bits. If a basic function reads m bits, this table will consist of 2™
rational numbers. Such a table (and a basic function that corresponds to it) is a
finite object, so we may speak about computable sequence of basic functions.

THEOREM 40. The following properties of a function v with non-negative real
values (400 is also allowed) are equivalent:

(a) v is lower semicomputable;
(b) v is a pointwise supremum of a computable sequence of basic functions;

(¢) v is a pointwise limit of a non-decreasing computable sequence of basic
functions;

(d) v is a sum of a series formed by a computable sequence of non-negative
basic functions.

PROOF. The two latter properties are equivalent since the sum and the differ-
ence of two basic functions are basic functions.

To convert the supremum into a limit, note that the maximum of a finite set
of basic functions is a basic function.

It remains to show that the first property is equivalent to others (for example,
the second one). Let v = sup; v;. Note that sup; v;(w) > r if and only if v;(w) > r
for some ¢. This guarantees that the set {w | v(w) > r} is (uniformly) effectively
open.

For the other direction, if for each rational r we can effectively enumerate
intervals where u(w) > r, then u is the pointwise supremum of an enumerable
set of basic functions that are equal to r inside the corresponding intervals and 0
otherwise. |

Now we can give the following definition of a randomness test (without the in-
tegrality requirement and switching to the exponential scale): a probability-bounded
randomness test with respect to a computable measure y on 2 is a lower semicom-
putable non-negative function » such that

p{w [ u(w) > c}) <1/c
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for every positive rational ¢. Informally, such a test finds regularities in w in such
a way that (a) sequences with a lot of regularities (where the test value is greater
than some c) forin a small set (of measure at most 1/c) and (b) if a sequence has
some regularity (test value is big), this regularity will be eventually found (the lower
semicomputablity requirement).

THEOREM 41. For every computable measure it on the Cantor space there ex-
ists a mazimal (up to a constant factor) probability-bounded randomness test with
respect to . Its binary logarithm coincides with the universal test from Theorem 39
up to an additive constant.

PRrROOF. An arbitrary probability bounded test can be replaced by test with
values of the form 2". We replace u(w) by the maximal power of 2 that is less
than u(w). The new test is still lower semicomputable and differs from the original
one at most by a constant factor. The probability bounded test of this restricted
forin corresponds to a decreasing sequence of uniformly effectively open sets, and
the the probability bound means that this sequence forms a randomnecss test in
the Martin-Lo6f sense. The reverse translation is also possible. It remains to use
Theorem 39. O

There is another slightly different notion of a randomness test. An ezpectation-
bounded randomness test uses a stronger restriction on the (lower semicomputable
non-negative) function w:

/u(w) dp(w) < 1.

THEOREM 42. For every computable measure on the Cantor space there is a
mazimal (up to a constant factor) ezxpectation-bounded randomness test with respect
to this measure.

ProOOF. We can enumerate all lower semicomputable functions on the Cantor
space. (For example, we can use their representations as supremums of enumerable
sets of basic functions.) Furthermore, one can “trin1” a lower semicomputable
function and guarantee that its integral does not exceed 2, and the functions whose
integral is at most 1 remain unchanged after the trimming. This can be done
effectively (recall that the measure is computable). In this way we get a sequence
of uniformly lower semicomputable functions u;, us, ... that includes all tests and
consists only of almost-tests (up to factor 2). Adding all the functions of this
sequence (with computable coefficients that form a converging series with sum at
most 1/2), we get a maximal expectation-bounded randomness test. O

Fix some maximal probability-bounded (or expectation-bounded) randomness
test with respect to a computable measure . The logarithm of it is called proba-
bility-bounded (resp. ezpectation-bounded) randomness deficiency with respect to
u. We will denote these deficiencies as d” and d¥. (We assume that the measure
u is fixed and omit it in the notation.)

THEOREM 43.
df (w) — 2logd” (w) < df(w) < dF (w).

Both inequalities are true with O(1)-precision (and the quantities that appear
in them are well defined with the same precision).
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Proor. The second inequality is obvious since every expectation-bounded test
is also probability-bounded. To prove the first inequality, we need to show that the
function

u(w) — 2d”(u)—2log d”(w)
has finite integral. (We need u to be lower semicomputable; this is because the
function z — 2log z is an increasing function—strictly speaking, this is not true for
small values of z, but these values are not important for finite integral, and the
function can be corrected there.)

To check that [u(w)du(w) is finite, note that the set of w such that dP(w) is
in between n and n + 1, has measure at most 1/2" (since 24” exceeds 2" on this
set), and the function u on this set is bounded by O(2"/n?). It remains to note
that the series Y~ 1/n? converges. 0

Show that the constant 2 in Theorem 43 can be replaced by an arbitrary
number greater than 1.

We have shown, in particular, that each type of test can be used to give an
equivalent definition of Martin-Lof randomness (we have already discussed this for
a probability-bounded test): a sequence is ML-random if and only it its randomness
deficiency is finite.

The difference between probability- and expectation-bounded tests resembles
the difference between plain complexity C (studied so far) and prefix complexity
K (see the next chapter). ’

As we have said, randomness tests were introduced and studied in the 1960s and
1970s (probability-bounded tests were introduced in a form of sequences of open
sets by Martin-Lof; expectation-bounded were considered by Levin and Gécs) but
then almost forgotten until recently. For more information about these tests and
their applications, see [13]. Recently G. Novikov [149] has studied the difference
between different versions of randomness deficiencies.



CHAPTER 4
A priori probability and prefix complexity

4.1. Randomized algorithms and semimeasures on N

In this section we consider algorithms (=programs, machines) equipped with
a random number generator. That is, algorithms may perform instructions of the
following form:

b := random.

This instruction assigns to the variable (memory cell) b a random bit (0 or 1),
both values are assigned with equal probabilities (and independently of all previous
random bits). To perform this instruction we toss a fair coin and write its outcome
(heads/tails as 0/1) in the memory cell b. Algorithms including such instructions
are called randomized or probabilistic.

The result (output) produced by a randomized algorithm depends not only on
its input but also on the result of the coin tossing. That is, for every fixed input,
the output of a randomized algorithm is a random variable.

Speaking formally, the probability that a randomized algorithm A outputs z is
defined as follows. Consider the uniform Bernoulli distribution on the space §2 of
all infinite 0-1 sequences. The measure of the set §2, of all infinite extensions of a
finite string u is equal to 27/(%),

Let x be an input for a randomized algorithm A, and let w € € be an infinite
sequence of zeros and ones. We denote by A(z,w) the output of A on input z if
random bits used by the algorithm are taken from the sequence w. More specifically,
each call of a random generator returns the next bit of w. If the algorithm A does
not halt (for given z and w), then the value A(z,w) is undefined.

Let y be a possible output of A. Consider the set {w | A(z,w) = y}. This set is
the union of intervals Q, over all outcomes z of coin tossing that guarantee that A
outputs y having z as input. The probability that A on input = outputs y is equal
to the measure of this set.

In this section, we consider machines without input whose outputs are natural
numbers. Here is an example of such machine. It tosses a coin until 1 appears and
outputs the number of zeros preceding the first 1. The probability p; of the event
“the output is 4" is equal to 27¢+V, Indeed, the algorithm outputs i if and only
if the first ¢ random bits are zeros and the (i + 1)-th bit is 1. This happens with
probability 2~ (¢+1),

The sum ) p; is equal to 1 in this example. Indeed, the algorithm does not
halt if and only if all random bits are zeros and this happens with zero probability.
But it is also possible that some other algorithm of the type considered does not
terminate with some positive probability.

We assign to every probabilistic machine (that has no input and produces nat-
ural numbers; after some number is produced, the machine terminates) a sequence

75
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Do.P1, ... of reals: p; is the probability that the machine outputs i. We say that the
probabilistic machine generates the sequence po, p1, . ... Which sequences pg, p1, . ..
can be obtained in this way? There is an obvious necessary condition: Y p; < 1
(since the machine cannot produce two different outputs). However, this inequality
is not sufficient, as there are countably many randomized algorithms and uncount-
ably many sequences satisfying this condition.

Let us answer first a simpler question. Consider the halting probability of a
raitdomized machine without input, i.e., the probability that the machine halts.
Which real numbers can appear as halting probabilities of probabilistic machines
without input? To answer this question, we need to recall the notion of a lower
semicomputable real number.

A real number o is lower semicomputable if it is the limit of a computable
non-decreasing sequence of rational numbers.

Prove that if « is a computable real number (i.e., there is an algorithm
that for any given rational £ > 0 computes a rational approximation to o with
precision €), then « is lower semicomputable.

(Hint: We can construct an increasing sequence using approximations from
below.)

Show that a real number « is computable if and only if both numbers «
and —a are lower semicomputable.

A real number « is lower semicomputable if and only if the set of rational
numbers that are less than « is enumerable. (It explains why lower semicomputable
reals are sometimes called enumerable from below.)

Indeed, let us assume that o is the limit of a non-decreasing computable se-
quence ag < a) < as < -+ of rationals. For each 7 enumerate all rational numbers
that are less than a;. All rational numbers less than « (and no other) will appear
in the enumeration.

Conversely, assume that we can enumerate all rational numbers that are less
than o. Omitting all numbers in this enumeration that are less than previously
met ones, we obtain a non-decreasing sequence whose limit is a.

Using the notion of a lower semicomputable real, we obtain the following answer
to the above question:

THEOREM 44. (a) Let M be a probabilistic machine without input. The halting
probability of M s a lower semicomputable real number.

(b) Every lower semicomputable real is the halting probability of some proba-
bilistic machine.

ProoFr. (a) Let p, stand for the probability that M halts within n steps. The
number p, is rational: the algorithm can toss a coin at most n times within n steps,
thus the halting probability is a multiple of 1/2™.

We can find p, by simulating the run of the machine for all possible outcomes
of the coin tossing. The sequence pg, p, . - . is non-decreasing and its limit is equal
to the halting probability of M.

(b) Assume that a real ¢ is lower semicomputable. That is, there is a com-
putable sequence qo € ¢1 € g2 < -+ of rational numbers such that ¢ = limg,.
We have to construct a probabilistic machine whose halting probability is equal to
g. Let the machine toss a coin, and let bg, b, b2, ... be the obtained random bits.
Consider the real number 8 = 0.bgby by - - -; it is uniformly distributed in [0,1]. Let
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dgo q1q ...

FiGURE 9. Comparing = 0.bgb1bs - -+ and ¢ = limg;

the machine (in parallel to coin tossing) compute the rational numbers qq, q1, g2, . . ..
The machine halts when it finds out that 8 < ¢g. That is, the machine halts if for
some % the rational number §; = 0.bgb; ---b;111--- (the currently known upper
bound for ) is less than g; (the currently known lower bound for g). See Figure 9
for a symbolic representation of this argument.

The constructed machine halts if and only if 8 < ¢g. Indeed, assume that § is
less than g. The numbers ¢; tend to g and the upper bounds 8; for 8 tend to 3, as
i — 00. Therefore for some i the number g; is greater than 3;. On the other hand,
if the machine halts, then 8 < g by construction.

Thus the halting probability of the machine is equal to the probability of the
event § < ¢. The latter probability equals the length of the segment [0, ¢), that is,
to g. (Recall that § is uniformly distributed in the segment [0, 1].) O

Let us return to probability distributions that can by generated by probabilistic
machines. First, a definition. A sequence pg, p1,pa, ... is lower semicomputable if
there is a function p(i,n), where i,n are integers and p(i,n) is either a rational
number or —oo, with the following properties: the function p(%,n) is non-decreasing
in the second argument:

p(ia 0) < p(i’ 1) < p(ia 2) < e
and
Di = lim p(z,n)
n—00
for all 1.
One could say that the sequence p; is lower semicomputable if the numbers

Do, P1, P2, - - - are “uniformly lower semicomputable”. The next theorem provides an
alternative way to define lower semicomputable sequences.

THEOREM 45. A sequence pg,p1,P2, - -- 18 lower semicomputable if and only if
the set of pairs (r,i), where i is a natural number and r is a rational number less
than p;, is enumerable.

ProoF. Recall that a set is enumerable if there is an algorithm that generates
all its elements in some order with arbitrary delays between consecutive elements
(the algorithm may not halt even if the set is finite).

Assume that a sequence pg,p1,ps, .- - is lower semicomputable. Let p(%,n) be
the function from the definition of the lower semicomputability. Arrange all the
pairs (r,7) in a sequence so that every pair appears in the sequence infinitely many
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times. The algorithm enumerating all the pairs (r,i) with r < p; works in steps.
On step n compare r and p(i, n) where (r, 1) is the nth pair in the chosen sequence.
If r < p(i,m), then output the pair (r,), otherwise proceed to the next step. By
definition, r < lim,, p(¢,n) if and only if there exists n such that r < p(i,n). Thus
we will output all the pairs in the set, and no other pairs.

Conversely, assume that the property r < p; is enumerable, and let A be an
algorithm enumerating all such pairs (r,i). To compute p(i,n), we simulate n
steps of the computation performed by A. Consider all the pairs that appeared
within n steps and have i as the second component. Let p(i,n) be equal to the
largest first component of such pairs. If there are no such pairs, let p(i,n) =
—o00. As m increases, new pairs may appear and p(i,n) may increase. The limit
lim,, p(é,n) is equal to p;, since all the rational numbers less than p; will appear in
the enumeration. O

We are now able to characterize probability distributions generated by proba-
bilistic machines.

THEOREM 46. (a) Let M be a probabilistic machine without input that outputs
natural numbers. Let p; denote the probability that the machine outputs i. The
sequence of p; is lower semicomputable and ), p; < 1.

(b) Let pg,p1, .- . be a lower semicomputable sequence of non-negative real num-
bers such that >, p; < 1. There is a probabilistic machine M that outputs every i
with probability exactly p;.

ProoF. The proof of item (a) is similar to the proof of corresponding statement
in the previous theorem. We let p(i,n) be the probability that M outputs ¢ within
T steps.

The proof of item (b} is also similar to the proof of corresponding assertion in
the previous theorem. This time we assign to each natural ¢ a subset of [0, 1] and the
machine outputs ¢ if the real number 8 = 0.bpb b3 ... belongs to the set assigned
to . The sets assigned to different values of ¢ do not overlap. They may not cover
the entire segment [0,1]. The set assigned to every i is a finite or countable union
of half-open intervals [a, b) of total length p;. When an approximation for some p;
increases, we add a new interval for this ¢ (its length is the increase) just on the
right of intervals allocated earlier. (So at each moment the used part of [0, 1] is
[0, s) for some s.)

In parallel, we toss a coin and obtain digits of the random number 5. When
we are sure that 8 gets into the set assigned to some natural number, we output
that number.

Here is a formal argument. Let p(i,n) be the function of two variables from the
definition of lower semicomputability. Without loss of generality we may assume
that p(i,n) > 0 for all ¢, n. Indeed, we can replace all negative values by zeros. We
may assume also that for all n only finitely many values p(i,n) are positive (let
p(i,n) = 0 for all i = n). The probabilistic algorithm that we construct runs in
steps. On each step we allocate some space inside [0,1]. Our goal is that after the
nth step the total length of intervals allocated to i is equal to p(é, ) (for all ). This
requirement is easy to keep: going from left to right, on step n we allocate for each
i (such that p(é,n) > p(i,n — 1)) a new interval of length p(i,n) — p(i,n — 1). We
need to do this only for finitely many i, as for i > n we have p(i,n) = p(i,n—1) = 0.
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The total length of used intervals does not exceed 1, as p(i,n) < p; and > _p; < 1.
Thus we will always be able to allocate the space we needed (at the left of the free
space).

In parallel, the probabilistic machine tosses a coin, obtaining a random bit b, on
step n. It halts on step n and outputs 1 if it is known for sure that 8 = 0.bgbybs - - -
belongs to (the interior of) the space allocated to i, i.e., if the closed interval
consisting of all real numbers whose binary expansion starts with bgby - -- by is
included in the interior of the space allocated to i. (The interior of the segment
[1,v) is the interval (u,v).) By construction, for all ¢ the measure of this set (interior
of the space allocated to 7) equals p;. |

Any sequence p; satisfying the conditions of the previous theorem is called a
lower semicomputable semimeasure (or enumerable from below semimeasure) on N.
Sometimes we will use also the notation p(¢) for p;. We thus have two alternative
definitions of a lower semicomputable semimeasure: (1) a probability distribution
generated by a randomized algorithm; (2) a lower semicomputable sequence of non-
negative reals whose sum does not exceed 1. The above theorem states that these
definitions are equivalent.

The word “semimeasure” may look strange, but unfortunately there is no other
appropriate term in the literature. Dropping the semicomputability requirement,
one can call any function ¢ — p; with ) .p; < 1 a semimeasure on N. Every
semimeasure on N defines a probability distribution on the set NU {1} where L is
a special symbol meaning “undefined”. The probability of the number i is p; and
the probability of L is 1 — 3", p;. In the sequel we consider lower semicomputable
semimeasures only (unless explicitly stated otherwise).

We have considered so far (lower semicomputable) semimeasures on the natural
numbers. The definition of a lower semicomputable semimeasure can be naturally
generalized to the case of binary strings or any other constructive objects in place
of natural numbers. For example, to define a notion of a lower semicomputable
semimeasure on the set of binary strings, we have to consider probabilistic machines
whose output is a binary string.

Important remark: We will consider in Chapter 5 a notion of a semimeasure
on the space consisting of all finite and infinite 0-1 sequences. Such a semimeasure
is generated by a probabilistic machine that prints its output bit by bit and never
indicates that the output string is finished. In particular the machine never halts.
It leads to a different notion: all the machines considered in this section are required
to halt after printing the output; for such machines, there is no essential difference
between printing a binary string and a natural number.

To stress the difference between these two frameworks, semimeasures defined in
this section are called discrete semimeasures while the ones considered in Section 5
are called continuous semimeasures, or semimeasures on the binary tree.

4.2. Maximal semimeasures

Comparing two semimeasures on N, we will ignore multiplicative constants.
A lower semicomputable semimeasure m is called mazimal if for any other lower
semicomputable semimeasure m’ the inequality m'(i) < ¢m(z) holds for some ¢ and
for all 7. (The name greatest (instead of “maximal”) would be more accurate since
we look for the greatest element of some partially ordered set, not the maximal
one.)
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THEOREM 47. There exists a mazximal lower semicomputable semimeasure on N.Ji

Proor. We have to construct a probabilistic machine M with the following
property. The machine M should output every number i with a probability that is
at most a constant tinies less than the similar probability for each other machine
M’ (the constant may depend on M’ but not on 7).

This is easy to achieve: consider a machine M that picks at random a proba-
bilistic machine M’ and then simulates M’. The probability of picking each machine
M’ should be positive. If a machine M’ is chosen with probability p, then M will
output some ¢ with probability at least p-(the probability that M’ outputs i). Thus
one can let ¢ = 1/p.

It remains to explain how to implement the random choice of a probabilistic
machine. Enumerate all probabilistic machines in a natural way; let My, M, Ms, ..
be the resulting sequence. We toss a coin until the first 1 appears. Then we simulate
the machine M; where 7 is the number of zeros preceding the first 1. O

It is instructive to prove this theorem once more using the language of lower
semicomputable sequences instead of probabilistic algorithms. Basically, we need to
show that there exists a convergent lower semicomputable series that upper-bounds
all other lower semicomputable convergent series (up to a multiplicative constant).
More formally, we should consider only series with the sum at most 1, but this is
not essential since we ignore constant factors.

To find such a series, we sum up with certain weights all the lower semicom-
putable series with sum at most 1. The weights form a computable converging
series. This implies that the resulting series (infinite linear combination) converges.
By construction it will be maximal (up to a multiplicative constant). There is only
one problem left: How do we guarantee that the resulting series is lower semicom-
putable?

The lower semicomputability of a semimeasure is witnessed by a computable
function p : (i,n) — p(i,n). There are only countably many such functions, since
there are only countably many algorithms. Enumerating all those functions, we get
a sequence p(9, pM) p(2) . then we may consider the function

n
p(i,n) = Z Mep®) (3, m),
k=0
where A is a computable sequence of rational numbers with ), Ax < 1, say,
Ax = 27F=1. The resulting function p is non-decreasing in n for every i. Indeed, as
n increases, the number of terms in the sum defining p increases and the value of
every term increases, too. And for all ¢ we have

. . _ . (k) ;
nll)n;op(z, n)= zk: Ak nll)r%op (i,m).

That is, the constructed semimeasure is indeed equal to the sum of all lower semi-
computable semimeasures with weights ).

However, there is a fault in this argument: the function p(,n) should be com-
putable, and thus we cannot use arbitrary enumeration of lower semicomputable
functions in our construction. We need to arrange them so that the function
p : (k,i,n) — p)(i,n) is computable as a function of all its three arguments.
Note that we cannot just let p(*) be the function computed by kth program: it may
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happen that the kth program does not define any lower semicomputable semimea-
sure. (It may compute a function which is not total or a function that sometimes
decreases in the second argument or a function whose sum is greater than 1.)

The bug can be fixed using the following:

LEMMA. Every program P computing a function of two natural arguments and
taking rational values (and possibly the value —oc) can be algorithmically trans-
formed into a program P’ having the following properties. The program P’ defines
a lower semicomputable semimeasure. If the program P itself defines a lower semi-
computable semimeasure, then P’ defines the same semimeasure.

PRrOOF. Let P be any program satisfying the condition of the lemma. (We do
not assume that P is total.) First we let P/(i,n) be equal to the maximal number
output within the first n steps in the computations of P(3,0),..., P(i,n). If none
of these computations terminate within n steps or all the results are negative, we
let P'(i,n) = 0. This definition guarantees that P’(i,n) is non-negative and is
non-decreasing in n. For every i, if P(i,n) is defined for all n and is non-negative
and non-decreasing in n, then lim, P’'(i,n) = lim, P(i,n).

It remains to ensure that D p} < 1 where p; = lim, P’(¢,n). To this end first
let P'(i,n) = 0 for all n < i. This transformation does not change the limit and
preserves monotonicity in n. The advantage is that now the sum of P’'(i,n) over
all 1 is finite and can be computed for every n. We need that this sum does not
exceed 1. To enforce this, we do not increase P’ if we see that this would violate
our restriction. We first trim the value P/(i,n) for n = 0, then for n = 1, etc. The
lemma is proven.

Using the transformation described in the lemma, we arrange all the lower
semicomputable semimeasures into a computable sequence. The weighted sum of
all its terms is a maximal lower semicomputable semimeasure. Thus we obtain
another proof of Theorem 47.

Fix any maximal lower semicomputable semimeasure on the natural numbers.
We will use the notation m(4) or m; for the probability of 7 and the letter m for the
semimeasure itself. The value m(z) is called the a priori probability of i. (Another
name for m is the universal semimeasure on N.) Here is an explanation of this
term. Assume that we are given a device (a black box) that after being turned
on produces a natural number. For each i we want to get an upper bound for the
probability that the black box outputs i. If the device is a probabilistic machine,
then a priori (without any other knowledge about the box) we can estimate the
probability of ¢ as m(s). This estimate can be much greater than the (unknown)
true probability, but only O(1) times less than it.

The a priori probability of a number 7 is closely related to its complexity.
Roughly speaking, the less the complexity is, the larger the a priori probability is.
More specifically, we will show that a slightly modified version of complexity (the
so-called prefiz complezity) of i is equal to — logm(3).

4.3. Prefix machines

The difference between prefix complexity and plain complexity can be explained
as follows. Defining prefix complexity, we consider only self-delimiting descriptions.
This means that the decoding machine does not know where the description ends
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and has to find this information itself. One can clarify this idea in several non-
equivalent ways. We will discuss all of them further in detail.

Let us start with a following definition. Let f be a function whose arguments
and values are binary strings. We say that f is prefir stable, if the following holds
for all strings z, y:

(f(z) is defined) and (z is a prefix of y) = f(y) is defined and f(y) = f(z).

THEOREM 48. There exists an optimal prefiz-stable decompressor (for the fam-
ily of all prefiz-stable decompressors).

PRrROOF. Recall that a decompressor (description mode) is a computable func-
tion mapping strings to strings. (Al strings are binary.) The plain complexity is
defined using an optimal function in the class of all such functions. Now we restrict
the class of decompressors to computable prefix-stable functions. We assign to each
prefix-stable function D the complexity function K p, which is as defined earlier:
Kp(z) is the length of a shortest description of z with respect to D (i.e., minimal
l{y) among all y such that D(y) = z). So the definition of Kp(z) coincides with
that of Cp(x); we write K instead of C just to stress that we consider now only
prefix-stable decompressors.

We have to show that there exists an optimal prefix-stable decompressor D (for
the class of all prefix-stable decompressors). The latter means that for any other
prefir-stable decompressor the inequality Kp(z) < Kp:(z)+ ¢ holds for some ¢ and
all z.

Recall that for the plain complexity we have constructed an optimal decom-
pressor D by letting

D(py) = p(y).

Here p is a self-delimiting description of p, say, p = P01 where p stands for the
string p with all bits doubled. The notation p(y) refers to the output of the pro-
gram p given input y (more precisely, the string p is interpreted as a program in a
universal programming language).

Is this decompressor a prefix-stable one? Certainly not. Indeed, there is a
program p computing a function that is not prefix stable, say, p(0) = a and p(00) = b
where a # b. Then D(p0) = a and D(p00) = b.

To construct an optimal prefix-stable decompressor, we modify the definition of
D as follows. We enforce prefix-stability of programs by converting every program
p to another program [p] that works as follows:

(1) Apply p to all inputs in parallel. If the computation of p on an input y
halts with output z, we write down the pair (y, z}. Let (y;, 2;) denote the resulting
sequence of pairs (enumerating the graph of p: z; = p(y;)).

(2) We delete some terms of the sequence (y;, z;). Let us call strings y and ¢/
compatible if one of them is a prefix of the other one (an equivalent definition: both
strings are prefixes of some third string). We say that a pair (y;, 2;) contradicts a
pair (y;,z;) if y; is compatible with y;, but z; # z;. We delete a pair (y;, z;) if it
contradicts some other pair (y;, z;) with j < 4. (The argument would work as well
if we delete a pair only when it contradicts a non-deleted previous pair.)

(3) Computing the sequence (y;,2;) and filtering out some of its terms is a
process that does not depend on the input for the program [p]. The input string y
is taken into account as follows. We wait until a (non-deleted) pair (y;, z;} appears
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such that y; is a prefix of y. Once we encounter such a pair, we print the result z;
and halt.

For every program p the function y — [p](y) is prefix stable. Indeed, assume
that [p](y) = z. By construction there is a non-deleted pair (y;, z) such that y; is
a prefix of y. Assume furthermore that y is a prefix of . We need to show that
[pl(y’) = 2. The string y; is a prefix of ¢ as well, therefore [p|(y’) = z or [p)(¥') = z;
where (y;,z;) is a non-deleted pair such that j < 7 and y; is a prefix of ¢/. In the
latter case y; is compatible with y; and, since the pair (y;, z) does not contradict
the pair (y;, z;), we have z; = z.

If p is prefix stable, then no pair is deleted in the run of its transformed ver-
sion [p]. Therefore [p](y) is defined as p’s output on y or a prefix of y. As we assume
that p is prefix stable, the result is the same.

Now we are able to finish the proof. Let

D(py) = [pI(v)-

We have to verify that D is prefix stable and optimal (inn the class of all prefix-stable
decompressors).

To prove the first statement, assume that pyy, is a prefix of pay2. We need to
show that D(pyy:) and D(pay2) coincide. As both the strings p), ps are prefixes
of the string pays, they are compatible. Thus p, = ps (as the encoding p — 7 is
self-delimiting) and y; is a prefix of y,. Since the program [p;] (=[p2]) is prefix
stable, we conclude that D(6iy1) = [p1](s1) = [p1](v2) = [pe(y2) = D(Bays).

So we have shown that D is prefix stable. To prove optimality, assume that
some prefix-stable decompressor D’ is given and p is its program. Then we have
D(py) = [p|(y) = p(y). Therefore the complexity of all strings with respect to D’
is at most [(p) greater than the complexity with respect to D. O

Let us fix some optimal prefix-stable decompressor and omit the subscript D
in Kp(z), speaking about the prefir complezity K(z) of z. As well as the plain
complexity, the prefix complexity is defined up to an O(1) additive term.

There is another way to define prefix complexity. Instead of prefix-stable func-
tions, we consider prefix-free functions. A function is called prefiz free if every two
different strings in its domain are incompatible. If a prefix free function is defined
on a string, it is undefined on all its proper prefixes and extensions.

This time we restrict the class of decompressors to prefix-free ones, that is,
computable prefix-free functions. We have the following theorem that is similar to
Theorem 48:

THEOREM 49. The class of all prefiz-free decompressors contains an optimal
element.

ProoF. The proof is very similar to the proof of Theorem 48. This time we
construct, for every program p, a prefix-free program {p} that works as follows:

(1) Just as before, run the program p on all inputs to obtain a sequence (y;, z;)
of all pairs such that z = p(y).

(2) Delete all pairs (y;, z;) such that y; is compatible with y; for some j < 4.

(3) Let y denote the input to the program {p}. We find the first non-deleted
pair {(y;, z;) with y; = y and output z; = {p}(y).
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It is easy to verify that the mapping y — {p}(y) is prefix free for every p and
coincides with the mapping y — p(y) if the latter one is prefix free. The rest of the
proof repeats the corresponding part from the proof of Theorem 48. O

Let us fix some optimal prefix-free decompressor, and let K’(z) denote the
corresponding complexity.

Which of the complexity measures K and K’ is “the right one”? This is a
matter of taste. We will prove in Section 4.5 that these measures differ by an
additive constant (and that both complexities coincide with the negative logarithm
of the a priori probability). Thus the question is which of the two definitions (of the
same prefix complexity) is more natural. Again this is a matter of taste. Authors
believe that the definition based on prefix-stable functions is more natural than the
other one (which explains why we started with it). However, sometimes the second
definition is more convenient. For instance, its use makes easier the proof of the
theorem on the complexity of a pair (Section 4.6).

One can find the historical account in [18] (see also the arXiv version of this
paper); making the story short, let us mention only that prefix complexity was
independently introduced by Levin who used prefix-stable decompressors {(and de-
noted prefix complexity by KP) and Chaitin who used prefix-free ones (and denoted
prefix complexity by H). Now most English-language papers, following [103], use
letter K for prefix complexity.

The properties of K and K’ are similar to those of the plain complexity but
differ in some important aspects:

e We start with a comparison of C' and K:
C(z) < K(z)+0O(1) and C(z) < K'(z)+ O(1).

These properties are straightforward, as both prefix-stable and prefix-free
decompressors form a subclass in the class of all decompressors.

o Recall that C(z) < I{z)4+O(1), as the optimal decompressor is better than
the identity function. This argument is not valid for prefix complexity, as
the identity function is neither prefix stable nor prefix free. We will show
in Section 4.5 that this inequality is false for the prefix complexity.

e Nevertheless there is an upper bound for prefix complexity in terms of
the length. We will provide such bounds for K’, and the same bounds
hold for ¥, the proofs being entirely similar. Let us show that K'(z) <
2l(z) + O(1). Indeed, consider a decompressor

D(z01) =1z

where 7 stands for the string obtained by doubling all bits in . This
decompressor is prefix free and Kp(z) = 2/(z) + 2. By replacing 701 by
a more efficient self-delimiting encoding #, we can obtain better upper
bounds. For example, letting & = bin(l(z))01z, we obtain the bound

K'(z) < l(z) + 2logl(z) + O(1).
By iterating the construction, we obtain the bound
K'(z) < Uz) + logl(z) + 2loglogl(z) + O(1)

and so on.
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o Like plain complexity, prefix complexity does not increase when algorith-
mic transformation is applied:

K'(A(z)) < K'(z) + O(1).

The constant O(1) depends on A but does not depend on z. Indeed, if
D is a prefix-free decompressor, then so is the composition z — A(D(z)).
This is true for prefix-stable decompressors as well, so we obtain a similar
statement for K in place of K’. Using this property, we can define prefix
complexity of other constructive objects, such as pairs of strings, natural
numbers, finite sets of strings etc., without specifying how to encode them
by binary strings.

o For prefix complexity, the inequality comparing the complexity of a pair
of strings with their separate complexities is true up to a constant additive
error term rather than a logarithmic one:

K(z,y) < K(z)+ K(y) + 0(1)

(see below Theorem 60 in Section 4.6, p. 97).

¢ Let D be an optimal decompressor (from the definition of plain complex-
ity). Since the the transformation p — D(p) does not increase complexity,
we have

K(D(p)) < K(p) + 0(1) < (p) + 2logl(p) + O(1).

Let p be a shortest description of z with respect to D, that is, D(p) = =
and I(p) = C(z). Then we have

K(z) = K(D(p)) < l(p) + 2logi(p) + O(1)
= C(z) +2log C(z) + O(1).

Using stronger bounds in place of the bound K (p) < I(p)+2logl(p)+O(1),
we obtain the inequality

K(z) € C(z) +1og C(z) + 2loglog C(z) + O(1)

and other similar inequalities.

4.4. A digression: Machines with self-delimiting input

This section is not used in the sequel; here we analyze the meaning of the
words “self-delimited input” and show that a different interpretation of them leads
to prefix-free and prefix-stable functions (thus providing a motivation for these
notions).

Usually the input is given to a machine in such a way that the machine knows
where the input string starts and ends. For example, for Turing machines we usually
assume that initially the head is located at the first symbol of the input string and
that its last symbol is followed be a special marker, say, a blank.

Informally speaking, a machine with a self-delimited input receives the input
bits one by one and has no indication which of them is the last one. At a certain
time it should print a result and halt.
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# 0 1 0 0 0 1

]

FI1GURE 10. A head on a one-way input tape

4.4.1. Prefix-free functions. Here is a refinement of this idea. Consider
a Turing machine that has an extra infinite one-way read-only input tape. The
leftmost cell of the tape contains a special marker #. All the other cells contain
either 0 or 1 (Figure 10).

Initially the input tape head is located in the leftmost cell and thus scans the
marker. The instruction performed by the machine is determined by the symbol
on the input tape it scans (and also by the symbol on the work tape and the
machine’s internal state, as usual). The possible actions are changing the internal
state, writing a symbol on the work tape, and moving some of the heads (in any
direction on the work tape and to the right on the input tape). The result of the
computation should be written on the work tape in the usual way. The work tape
is initially empty.

Let M be a Turing machine as described above. Let us run this machine for
all possible contents of the input tape. If some of the computations halt, we write
down two strings: the string x consisting of all bits scanned by the input head and
the result y of the computation. Let I'j; denote the resulting set of pairs (z,y). If
two different pairs (r1,y1) and (z2,y2) are in I'j;, then the strings x; and z, are
incompatible. Indeed, assume that z; is a prefix of x5. Since the computation on
x1 does not go outside zi, it will be valid for z2 too, and the last bits of z remain
unused; thus the pair {z2,y,) does not belong to I'j; (unless z; = z2—in this case
Y1 = Y2, and we get the same pair).

In particular, the first components of different pairs in I'y; are different. This
means that I"j; is a graph of a function. We denote this function by «yp;. Its
arguments and values are binary strings. We say that M computes v; in a prefiz-
free mode. 1t is easy to see that the function «yj; is computable in the usual sense.
Indeed, to compute ~yps(x), we write  on the input tape and any symbols (say,
zeros) to the right of z, and we then run M. If M halts with output y, we verify
whether M has scanned all symbols of 2 and no symbols beyond z. If the verification
fails, we output no result; otherwise we output y and halt.

It is easy to see that the function s is computable and prefix free (every two
different strings in its domain are incompatible). The converse statement is true as
well:

THEOREM 50. Bvery computable prefiz-free function is computed by some ma-
chine in a prefiz-free mode.

ProoF. This statement is not that evident. Indeed, a (standard) machine
computing a prefix-free function f knows where the input ends and can use this
information. We need to construct another machine M such that yp; = f.

Informally speaking, the machine M reads the next bit only if it can be done
safely, i.e., when it is known that f is not defined on a currently known part of the
input because f is defined on its proper extension. More precisely, fix a machine
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computing f in the usual sense. We simulate in parallel its computations on all
possible inputs. Sometimes we will interrupt the simulation and scan a new symbol
from the input tape. More specifically, when a new pair (z,y) with f(z) = y
appears, we compare z with the already scanned part r of the input tape. If r is
not a prefix of z, then we do nothing and wait until the next pair {z,y) appears.
If r coincides with z, we output y and halt. Otherwise r is a proper prefix of z. In
this case we read the input tape until we find the first bit where z differs from the
contents of the input tape, or we find out that the input tape starts with z. In the
latter case we output y and halt. In the former case we return to the simulation
process and continue it until the next pair (z,y) appears.

How does M start its work? Initially the scanned part of the input tape is
empty. Once the first pair (z,y) appears, we look at whether z is empty or not. If
T is empty, we print ¥ and halt. Otherwise we scan the input tape until we read x
or find the first bit where z differs from the contents of the input tape (finding out
that z is not a prefix of the input). In the first case we print y and halt. In the
second case we wait for the next pair (z, y).

Formally speaking, we maintain the following invariant relation: after process-
ing each pair, if r is the scanned part of the input tape, then either:

(1) f(r) is defined and the machine halts with the output f(r); or

(2) r is not a prefix of z for all pairs (z,y) that have appeared so far, but every
proper prefix v’ of r is a proper prefix of one of such z’s.

(A proper prefix of a string is its prefix that is different from the string itself.)

It is easy to verify that this invariant relation implies that f = v3;,. We skip
this verification and explain informally the main idea of the construction: if the
scanned part r of the input is a proper prefix of a string in the domain of f, then
f(r) is undefined, and we can safely read the next bit of the input. O

An equivalent model can be defined in more “practical” terms. Consider com-
puter programs that have instructions of the form

b := NextBit.

Executing this instruction, the program shows on the screen a prompt like “Enter
the next bit” and waits until the user hits one of the keys “0” or “1”. After she
does this, the input bit is recorded in b and the computation resumes.

One can assign a computable function f to every program of this type. Namely,
f(z) equals to y if the program prints y provided the user enters the bits of z
successively in response to the program’s prompts. If the program prints the result
before the user enters all the bits of z or if it asks for a new bit after all the bits of
x are entered, then f(z) is undefined.

It is easy to modify the arguments above to prove that programs of this type
compute all the prefix-free functions and no others. {(Moving the input head to the
right is just reading the next input bit.)

4.4.2. Prefix-stable functions. In the previous section we considered block-
ing read primitive: program stops and waits until the next bit arrives. There is
another possibility: bits arrive asynchronously and are placed in the input queue;
the program may ask whether the queue is empty or not, and continue the execu-
tion. Also, if the queue is not empty, the program may get the next bit from the
queue.
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To be more specific, we assume that the program may use the instruction
b := NextExists

to find out whether the queue is non-empty. To read a new input bit the program
invokes the instruction
b := NextBit.

This instruction removes the first (the oldest) bit from the queue and assigns it to
the variable b.

One should specify what happens if the instruction NextBit is performed when
the queue is empty. We may agree that this causes a crash, or that the computation
is delayed until the next bit arrives. It is not essential which of these two options
is chosen, since we may guard the input statement by a waiting loop:

while not NextExists do {nothing};

b := NextBit

The advantage of a non-blocking read operation is that we can do some useful
work while waiting for the next input bit. On the other hand, it is not clear now
how to define a function computed by a program, since the output of the program
may depend not only on the input string, but also on timing.

We call a program robust if this is not the case (i.e., if the output is determined
by the input string and does not depend on timing). If the program is robust, for
any input string z there are two possibilities: (1) the program does not produce
output for any delays between the consecutive bits of z; or (2) for some y, the
program outputs y whatever delays happen between the consecutive bits of z.

In this way every robust program computes a function f such that f(z) is
undefined in the first case and equals y in the second case.

THEOREM 51. (a) The function computed by a robust program is both com-
putable and prefiz stable.

(b) For every computable prefiz-stable function there exists a robust program
that computes it.

ProoF. (a) The computability of f is straightforward: to compute f(z), we
start our robust program and enter all the bits of z (with arbitrary delays). Then
we wait until the program outputs a result, which by assumption is equal to f(z)
if f is defined on z and does not exist otherwise.

Let us prove that f is prefix stable. We have to show (recall the definition from
Section 4.3) that if a robust program produces y for some input z, then it produces
y on every input z’ that is an extension of z. Start the program and enter all the
bits of = (with arbitrary delays). By assumption the program produces y and then
halts. After that, input all the remaining bits of 2’ (the difference between z’ and
x) with arbitrary delays. Obviously, these extra bits do not affect the output of
the program. Thus the program produces output y for input =’ at least for some
timing. Being robust, it does the same for arbitrary timing.

(b) Let f be a computable prefix-stable function f. The robust program r that
computes f works as follows:

Using a (non-robust) algorithm that computes f, program r computes in par-
allel f(z) for all inputs z. At the same time r reads all available input bits. Doing
this, r looks for strings z and y such that f(z) = y and z is a prefix of the input
sequence. Once such a pair (z,y) is found, program r outputs y and halts.
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Assume that f(z) = y and all the bits of z are entered (with some delays).
We have to prove that r outputs y and halts whatever the delays are. Indeed, at a
certain time, r knows that f(z) = y and all the bits of  have been entered. At that
time the program outputs y and halts unless it has been halted earlier. The latter
indeed can happen: the program can halt earlier with the result f(z’) where z’ is
some string compatible with z. However, since f is assumed to be prefix stable, we
have f(z') =y and the output is the same.

If f(z) is undefined and f is prefix stable, then f(z’') is undefined for all prefixes
z' of z, and hence the program does not terminate. O

This theorem provides a motivation for the notion of a prefix-stable function.

Construct an algorithm transforming every program p that uses NextBit
and NextExists calls into a robust program p’ that computes the same function
as p does, if p is robust (and computes some prefix-stable function if p is not).

(Hint: Use the construction from the proof of Theorem 51 back and forth.)

(Continued) Prove that there exists no algorithm that for a given pro-
gram p decides whether p is robust or not.

(Hint: This can be done in a standard way, by reducing the halting problem.
See, e.g., [184].)

4.4.3. Continuous computable mappings. There is another, more ab-
stract, motivation for the notion of a prefix-stable function. It goes back to a
general theory of computable functionals of higher type, but we restrict our atten-
tion to a special case we are interested in. (See [176] for a more general approach.)

Let X denote the set of all finite and infinite binary sequences: ¥ = EUQ. For
a finite string z let 3, denote the set of all finite and infinite extensions of z. We
will consider ¥ as a partially ordered set: z < y if z is a prefix of y.

Consider a topology on ¥ whose base consists of all sets of the form ¥,. This
means that a set is open if it is a union of some sets of this form. It is easy to verify
that we indeed get a topology. (Note that the resulting topological space does not
satisfy the separation axiom.)

The following statement is almost obvious:

THEOREM 52. A set A C X is open if and only if it satisfies the following
conditions:

(1) 4f a finite string x is in A, then all finite and infinite extensions of T are
mA;

(2) if an infinite sequence is in A, then some of its finite prefizes are in A.

ProoF. Every union of base sets satisfies the conditions (1) and (2). Con-
versely, if a set A satisfies both conditions, then it is equal to the union of ¥, over
all finite strings = in A. O

Add to the natural numbers a new element L (“undefined”), and let N, denote
the resulting set. Consider the following partial order on this set: the element L is
less than all natural numbers, and all the natural numbers are pairwise incompa-
rable (Figure 11).

Consider the following topology on the set NU {L}. A set is open if it either
does not include the element L or it coincides with NU {L}. It is easy to verify
that we get a topological space (that does not satisfy the separation axiom either).
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FIGURE 11. The topological space N

Let us identify partial mappings from ¥ into N with total mappings from X
into N ; the value L replaces all undefined values. The next theorem characterizes
continuous mappings (recall that a mapping is continuous if the preimage of every
open set is open).

THEOREM 53. A (total) mapping F : ¥ — N, is continuous if and only if the
following are true:

(1) F is increasing, i.e., z < y implies F(z) < F(y) (the sign < refers to the
pre-ordering relations on N and X introduced above);

(2) if = is an infinite binary sequence and F(x) # L, then x has a finite prefix
z' such that F(2') # L.

PROOF. Let F be a continuous mapping. To verify condition (1), assume
that z < y but F(z) £ F(y). Then F(z) is a natural number (and not 1) and
F(z) # F(y). The preimage of the open set {F'(z)} contains z and does not contain
y, hence it is not open.

Let us verify condition (2). Assume that z is an infinite sequence and F'(z) # L.
The preimage of the set {F(z)} is open and contains z. Thus it contains some finite
prefix of z.

It remains to verify that any function F satisfying conditions (1) and (2) is
continuous. We need to verify only that the preimage of every natural number is
open (indeed, the preimage of the entire space is open, and other open sets are
unions of singletons formed by natural numbers). It is enough to verify that the
preimage of every natural number satisfies the conditions (1) and (2) from the
previous theorem. This is a straightforward corollary of our assumptions. (Note
that if z’ is a prefix of z and F(z') # L, then F(2') = F(z), as F is increasing.) O

For any given continuous mapping F' : 3 — N, , consider the set Iz of all pairs
(z,n) € Ex N such that F(z) = n. Note that the set I'r is only a part of the graph
of the mapping F' (we consider only finite strings z and require that n # L).

THEOREM 54. The mapping F' — I'r is a bijection between continuous map-
pings ¥ — N, and sets A C = x N satisfying the following conditions:

(1) (z,n) € A, z<y = (y,n) € A;

(2) (z,n) € A, (z,m) €A = m=n.

PROOF. Assume that the mapping F is continuous. If F(z) = n € N, then
condition (1) of the previous theorem guarantees that F(y) = n for every y > z.
This proves that the set I'r satisfies condition (1). As F(z) cannot be equal to
two different numbers, condition (2) is also satisfied. Thus, for every continuous
mapping F' the set I'r has properties (1) and (2).

It is easy to see that the set I'r uniquely determines F': if z is a finite string,
then F(z) is the second component of the (unique) pair (z,n) € I'r. If there is no
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such pair, then F'(z) = L. If z is an infinite sequence, then F(z) is determined
uniquely as F(z') where z’ is a sufficiently long prefix of z.

It remains to show that every set A having properties (1) and (2) is equal to
'z for certain F'. For every finite z define F(z) as the natural number n such
that (z,n) € A; such a number is unique due to (2). If there is no such n, then
let F(z) = L. By condition (1) we get an increasing function. For every infinite
z € I, let F(z) be equal to F(z') where z’ is any prefix of z such that F(z') # L.
If there is no such z’, then let F(z) = L. By property (1) the value of F(z) is well
defined. The constructed function F satisfies both conditions (1) and (2) from the
previous theorem and is continuous. By construction we have I'r = A. a

Conditions (1) and (2) mean that the set A is a graph of a prefix-stable function.
We thus have a one-to-one correspondence between continuous mappings ¥ — N
and prefix-stable functions.

Call a continuous mapping F': ¥ — N, computable if the set I'r is enumerable.
It is easy to verify that F' is computable if and only if the restriction of F' to those
strings = € E for which f(z) # L is computable in the standard sense. (A partial
function from = to N is computable if and only if its graph is enumerable.) Thus
computable continuous functions > — N, are basically the same as prefix-stable
functions. This gives an extra motivation for the notion of a computable prefix-
stable function.

4.5. The main theorem on prefix complexity

In this section, we prove that all three complexity measures, K (defined using
prefix-stable decompressors), K’ (defined using prefix-free decompressors), and the
negative logarithm of the a priori probability coincide up to an additive constant.
To this end we prove that three inequalities

—logm(z) < K(z) < K'(z) < —logm(z)
are true up to a constant error term. We start with two easy inequalities.

THEOREM 55.
K(z) < K'(z) + O(1).

PRrROOF. This inequality would be evident if every prefix-free function were
prefix stable. This is not the case: a prefix-free function D is undefined on all the
extensions of every string u in the domain of D. On the other hand, a prefix-stable
function D is defined on all the extensions v of every string « in the domain of D,
and D(v) = D(u).

Therefore we need a (simple) construction. Let D be a prefix-free decompressor.
Define another decompressor D' as follows: D'(y) = z if and only if D(y’) = z for
some prefix y’ of y. As D is prefix free, such ¢’ is unique, thus D’ is well defined.
To compute D’(y), we just apply D in parallel to all the prefixes ¢’ of y until we
find a prefix ¥’ such that D(y’) is defined.

By construction the function D’ is prefix stable and extends D. Therefore the
complexity of each string with respect to D’ does not exceed its complexity with
respect to D. (In fact, the complexities with respect to D and D’ coincide, as the
described transformation D + D’ does not affect shortest descriptions.) O

We could try to prove the converse inequality in a similar way: consider the
restriction of the given prefix-stable decompressor D to minimal descriptions. That
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is, let D'(y) = z if D(y) = z, and at the same time D(y’) is undefined for all proper
prefixes ¢’ of y. This transformation is an inverse of the transformation used in
the proof of the last theorem; the resulting function D’ is indeed prefix free. The
problem is that it might be non-computable.

Find a computable prefix-stable function D for which the prefix-free func-
tion D' constructed in this way is not computable.

(Hint: Let A be an enumerable undecidable set, whose complement is thus not
enumerable. Let f(0"11z) = 0 for all natural numbers n and all binary strings z.
Also let f(0™1z) =0 for all n € A and all z.)

This problem shows that, in a sense, the non-blocking read operation is more
powerful than the blocking one (see Section 4.4).

THEOREM 56.
—logm(z) < K(z)+ O(1).

PROOF. We have to prove that 27%(*) < em(zx) for some constant ¢ and for
all 2. Recall that m is the maximal lower semicomputable semimeasure. Thus
it suffices to find an upper bound for the function z — 2~%¥() that is a lower
semicomputable semimeasure. (In this section we consider discrete semimeasures
on the set of all binary strings, as defined in Section 4.1.)

Let us construct a probabilistic machine generating this semimeasure. Toss
a coin to obtain a sequence bgbybs - - - of random bits. Simultaneously, apply the
optimnal prefix-stable decompressor D (from the definition of K) to all prefixes of
the sequence bob; bs, . ... If one of the computations

D(A), D(bo), D(boby ), D(bobyba), . ..

terminates with a certain result, output that result and halt. Note that it does not
matter which of the terminating computations we choose: the prefix-stability of D
guarantees that this choice does not affect the result.

Let = be a binary string, and let p be a shortest description of x with respect
to D. Then the machine outputs  with probability at least 274?). Indeed, if
the random sequence starts with p, then the result of the machine is . Thus the
constructed machine generates a measure that is an upper bound for 2-%), O

There is a slightly different proof of the same theorem, which does not involve
probabilistic machines. The function z — 2-%() is lower semicomputable. Thus
it is enough to show that it is a semimeasure.

22—"(@ < 1.

PRrOOF. For every string x let p, be some shortest description of z (with respect
to the optimal prefix-stable function from the definition of K). For every two
different strings x and y the strings p, and p, are incompatible. Thus the statement
is a direct corollary of the following;:

THEOREM 57.

LEMMA. Let po,p1,p2,... be pairwise incompatible strings (that is, neither of
the strings is a prefiz of another one). Then 5, 2741Pi) L 1.

Indeed, for every ¢ consider the set €2, of all infinite extensions of p;. Its uniform
Bernoulli measure is equal to 274}, As the strings p; are pairwise incompatible,
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these sets are disjoint and the sum of the measures of all sets €2, is at most 1. The
lemma and Theorem 57 are proved. O

Theorem 57 implies that the inequality K (z) < I(z) 4+ O(1) is false (thus show-
ing the difference between the plain complexity C and the prefix complexity K).
Indeed, if it were true, the series
Z 9=l=)
T

would converge. However, for every n the terms of this series corresponding to
strings x of length n sum up to 1 (there are 2" such terms and each of them is
equal to 277).

Prove that even a weaker inequality K (z) < l(z) + logl(z) + O(1) is false
(in other words, the difference K (x) —{(x) —log!(z) is not bounded by a constant).
(Hint: Use the divergence of the harmonic series.)

It remains to prove the last (and most difficult) inequality:

THEOREM 58.
K'(z) < —logm(z) + O(1).

PRrROOF. We present first a sketch of the proof. The semimeasure m(z) is lower
semicomputable, so we can generate lower bounds for m(z) that converge to m(z),
but no estimates for the approximation error are given. The larger m(z) is, the
smaller K'(z) should be, that is, the shorter description p we have to provide for z.
The descriptions reserved for different strings must be incompatible. In geometric
terms: for every binary string p we consider the interval I, formed by all reals
whose binary expansion starts with p. The descriptions p; and p, are incompatible
if the intervals I,, and I, do not overlap. The inequality [(p) < — log, m(x) means
that the length of the interval I, is at least m(z), i.e., 27'® > m(z).

Thus we have to assign to every string = an interval of length at least m(z) so
that the intervals assigned to different strings do not overlap.

Let us specify more carefully what we need. First, for each z it suffices to
reserve an interval of the length em(z) rather than m(z), for some fixed positive .
This relaxation causes the complexity to increase at most by a constant.

Second, we are allowed to use only properly aligned intervals, i.e., intervals I,
for some binary string p. However, given the above relaxation, this restriction is
not essential. Indeed, every interval I C [0, 1] contains a properly aligned interval
that is at most four times shorter.

So we arrive at a problem that is quite similar to the problem considered in
Section 4.1. There is a sequence of clients. Each client asks for some space inside
[0,1]; a client may increase its request from time to time. The important difference
is that now the clients are interested not in the total space allocated but in the
contiguous interval, and this makes our “space management” job more difficult. To
compensate for this difficulty, we are allowed to reduce all the requests, multiplying
them by some constant ¢.

Imagine that clients are processes running on a computer, and the memory
manager has to allocate contiguous properly allocated memory according to their
requests that increase in time. Once allocated, memory cannot be freed (and reused
for other process).
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The simplest strategy is to allocate a new interval (in the free memory) each
time the request increases. This does not work, however: if two clients’ requests in-
crease in alternating order and in small steps, the overhead cannot be compensated
by any fixed e, and we will run out of space.

The remedy is well known: one should look forward and increase the allocated
interval significantly even if the current increase in the request is small. For exam-
ple, one may allow only powers of 2 as the interval lengths (then the sum of the
lengths is at most twice more than the maximal summand).

It is not hard to present a detailed proof based on this strategy, but we will
not do that. Instead, we present a slightly different proof that uses the following
statement often called Kraft—Chaitin lemma. This lemma can be considered as a
computable version of the Kraft lemma from information theory (see p. 214).

LEMMA. Letly,l,la,. .. be a computable sequence of non-negative integers such

that
Zz-“ <1
i

Then there exists a computable sequence of pairwise incompatible binary strings
Zo,Z1,Z2, ... such that l(z;) = 1;.

Note that the inequality of the lemma is a necessary condition for the existence
of such a sequence: the intervals I;, do not overlap, and their lengths are equal to
27%, The lemma states that this necessary condition is also sufficient.

PROOF. Again we have an infinite sequence of clienfs; the ¢th client demands
we allocate a properly aligned interval of length 2% for her. The intervals reserved
for different clients should not overlap. We need to design a computable strategy
to fulfill all the clients’ requests.

There are several ways to describe such a strategy. Here is probably the simplest
one: let us maintain the representation of the free space (part of [0,1] that is not
allocated) as the union of properly aligned intervals of different lengths.

Initially this list contains one interval [0,1]. We serve the requests lg, ly,la, ...
sequentially.

Assume that the current request is l;, so the required length is w = 27%. First
note that one of the free intervals has length at least w. Indeed, if all the free
intervals had smaller lengths, their sum (the total amount of free space) would be
less than w since they have different lengths and the sum of powers of 2 less that
w = 2" is less than w.

If there is a free interval in the list that has size exactly w, our task is simple. We.
just allocate this interval and delete it from the free list (maintaining the invariant
relation).

Assume that this is not the case. Then we have some intervals in the list that
are bigger than requested. Using the best-fit strategy, we take the smallest among
these intervals. Let w’ > w be its length. Then we split a free interval of size w'
into properly aligned intervals of size w,w, 2w, 4w, 8w, ..., w’/2; note that

wtw+2w+dw+ 8w+ +uw/2=w

The first interval (of size w) is allocated, and all the other intervals are added to
the free list. We have to check out the invariant relation: all new intervals in the
list have different sizes starting from w up to w’/2; old free intervals cannot have
this size since w’ was the best fit in the list.
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The lemma is proven.

Prove that the described algorithm can be rephrased as follows: for each
i use the the leftmost properly aligned interval of length 2% that does not overlap
with previously allocated intervals.

(Hint: The construction used in the proof maintains also the following property:
the lengths of the free intervals increase from left to right.)

COROLLARY. Let l; be a computable sequence of natural numbers such that
3275 < 1. Then K'(3) < I; + O(1).

Indeed, the lemma provides a computable sequence of pairwise incompatible
strings z; of lengths ;. Define a computable function D by letting D(x;) = i. As z;
are pairwise incompatible, this function is prefix free. And D is computable: given
an input z, we compare it with z; for all i = 0,1,2,... successively. Once we find
that z = z;, we output 7 and halt.

(Note that, in this proof, we go back and forth between natural numbers and
binary strings when we speak about a priori probability and complexity.)

Let us return to the proof of the theorem. Consider the maximal lower semicom-
putable semimeasure m. By definition there exists a computable function m(z, 1)
taking rational values that is non-decreasing in i such that

m(z) = Z1_1)1{“1o m(z, ).

Let m/(z,%) stand for the smallest power of two (1,1/2,1/4,1/8,...) that is an
upper bound for m(z,). The function m/(z,%) is computable and non-decreasing
in 4. Its value is between m(z, i) and 2m(z, ).

Say that a pair (z,1) is a boundary pair if m/(z,i) > m/(z,i—1) (orifi =0
and m'(z,0) > 0).

Let us show that the sum of m/(z,%) over all boundary pairs (z,¢) does not
exceed 4. It is enough to show that for every fixed z the sum of m/(z, 1) over all
boundary pairs (z,%) is at most 4m(z). This is true since for every fixed z each
term in this sum is at least twice bigger than the preceding term. Thus the sum
is at most twice bigger than its last term, m/(z,¢) for some i, which is less than
2m(z,1). Now recall that m(z,i) < m(z). We see that the sum in question is at
most 4m(x).

The set of all boundary paifs (z,1) is decidable: to find whether a pair (z,1) is
a boundary pair, we have to compare m’(z,%) and m'(z,i — 1).

Enumerate all the pairs (z,%) and exclude all non-boundary ones; we get a
sequence (Zo, i), {Z1,%1), - - of pairs. Each boundary pair appears in this sequence
exactly once. Define [,, by the equality

27 = m/(zp,1n) /4

The sequence of I,, is computable and

> ot = iZm'(mn,z’n) <1
n n

The corollary mentioned above implies that K'(n) < I, + O(1). As z, can be
computed given n, we have

K'(zn) < K'(n) + O(1) < In + O(1) = —logm'(zn, in) + O(1).
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So for every = the complexity K’(z) does not exceed —logm/(z,%) if (z,i) is a
boundary pair. Taking the maximal ¢ with this property, we get — log m(z)+ O(1);
therefore

K'(z) < —logm(z) + O(1). O

So all three values K, K’ and — log m differ by at most a constant. Given this,
we do not distinguish in the sequel between K and K’ (unless the difference in their
definitions becomes essential for some special reason), and we use notation K for
prefix complexity.

We tried to provide a detailed proof, and it may look complicated. The main
idea is, nevertheless, very simple. Let us try to summarize it again. In one direc-
tion a short description p for a string z guarantees that z may appear with high
probability (when we decompress a random sequence). In the other direction the
argument is a bit more complicated: high probability does not mean that there is a
short description, and the string may have many long descriptions instead. Never-
theless our space allocation algorithm manages to consolidate them: when the total
lengths of intervals for = reaches 2% for some k, it allocates for z a fresh interval
of length Q(27*). This can be done from left to right or using the Kraft-Chaitin
lemma.

Let us note that actually we have proven the following statement that will be
used in Section 5.6:

THEOREM 59. For every lower semicomputable sequence of reals pg,py, .. . such
that ), pi < 1, one can effectively find a prefix-free decompressor D such that
Kp(i) < —logyp; + 2.

This means that given some algorithm enumerating the set of pairs (r,7) with
r < p;, we can find an algorithm for a decompressor D satisfying the inequality
for K7,.

4.6. Properties of prefix complexity

In this section we continue the study of prefix complexity. We first revisit some
already established properties and present their alternative proofs based on the a
priori probability.

It is well known that the series ) 1/n? converges. Multiplying its terms by
a constant, we obtain a lower semicomputable semimeasure. Thus the a priori
probability of a natural number 7 is at least ¢/n? for some constant c. This implies
that

K(n) € 2logn + O(1).

Let z,, be the nth string in the sequence A, 0, 1,00,01, 10, 11,000, ... of all binary
strings. Then

K(z,) < K(n) 4+ 0(1) < 2logn + O(1) = 2l(z,) + O(1);

the last equality is true, since z,, is n+ 1 in binary notation without the leading 1,
so the length of x,, is logn + O(1). (There is a special case n = 0, as both 1/0? and
log 0 are undefined; the changes needed to handle it are trivial.)

So we get the inequality K(z) < 2I(z) + O(1).



4.6. PROPERTIES OF PREFIX COMPLEXITY 97

To prove a better upper bound for prefix complexity, we may consider a con-
verging series
>

nlog®n’
(To prove its convergence, compare it with the corresponding integral.) Using this
series, we obtain the inequality K (n) < logn + 2loglogn + O(1) or (for strings)

K(z) < l(z) + 2logl(z) + O(1)

(for the alternative proof of this inequality, see p. 84).

Using the series >~ 1/(nlogn(loglogn)?), Y 1/(nlogn log log n(log log log n)?),
etc., we can improve the bound further.

Now we prove the inequality relating the prefix complexity of a pair to prefix
complexities of its components.

THEOREM 60.
K(z,y) < K(z) + K(y) + O(1).

Just as in the case of plain complexity, we define K(z,y) as the complexity of
the string [z, y| where (z,y) — [z,y] is a computable injective encoding of pairs of
binary strings. The complexity of a pair does depend on the choice of the encoding;
switching to another computable injective encoding changes complexity by at most
an additive constant. Indeed, the translation between any two computable injective
encodings is an algorithmic transformation.

PRrROOF. Consider the function m’ defined as

m'([z,y]) = m(z)m(y).
Here z and y are binary strings, [z, y] is the encoding of the pair, and m stands for
the a priori probability. If z is not an encoding of any pair, we let m’(z) = 0.
The function m’ is lower semicomputable (take the product of lower bounds
for m(z) and m(y) as a lower bound for m(z)m(y)). Furthermore, we have

>om(e) =Y m(le,y) = Y m@my) = Y m@) Y mEp) <1-1=1
z T,y z,y T Yy

Thus m’ is a lower semicomputable semimeasure. Comparing m’ with the a priori
probability, we obtain the inequality m'([z,y]) < em([z,y]) for some constant c.
Hence

K([z,y]) < K(z) + K(y) + O(1).

The theorem is proved. O

Prove that the sum 3~ m([z,y]) differs from m(z) by at most a constant
factor (in both directions). Prove a similar statement for max, m(z,y).

Let f: N — N be a strictly increasing computable function. Prove that
the value Y _{m(k)|f(n) < k < f(n+ 1)} differs from m(n) at most by a constant
factor (in both directions). (So if we split the series ) m(n) into groups in a
computable way, the sums of the groups form essentially the same series!)

Let us prove now Theorem 60 using decompressors. It turns out that we need
to use prefix-free (and not prefix-stable) decompressors.

Let us prove that K'([z,y]) < K'(z) + K'(y) + O(1). Let D be an optimal
prefix-free decompressor used in the definition of K’. Define a new prefix-free
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decompressor D’. Informally, the algorithm D’ reads the input until it finds a
description of z. Then it reads the rest of the input until it finds a description of y.
Formally, we define D’ as

D'(pq) = [D(p), D(q)]-

Here pq stands for the concatenation of strings p and ¢. In other words, we try to
split the input into two parts p and g in such a way that both D(p) and D(q) are
defined. _

We need to verify that D’ is well defined. Indeed, assume that z is represented
as pq in two different ways, £ = pg = p'q’, and all the values D(p), D(q), D(p'),
D(q') are defined. Then p and p’ are compatible (being prefixes of the same string z)
and thus coincide (as D is prefix free), hence g = ¢'.

In a similar way we can prove that the function D’ is prefix free. Let pq be a
prefix of p'q’, and let both belong to the domain of D. The strings p and p’ are
compatible and both D(p) and D(p') are defined, therefore p = p’. This implies
that q is a prefix of ¢’. As both D(q) and D(q’) are defined, we have ¢ = ¢'.

The function D’ is computable: to find D’(z), we compute in parallel D(p) and
D(q) for each possible way to split z into p and q. We have shown that there is at
most one representation of z as pq such that D(p) and D(q) are defined. If we find
such p and g, we output the string [D(p), D(q)].

It remains to note that

Kp/([z,y]) < Kp(z) + Kp(y).

Indeed, let p and ¢ be shortest descriptions of z and y with respect to D. The string
pq is a description of [z, y] with respect to D’ and has length Kp(z) + Kp(y).

In other words, D' reads the input as D does until p and D(p) are found, then
reads the rest of the input again to find g and D(g).

Prove Theorem 60 using the definition of prefix-free decompressors in
terms of machines with blocking read operation (see Theorem 50 on p. 86).

A set of binary strings is called prefiz free if any two elements of it are
incompatible. Show that if sets A and B both are prefix free, then so is the set

AB={ab|a€ Abe B}.

Which proof of Theorem 60 (using a priori probability or using prefix-free
decompressors) is easier and more natural? It is a matter of taste—the authors
believe that the first one is more natural. The next theorem provides an opposite
example: encoding arguments here seem to be simpler than the arguments using
the a priori probability.

THEOREM 61.
K(z,K(z)) = K(z) + O(1).
(Problem 23 asks us to prove the same equality for plain complexity.)
PRrROOF. The inequality K(z) < K(z,K(z)) + O(1) is straightforward, as the
string z can by computed given the encoding [z, K (z)] of the pair.

To prove the converse inequality, let D be an optimal prefix-free decompressor
used in the definition of prefix complexity K’. Define a new decompressor D’ as

D'(p) = [D(p),(p)].
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The domain of D coincides with that of D, hence D’ is prefix free. Let p be a
shortest description of z with respect to D. Then I(p) = K’'(z) and therefore p is
a description of the string [z, K'(z)] with respect to D’. Thus

Kp([z, K'(z)]) < l(p) = K'(z).

Is the theorem proven? There is one subtle point in the argument. We have
proved the theorem for the complexity K’, defined via prefix-free decompressors. If
we substitute K for K’ in the equality K'(z, K'(z)) = K'(z) + O(1), its right-hand
side will change by an additive constant. The similar statement for the left-hand
side is not straightforward, as K’ has two occurrences there, and the second one is
inside the argument. But at least we have K(z, K'(z)) = K(z) + O(1).

To finish the proof, it remains to show that the function K (z,n) changes at
most by a constant, as n changes by 1. This easily follows from the computability
of mappings (z,n] — [z,n + 1] and [z,n] — [z,n — 1]. O

It is instructive to prove Theorem 61 using the a priori probability. Let m(x)
be the a priori probability of z. Define the function m’ as

(2, k]) = {2_’c if 2% < m(z);

0 otherwise.
This function is lower semicomputable: given z and k, we generate lower bounds
for m(z) and output O until we find that 27% < m(z), and then we output 27%.
For every fixed z the sum of m/([z, k]) over all k is a geometric series formed
by powers of 2. Therefore this sum is less than 2m(z) (the largest term of the
series is less than m(z)). Therefore, the sum of m’([z, k]) over all z and k is finite.
Comparing m/([z, k]) and the a priori probability of [z, k], we conclude that

m(z, k) > 2—k+0(1)
if 27% < m(x). Taking the logarithms, we see that
K(z,k) <k+0(1)

whenever 27% < m(z). The latter inequality holds for k = —|logm(z)] + 1 and
thus we have
K(z,—|logm(z)] + 1) < K(z) + O(1).

It remains to recall that the function K(z,n) changes at most by a constant, as
n changes by 1. The second proof of Theorem 61 (in the non-trivial direction) is
finished.

This argument proves a bit more: K (z,u) < u+O(1) whenever K(z) < u.
How do we derive this inequality from Theorem 61 (from its statement and not from
its proof)?

We proceed now to the algorithmic properties of the function K(z). Like
plain complexity, prefix complexity is upper semicomputable but not computable.
Moreover, there is no computable non-trivial (= unbounded) lower bound for K(z).
Indeed, since K(z) < 2C(z)+O(1), every non-trivial lower bound of K would yield
a non-trivial lower bound of C.

Recall that the plain Kolmogorov complexity C(z) can be defined as the small-
est upper semicomputable function k such that the cardinality of the set {z | k(z) <
n} is O(2") for all n (Theorem 8, p. 19). Here is a similar statement for the prefix
complexity:
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THEOREM 62. The function K is the smallest (up to an additive constant term)
upper semicomputable function k (mapping binary strings to natural numbers and
+00) such that the series ) 2-k@) converges.

PrOOF. The function K is upper semicomputable and the series ) 2~ K(=)
converges. Let k be another function having these properties. Then the function
M(z) = ¢275=) where ¢ is a small enough constant is a lower semicomputable
semimeasure. As m(z) is the maximal lower semicomputable semimeasure, we
have M (z) = O(m(z)), that is, log M (z) < logm(z)+O(1). It follows that K(z) <
k(z)+ O(1). O

In other words, for every upper semicomputable function & mapping binary

strings to natural numbers and +oo, the two statements
“K(z) < k(z) + O(1)” and “Y°_27%®) < c0”
are equivalent.

Note that the requirement “the series 3 27%(®) converges” is stronger than
the requirement “the number of = such that k(z) < n is O(2")” used in Theorem 8.
Indeed, if 3~_ 2% < C, then the number of z such that k(z) < n is at most C2".
This observation gives another proof of the inequality C(z) < K(z) + O(1).

It is instructive to compare plain and prefix complexity in two aspects: the
average complexity of strings of given length and the number of strings that have
complexity not exceeding a given bound. Let us start with the first question.

We have seen that the plain complexity of most strings of length 7 is close to n
(p. 8 and Problem 2, p. 17). One could expect the prefix complexity to be slightly
bigger.

THEOREM 63. (a) K(z) < l(z) + K(I(z)) + O(1).
(b) For some constant ¢ and for all n,d the fraction of strings x such that
K(z) <n+ K(n) —d among all strings of length n is at most c27¢.

ProOF. (a) Let m(z) be the a priori probability of a binary string z and
m(n) be the a priori probability of a natural number n. Consider the function
m/(z) = 2 "m(n) where n is the length of z. The sum of m/(z) over strings of
length n is equal to m(n) hence > m/(z) < 1. Since the function m’ is lower
semicomputable, we conclude that m/(z) < em(z) for some constant ¢ and all z.
Taking the logarithms, we obtain the inequality

K(z)<n+ K(n)+0O(1)

(the constant O(1) does not depend on n).
(b) Consider the function

(z)=n

the total a priori probability of all strings of length n. Since m/(n) is lower semi-
computable and ), m'(n) < 1, we have m’(n) = O(m(n)). On the other hand,
the a priori probability of the string consisting of n zeros is at least cm(n) for some
positive constant ¢. Thus we have

am(n) < Z m(z) < com(n).

l{z)=n
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So the sum of m(z) over all binary strings of length n coincides with m(n) (up
to a constant factor). Thus the average of m(z) over all strings z of length n is
m(n)/2" (up to a constant factor). The fraction of strings z, such that m(z) is 2¢
times bigger than the average, is at most 2-¢ (Chebyshev’s inequality). O

Prove that the average prefix complexity of strings of length n is equal
to n+ K(n)+ O(1).

(A similar question for plain complexity was considered in Problem 3.)
Now we estimate the number of strings with complexity at most n.
THEOREM 64. The number of strings x with K(x) < n is 2n~K(m)+0Q),

PROOF. Let ¢, be the number of strings z such that K(z) < n. Let us rewrite
the basic property of prefix complexity (the convergence of the series 3" 2-%(*)) in
terms of ¢,. There are exactly c,41 — ¢, strings of complexity n. Therefore the
series

Z 27" (cnt1 — Cn)
n
converges. Regrouping the terms of this series, we conclude that

2(2_(”_1) -2, = Z 27", < 0.
n

n

Since the function ¢, is lower semicomputable, this implies that 27 "¢, does not
exceed the a priori probability m(n) of n. Hence ¢, < m(n)2" = 2" %) (up to a
constant factor).

On the other hand, it is easy to construct an upper semicomputable function
k whose values are natural numbers (and +00) that takes the value n on (approxi-
mately) m(n)2™ arguments. This can be done in many ways. For example, let us
agree that for a string z of length n the value k(z) can be either +o00 or n; it is
equal to m if the ordinal number of z (in the list of all n-bit strings) is less than
m(n)2".

For this function k, the series > 27%(®) converges. So K(x) < k(z) + O(1),
hence cn,0(1) > m(n)2™. Both m(n) and 2™ change at most by a constant factor
as n increases by 1. Thus m(n)2"™ = O(cy,). O

These results may create an impression that prefix and plain complexity mea-
sure essentially the same quantity but using slightly different scales, so the prefix
complexity is (slightly) bigger just because of the shifted scale. Or, maybe, is there
a more fundamental difference? This question can be formalized as follows: Are
there two sequences a, and b, of strings such that C(a,) — C(bp) — +oo but
K(an) — K(bp) — —oo? This question was answered by An. A. Muchnik and
S. Positselsky who proved that sequences with these properties do exist [137]. An-
other proof was provided by J. Miller in [122]; this paper contains other results
about the relation between plain and prefix complexities, but we restrict ourselves
to several simple remarks (see also Section 4.7.4, p. 112).

Iterating the inequality

K(z) < l(z) + K(l(z)),
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we obtain the following series of inequalities:

K(z) < l(z) + U(i(z)) + K (I(i(=))) + O(1),

K(z) < l(z) +1((z)) + 1)) + K((I{U=)))) + 0(1),
etc. Similar inequalities with C instead of [ can be obtained as follows. Let D be
the optimal decompressor for plain (not prefix) Kolmogorov complexity. Combining
the inequalities K(D(y)) < K(y)+O0(1) and K(z) < l(z)+ K(I(z)) + O(1), we get

the following series of inequalities:
THEOREM 65.

K(z) < Clz) + K(C(z)) + O(1),

K(z) < C(z) + C(C(z)) + K(C(C(z))) + O(1),

etc.

Note that the second inequality (as well as all others) follows from the first one
by iteration.

Prove that
C(z,y) < K(z) + C(y) + O(1)

for all z,y.

(Hint: One can compute the number of pairs for which the right-hand side is
less than n, but it is easier to use prefix-free descriptions.) ]

As we mentioned, one could define random n-bit strings as strings whose (plain)
complexity is close to n. But one can also try to use prefix complexity and require
the prefix complexity to be maximal, i.e., close to n+ K (n). The following problem
shows that for such strings the plain complexity is also (almost) maximal.

Let = be an n-bit string such that C(z) < n — d for some d. Show that
K(z) <n+ K(n) —d+ O(logd).

(Hint: Join the prefix-free descriptions for n and d and a plain description
for z.)

The reverse statement is not true, as R. Solovay has shown; see the already
mentioned paper of J. Miller [122] or [136, 6].

4.7. Conditional prefix complexity and complexity of pairs

4.7.1. Conditional prefix complexity. What is conditional prefix complex-
ity? Each of the definitions of prefix complexity can be modified by adding a
condition.

We start with a definition using prefix-stable functions. A function D(y, z) is
prefiz stable with respect to y if for every z the function y — D(y, z) is prefix stable:

D(y, z) is defined and y < ¥’ = D(¥/,2) = D(y, 2).

We assume here that the first argument of D is a binary string; the notation y < ¢/
means that y is a prefix of /.

Recall the definition of the (plain) conditional complexity from Section 2.2. A
conditional decompressor (=description mode) is a computable function that maps
pairs of binary strings to binary strings. If D(y, z) = z, then y is called a description
of x when z is known. The complexity of z with condition z is the length of the
shortest description. Then we fix an optimal conditional decompressor that gives
minimal complexity (up to a constant).
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Now we consider only decompressors that are prefix stable with respect to the
first argument. This smaller class of decompressors contains an optimal decompres-
sor (for this class). The proof of this statement is similar to the proof of Theorei 48
(p. 82) where an optimal unconditional prefix-stable decompressor is constructed.
We modify this proof by adding the parameter z in all formulas. More specifically,
let

D'(y, z) = [pl(y, 2).
Here [p| stands for the program obtained from p via “prefix stabilization with
respect to y for each z”. This means that for all p, z, the function y — [p](y, ) is
prefix stable, and if the function y — p(y, z) itself is prefix stable for some z, theu
it coincides with the function y — [p](y, z). It is easy to verify that this is indeed
possible and that D’ is an optimal prefix-stable (with respect to the first arguneut)
decompressor.

Fix an optimal conditional prefix-stable decompressor, and denote the resulting
complexity by K(z|z), the prefix complezity of x with condition z.

If we consider prefiz-free decompressors (instead of prefix-stable ones), we ol-
tain an alternative definition of conditional prefix complexity. The existence of an
optimal function in this class of decompressors is proved in a similar way. The re-
sulting complexity could be denoted by K’(z|z). Like their unconditional versions,
functions K(z|z) and K’(z|z) differ by at most an additive constant, which docs
not depend on z and z:

K'(z|z) = K(z|z) + O(1).

As in the case of unconditional complexities, this is proved using the conditional
a priori probability m(z|z). It can be defined in two ways (using probabilistic
machines and lower semicomputable semimeasures).

Let M be a probabilistic machine with an input. Let pjs(x|z) denote the prob-
ability that M outputs the string z for input z. The function (z,z) — pp(z|2)
is lower semicomputable, and for all z the sum ) _pp(z|z) does not exceed 1.
Conversely, for every lower semicomputable function (z,z) — p(z|z) that takes
non-negative real values such that > p(x|z) < 1 for all z, there exists a proba-
bilistic machine M with pp; = p.

The class of all functions py; has an optimal function, that is, the greatest one
up to a constant factor. Fixing an optimal function in this class, we obtain the
conditional a priori probability m(x|z) of the string = with condition z.

The inequality K(z|z) < K'(z|z)+O(1) is easy (as in the unconditional casc).
To show that all three quantities K(z|z), K'(z|z) and —logm(z|z) coincide up
to an additive constant, we need to show that —logm(z|z) < K(z|z) + O(1) and
K'(z|z) € —logm(z|z) + O(1). We omit those proofs since they repeat their
unconditional versions.

One could say that these inequalities and their proofs are “relativizations” of the
respective unconditional inequalities and proofs. The relativization is understood
here in a non-standard way. In the theory of computation, relativization means
that the class of computable functions is replaced by the class of A-computable
functions, i.e., the class of functions computable with a given oracle A. (Here A is
an arbitrary set of binary strings. A function is computable with oracle A if it is
computed by an algorithm that is allowed to make queries of the form “xz € A?”.
That is, the algorithm calls an external procedure that on input z returns true
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or false depending on whether z is in A or not.) Almost all known theorems in
general computation theory are relativizable, i.e., they remain true if we replace
(everywhere) computable functions by A-computable functions.

By the way, the notion of Kolmogorov complexity can be relativized in a stan-
dard way, too. That is, for every set A we can define the plain Kolmogorov complex-
ity C4(z) and the prefix Kolmogorov complexity K“(z) (see Section 6.4). However,
we do not consider relativized Kolmogorov complexity now. Instead of algorithms
having oracle access to a set of strings, we consider algorithms having access to a
finite string z. In this way we obtain conditional complexity C(z|z) or K(z|z)
instead of C(x) (resp. K (z)). Since z is finite, the access to it does not increase the
power of algorithms (any z-computable function is computable without z). How-
ever, the access to z changes Kolmogorov complexity, if z contains non-negligible
information. Here is another example of this kind of relativization: the quantity
I(z : y|z) can be considered as common information in z and y relative to z.

Up to now the structure (prefix relation) used in the definition of prefix-stable
and prefix-free functions was applied to descriptions only. The described objects, as
well as conditions, had no structure at all. The other approach is also possible: we
could take into consideration the binary relation “to be a prefix of” on described
objects as well. This will lead us to monotone complexity (see Chapter 5) and
decision complexity (Chapter 6). On the other hand, we could consider the relation
“to be a prefix of” on conditions as well (see Section 6.3). The resulting complexities
make sense; however, they are not well studied yet.

Note that all the requirements in the definitions of prefix-free and prefix-stable
decompressors treat different conditions separately. For example, requiring that
a machine can tell when the input ends, we allow this decision depend on the
condition. This is an important remark, and we can come to wrong conclusions if
we forget about this. One should be really careful here; for example, the statement
of Problem 28 (p. 35) is not true for prefix complexity:

Show that K (y|z) does not exceed the minimal prefix complexity of a
program mapping z to ¥ (up to an O(1) additive term). The converse statement
is false. (Both statements hold for every reasonable programming language; the
additive constant depends on the chosen language.)

(Hint: It is easy to see that K(y|l(y)) < I(y)+ O(1). Indeed, every string y is
its own self-delimiting description when I(y) is known. If the inequality in question
were true, there would be 2" different programs of prefix complexity at most n.)

4.7.2. Properties of conditional prefix complexity. Let us mention sev-
eral simple results about conditional prefix complexity.
o K(z|z) < K(z)+ O(1).

Indeed, a prefix-stable (or prefix-free) unconditional decompressor
y — D(y) can be considered as a prefix-stable (resp. prefix-free) con-
ditional decompressor {y,z) — D(y) that just ignores the second argu-
ment z.

Using semimeasures: any probabilistic machine without input can be
considered as a machine that has input but ignores it. And any lower
semicomputable semimeasure g(z) can be treated as a family ¢'(z|z) =
¢(z) indexed by z.

e K(z|z)=0(1).
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Indeed, the decompressor D(y,z) = z is prefix stable (recall that
prefix-stability is about y, not z) and Kp(z|z) = 0. We can also change
it to get a prefix-free decompressor: let D(A, z) = z where A is an empty
string, and let D(y,z) be undefined if y # A. Finally, the family of
semimeasures can be constructed as follows: g(z|z) = 1 and ¢(z|z) =0
for z # x.

o K(f(z,2)|2) € K(z|z) + O(1) for any computable function f and for
any strings z, z such that f(z,z) is defined. (The constant in O(1) may
depend on f but not on z and z.)

Indeed, let D be the optimal prefix-stable (resp. prefix-free) condi-
tional decompressor. The mapping D’: (y,z) — f(D(y,z),z) is also
a prefix-stable (resp. prefix-free) decompressor and Kp:(f(z,2)|z) <

In terms of semimeasures the same argument goes as follows: let
m(z|z) be the a priori probability of z with condition z. Consider the
semimeasure

a(z|z) = Y {m('|2) | £, 2) = 2)

(for each z this is an image of the semimeasure  — m(z, z) under the
mapping = — f(z,z)); it is easy to check that g is lower semicomputable,
that Y g(z|z) < 1 and ¢(f(z,2)|2) = m(z|z). Since m is optimal, we
get the desired inequality for a priori probabilities and their logarithms.
e K(f(z)|z) = O(Q1) for any computable f and for all z such that f(z) is
defined.
(A simple corollary.)
e K(z|z) < K(z|f(2))+ O(1) for every computable function f and for all
z,z if f(z) is defined (the constant in O(1) may depend on f but not on
z and z).
(Indeed, consider the deconipressor {y, z) — D(y, f(z)) or the condi-
tional semimeasure ¢(z|z) = m(z| f(z)).)
e C(z|z) < K{z|z)+0().
Indeed, prefix-stable and prefix-free decompressors form a subclass in
the class of all decompressors used in the definition of C(z|z).
o K(x|z) £ Clz|z) +2logClz|2z) + O(1).
This is a corollary of previous statements. Indeed, let D be the opti-
mal conditional decompressor (not necessarily prefix stable or prefix free).
Then

K(D(y,z)|2) < K(y|2z) + O(1)
< K(y) +0(1) < Uy) + 2logl(y) + O(1).

If y is the shortest description of z with condition z, then l(y) = C(z|z).
In the same way one can prove a stronger inequality

K(z|2) £ C(z|z) +log C(z|2z) + 2loglog C(z|z) + O(1),
etc.
4.7.3. Prefix complexity of a pair. As we have seen (Theorem 60, p. 97),
K(z,y) < K(z) + K(y) + O(1). Let us prove a stronger inequality:

THEOREM 66.
K(z,y) < K(z) + K(y|z) + O(1).
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PROOF. We can use either prefix-free decompressors or semimeasures. Both
versions are instructive.

Using prefix-free decompressors. Let D be the optimal unconditional
prefix-free decompressor. Let D, be the optimal conditional prefix-free decom-
pressor. Consider the function D’ defined as

D'(wv) = [D(u), De(v, D(u))]

(for v and v such that the right-hand side is defined). Following the proof of
Theorem 60, we note that D’ is well defined and is a prefix-free (unconditional) de-
compressor. The concatenation of the shortest D-description for z and the shortest
D.-description for y (with condition z) is a description for [z,y].

(Note that the order of w and v is crucial for this argument. Replacing uv
by vu, we get into a trouble: to find where v ends, we have to use the prefix-free
property of D, but it is valid only for a fixed condition and D(u) is not determined
yet.)

Using semimeasures. Let m(z) be the unconditional a priori probability of
z, and let m(y|z) be the conditional a priori probability of y when z is known.
Consider the function m’ defined as

m/([z,y]) = m(z)m(y|x)

(we assume that m/(z) = 0 for strings 2 that are not encodings of any pairs). Then
m’ is lower semicomputable (being a product of two non-negative lower semicom-
putable functions), and

Sm(e) = Y m@imiyla) = 3 [m(@) Y mly|2)] < 3 miz) < 1.
Therefore, m([z,y]) = em/([z,y]) = em(z)m(y|z). O

Prove that C(z,y) < K(z)+ C(y|z) + O(1).

(Hint: One may use a prefix-free decompressor and append the (plain) descrip-
tion of y given z to the prefix-free description of x. We may also count the number
of pairs such that K (z)+ C(y|z) < n. We have at most 2% - m(k) - 2"~* = 2"m(k)
pairs such that K(z) = k, and the sum over k gives 2" - O(1).)

Further improvements are possible. First note that we can use pairs of strings
as conditions by using some computable injective encoding (changing the encoding,
we change the complexity by at most a constant). For similar reasons we can speak
about complexity of a triple of strings. Now we can write the following chain of
inequalities (the O(1) terms are omitted):

K(z,y) < K(z,K(z),y) < K(z, K(x)) + K(y|z, K(z)) = K(z) + K(y|z, K(z)).
Here the equality K (z, K(z)) = K(z) (Theorem 61) is used as well as the inequality
for the entropy of pairs (Theorem 66). We get an inequality that can be considered
as a strong form of Theorem 66, since K (y|z, K(z)) < K(y|z) (because z can

be produced from [z, K (z)] by an algorithm). As noticed by Levin (see [55]) and
Chaitin (see [32]), this refined inequality is (remarkably) an equality:

THEOREM 67.
K(z,y) = K(z) + K(y|z, K(z)) + O(1).
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Proor. In one direction the inequality is already known (see the discussion
above). One can give also a direct argument: to get a prefix-free description of a
pair {z,y), it is enough to start with the shortest prefix-free description of z and
then append the prefix-free description of y with conditions z and K (z) (note that
K(z) is just the length of the prefix-free description of z). After the machine reads
the first part and stops, we know both z (its output) and K(z) (the length of the
input), so we have all needed information to restore y (in a self-delimiting way).

Using semimeasures, we can prove the same inequality as follows. Consider a
function m’ such that

m(zy)= Y 27'mlylz, k).
{k|2-*<2m(z)}
This function is lower semicomputable, and its sum over all z, y is finite (for each
z and k the sum over all ¥ does not exceed 1, then the sum over all k£ such that
2=k < 2m(zx) does not exceed 4m(z), and the sum over z does not exceed 4). So we
compare m’ with the a priori probability and conclude that for & = —|log, m(z)],
we get the term that we want to estimate.
Note the important technical trick: we cannot write just

m'([z,y]) = m(z)m(y|z, K (z)),
since the semicomputability is no longer guaranteed. To avoid the problem, we

extend the sum over all k > K(x).
Now let us consider the reversed inequality:

K(z)+ K(y|z,K(x)) < K(z,y) + O(1).

Let us start with a simple (but incorrect!) proof of a stronger (but incorrect!)
statement

K(z)+ K(y|z) < K(z,y) + O(1).
In terms of semimeasures this equality can be rewritten as
m(@)m(y|z) > em((z, y))
(for some € and for all z,y). Here m stands for a priori probabilities {(both condi-
tional and unconditional ones). Let us rewrite this inequality as

m([z, y])
, >e I
mylz) > e 08
It is enough to show that the function
/ __m(=,y)
m(ylz) = T

for any fixed z is a semimeasure (for some €); after that we can compare it with the
maximal semimeasure m(y|z) and get the desired result. We need to show that
the sum of m/(y|z) over y does not exceed 1:

S mlyle) = 2B

m(x)
Indeed, the function z — 3 m([z,y]) is a semimeasure (its sum over all z equals
> 2y ™[z,9]) < 1), and therefore this function is bounded by m(z)/e for some e.
What is wrong with this argument? We have not checked that the semimea-
sure we constructed is lower semicomputable. There are two cases where we need to
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check this. In one of them it it is easy: the function 3 m([x,y]) is lower semicom-
putable since m is lower semicomputable. But in the other case, for the function
m([z,y])/m(z), the lower semicomputable function m(z) is in the denominator,
and when m(z) increases, the ratio decreases.

The correct proof of the weaker inequality follows the same scheme but uses
some additional tricks. We have to prove that for z = K(z) the inequality

m([z, y))
2 _
m(y|z,z) > e TS
holds. The problem is that the right-hand side is not lower semicomputable. But
for z = K(x) we can replace m(z) ~ 2~%®) by 272 and consider the function
m'(y|z, z) = m([z,y])2".
This function is lower semicomputable. But now it is not a semimeasure: the sum
>, M (y|z. 2) is bounded by 1 only if

> m(lz,y)) <277,
Y

which is not true if z is large. However, we know that

> ml(z,y]) = O(m(z)) = 025 @),

so there exists a constant ¢ such that

z<K(x)—c=>Zm'(y|m,z) <L
y

But this is not enough: we need a family of semieasures that satisfy this inequality
for all  and z (and not only for z &~ K(x), as needed for our result). So we “trim”
the function m’ and get another function m” such that:

e function (y, z, z) = m”(y|z, z) is lower semicomputable;

e the inequality

> m(ylz,z) <1
Y

is true for all z and z;
e there exists a constant ¢ such that

z2< K(z) —c=m'(y|z,z) =m/(y|z, 2).
How do we perform “trimming”? This trick was explained in Section 4.2: we look
at the increasing approximations from below and let them through only if they do
not violate the required bound for the sum.
Now, comparing " with the a priori probability and taking the logarithms,
we conclude that

2<K(z)—c=> K(y|z,2) < K(z,y) —z+¢

for some ¢, ¢’ and for all z,y, 2.

Now we let z be equal to z = K(z) — ¢. Note also that changing z by 1 changes
the value K(y|z, z) by at most O(1) (increasing/decreasing the second component
of a pair is a computable function). Therefore,

K(y|z, K(z) - c) = K(y|z, K(x)) + O(1). U
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Note that Theorem 22 (p. 39), which says that C(z,y) = C(z) + C(y|z) +
O(logn) for strings of complexity at most n, can now be proved as a corollary.

Indeed, the replacement of K by C changes all three terms by at most O(logn).
It remains to note that the difference between C(y |z, K(z)) and C(y|z) is bounded
by O(logn). In this way we get a new proof of Theorem 22 that replaces counting
by manipulations with semimeasures.

Recalling that m(z) ~ 3, m([z,y]) (up to a O(1) factor, Problem 101, p. 97),
we may rewrite the statement of Theorem 67 as

m([z,y])
2y m((zy])

The right-hand side of the equation can be interpreted as the conditional probability
of the event “the second component of the pair equals y” where the condition is
“the first component of the pair equals z” (but one should remember that we deal
with semimeasures, not probability distributions).

111 | Prove that
K(z|z) < K(z|y) + K(y|2) + O(1)

for arbitrary strings z,y, z. (This result can be improved; we may replace K(z|y)
by a smaller term K(z|y, 2).)

Prove the “relativized” version of Theorem 67:
K(z,y|2) = K(z|2) + K(y|z, K(z|2),2) + O(1).

m(y|z, K(z)) ~

Using Theorem 67 twice, we a get a formula for the prefix complexity of a
triple. Indeed, the triple (x,y, z) can be considered as a pair whose first component
is (z,y) and the second component is z. Therefore,

K(z,y,2z) = K(z|z,y, K(z,y)) + K(z,y) + O(1).
Using Theorem 67 once again, we get the following result:
THEOREM 68.
K(z,y,2z) = K(z|z,y, K(z,y)) + K(y|z,K(z)) + K(z) + O(1).

We can change the order of transformations (using the z-relativized version of
Theorem 67) at the second step:

K(z,y,2) = K(y, 2|z, K(z)) + K (z)
= K(z|y, K(y|z, K(z)),z, K(z)) + K(y|z, K(z)) + K (z)

(we omit the O(1)-terms for brevity).

It is interesting that this leads to a slightly different version of Theorem 68: the
two last terms are the same but the first term is different. We still have the con-
ditional complexity of z but now we have two conditions K(z) and K (y|z, K(z))
instead of K(z,y). Note that the sum of the complexities in the condition is ex-
actly K(z,y) according to Theorem 67. Therefore, the pair of complexities has no
less information than K(z,y). In fact the reverse is also true (when z and y are
conditions). Indeed, let z be the pair (K(z), K (y|z, K(z))); in the second formula
the first term is zero (i.e., O(1)). So we get the following corollary:
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THEOREM 69.
K(K(z)|z,y, K(z,y)) = O(1),
K(K(y|z,K(z))|z,y, K(z,y)) = O(1).
(Of course the same is true for K(y) and K(z|y, K(v)).)

m lee a direct proof of Theorem 69.

(Hint: Knowing z, y and K{(z,y), we may look for an upper bound d for K(z)
such that K(y|z,d) + d becomes equal to K(z,y). The coincidence (up O(1))
implies that d = K(x)+ O(1); indeed, if d = K{z) + m for some m, the complexity
K(y|z.d) can decrease (because of this m) at most by O(logm), and the sum
hecomes bigger.)

Using Theorem 67 we can easily show that the basic inequality of Theorem 24
(p. 47) is true with O(1)-precision for prefix complexity (recall that we have loga-
rithmic error term for plain complexity):

THEOREM 70.
K(z,y,z) + K(z) < K(z,y) + K(z,z) + O(1)
for arbitrary strings x,y, z.
ProOOF. Indeed, the right-hand side can be rewritten as
K(z)+ K(y|z, K(z)) + K(z) + K(z|z, K(z)),
and the left-hand side equals
K(z)+ K(y,z|z, K(z)) + K(z).
It remains to prove that
K(y, z|z, K(z)) < K(y|z, K(z)) + K(z|z, K(z)),
and this inequality is a relativized version of Theorem 60 (p. 97). a

Let us provide also a direct proof of Theorem 70 using semimeasures. We have
to show that (up to O(1)-factors)

m(z,y, z)m(z) > m(z, y)m(z, z),
where m is the maximal lower semicomputable semimeasure. Dividing by m(x),
we get an inequality
m(z,y)m(z, z
M < m(x’y’ Z)-
m(z)

Let us check that the left-hand side of this inequality has a finite sum (over all
triples z,y, z). Indeed,

Z m(z,y)m(z,z) < mi(z)

2T m(z)

(since -, m(z,y) < m(z) and }_, m(z, 2)

A

m(z); we omit the O(1) factors).

This is not enough: since we have m(z) in the denominator, the fraction
m(z,y)m(z, z)
m(z)

is not (necessarily) lower semicomputable, and we cannot use the maximality prop-
erty. So we need to use the following trick (similar to the trick used in the proof of
Theorem 67) to construct a lower semicomputable upper bound for this fraction.
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For each n consider the function m,(z,y) which is obtained from m(z,y)
by 27 "™-trimming: the sum Zy m(z,y) is forced to be at most 27". Note that
>, m(z,y) = m(z) (up to O(1)-factors), so my(z,y) = m(z,y) for n = K(z).
Then we consider the function

Z mn(xa y)mn(xa Z) .

(z,y,2) = 5—n

n2K(x)
It is an upper bound since it contains the term with n = K(z). On the other hand,

mn(z y mn(z, 2) mn z y)ZZmn(m,Z)

9,2 n2K(x T n2K(x)

<Y Y <) om(z) <2

z nz2K(zx)

(As before, we omit the O(1) terms and factors; they lead only to the O(1) factor
in the final inequality.)

Show that the inequality of Theorem 26 (p. 48) is true for prefix com-
plexity with O(1)-precision:
2K (z,y,2) < K(z,y) + K(z,2) + K(y,2) + O(1)

for all strings z,y, z.
(Hint: Add the basic inequality

K(z,y,2z) + K(z) < K(z,2z) + K(y, 2)

to the inequality K (z,y,2) < K(z,y) + K(2).)

Prove that there exists ¢ such that for every string x and for every positive
integer n there exists a string y of length n such that

K(z,y) 2z K(z)+n—c

(Hint: For every z and n there exists a string y of length n such that K (y|z) >n.)

A similar statement can be formulated for n-bit extensions of a given string x
(its version for plain complexity makes Problem 46 on p. 42).

THEOREM 71.

max{K (zy)|l(y) = n} > K(z|n) +n - O(1).

In other words, for some c and all z and n we can append n bits to z in such a
way that the complexity becomes at least K (z|n)+n—O(1) (this is not exactly the
increase in the complexity since we compare K (zy) with K (z|n) and not K(z)).

PRrROOF. In terms of a priori probabilities, this inequality says that
2" min{m(zy) | {(y) = n} < m(z|n) O(1).
The left-hand side does not exceed > {m(zy) | {(y) = n} (the sum may only
decrease if we replace all summands by the least one). But the latter sum is (as a

function of z and n) a lower semicomputable semimeasure, so it remains for us to
compare it with the maximal semimeasure m(z|n). O

Show that a bit weaker statement with K(z) — K(n) instead of K(z|n)
(in the right-hand side) can be derived from the statement of Problem 115.
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4.7.4. Plain and prefix complexities revisited. We have already seen
some bounds for prefix complexity in terms of plain complexity (Theorem 65).
There are many other relations between them. For example, the following observa-
tion (made by Levin) shows that plain complexity can be defined in terms of prefix
(conditional) complexity.

THEOREM 72. Plain complexity C(z) can be defined as the value of i such that
K(z|i) = i. More precisely, K(z|C(z)) = C(z) + O(1); on the other hand, if
K(z|i) =i+, then C(z) =i+ O(9).

ProOF. We already noted (see Problem 44 on p. 40), that C(z) < C(z|C(z))
with O(1)-precision. On the other hand, K(z|C(z)) < C(z) with the same preci-
sion. Indeed, the minimal (plain) description for x can be considered as a prefix-free
one if its length is given as a condition. So the first statement is proven.

It remains to note that K(z|i) changes slowly (as i changes): changing ¢ by d,
we change this complexity by O(logd). So the equation K(x|:) = ¢ has a unique
(up to O(1)) solution; when i deviates by some p from this solution, the difference
between i and K (z|) is proportional to p. O

As noted recently by B. Bauwens, this statement can be used to relate plain and
prefix complexity. Let us start with a special case of a formula for the complexity
of a pair:

K(z) = K(z, K(z)) = K(K(z)) + K(z| K(z), K (K (z)))-
This is true with O(1)-precision. If we ignore terms of order O(K (K (K (z)))), the
pair (K (z), K(K(z))) in the condition can be replaced by K(z) — K(K(z)), and
this replacement gives us

K(z) - K(K(z)) = K(z| K (z) - K(K(z))) + O(K(x))
(where K (z) stands for the ith iteration of K). It remains for us to apply the
previous theorem, and we get the following result by R. Solovay [188]:

THEOREM 73.
C(z) = K(z) — K(K(2)) + O(K®) ().

This result can be rewritten as

*) K(z) - C(z) = K(K(z)) + O(K®(x)).

Solovay noted also that we can replace K by C in the right-hand side of (%), i.e.,
that
K(z) - C(z) = C(C(x)) + O(C™(a)).
In fact, O(K®)(z)) and O(C®(z)) denote the same precision, and the equality
K(K(z)) = C(C(z)) holds with this precision.
Let us explain why. First of all, the already proved formula (%) for K (z)—C(z)
implies that

|K (K (2)) - K(C(2))| < K®(z) + O(log K™ (z))

and
|C(K(z)) - C(C(x))| € K®(z) + O(log K®)(z)),
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since the difference between complexities of two numbers is bounded by the prefix
complexity of the difference between numbers. On the other hand, we can write
the formula for K (z) — C(z) for K(z) in place of z; in this way we get the equation

K(K(z)) — C(K(z)) = O(K®(z)).

So all four versions of complexity of z (combinations of plain and prefix complexity)
differ at most by O(K®)(z)). In particular,

K(K(z)) — C(C(z)) = O(K®(z)).

It remains to show that O(K®)(z)) and O(C®)(z)) is the same precision. Note
that |u —v| = O(K (u)) implies |K(u) — K (v)| = O(log K (u)), so K(K(K(z))) and
K(C(C(z))) are “logarithmically close” (we say that a is logarithmically close to b
if la — b] = O(loga)). This “closeness” relation is symmetric and transitive (if we
allow the constant to increase in O-notation). Now note that C(v) and K(v) are
logarithmically close for every v, in particular, for v = C(C(z)), and the transitivity
shows that K (K (K(z))) and C(C(C(z))) are also logarithmically close, so indeed
O(K®)(z)) and O(C®)(z)) is the same precision.
In this way we obtained another result of Solovay from [188]:

THEOREM 74.
K(z) = C(z) + C(C(z)) + O(C®¥(z)).
In other words, the inequality from Theorem 65 (p. 102) is almost an equality.

Give a direct proof of the inequality
C(z) < K(z) — K(K(z)) + K®(2) + 0(1)

by estimating the number of z that make the right-hand side of the inequality small.

(Hint: We have seen in Theorem 64 (p. 101) that the logarithin of the number
of strings such that K(z) < n is bounded by n — K(n) + ¢ for some ¢ and for
all n. Given n, we can enumerate these strings, and each string z of this type can
be reconstructed from n and the ordinal number of z in this enumeration. This
ordinal number can be represented by a string u of length exactly n — K(n) + ¢
(add leading zeros to its binary representation). Knowing this representation, we
know n— K (n) (the constant ¢ is fixed), and to reconstruct = it is enough to encode
K(n) by a self-delimiting description of length K(K(n)). Now concatenate this
self-delimiting description and the string u: we get a (plain) description of z of
length K(K(n)) + n — K(n) + ¢. This can be done for arbitrary string =z with
K(z) € n, in particular for all strings of prefix complexity exactly n.)



CHAPTER 5

Monotone complexity

5.1. Probabilistic machines and semimeasures on the tree

Chapter 4 defines a priori probability by using probabilistic algorithms (ma-
chines) that may print some number as their output and then terminate. In this
chapter we consider another type of probabilistic (=randomized) algorithms. These
algorithms output a binary sequence bit by bit and do not necessarily terminate.
The output, therefore, is a random variable whose values are finite and infinite
sequences of bits (i.e., elements of the set ¥ of all finite and infinite sequences of
bits).

Consider the following simple algorithm of this type. It just sends random bits
directly to the output:

while true do

b:=random;
OutputBit(b);
od

Its output therefore is a random variable that is uniformly distributed over Q, the
set of all infinite binary sequences.

But it is quite possible (for some other algorithm) that some finite sequence
is printed with positive probability. This happens when algorithm with positive
probability stops after sending some bits to the output (or runs forever without
sending more bits to the output).

For each algorithm A of the described type we consider a function a that is
defined on binary strings and whose values are non-negative reals:

a(x) = Pr[the output of A starts with z].

More formally this function is defined in the following way. Each probabilistic
algorithm defines a mapping A of the set Q (infinite sequences of zeros and ones)
into the set . Namely, A(w) is a sequence of output bits that appears if we use the
terms of the sequence w as random bits (this means that each statement b :=random
assigns to b the first unused bit of w). For example, if A is the program mentioned
above, then A(w) = w for all w.

Then a(z) is defined as the measure of the preimage of the set ¥, under the
mapping A (where ¥, is the set of all finite and infinite sequences having prefix z).
We say that A generates the distribution a.

What are A and a, if the algorithm A outputs an infinite sequence of
zeros (not using random bits at all)?

A natural question arises: what is the class of all functions a that correspond
to randomized algorithms A of the described type? The next two theorems provide

115
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the answer (given already in one of the first papers on algorithmic information
theory, [225]):

THEOREM 75. Let A be a randomized algorithm of the described type, and let
a be the corresponding function. Then

(a) a(z) = 0 for all z;

(b) a(A) =1 (here A is the empty string);

(c) a(z) = a(z0) + a(xl) for every string z;

(d) the function a is lower semicomputable.

The notion of the lower semicomputable (enumerable from below) sequence of
reals was defined in Section 4.1 (p. 75). For the functions on strings the definition
is quite similar: we require that a(z) = lim; a(z,) where a(z,7) is a computable
function of two arguments z and %, defined for all strings x and for all non-negative
values of #; the values a(z, i) are rational numbers or —oo, and for every fixed x the
value a(zx, 1) increases as 1 increases.

Proor. The first three claims are obvious:

(a) Probability is always non-negative.

(b) a(A) = 1 since the empty string is a prefix of any output.

(c) a(z) = a(z0)+a(z1), since the events “the output starts with 0” and “the
output starts with z1” are disjoint subsets of the event “the output starts with z”.

Note that inequality (c) can be strict; the difference a(z) — a(z0) — a(z1) is the
probability of the event “the output is exactly the string z” (no bits appear after
it).

(d) To prove that a is lower semicomputable, we need to construct approxima-
tions from below for a(z) for any given string z. Let us simulate the behavior of A
for all possible values of random bits. During this simulation we discover values of
random bits that guarantee that output starts with z, i.e., we find some intervals I
in 2 such that A(w) starts with z for all w € I. The probability a(z) is the measure
of the union of all these intervals, and the approximation a(z,?) is the measure of
the union of all the intervals discovered up to the step i of the simulation. O

A function a that is defined on all binary strings, that takes real values and
satisfies the conditions (a)-(d) of Theorem 75, is called a lower semicomputable
semimeasure on the binary tree. It is important not to mix semimeasures on the
binary tree and discrete semimeasures defined in Chapter 4 that were functions
on natural numbers (or on binary strings that correspond to natural numbers)
and correspond to probabilistic algorithms that print some number (or string) and
terminate. So we use the name continuous semimeasures or semimeasures on the
binary tree for functions that satisfy conditions (a)—(c); the condition (d) selects
among them the lower semicomputable continuous semimeasures.

Show that continuous semimeasures (functions that satisfy conditions
(a)—(c)) are in one-to-one correspondence with measures on the set ¥ of all finite
and infinite binary sequences. Given a semimeasure a, find the measure of the set
that consists of all infinite sequences that have prefix x.

(Answer: The measure of this set is the limit of the (decreasing) sequence

on = Z{a(y)|y is a string of length n that has prefix z}.

Here a., is defined for n > [(z) and equals a(z) if n = I(z).)
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Show that for a semicomputable tree semimeasure the sum > _a(z) can
be infinite.
(Hint: Consider the algorithm that copies random bits to output.)

The converse of Theorem 75 is also true:

THEOREM 76. Every lower semicomputable continuous semimeasure is gener-
ated by some probabilistic algorithm.

Proor. The idea of the proof can be easily explained in terms of space alloca-
tion, as was done for Theorem 46 (p. 78). The difference is that now the requests
are hierarchical. Two big organizations (called 0 and 1) need space in 2 (which we
identify with [0, 1]); the subsets allocated for 0 and 1 should be disjoint, and their
space requests increase over time (but never become greater than 1 in total).

Each of the organizations has two divisions (called 00,01 inside 0 and 10,11
inside 1) that request some space inside the regions allocated to their organization as
a whole. Their requests also increase over time, but never become greater (in total)
than the organization’s request (at the same time). Then we consider subdivisions
(say, 01 has subdivision 010 and 011) that have increasing requests that do not
exceed (together) the request of their parent division, and so on.

For each subdivision z (at any level) we have increasing requests. All the
allocations are final, i.e., the space allocated to some z remains allocated to z.

This scheme is used in the proof as follows: Having a lower semicomputable
semimeasure a, we construct a family of requests such that the limit of the requests
for subdivision z is equal to a(z). Then we choose a way to satisfy all the requests,
and then we say that if a sequence of random bits gets into the region allocated to
z, then the output of randomized algorithms starts with z.

It is more or less obvious that the requests can indeed be fulfilled. The reader
may skip the rest of the proof, where we provide a more formal argument (and
explain the intuitive meaning of its steps).

LEMMA 1. Let a be a lower semicomputable semimeasure on the binary tree.
Then there ezists a total computable monotone (in the second argument) function
(z,1) — a(z,1) whose values are non-negative rational numbers with denominators
being powers of two, such that

(1) im; a(z,1) = a(z) for every string z;

(2) for each i the function z — a(z,1) is a continuous semimeasure that has
only finitely many non-zero values.

In other words, the memory manager can impose the following additional re-
strictions:

e all the requests are dyadic-rational numbers;

e at each step only finitely many subdivisions have non-zero requests;

e at each step requests are coherent (the request of any subdivision should
be greater than or equal to the sum of requests of its children).

PRroOOF. Our goal is to change the function a from the definition of lower semi-
computable semimeasure (but not change the semimeasure itself) so that it satisfies
the requirements of Lemma 1. First, we make all values dyadic rationals. To achieve
this, we replace a(z,i) by the maximal rational number with denominator 2¢ not
exceeding a(z, %) (negative numbers are replaced by zeros).
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Then we fulfill the second requirement and let a(z,i) be zeros for all strings =
whose length exceeds i.
To fulfill the third requirement, we perform the replacement

a(z,7) := max (a(z,1), a(z0,%) + a(zl,1))

iteratively starting from long strings and then decreasing the length of x. Since
a(z) is by definition a semimeasure, these replacements do not violate the inequality
a(z,i) < a(z).

It is easy to check that our corrections do not change the limit values lim; a(z, 7)
(for all z), so this limit is still equal to a(z).

Lemma 1 is proven.

To formulate the next lemma we need several auxiliary definitions. A simple
semimeasure (on the binary tree) is a semimeasure that has only finitely many
non-zero values, and all these values are dyadic rationals.

A simple set is the union of a finite number of intervals in €. (Recall that an
interval in € is a set of the form , that consists of all infinite sequences having
prefix z. Therefore, a set is simple if we need to know only a finite prefix of w to
decide whether w belongs to this set.)

A simple family is a family of simple sets A, (for all binary strings z) such
that only finitely many sets among A, are non-empty and for each string z the sets
Azo and A, are disjoint subsets of A,. For such a family the function z — p(Az),
where u stands for the uniform measure on 2, is a simple semimeasure. We say
that the family A, implements this semimeasure.

LEMMA 2. Each simple semimeasure can be implemented by a simple family.

PRrROOF. We construct this family starting from the empty string z and then
gradually increase the length of the index string z. At each step our goal is to find
two disjoint simple sets Ao and A, inside the set A, that is already constructed.
This is possible since the required measures do not exceed (in total) the measure
of A;. Lemma 2 is proven.

LEMMA 3. Let b(z) be a simple semimeasure, and let B, be a simple family
of intervals that implements b. Let ¢ be another simple semimeasure such that
c(z) 2 b(z) for all z. Then we can construct a simple family C, implementing c
such that Cy D B, for all x.

PROOF. Let us repeat the argument used to prove Lemma 2. Now we have
two disjoint simple subsets of a simple set, and we need to increase their measures
(keeping them disjoint). It is easy to see that this is indeed possible if the space
restrictions are not violated. Lemma 3 is proved.

The proofs of Lemmas 2 and 3 are effective in a natural sense: both simple
semimeasures and simple families are finite objects, and there is an algorithm that
constructs the simple family given the simple semimeasure(s).

Now we apply Lemma 3 iteratively to the simple semimeasures provided by
Lemma 1. In this way we get a two-parametric family of simple sets U(z,¢) such
that

e the description of U(z,1) (i.e., the list of intervals) is a computable func-
tion of z and ¢;

e the uniform measure of the set U(x,%) is equal to a(z,i) (and therefore
tends to a(z) as i = o0);
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e for each = and i the sets U(z0,7) and U(z1,1) are disjoint subsets of the
set U(z,1);
e U(z,i) C U{z,i+ 1) for each z and 3.

Now the probabilistic algorithm that generates the semimeasure a can be con-
structed as follows: we construct the sets U(z,:) for all 2 and ¢ and in parallel
generate random bits obtaining a sequence w. If at some step we discover that
w € U(z,1i) for some z and %, we output those bits of the string x that have not yet
been printed.

Note that if w € U(z,1), then w € U(y,¢) for every prefix y of 2. Note also
that w cannot be an element of both U(z,%) and U(z’,4) if strings = and z’ are
incompatible (neither of them is the prefix of the other one). Therefore the bits
sent to the output never need to be “recalled”.

An output of this algorithm starts with some string z if and only if the sequence
w of random bits belongs to the union of the increasing sequence of sets U(z, ) (for
t =0,1,2,...). The probability of this event is the limit of measures of the sets
U(z,1), and this limit is by construction equal to a(z), so we have achieved our
goal. a

Theorems 75 and 76 show that lower semicomputable semimeasures can be
equivalently defined as probability distributions generated by randomized algo-
rithms (of the described class).

There is an important special case when a randomized algorithm almost surely
generates an infinite sequence (i.e., the probability of getting a finite sequence is
zero). Such algorithms generate computable measures, as the following theorem
shows.

THEOREM 77. (a) Let u be a computable measure on ). Then function p defined
on the Cantor space as p(z) = p(Q;) is a lower semicomputable semimeasure and
p(z) = p(z0) + p(z1) for all z.

(b) If a lower semicomputable semimeasure p satisfies the equality p(z) =
p(z0) + p(z1) for all z, then it determines some computable measure on §2.

PrOOF. (a) If a real number « is computable and a, is a rational approximation
to o with accuracy 1/n, then b, = a,—1/n is a lower bound for o that is at most 2/n
apart from a. The sequence b,, constructed in this way can violate the monotonicity
requirement but we may replace it by the sequence ¢,, = max(bg, by, ...,b,) and get
a non-decreasing sequence of rational numbers converging to a. Therefore, every
computable real number is lower semicomputable. Doing this in parallel for all z,
we obtain computable rational lower bounds for p(z) tending to p{x), and we prove
that every computable measure is a lower semicomputable semimeasure. Since 2,
is the union of two disjoint subsets Q.0 and £, we also have p(z) = p(z0) + p(z1).

(b) Assume that p is a lower semicomputable semimeasure that satisfies our
condition, i.e., p(z) = p(z0) + p(z1) for all z. We show inductively how p(z) can be
computed with arbitrary precision for every z. For empty = we have p(A) = 1 by
definition. Imagine that we already know how to find p(z) with arbitrary precision
for some string z. How can we do the same for p(z0) and p(z1)? We have to wait
until the sum of (increasing) lower bounds for p(z0) and p(z1) becomes close enough
to the (decreasing) upper bound for p(z). In other words, an upper bound for p(z1)
can be obtained if we take an upper bound for p(z) (constructed recursively) and
subtract a lower bound for p(z0), and vice versa. a
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This theorem can be interpreted in the following way. Assume that we need
a generator of random reals (=sequences of zeros and ones) whose output has a
prescribed distribution p (this means that the probability of getting an output
that starts with z is equal to p(z)). Then Theorems 76 and 77 guarantee that
if p is a computable distribution, then such a generator can be implemented as a
randomized algorithm that uses the internal source of random bits that has uniform
distribution.

The construction used in the proof of Theorem 76 can be applied to every
lower semicomputable continuous semimeasure; in the special case when we deal
with computable measures, there is a much simpler approach. Let us divide the
interval [0, 1] into two parts of lengths p(0) and p(1). The first part is then divided
again into parts of length p(00) and p(01), the second one is divided into parts of
length p(10) and p(11), and so on. In this way for each string z we get an interval
7, inside [0, 1], and the intervals 7, for all strings z of any given length cover [0, 1]
without overlaps.

Now construct the probabilistic algorithm as follows. This algorithm uses in-
dependent tosses of a fair coin to get a sequence a of random bits that has uniform
distribution. This sequence is considered as a binary representation of some real in
[0,1]; this real is also denoted by a. In parallel the probabilistic algorithms looks
for binary strings z such that the real number « lies strictly inside the interval
7, (and this is guaranteed by the available information about o and the current
approximations to the endpoints of 7,; these approximations are computed with
increasing precision).

The strings z discovered in this way are compatible (one being a prefix of
another). The more bits of o we know, the longer z can be. These strings are
prefixes of some bit sequence that is the output of our randomized algorithm.

The algorithm described can output a finite sequence. This happens if & coin-
cides with an endpoint of some 7,. However, there are countably many endpoints,
so this event has probability 0. Note also that the output of the algorithm starts
with z if and only if @ belongs to the (open) interval ,, so the probabilities are
correct.

More formally, we have described a transformation T of the input bit sequence
« into the output bit sequence 8 = T'(«) such that the image of uniform measure
under T is the measure p.

(This trick is well known. For example, imagine that you have a fair coin and
you need to simulate the coin that has probabilities 2/3 and 1/3. Then you generate
a random real uniformly distributed in [0, 1] (by fair coin tossing) and compare this
real number with threshold 2/3. To simulate the second coin tossing, you divide
both intervals [0,2/3] and [2/3,1] in the same proportion 2 : 1. The algorithm
described earlier does exactly this.)

Theorem 76 shows that it is enough to have a physical generator of indepen-
dent symmetric random bits (a fair coin) to emulate arbitrary other computable
probability distribution and even arbitrary continuous semimeasure. In fact, a
“computably biased” coin could work as well, as the following problem shows.

Show that in Theorem 75 one can replace uniform distribution by an
arbitrary computable distribution and even an arbitrary semimeasure.

(Hint: The composition of two algorithmic transformations is an algorithmic
transformation itself.)
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Show that in Theorem 76 one can replace uniform distribution by arbi-
trary computable distribution that does not have atoms, i.e., every singleton has
measure 0.

(Hint: A computable measure P can be transformed into the uniform one as
follows: as we get z from a P-generator, we output a string x such that the segment
7, is entirely in the open interval I, (of numbers whose binary representation starts
with z).)

It is important here that the measure does not have atoms: if w has positive
measure, then the value A(w) has positive probability and we cannot get a uniform
output distribution (that does not have atoms). But, as we have seen, this is the
only obstacle.

More difficult problem arises if we do not know exactly the distribution of our
(“low-quality”) source of random bits. Can we still generate some distribution that
is at least close to the uniform one? This question can be formalized in terms of the
randomness extractors — both in combinatorial terms and in terms of Kolmogorov
complexity. See the survey by A. Wigderson [219] and the references in this survey
for the combinatorial setting, and the survey of M. Zimand [224]; we do not go
into this direction in our book.

5.2. Maximal semimeasure on the binary tree

THEOREM 78. The class of all lower semicomputable semimeasures on the bi-
nary tree has the greatest element (up to a constant factor): there exists a semimea-
sure a in this class such that for every other a’ in the same class the inequality
a'(z) < ca(z) holds for some constant ¢ and for all x.

PrROOF. We can use the same idea as for semimeasures on N (Theorem 47,
p- 80). Consider a probabilistic machine A that first chooses at random some
probabilistic machine and then simulates it. If a semimeasure a’ corresponds to a
probabilistic machine A’, then a’(z) < (1/¢)a(z) where € is the probability that
machine A’ is chosen. |

Another proof deals with functions, not machines: first we construct a sequence
ag, a1, ... of semimeasures and then consider the function a = )", A;a; where \; are
computable coefficients that have sum 1 (e.g., A; = 27¢71).

A delicate point: we need a sequence that includes all (tree) semimeasures that
are computable from below, and the sequence itself should be computable from
below. This means that we need a lower semicomputable function (i,z) — (i, z)
such that (1) for any fixed ¢ the function w; : * — wu(i,z) is a tree semimeasure;
(2) the sequence u; contains all lower semicomputable tree semimeasures.

This can be done either by enumerating all probabilistic machines (and that cor-
responds to the first proof) or by enumerating all lower semicomputable functions
and then trimming them to make them semimeasures and leaving them unchanged
if they already are semimeasures. See the similar argument for semimeasures on N
(Section 4.2, p. 79). In this process, if the condition p(z) > p(x0)+p(zx1) is violated,
we should increase p(z) and so on, unless in the end this makes p(A) greater than 1.

Provide the missing details in this argument.

REMARK. The first proof of Theorem 78 gives a bit more than we have claimed.
Indeed, in this proof we obtain the lower bound not only for the probability of
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the event “output starts with z”, which is p(z), but also a lower bound for the
probability of the event “the output is exactly =”, which is p(z) — p(z0) —p(z1). So
not only a(z), but also a(z) — a(z0) — a(z1) is maximal for the universal machine
we constructed.

Prove that all these arguments can be applied to the case of algorithms
that send natural numbers (not bits) to the output one at a time. These algorithms
correspond to lower semicomputable semimeasures on the set of all (finite and
infinite) sequences of natural numbers.

(Continued) Let m be the maximal lower semicomputable semimeasure
on the set of all finite and infinite sequences of natural numbers. Show that its
restriction on the sequences of length 1 coincides (up to an O(1) factor) with the
discrete a priori probability on natural numbers (Chapter 4), and its restriction to
binary sequences coincides (up to an O(1) factor) with the maximal semimeasure
provided by Theorem 78.

Show that a(0™1) and m(n) differ at most by an O(1) factor in both
directions, where a is the maximal continuous semimeasure from Theorem 78, and
m(n) is the a priori probability of integer n as defined in Chapter 4. (Instead of
0™1, one can use arbitrary prefix-free encoding of integers.)

(Hint: See Theorem 79 below.)

Let us fix some maximal lower semicomputable semimeasure on the binary tree
and denote it by a(z). It is known as the universal continuous semimeasure. One
can call a(z) the continuous a priori probability of z, to distinguish it from the
discrete a priori probability defined in Chapter 4. However, the expression

KA (z) = —loga(z)

can be called the a priori complezity of a string z with no risk of confusion: the
minus logarithm of the discrete a priori probability (Chapter 4) coincides with the
prefix complexity and therefore does not require a special name. Since different
maximal semimeasures differ at most by an O(1) factor, the a priori complexity is
defined up to an additive O(1) term.

There is no universally accepted notation for the a priori complexity: sometimes
it is denoted by KM(x). We use KA (z) for the a priori complexity, reserving KM(zx)
for monotone complexity as defined later in this chapter. (When KM(z) is used for
the a priori complexity, the monotone complexity is usually denoted by Km(z) or
Kn(3).)

In the next section we study the properties of the a priori complexity. Let
us note that by definition the a priori complexity need not be an integer (or even
rational) number. But this does not matter much, since most of the statements
about complexity are true “up to an O(1) term”, and we may replace —loga(z)
by a minimal integer n such that 27" < a(z). An important detail: we use the
strict inequality since we want the resulting function to be lower semicomputable.
In the sequel we indicate the rare cases where this rounding (or its absence) can be
important.

5.3. A priori complexity and its properties

THEOREM T79. (a) The a priori complexity is monotone: if z is a prefix of y,
then KA (z) < KA (y).
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(b) KA(z) <l(z)+ O(1) for each z.

(c) KA(z) < K(z) + O(1) for each z.

(d) Let zg, z1, ... be a computable sequence of incompatible binary strings (i.e.,
none of them is a prefix of another one). Then

KA(z;) = K(z;) + 0(1) = K(i) + O(1).

(e) K(z) < KA(z) + 2logl(z) + O(1).

(f) Moreover, K(z) < KA (z) + K(I(z)) + O(1).

(g8) and even more, K(z|l(z)) < KA (z) + O(1).

(h) A sequence of zeros and ones is computable if and only if the a priori
complexity of its prefizes is bounded.

(i) If f : ¥ = Ny is a computable continuous mapping, then

K(f(z)) < KA(z)+ O(1)
for each string x such that f(x) is defined (is not equal to L).

Proor. (a) The measure of a subset of a set does not exceed the measure of
the set itself.

(b) The function p(z) = 274#) is a lower semicomputable semimeasure. There-
fore p(z) < ca(x) for some ¢ and all z.

(c) The machines that output a binary string (as a whole) and then halt,
form a subclass of the machines that generate output bits one by one. Therefore,
m(z) < ca(z) where m is the discrete a priori probability (as defined in Chapter 4).

It is instructive to rephrase this argument using semimeasures. Let m/(z) be
the sum of m(y) taken over all strings y that have prefix z (including z itself). Here
m is the discrete a priori probability. Modify m’, and let m/(A) be equal to 1. Then
m’ is a semimeasure on the binary tree and therefore m(z) < m/(z) = O(a(z)).

(d) Let z; be a computable sequence of incompatible binary strings. The func-
tion ¢ — a(z;) (where a is the continuous a priori probability) is a lower semicom-
putable semimeasure on N. Indeed, it is lower semicomputable; the events “output
starts with z;” are disjoint, and therefore the sum of their probabilities does not
exceed 1. Therefore K (i) < KA (z;) + O(1).

On the other hand, K(z;) = K(2) + O(1), since 7 can be algorithmically trans-
formed into z; and vice versa; finally, KA (z;) < K(z;) + O(1) according to (c).

(e) Let a be the universal continuous semimeasure. Consider the function u
defined as u(z) = a(z)/l(z)?. It is lower semicomputable. Moreover, since the
sum of a(x) over all strings = of length n does not exceed 1 (these strings are all
incompatible), we get

du@ =3 3 nz\an— )
z n l(z)=n

so we get the desired inequality.

(f) This can be proved in a similar way. This time we let u(z) = a(z)m(l(z))
where m is the a priori probability on N (as defined in Chapter 4).

(g) Consider the function

a(z), if l(z) = n,
UM =0 0 i) £
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Then for each n the function z +— u(x,n) is a semimeasure in the sense of Chapter 4
(the sum of values does not exceed 1), and we get the desired inequality.

(h) For a given computable (infinite) sequence w of zeros and ones, consider a
probabilistic algorithm that ignores random bits and just computes and sends to
the output the sequence w (bit by bit). The corresponding semimeasure equals 1
on any prefix of w; therefore, the universal semimeasure (whose logarithm is the a
priori complexity) of all prefixes of w is greater than some positive constant.

The converse implication is a bit more complicated. Assume that the a priori
probabilities (the values of the universal semimeasure a on the binary tree) of all
prefixes of w are greater than some rational e > 0. Consider the set B of all binary
strings x such that a(x) > €. The set B contains all prefixes of w and is a subtree (if
some string is in B, then all its prefixes are in B). Moreover, any prefix-free subset
of B (that does not contain a sequence and its prefix at the same time) has at most
1/e elements (since the corresponding events are disjoint, their total probability
does not exceed 1). Finally, the set B is enumerable (having more and more precise
approximations to a(z) from below, we eventually discover all elements in B).

These properties of B are sufficient to conclude that the sequence w is com-
putable. Indeed, consider the maximal (having the maximal cardinality) prefix-free
subset z1,...,zn of B. For each of z; consider all its continuations that belong to
B. All of them (for a given ) are prefixes of one sequence; otherwise, we can find
two inconsistent strings and replace z; by them (and this is not possible, since the
subset is maximal).

So for each i we have a (finite or infinite) branch in B going through z;, and
it is computable since B is enumerable. The sequence w is one of these branches
(otherwise we could add a sufficiently long prefix of w to the set that is maximal—a
contradiction).

(1) Consider the probabilistic machine that corresponds to the maximal semi-
computable semimeasure on the binary tree, and apply function f to its output.
This composition is a probabilistic machine as defined in Chapter 4, and it remains
to compare it to the universal machine that generates the maximal lower semicom-
putable semimeasure on N (the logarithm of this semimeasure is K + O(1)). O

Note that the a priori complexity is quite different from the complexities already
known (plain and prefix complexities). Its definition uses a tree structure that exists
on the set of finite binary strings, and algorithmic transformations that ignore this
structure can increase the a priori complexity more than by O(1).

Show that one can find a string x that has an O(1) a priori complexity
but zf (reversed z) has arbitrarily large complexity. (Formally: there exists ¢
such that for every n there is a string z satisfying the inequalities KA (z) < ¢ and
KA (z®) > n.)

(Hint: The string = can be of the form 100---0.)

So (unlike for plain or prefix complexity) we cannot define the a priori complex-
ity of arbitrary constructive objects (pairs, graphs, finite sets, etc.) since it depends
on the encoding.

The difference between the a priori complexity of a string z of length n and
other complexities of = (plain, prefix) is still O(logn). However, it is important
that n stands for the length of =, not for the complexity of z. (For example, if
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x is a string of n zeros, its a priori complexity is bounded while plain and prefix
complexities are not.)

Prove that for every string z at least one of the numbers KA (z0) and
KA(xl) is at least KA(z) + 1. (In this problem it is important that KA (z) is
defined as — loga(x) without integer rounding.) Prove that for every string z and
every integer n there exists a string y of length n such that KA (zy) > KA (z) +n.
Prove that there exists an infinite binary sequence w such that K4 (z) > I(z) for
every prefix of w.

Compare the last problem with Theorem 71 (p. 111) and Problem 46 (p. 42);
note that with the a priori complexity we can get rid of condition n and even the
constant O(1) appearing there.

Prove that the differences C(z) — KA (z) and KA (z) — C(z) could be of
order logn for some strings of length n (and for arbitrarily large n).

(Hint: C(x) can be much greater than KA (z) if = consists of zeros only. On
the other hand, C(z) is smaller than KA (z) if z is a prefix of a sequence from the
preceding problem. In this case KA (z) = I(z) + O(1), but C(z) can be smaller
than I(z) by logl(z); see Problem 54.)

Prove that
KA(zy) < K(z) + KA (y) + O(1),

where zy is the concatenation of strings = and y. It is important that x is on the
left of y: show that for KA (yz) the statement is false.

(Hint: Let U be a probabilistic algorithm in the sense of Chapter 4 that gener-
ates the discrete a priori probability on strings. Let V' be the probabilistic algorithm
that generates the continuous a priori probability. Then combine U and V as fol-
lows: first, run U until it outputs something and terminates. Then run V using the
fresh random bits and add its output bits to the string generated by U. To show
that KA (zy) cannot be replaced by KA (yz), let y = 0™ and z = 1.)

(Cf. Theorem 71 on p. 111 and Problem 46 on p. 42; note that now we do not
have n as a condition, and we even do not have the term O(1) in the inequality.)

Another property of the a priori complexity is an immediate consequence of its
definition. Let p be a computable measure on 2. Then for some ¢ and every = we
have

KA(z) < —logp(92;) +c

Indeed, the a priori probability on the binary tree is greater than u (or any other
computable measure, or even lower semicomputable semimeasure) up to a O(1)
factor, and it remains to take logarithms.

This (very simple) property is important since it is the basis for a criterion of
Martin-Lof randomness in terms of the a priori complexity: a sequence w is ML-
random with respect to a computable measure p if and only if this inequality turns
into an equality for prefixes of w, i.e., if the difference —logu(Q;) — KA (z) has
a constant upper bound for all z that are prefixes of w (it always has a constant
lower bound as we just mentioned).

This criterion follows from Schnorr-Levin theorem that provides randomness
criterion in terms of monotone complexity and we postpone its proof to Section 5.6
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where Schnorr-Levin criterion is considered. But first we have to define mono-
tone complexity (Section 5.5), and this definition uses the notion of a computable
mapping of the space ¥ into itself (Section 5.4).

One can characterize the a priori complexity as the smallest upper semicom-
putable (=enumerable from above) function that satisfies some condition, as was
done for plain complexity in Theorem 8 (p. 19) and for prefix complexity in Theo-
rem 62 (p. 100). Here is the corresponding statement:

THEOREM 80. The function KA is a minimal (up to an additive constant)
upper semicomputable function k such that

Z 2—k(.’t) <1

z€M
for any prefiz-free set M of binary strings.

ProoF. Since the strings z € M are incompatible (none of them is a prefix of
another one), the corresponding sets ¥, (of all finite and infinite sequences with
prefix z) are disjoint and the sum of probabilities does not exceed 1.

On the other hand, let £ be an upper semicomputable function that satisfies
this condition. We have to construct a lower semicomputable semimeasure that is
greater that 27%. The latter function is lower semicomputable but is not necessarily
a semimeasure; its values on z, z0, and z1 can be unrelated. So we need first to
increase k when it is unavoidable. Let u(z) be the supremum of all sums of the

form

Z o—k(y)

yeEM
over all prefix-free M sets of extensions of . It is easy to check that u(x) is indeed
a lower semicomputable semimeasure and 27¥(®) does not exceed a(z). O

Let us consider functions b on binary strings with values in [0, 1] that have
the following property: there exists a measure p on the tree such that b(z) < u(Qz).

(a) Show that every semimeasure on a tree has this property.

(b) Show that for every lower semicomputable function b with this property
there exists a lower computable semimeasure on the tree that is an upper bound
for b.

5.4. Computable mappings of type ¥ — X

In Chapter 4 we defined prefix complexity (in terms of shortest descriptions)
and the a priori probability (in terms of probabilistic machines). It turned out that
it is essentially the same notion (one is the logarithm of the other).

In this chapter we have defined the other notion of a priori probability (the
continuous one), and a natural question arises: Does it correspond to some nat-
ural notion of complexity defined in terms of descriptions? Indeed, such a notion
exists; it is called monotone complexity (though it differs slightly from the a priori
complexity). However, to give its definition (see Section 5.5 below), we first need
to introduce some auxiliary notions.

The algorithms (machines) used in the definition of the universal semimeasure
on the binary tree consist of two parts: the random bits generator and the algorithm
that transforms the sequence of random bits into the output. In this section we
look more closely at this second part and introduce the notion of a computable
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mapping of the set ¥ (of all finite and infinite sequences of zeros and ones) into
itself. Let us stress that we consider mappings that are defined everywhere on X;
however, some of their values can be equal to the empty string A (that represents
an undefined value in some sense).

5.4.1. Continuous mappings of type ¥ — X. Let f: ¥ — ¥ be a mapping
defined on the entire . We say that f is continuous if it has the following two
properties:

(1) f is monotone: if z € ¥ is a prefix of some y € X, then f(z) is a prefix of
fy).

(2) The value f(w) for an infinite sequence w is the least upper bound of the
values f(x) on all finite prefixes x of the sequence w.

We use the notation z < y for the relation “x is a prefix of y”; here z,y € X
may be finite or infinite. We have x < z for any z; if z < y for an infinite sequence
z, then £ = y. Requirement (1) says that f is monotone with respect to the partial
order < on X. This requirement guarantees that the values f(x) for all finite prefixes
z of some sequence w are compatible (extend each other); their “union” (=least
upper bound under <-ordering) coincides with f(w) due to (2).

Show that the notion of continuity defined above is the standard conti-
nuity notion with respect to the topology on ¥ defined in Section 4.4.3 (p. 89).

(Hint: A very similar notion of continuous mappings ¥ — N, was studied in
the same section.)

Let f: ¥ — ¥ be a continuous mapping. Consider the set I'y that consists of
all pairs (z,y) of binary strings = and y such that y < f(z). (The set I'y may be
called the lower graph of the mapping f.)

For any continuous f: ¥ — X, the set I's has the following three properties:

(1) (=, A) € ['y for every string z;

(2) If (z,y) € 'y, then (z/,y') e 'y for every ' =z and ' < ¥.

(3) If (z,31) and (z, y2) belong to ['y, then the strings ) and y» are compatible
(one of them is a prefix of another one).

The first two properties are obvious. The third one is true since any two prefixes
of a (finite or infinite) sequence are compatible.

The following theorem shows that a continuous mapping is defined uniquely by
its lower graph.

THEOREM 81. The mapping f — 'y is a one-to-one correspondence between
continuous functions of type X — ¥ and sets of pairs of strings that satisfy condi-
tions (1)-(3).

PROOF. Let f be a set of pairs satisfying conditions (1)-(3). These conditions
guarantee that for any string = the set F}, of all y such that (z,y) € F is non-empty
and every 1h,y2 € F, are compatible. Let f(z) be the least upper bound of Fy.
Property (2) guarantees that z < 2’ implies f(z) < f(z’) (since F, increases as
increases). Therefore we may define f(w) as the union (least upper bound) of f(x)
for all strings £ < w. Then the mapping f is continuous. It is easy to check that
we get a mapping which is an inverse mapping to the correspondence f — I'y. O

A continuous mapping f: ¥ — X is called computable if the corresponding set
I’y is enumerable. (By definition all computable mappings are continuous.)
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This definition is self-contained and does not require any interpretation in terms
of machines. All we say below about the interpretation of this notion in terms of
machines of special type is not necessary (and is not used in the sequel). However,
to give a motivation for this definition, it is instructive to understand which type of
machine (program) corresponds to computable continuous mappings of type & — X.

5.4.2. Monotone machines with non-blocking read operation. Let us
consider programs that use a non-blocking read operation (we can get the next bit
from the input queue and also check whether this queue is non-empty). We have
discussed this type of input paradigm in Section 4.4.2, p. 87. However, now we
assume that the output is created bit by bit, using the procedure QutputBit(b)
with a Boolean argument.

The output sequence generated by a program of this type can be finite or infi-
nite. In general, it depends not only on the input sequence but also on the timing
(the moments when keys “0” and “1” were pressed). We say that a machine (pro-
gram) is robust if the timing does not matter, i.e., if the output sequence depends
only on the input sequence but not on the timing. (Of course, the output timing
may still depend on the input timing.) A robust program determines (computes)
some mapping of the set ¥ into itself.

THEOREM 82. Robust programs compute computable mappings (in the abstract
sense, as described above); on the other hand, every computable mapping is comn-
puted by some robust program.

PROOF. Assume that M is a robust program. Let z and z’ be two (finite or
infinite) sequences such that z < z’. Let us show that M(z) < M(z’) where M(z)
stands for the output of program M on the input z (since M is robust, the output
depends only on z, not on the timing). If z is infinite, this is trivial (x = z’).
Assume that z is finite. There are two possibilities: M (z) is either finite or infinite.

If M(z) is finite, let us submit input z and wait until M(z) appears at the
output. This should happen at some point; after that we submit the remaining
bits of 2’ (that are not in z) to the input. Then we get output M(z’) which by
construction is the extension of M(z).

If M(z) is infinite, then every bit of M (z) should appear at some time after we
submit z to the input. Since the remaining bits of z’ can be sent after this moment,
this bit should appear also in M (z'). Therefore, M(z) = M(z’) in this case.

It is also clear that for an infinite sequence w the value M(w) is the union of
M (z) for finite z < w; indeed, at each moment only a finite number of input bits
have been read.

The set of all pairs of strings z,y such that y < M(z) is enumerable since we
can enumerate it by simulating the behavior of M on all inputs. So each robust
machine computes a computable mapping.

On the other hand, let f be an arbitrary computable mapping. We show how
to construct a robust machine M that computes it. The machine M enumerates
the lower graph I'y of the mapping f. At the same time M reads input bits and
stores them. If it turns out that I'; includes a pair (z,y) such that z is a prefix
of the input sequence, we output the remaining bits of y (requirements (2) and (3)
guarantee that all the strings y found in this way are compatible, so there is no
need to recall the bits already sent to the output). O
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5.4.3. Computable mappings can be enumerated. The definition of com-
putability based on robust machines seems to be more natural than the abstract
one. However, it has the same drawback as in the case of prefix-stable programs:
there is no (algorithmic) way to find out whether a given program is robust. So the
class of robust programs is not a syntactically defined class.

Nevertheless, there exists an algorithmic transformation of programs that con-
verts every program into a robust one (and does not change the mapping computed
by it if it was robust). This transformation goes back and forth between mappings
and corresponding enumerable sets: we transform a program into an enumerable
set of pairs (i.e., into an algorithm enumerating this set), then we trim this set of
pairs and transform it back into a program.

We do not describe this process in detail, since robust programs are more a mo-
tivation for the definition of a computable mapping than a technical tool. Instead,
we prove that the set of computable mappings is enumerable in the following sense:

THEOREM 83. There ezists an enumerable set U of triples (n,z,y) (here n is
a natural number while  and y are binary strings) such that:

(a) for every n the set U, = {(z,y) | (n,z,y) € U} is a lower graph of some
computable mapping un: X — X (i.e., it satisfies requirements (1)-(3) of Theo-
rem 81);

(b) every computable mapping of the set X into itself is equal to u, for somen.

Proor. Consider the universal enumerable set W of triples: every enumerable
set of pairs appears among W,,. Then we trim W to enforce requirements (1)—(3) for
all W,, and leave unchanged the sets W, that already satisfy these requirements.
After that all W,, are lower graphs for some computable mappings w, and any
computable mapping appears among w,.

The trimming is made in two steps: first we delete inconsistencies and then we
fill the gaps. The inconsistency appears when two pairs (z,%1) and (z2,y2) are
found such that x; is compatible with x5 but y; is not compatible with yo. (It is
easy to see that two pairs with this property cannot both appear in the lower graph
of a continuous mapping.) To eliminate it, we delete the pair that appeared later
in the enumeration. Then we fill the gaps by adding all pairs (z, A) and adding for
each pair (z,y) all the pairs (z’,9') with =’ = = and ¥/ < y. It is easy to see that
the set remains enumerable and is the one we need. a

Theorem 83 is used in the next section to prove that an (optimal) monotone
complexity function exists.

5.5. Monotone complexity

To define monotone complexity, we use computable mappings of type ¥ — X
as decompressors (description modes). For a fixed decompressor D: ¥ — ¥ the
monotone complezity of a string = (with respect to D) is defined as the minimal
length of a string y such that x < D(y). Monotone complexity is denoted by
KM p(z).

(This definition can be applied to infinite sequences z without any changes, but
we follow the tradition and consider KM p(z) only for finite = unless the opposite
is said explicitly.)



130 5. MONOTONE COMPLEXITY

Prove that the monotone complexity of an infinite sequence (defined in
a natural way) is the limit of the increasing sequence of monotone complexities of
its prefixes.

THEOREM 84. There exists an optimal decompressor, i.e., a computable map-
ping D: ¥ — X such that KM p is minimal up to an additive constant: for any
computable D': ¥ — ¥ there exists a constant ¢ such that

KMp(z) < KMp/(z)+c
for every string x.

PRrROOF. Let U be the set of triples whose sections are the lower graphs of all
computable mappings (constructed in Theorem 83, p. 129). Let D,, be a computable
mapping that has lower graph U,. Then let us define a mapping D as

D(nz) = D,(z2),

where 71 is the prefix-free encoding of the number n (say, its binary representation
with doubled digits followed by 01) and z is an arbitrary element of ¥. In terms
of the lower graph, consider the set of all pairs (fiu,v) such that (n,u,v) € U.
It is easy to check that we indeed get a computable mapping. If some (mono-
tone) decompressor D' has number n (i.e., its lower graph coincides with U,,), then
KMp(z) €< KMp/ (z) + I(n) for every z. d

As usual, we fix some optimal monotone decompressor (description mode), i.e
some computable mapping D that satisfies the statement of this theorem, and define
monotone complexity of a string x as KM p(z). We use the notation KM (z) (the
subscript D is omitted).

(Warning: Sometimes the notation KM(z) is used for the a priori complexity.
Usually in this case the monotone complexity is denoted by Km, as in [103], or
K..)

THEOREM 85. (a) Monotone complezity is a monotone function, i.e.,
KM(z) < KM(y) ifz <y

the function KM is upper semicomputable;
KM(z) < U(z) + O(1);
K (z) € K(z) + O(1);

KA(z) < KM(z) + O(1);
) an infinite sequence of zeros and ones is computable if and only if the mono-
tone complexity of its prefizes is bounded;

(g) if f: £ — X is a computable mapping, then KM (f(z)) < KM(z) + O(1)
(the constant hidden in O(1) may depend on f but not on x);

(h) if f: X — N is a computable mapping, then K(f(z)) < KM(z)+ O(1)
(the constant hidden in O(1) may depend on f but not on z).

b
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It is instructive to compare these statements with the properties of the a priori
complexity given in Theorem 79 (p. 122). Since monotone complexity is not smaller
than the a priori complexity (statement (e)), some properties of the a priori com-
plexity are automatically valid for monotone complexity. In particular, we conclude
immediately that K (z|l(z)) < KM (z)+0(1) and K (z) < KM (2)+ K (I(z))+0(1).
Note also that for computable sequences of incomparable strings (none is a prefix
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of another one) the prefix and the a priori complexities coincide up to an addi-
tive constant and monotone complexity is between them. Therefore it coincides
with them: if xo,),... is a computable sequence and z; # z; for ¢ # j, then
KM(z;) = KA(z;) + O(1) = K (z;) + O(1).

PROOF. Statement (a) is a direct consequence of the definition: if D(u) = v,
then D(u) = z for every z that is a prefix of y. One could say that in the definition
of monotone complexity one needs to describe not the string exactly, but any of its
extensions, and the longer the string is, the more difficult this task becomes (the
set of extensions becomes smaller).

Statement (b) is true since the lower graph of a computable mapping is enu-
merable, and the set of triples (z,y,7), such that {(y) < r and (y, z) belongs to the
lower graph, is enumerable, too. The upper graph of KM is a projection of this set.

To prove (c) it is enough to note that the identity mapping ¥ — ¥ such that
D(z) =z for all x € ¥ is computable.

To compare KM and K (statement (d)) it is enough to note that any com-
putable mapping ¥ — N, becomes a computable mapping of type ¥ — ¥ if N
is embedded into ¥ (and L becomes an empty string). More formally, let D be
a prefix-stable decompressor used in the definition of K. In can be extended to
a computable mapping of type ¥ — ¥ (the strings where D was undefined are
mapped into A, and the values on infinite strings are determined by the continuity
requirement ).

To compare KM and KA (statement (e)), we have to recall the remark we
started with: a probabilistic algorithm is a random bits generator whose output
is fed into a computable mapping of ¥ into itself. Let D be the optimal decom-
pressor used in the definition of the monotone complexity. Consider a probabilistic
algorithm that feeds a random sequence into D. What is the probability of getting
some string z (or some its extension) as the output? Obviously, this probability is
at least 274¥) for any string y such that D(y) %= z, since the random string starts
with y with probability 2=%¥), and this guarantees that the output of D starts with
z. (We return to the comparison of KM and KA in Theorem 87.)

In statement (f), one implication is a straightforward corollary of the corre-
sponding statement of Theorem 79. The other implication is obvious—all the
prefixes of a computable sequence w have bounded complexity since there exists
a computable mapping ¥ — ¥ that is equal to w everywhere.

To prove (g), let us consider the monotone decompressor that is the composi-
tion of an optimal monotone decompressor and the mapping f. Note that in this
statement the sequence f(z) can be infinite. If we do not want to deal with the
complexities of infinite sequences, the statement should be reformulated as follows:
for each f there exists a constant ¢ such that for all z,y such that y < f(z) the
inequality KM (y) < KM(z) + ¢ holds.

A similar argument works for (h), but this time the composition of the optimal
monotone decompressor and f is a prefix-stable decompressor. (One can also derive
this statement from a similar statement about the a priori complexity.) O

Prove that KM (zy) < K(z) + KM(y) + O(1) (here zy stands for the
concatenation of strings = and y). In particular, KM (zy) < K(z) + I(y) + O(1).
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(Hint: Consider the optimal prefix-free decompressor D, and the optimal
monotone decompressor D,,. Now let D'(uv) = Dp(u)Dm(v) (when D, stops
reading the input, the remaining part of the input is read by D,).)

Show that in the preceding problem one can replace KM (y) by the condi-
tional monotone complexity KM (y|z) defined in a natural way (we do not require
monotonicity with respect to condition z, see Chapter 6 for details).

Prove that statement (g) remains true if we replace KM by KA (in the
both sides of the inequality).

(Hint: The mapping f can be applied to the output of a probabilistic machine;
the new probabilistic machine is not better than the optimal one.)

We can give an equivalent definition of monotone complexity that does not use
computable mappings of type ¥ — ¥; in this way we get a simpler (but somewhat
less natural, in our opinion) definition.

Let = be the set of all binary strings. Consider the binary relation “to be
compatible” on this set: z is compatible with y if z < y or ¥ < z (an equivalent
property requires that x and y are prefixes of the same string). An enumerable set
(binary relation) D C = x = is called consistent if it has the following property:

{(z1,91),{(z2,¥2) € D and (2, is compatible with z3) = (y; is compatible with y2)

for all z),z2,y1,y2. Then the monotone complexity of a string y with respect to
D is defined as the minimal length of a string = such that (z,y) € D. There is an
optimal consistent enumerable binary relation on =.

Prove that this definition leads to a notion of monotone complexity that
differs from the previous one by at most O(1).

(Hint: The lower graph of any computable mapping ¥ — ¥ is a consistent bi-
nary relation. On the other hand, if D is a consistent binary relation, the gap filling
described in the proof of Theorem 83 makes it a lower graph of some computable
mapping.)

It is instructive to compare this definition with the definition of plain complexity
(where we use graphs of computable functions, i.e., uniform enumerable sets instead
of consistent relations D). In the definition of monotone complexity we do not
require D to be a graph of some function: several pairs (z,y) with the same z and
different y are allowed; we require only that all y’s in these pairs are compatible.
This makes KM smaller. For example, all prefixes of some computable sequence
(say, 0000 - --) have bounded complexity (note that C(0") = C(n) is about logn
for most n).

On the other hand we apply additional restrictions: if a string z is a description
of some string y, then the strings that are compatible with  can be descriptions
only of strings that are compatible with y. This makes complexity larger. This
is especially clear when we consider complexities of the elements of a computable
sequence of pairwise incompatible strings: in this case monotone complexity coin-
cides with prefix complexity, and the difference can be about logn for strings of
length n.

Summing up (and recalling that both the a priori complexity and the plain
complexity differ from the prefix complexity at most by O(logn) for strings of
length n), we come to the following conclusion:
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THEOREM 86. The difference between C(z) and KM (z) is bounded by O(logn)
for strings of length n and may be both positive and negative with absolute value
logn — O(1) for n-bit strings for infinitely many n.

We return to the comparison of different versions of complexity in Chapter 6.
Now we provide only one statement of this type:

THEOREM 87. The difference KM (z)— KA (z) is not bounded from above; more-
over, for infinitely many n there ezists an n-bit string x for which this difference is
at least loglogn — O(logloglogn).

This theorem (proved by Day [48]) strengthens an old result by Gécs [57] that
established a weaker lower bound for the difference KM (z) — KA (z). Both papers
use a reduction to a game, for which a strategy for one of the players is constructed.

Recall that in both definitions (of KM (z) and KA (z)) we use computable
continuous mapping f: ¥ — X and consider the preimage of the set ¥, of all
sequences starting with z. Defining KA, we are interested in the measure of this
preimage, while for KM we are looking for the largest interval of type X, which is
a subset of this preimage. This shows that KA ; < KM, and the difference can be
large, if the preimage is sparse (if it consists of large number of small intervals). The
question is how large this difference could be for an optimal computable mapping.

We have seen a similar situation before. Recall our metaphor of space alloca-
tion (we allocate subsets of [0, 1] for countably many clients) used in the proofs of
Theorem 46 (p. 78) and Theorem 58 (p. 93). The difference between prefix com-
plexity and the logarithm of the a priori probability on N has the same nature (the
difference between the total measure and the maximal contiguous interval). How-
ever, in that case we were able to perform some kind of consolidation by modifying
the description mode, and the price was just a constant factor.

Now we have a more delicate task since our clients form a hierarchy. This makes
reorganization more difficult and consolidation leads to more than the constant
factor overhead.

5.5.1. The proof of Gacs—Day theorem. This is probably the most diffi-
cult argument in the entire book (though we tried hard to simplify the arguments
from original papers of Gacs and Day), and it is not used in the rest of the book,
so feel free to skip it if it looks too difficult.

We start by describing some game. The two players are called Client and
Server. The game has two parameters: a rooted tree and some rational d > 1.
At each moment of the game the vertices of the tree are labeled by non-negative
rational numbers; the label of vertex z is called the reguest of this vertex (at the
given moment). The request of each vertex is at least the sum of requests of its
sons, and the request of the tree root is at most 1/d.

Requests are chosen by Client. Server tries to serve these requests by allocating
space in 2. At each moment of the game Server allocates some subset of 2 for each
vertex. This subset should be a union of finitely many intervals (=sets 2;). A set
allocated for each vertex x should contain the sets allocated to the sons of z, and
the sets allocated to brothers should be disjoint. This implies that sets allocated
to incomparable vertices (one is not a descendant of the other) are disjoint.

The players alternate. Initially the requests of all vertices are zeros and all
the allocated subsets are empty. At every move, Client may increase requests for
some (or all) vertices but should not violate the restrictions stated above (otherwise
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she loses the game). In response, Server may increase the sets allocated to vertices
(also obeying the restrictions). Her goal is to satisfy all the requests in the following
sense: the set allocated to each vertex i should contain an interval whose length is
at least the request of 7. (The length of ) is 27" for an n-bit string z. As we have
already explained, we care about the contiguous intervals in the allocated space
and not about its total size.)

If at some moment Server is unable to satisfy the requests made by Client, she
loses. If the game is infinite (and both players follow the restrictions), we say that
Server wins.

One can imagine that Client is the CEO of a big hierarchical organization
which needs some space for its divisions, subdivisions, subsubdivisions, etc. At
every moment it is known how much space each group requires, and the space
allocated to each subgroup should be inside the space for the parent group. The
space cannot be reused, it can only increase, and only the contiguous space counts
(the size of the maximal interval, not the sum of the sizes of intervals).

Increasing the height of the tree and adding branches, we make the task of
Server harder. The following statement says that it is enough to use trees of depth
O(d) and with (constant) branching factor 20@°? ¢4 let Client win:

THEOREM 88 (Géacs-Day). For each d > 1 and for a tree T of depth O(d) and

branching factor 20D 4t every vertez, Client has a computable winning strategy
in the corresponding game. (Computability means that there is an algorithm that,
given d, implements this strategy.)

Gécs has proven a similar result for trees with an infinite (or very large finite)
branching factor. Day improved his construction and made it work for much smaller
branching factors.

Before constructing the winning strategy, let us explain how its existence im-
plies Theorem 87. Note the branching factor can be decreased if we allow an
increase in the depth: for example, the tree with a root and 2" sons of the root
can be embedded into a binary tree of height n (the requests for the intermediate
vertices are reconstructed as the sums of the requests of the leaves above them).
In a similar way the tree from Theorem 88 can be embedded into a binary tree of
height O(d)°(?, so Client wins for this binary tree.

Let d = 2¢, where c is some natural number. Theorem 88 guarantees that Client
has a computable winning strategy on the binary tree of height 29(¢2°), Let us use
this strategy against Server who follows the optimal computable mapping f: ¥ — X
used to define the monotone complexity. This means that Server enumerates all
pairs (y,z) such that z < f(y) (i.e., v is a description of z). When a pair (y, z)
appears, the interval ,, is allocated to vertex z (if z is inside our tree—if the length
of z exceeds 2°(°%)| then z is ignored). When (and if) all the requests of Client
are satisfied, Server informs Client that she made her move. After the next move of
Client, Server resumes the process and continues until the new requests are satisfied
(if it never happens, Server loses the game by not making a move).!

Theorem 88 guarantees that at some moment Server loses (she never satisfies
Client’s request). This means that there exists a string z of length at most 20(¢2°)

1Readers from the former USSR and similar countries should be familiar with planned
economies when supply does not follow demand: the factories just produce what is planned until
the customers become satisfied (if they are lucky enough to make modest requests).
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such that the request for = at some moment exceeds 2~ ¥M (=) On the other hand,
during the game, Client (using her computable strategy against the computable
Server) enumerates from below some semimeasure p. on the tree: its value at
vertex z is equal to the limit (=supremum) of all requests for z. Since Client wins,
for some = we have KM (z) > —log u.(z). The weighted sum of semimeasures p.
with weights 2°/c? is a lower semicomputable semimeasure on the infinite binary
tree and is bounded by the continuous a priori probability (up to an O(1)-factor).
So the a priori probability is at least eu.(x)2¢/c? for some fixed £ > 0 and for all
¢, z. We conclude that for every c there exists a string x of length at most 20(¢2°)
such that

KM(z) > KA (z) +c—2logc—O(1).
Let n be the length of z; then ¢ is at least loglogn — O(logloglogn) and therefore
KM(z) > KA (z) + loglogn — O(log log log n).

Note that our argument constructs a string z of length n with this property for
infinitely many n, but not for all (sufficiently large) n.

Prove that for infinitely many n the following is true: for all strings
of length n the difference KM (z) — KA (z) is bounded by logloglogn. Here the
iterated logarithm can be replaced by an arbitrary non-decreasing unbounded com-
putable function.

(Hint: If some rare lengths are declared as very important, we can allocate the
space for strings of each rare length in a special area reserved for this length, thus
making the overhead rather small compared to length.)

PROOF. Let us start the proof of Theorem 88 with an informal discussion.
What is the source of difficulties for Server? Imagine that Client requests a very
small amount of space for some vertex. Server then has a choice: either allocate
a part of the free zone (neighbor intervals are not allocated for any other vertex)
keeping in mind the possible increase of the request, or do not think about this
possible increase and allocate some (maybe) non-extendable space.

The danger in the first case is that this reserved space will never be used, if
Client will not increase the request or will increase it so much that this reserved
space cannot be used (as it is too small anyway). In the second case, if Server
allocates neighbor intervals to other vertices, and then Client increases the request,
the originally allocated interval is lost, since only contiguous intervals matter.

The winning strategy for Client exploits this dilemma. To keep track of the
process, we look at e-neighborhoods of different vertices. Let € < 1 be a negative
power of 2. By e-neighborhood of some set X in the Cantor space we mean the
union of all intervals of length e that have non-empty intersection with X. The
interim goals of Client are formulated as follows: the ratio

the size of e-neighborhood of the space allocated for x

request for x
is at least some k. For large k, if the requested space is more than 1/k, Server loses.
Following this plan, we construct strategies for Client achieving that at some
moment

e the request for the root is at most «;
e the e-neighborhood of the space allocated for the root, is at least 5.
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Here o and 8 are some parameters. The e-neighborhood of the space allocated for
the root is called gray space: these e-intervals can never be allocated for any other
vertex. More precisely, we use the following parameters:

e the tree for which the game is played;

¢ ¢ that is used to measure e-neighborhoods;

e maximal allowed request a for the root;

e the required size § for the gray area (i.e., the e-neighborhood of the space

allocated for the root).

We are interested in the values of these parameters such that there exists a winning
strategy for Client, i.e., she can achieve that e-neighborhood of the space that
Server allocates to the root has size at least 5 while the root request is at most a.

EXAMPLE 1. Let € be an arbitrary negative power of 2, let 8 = ¢, and let
o be positive and much smaller than 3. Then the (trivial) strategy “just request
a for the root” works for every tree: whatever Server allocates for the root, this
(non-empty) set has an e-neighborhood of size at least .

So it is easy to get arbitrarily high amplification (high 8/a) for small 5. The
difficult case is when /3 >> €, and in this case we construct the strategy recursively by
combining strategies for different trees and using inside the strategy some recursive
calls of other strategies for the subtrees. In this inductive (recursive) construction it
is convenient to add amplification as a parameter, introducing one more parameter
k and requiring that the ratio (size of the gray area)/(request) is at least k. For k =
B/a, this requirement is obviously true, but we will use strategies that guarantee
given amplification k, while the request size (and the gray area size) may vary in
some limited way.

ExAMPLE 2. Let T be the tree where the root has m sons, and each of them
has two sons (=grandsons of the root). Let ¢ be some (negative) power of 2, let
a = 8 = me for some integer m, and let k& = 3/2. (We see that k is important here:
we do not specify the exact size of the request and the exact size of the gray area,
but the second one should be k times greater than the first one, and me should be
in between.)

Here is the winning strategy for these values. To make trouble for Server,
Client selects for each son of the root one of its sons, and requests £/2 for all
these grandsons of the root. (We specify here the requests for leaves only; for other
vertices the requests are computed as the sum of requests for the descendants.) Now
Server should decide which grandsons should be paired with their cousins (getting
€/2 inside one interval) and who should be “a single occupant of a double room”
(the neighbor interval of size £/2 is kept free). Looking at Server’s decision, Client
increases the requests trying to make life harder for Server: for grandsons who do
not have the reserve (have neighbors), Client requests £/2 for their brothers, thus
making the father’s request €. Then Server needs to allocate a fresh interval of size
¢ for the father (since the old one cannot be used, part of it is already allocated for
his niece; the reserves in other places are also too small). Therefore, for each of m
sons of the root one of two things happen: either € was grayed for €/2-request, or
(3/2)e was allocated for e-request. In both cases the amplification is at least 3/2.2

2In fact, it is easy to achieve amplification 3/2 by asking for each son of the root slightly
more than &/2: the interval sizes are powers of 2, and Server is forced to allocate an interval of size
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Let us now try to combine two strategies with the same amplification factor
k. Our goal is to keep this amplification but increase the size of the request and
of the gray area. Consider a tree where the root has two sons with subtrees T)
and T5. Assume that Client has a winning strategy for 1), ay, 51, €, and a winning
strategy for Th, a2, B2, €. Let Client use these two strategies sequentially: the first
strategy is used for T}, and when it wins (the gray area is large enough), the
second strategy is used for T5. (One can assuine without loss of generality that
during T)-game nothing is allocated for the vertices in 75, since these allocations
can be postponed.) The total size of requests is then bounded by «; + as. But we
cannot claim the additivity for gray areas: it is quite possible that the size of the
e-neighborhood of the union is smaller than the sum of the sizes of e-neighborhoods
of the parts. For example, in the second game Server can use some space left as
reserve in the first game.

To avoid this problem, we use different values €, and e, for the strategies.
Assume that €) <« €5 and the second strategy uses only requests of size at least
€y. Then Server cannot use the gray area of the first game for the second one.
Informally, we accumulate reserves “on different levels”, first on a micro level, then
on a macro level. However, we cannot say that the gray areas are added. While the
space allocated for T» does not intersect the £;-neighborhood for T;, the opposite
is possible: space allocated for 7) may well intersect the e5-neighborhood for T5.
To deal with this problem, we again consider a more general setting and agree that
some set A C 2 is fixed before the game starts; we say that A is unavailable to the
server, and count only the new gray intervals. Let us explain in detail what all this
means.

The final version of the game has the following parameters:

e atree T}

a subset A C Q (“space unavailable to Server”);

o § (shows how the neighborhood of the unavailable space is measured);
€ (shows how the neighborhood of the allocated space is measured);

o the maximal allowed request a for the root;

o the required size of gray area f3;

o the required amplification factor k.

We assume that € and § are both (negative) powers of 2, and ¢ > 4.

Here are the rules of the game. Client increases requests for vertices of T
(the request of a vertex should be at least the sum of requests for its sons). The
minimal request is §, and the root request should not exceed a. Server allocates
space for vertices of T, fulfilling the requests, and should use only intervals that do
not intersect A. Client wins if the size of the new gray area (e-neighborhood of the
allocated space minus 8-neighborhood of A) is at least B and is at least k times the
request for the root. As before, adding vertices to the tree or increasing €, we make
Client’s task easier. This happens also if we decrease 8, 3, or k. One may assume
without loss of generality that A is made of intervals of size at least J (since only
the d-neighborhood of A matters).

at least e. But this rounding effect cannot be scaled recursively, so we will ignore it. Also we can
use the sons only (not the grandsons), first asking /2 for each of them and then increasing the
requests for the vertices where Server provides no reserve. However, the version with grandsons
is closer to the strategy in the general case (see the proof of Composition Lemma, page 138), so
we have chosen this version.
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When this definition is given, the arguments above prove the following state-
ment.

COMPOSITION LEMMA. Assume that for some tree Ty and for every unavailable
set A, Client can win the game with parameters €y, 01, ay, b1, k1. Assume also that
for some tree T\ and for every unavailable set she can also win the game with
parameters €g,02, 0, Ba, ka. Finally, let us assume that e, = 6y and ky = ko (we
denote this value by k). Then for the tree T that consists of the root with two sons
having subtrees T1 and Te and for every unavailable set, Client can win the game
with parameters £9,6y, ) + aa, By + Pa, k.

The composition game starts with some set A, the space unavailable to Server
during the game. This set is used without changes in the first of two composed
games; for the second game we add to this set the area grayed during the first game.
It is easy to see then that the newly grayed areas in both games do not intersect.

In fact, in the sequel we do not use exactly the statement of the lemma, but use
the same idea in a slightly different situation: the subtrees where games are played
are not fixed in advance but are chosen during the game (the next subtree depends
on the game on the previous one). Also we combine many strategies, not just two.
Because of this, we get a huge gap between the values of £ and 4 in the combined
game: § for each game is equal to € in the preceding one and significantly smaller
than € in the current game.

This is not enough to finish the proof: the amplification factor for the combined
game is the same as for each game in the combination, so we need some other trick
to increase amplification. Before giving an example of amplification increase, let
us make a simple technical remark about the game definition. We may assume
without loss of generality that the root request is at least 8/k at the end of the
game. Indeed, if it turns out to be less (due to some unexpected luck), we just
formally increase it at the end on the game, and the winning condition is still
satisfied. We call this trick final adjustment in the sequel.

EXAMPLE 3. Let us show how Client can achieve amplification factor 2. The
idea is to follow the same scheme as in Example 2, but use (instead of direct /2-
requests for grandsons) the recursive calls of the strategy that gives amplification
3/2 (from the same Example 2).

Let us recall what was achieved there. For a given « and for arbitrarily small
€ (such that m = a/e is an integer), Client has a strategy on a tree of height 2
that allows her (for § = £/2 and for an arbitrary unavailable3 set A) to get at least
a newly grayed space with a root request at most o and an amplification factor
at least 3/2. The tree has m sons of the root, and each has two sons. Note that
m should be an integer, but this is not a problem, as we will use the strategy of
Example 2 only when « is a multiple of ¢.

To compose strategies of this type, each next strategy should have an e-parame-
ter twice as big as the preceding one. It is important that we can use the same value
of @ in all the games; the construction of Example 2 makes the choices of @ and

3In Example 2 we did not consider the unavailable space, but the same strategy works in
this case: we say that a grandson of the root has a reserve if the e/2-interval allocated to this
grandson can be extended to the e-interval in place (the other half of the e-interval is not allocated
to the other grandson and does not intersect the unavailable space). We use here that § = ¢/2:
the newly grayed area is disjoint with unavailable space because of this.
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€ independent. Knowing in advance how many strategies we want to compose, we
decide what should be the initial value of ¢ and § (for the first strategy in a row).
In the sequel we assume that the parameters of the composed games are chosen in
this way and return to our task: achieve k > 2, if the e-neighborhood is measured
at the end of the composed game (for some €), and we are free to choose § used to
measure the d-neighborhood of the unavailable space in the composed game.

We show how Client can achieve some k > 2 for arbitrary ¢, for every o = me
and for small enough &, with root request at most o and for newly grayed area at
least o (so 8 = a), if a tree is chosen in a suitable way.

Owr construction is similar to Example 2. The root has (as before) m sons,
but now has more grandsons. Let us agree that each son of the root has 12 sons (it
will be enough). Instead of making direct requests for the grandsons (as was done
in Example 2), we recursively call the strategies described above, so each grandson
has a subtree of height 2 (its width should be big enough for all values of ¢ used in
the subgames), and the total height of the tree is 4.

At each moment we look at the sons of the root and consider those of them
who currently do not have a reserved interval; by a reserved interval for vertex z
we mean an interval of size € that contains some space allocated to z and which
does not contain any space allocated to vertices that are not descendants of z, as
well as any points of the unavailable set (specified at the beginning of the game).
In other words, an interval is reserved when (1) its part is already allocated for
z, and (2) this interval may still be used for z if the request for z increases and
becomes €. (Note that the reserved interval may disappear later if some its part
is allocated to another vertex.) So we consider some son z that does not have a
reserved interval, take some son y of x (not used before for the same purpose), and
run a strategy with amplification factor 1.5 and o = ¢/8 on y. The request for y
made by this strategy is at most o = ¢/8 and (because of final adjustment, see the
paragraph before Example 3 on p. 138) at least a/1.5 = €/12. After that (when
the strategy wins its game) look at z again: maybe now z has a reserved interval,
and maybe not. In the latter case, we can apply the same trick to some other
son of x—or, if we wish, we can select some other root’s son that does not have
a reserved interval—both options are OK. In any case, we repeat this procedure
until all sons of the root have their reserves. One additional precaution is needed:
if the request for some root’s son exceeds (7/8)e, we just increase its request up to
€ (which creates a reserved interval automatically) to avoid the possibility that the
request increases by /8 and becomes greater than €. Each call of the 1.5-strategy
increases the request of the corresponding son of the root by at least £/12, so we
never need more than 12 sons for each son of the root. For the same reason, the
total number of these calls is bounded by 12m.

What do we achieve by all these tricks? For each son of the root look at the
last moment when we considered this son and finally got a reserved interval for it.
This reserved interval has size € and it was not a reserved interval before the last
step. Since it became a reserved interval (and continued to be a reserved interval),
it contains no points of the unavailable set and no space allocated to other vertices
(except for the descendants of z). Since it was not a reserved interval before, it had
no space allocated for z, and therefore it was completely empty. The conclusion:
the space that was grayed during previous calls of the 1.5-strategies is not part
of the reserved intervals. This space already gives us 1.5-amplification, and by
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adding (rather big and almost empty) reserved intervals, we get k-amplification for
k = 20/9 > 2, as one can check.

Let us make a detailed accounting. Let 7y be the sum of the requests made
during all not-the-last calls for all sons of the root. These calls provide a grayed
area of size at least (3/2)y that does not intersect with the reserved intervals. In
total, we get a grayed area of size at least (3/2)y+ me, and all our requests in total
are bounded by v+m(e/8). So there are two parts: for one part, amplification is at
least 3/2, for the other part, the amplification is 8, and the second part is not too
small compared to the first, so in total we get a significant increase. Technically,
v < me implies
[§ —I—ms] P> @[ +m—€-]

57 Z9 "™
(a simple computation). So we get a desired strategy for @« = 8 = me and k = 20/9
(so k > 2).

Now the big picture should be more or less clear. Having the strategy for k =
20/9, we can call it recursively for the grandsons of the root (therefore considering
the tree of height 6 with large branching factor; one can get an explicit upper bound
for this factor). With some tuning of the parameters, such a step can increase the
amplification factor k£ almost by 1. Indeed, if we take a very small fraction of
instead of £/8 (used in our last example), the overhead that happens during the
last step (when the final reserved intervals appear) is negligible, and we get reserve
me in addition to a k-times increase achieved during recursive calls. If the total
request vy is close to its maximal value me, we increase amplification almost by 1,
and if v turns out to be smaller, the amplification is even better. To get the upper
bound for the width of the tree, we recall that we may assume without loss of
generality that each recursive call increases our request.by some guaranteed value.
This shows that for a tree of height O(k) and large enough branching factor, Client
can guarantee k-amplification, and this is enough for Gécs (but not for Day).4

Let us now go through the details of this argument. We consider values of
k > 1 that are multiples of 1/2. By induction we prove that for every e < a < 1
that is a power of 2 there exists some § < ¢ (also a power of 2) such that Client
has a winning strategy in the game with parameters ¢,4d, o, a, k and an arbitrary
unavailable set A on the tree that has height 4(k — 1) and an infinite (or large
enough) branching factor.

The induction base (k = 1) is obvious. For the induction step, we assume that
the statement is true for some k, and prove it for k+1/2. We use the strategy from
Example 3 on the tree of height 4(k + 1/2 — 1), now applying the k-amplification
strategy (induction assumption) for the grandsons of the root (the subtree height
is exactly 4(k — 1) there). The value of « for these games is chosen as a power of 2
in the interval (e/(6k),e/(3k)]. (Since the upper bound in this interval is twice as
big as the lower bound, it contains some power of 2.) Each recursive call increases
the root request at least by €/(6k?), so the number of recursive calls is bounded

4In fact we need some additional steps to finish the proof of Gécs’ result. We have a strategy
for an arbitrarily large amplification k, but what we need is a strategy with an arbitrarily large
ratio B/a: we need the grayed area to be more than 1 and the request at most 1/d. Such a
strategy can be easily constructed as a composition. For example, let us apply the strategies with
amplification £ = 2d and a = 1/(4d) for the sons of the root until the total request becomes greater
than 1/d — 1/(4d). We get a strategy with parameters & = 1/d and 8 = 2d(1/d — 1/(4d)) = 3/2
for the tree of size O(d), which is enough.
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by 6mk?. So we are able to choose in advance the parameters € and ¢ for all the
recursive calls. Also we can bound the number of grandsons of the root used in this
process: it is enough to have 6k2 sons for each son of the root.

When all the sons of the root have their reserved intervals, we achieve our goal.
Indeed, let v be the sum of requests made during non-last recursive calls. This
gives us a grayed area of size k7 outside the reserved intervals, so in total we get at
least ky +me for the grayed area while making requests for at most v +m(e/(3k)).
Since v £ me, we get k + 1/2 amplification factor

ky +me = (k+1/2)(-y + me/3k)
(a simple computation).

This strategy works for infinite branching and for large enough finite branch-
ing (depending on &, @, k)—but the required branching factor is much larger than
needed for Theorem 88. Let us explain why this happens. The tree for given €, a, k
has branching factor /e at the root. In the sons of the root the branching factor
is small enough not to be a problem, but we should look at the grandsons. To
estimate the branching factor there, we need to bound the ratio o//¢’ for the pa-
rameters of the recursive calls made for the grandsons. The parameter o is about
€/(3k) and is the same for all the calls, but the parameter &’ is different for different
calls. The minimal ¢’ corresponds to the chain of (a/e)6k? application of the & — §
transformation from the induction assumption, and it is much smaller than the
original €. It means that the branching factor for the grandson that is processed
first should be very large (in fact, we do not know which of the grandsons will be
processed first, so we need this large branching for the “oldest” son of every son).%

So the problem with our strategy is that it makes too many recursive calls. It
turns out that O(k?) recursive calls (instead of O(k%a/¢)) are enough if we use a
more clever strategy. It is important that for this strategy the number of calls does
not depend on a/e.

Here we discuss the modification of the induction step. Now the (k + 1/2)-
strategy processes all the sons of the root that do not have reserved intervals yet, in
parallel (and not sequentially, as we did before). More precisely, at each iteration we
consider all the sons that do not have reserved intervals, we choose one unprocessed
son for each of them, and we process these sons (who are grandsons of the root)
together, making a recursive call. This means that the format of the game is now
changed: it is played not for one tree, but for a family of identical disjoint trees.
(Server should provide disjoint intervals for vertices that are in different trees.)
This modification alone is still not enough: it may happen that for each iteration
only one son of the root does not have a reserved interval. In this case there is no

5To get a bound for the branching factor for grandsons, we need to bound the ratio €/§ in
the strategy by some function fi(a/€). The value fi,1/2(cr/€) is a product of (a/e)6k? values of
the form fy(a’/e’). Here o’ /e’ are different: the first £ can be o/, but the following ones should
be much smaller: the second €’ should be f;(1) times smaller than the first one, the third should
be fr(fx(1)) times smaller than the second, etc. The last term in the product is obtained by
(a/€)6k? iterations of fy, starting with 1. Therefore,

Fry1y2(e/e) = 3k - fr(1) - fu(fe (1)) - fu(Fe(Fe())) - ..oy
the product has (a/e)6k? factors, and the equation is only approximate since the first ¢’ is only
close to £/(3k). And we can start, say, with f3/3(a/€) = 2 (see Example 2). Then f2(o/€) grows
exponentially as /e increases: fa(a/e) > 2%/€. And fa5(cr/e) is a tower of exponents with base

2 and height a/e. (One could use the strategy from Example 3 and increase k by (almost) 1
during the induction step, but this would only slightly postpone the problem.)
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real parallelism. To avoid this problem, we should not wait until all the sons (of
all the roots—now we have several trees) have reserved intervals; it is enough for
us if sons with reserved intervals form a large enough fraction. The threshold for
“large enough” should be greater than 1/2 (if we want a 1/2-increase in k); let us
use, say, 3/4 as the threshold. This implies some loss: the value of 5 is now only
(3/4)a; in its turn, this makes the lower bound for the sum of requests for all the
roots smaller, only 3/4 of the old one, and we need slightly more iterations to get
the reserved intervals. The final adjustment is now done as follows: If the average
request for the tree roots is less than (3/4)a/k, we increase some of the requests
that are less than «, to get the average (3/4)a/k.

As before, if the request of some son u of the root is so close to € that we may
cross threshold e while processing one more of its sons, we just increase the request
of u up to e. It should be done in the same way, before the next recursive call.

In this way the grayed area will be of size kv + (3/4)me instead of ky + me,
as it was earlier (here «y is a grayed area that is due to grandsons who are not the
last processed among their siblings, and m is the total number of sons of the roots
of all trees), and the sum of requests is the same as before, v +me/3k. Recall that
€/(3k) has appeared here as the o parameter for recursive calls. To get the ratio
{(grayed)/(requested) at least k + 1/2, we need to decrease slightly this parameter,
and £/(6k) will be enough. This makes the number of iterations twice as big, but
this is not a problem. There are more details: At each step the sum of the requests
of all sons will increase by a quantity that is proportional to me/k?. The sum of
the requests of all sons cannot exceed me, therefore the number of recursive calls
is bounded by O(k?).

Now let us provide the details. First we should explain what changes are needed
in the definition of the game and the construction of a winning strategy. Now the
game, in addition to k, €, 8, «, 3, the tree T, and the unavailable set A, has an
integer parameter [, the number of trees. The meaning of €, §, A remains the same
as before, « is the upper bound for the request of each root, and 3 is the lower
bound for the average newly grayed area (per tree): the total size of the grayed
area should be at least {3. Finally, the parameter & is the lower bound for the ratio
(total grayed area)/(sum of the root requests for all trees).

As before, we may compose the strategies; however, now the composed strate-
gies should have the same values of k,T,a. We can apply first the strategy with
parameters €;, 61, a, 51, k and some unavailable set A to some family of trees (each
tree is isomorphic to T'). Then we apply the strategy again with new parameters
€2, 82, a, B2, k and a'new unavailable set (the union of A and the £;-neighborhood of
the allocated area) for the second (disjoint) family of trees isomorphic to T. We as-
sume that €y = 2. In this way we win the game with parameters €5, 6y, @, By + B2, k
and unavailable set A.

As before, we assume that & > 1 is a multiple of 1/2 and use induction over
k to construct a winning strategy for Client for every e < a < 1, 8 = (3/4) and
for some ¢ < £ and some finite tree of height 4(k — 1); its branching factor will be
specified later. The numbers €, «, § are all negative powers of 2. The strategy wins
the game for every [ and A.

The induction base (k = 1) is obvious. Let us consider the induction step from
k to k + 1/2. The tree, as before, has a/e sons of the root and each of them has
O(k?) sons (the exact value will be specified later); recall that now we have a family
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of isomorphic trees. The strategy at each iteration does the following. First of all,
we increase up to € the requests for those sons of the roots whose request already
exceeds € — €/6k. After Server’s move we check how many sons of the roots do
not have a reserved interval yet. If more that 25% of them do not have a reserved
interval, for each son that does not have a reserved interval we select an unprocessed
son (who is a grandson of one of the roots). For this family of grandsons we perform
a recursive call of the strategy with parameter &, and « is chosen as a power of 2 in
the interval (e/(12k),e/(6k)]. We repeat this procedure until the fraction of sons
that do not have a reserved interval becomes less than 25%.

For every recursive call the sum of all requests increases by (3/4)m(e/(12k2))
or more, where m is a total number of sons of all roots. And the sum of the
requests for all roots cannot exceed me: we guarantee that every son of every root
has request at most € (after that the reserved interval is guaranteed). So the total
number of recursive calls is at most O(k2). Moreover, each root has request at most
@, since each root has a/e sons. The total size of the newly grayed area is at least
the total length of all the reserved intervals, and it is at least (3/4)me, as required.
It remains to estimate the ratio (newly grayed area)/(total sum of requests).

Let v be the sum of increases for root requests, if we do not count the last
increases that created reserved intervals. This increase creates a k- increase in the
grayed area, if we do not count the reserved intervals. In total we obtain a grayed
area of size ky + (3/4)me by making requests at most for v + m(e/6k). Since
v £ me, the first number is at least k + 1/2 times greater than the second one:

ky+ (3/4)me 2 (k+ 1/2)(y + me/6k)

(a simple computation).

It remains to bound the branching factor of the tree T needed for this construc-
tion by a function of k and the ratio a/e (it is easy to see that only the ratio of these
numbers is important). As we have discussed (after constructing of a strategy for
infinite trees), we should first compare § and € and prove that one can use § = /¢y,
for some sequence ci, that does not grow too fast.

For k =1 we had § = ¢, so ¢; = 1. The strategy for k + 1/2 makes at most
O(k?) recursive calls of k-strategy, and its €/d-ratio is the product of the same
ratios for recursive calls, multiplied by the ratio /¢’, where ¢ is the parameter of
the game and €’ is the similar parameter for the last recursive call. The latter ratio
does not exceed 12k, because the last call is made with parameter o’ that is at least
€/(12k), and we can use the same value of £’. So we get a recurrent formula

2
Ck+1/2 = O(kc,?(k )),

which gives ¢j, = 2007V

Now it is easy to bound the branching factor for the tree T by a function of k&
and a/e. Recall that in the construction of (k + 1/2)-strategy we used a tree with
branching factor a/e in the root and O(k?) in the sons of the root. So at all odd
levels (the root level is 0) the branching factor is O(k?); it remains to bound the
branching on levels 2,4,.... At level 2 the branching factor is again equal to the
ratio ¢/ /e’ of the parameters of the strategies used. It is easy to see that this ratio
does not depend on the original & and £. Indeed, calling the strategy recursively
for the grandsons, we use the value of @’ that does not exceed €/(6k) and the value
of &’ that is at least €/ci4,/2. Therefore, the branching factors for the grandsons
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are bounded by 6kcj,/2. The same is true for all other even levels (with a smaller

value of k).
Therefore, the k-strategy wins on the tree with branching factor

max{a/e, O(k?),6(k — 1/2)c;} = max{a/e, O(k?), 20" “ "1,

here the second term (for large k) is dominated by the third one, and we can ignore
it.

Now we can finish the proof of the Gics—Day result. Let d be a power of 2.
We need to construct a strategy with parameters & = 1/d and some § > 1 that
wins on some tree T" with a bounded depth and branching factor. For that, we
call the strategy constructed above (sequentially for each of the sons of the root)
with parameters k = 2d and o = 1/(4d) until the request for the root reaches the
dangerous level 1/d — 1/(4d). In this way we request at most 1/d, and the grayed
area is at least 2d(1/d — 1/(4d)) > 1. After each call the root request increases
at least by (3/4)(1/4d)(1/k), so the number of requests is bounded by O(d®), and
O(d®) sons of the root are enough. The subtree rooted there should be suitable for
a 2d-strategy with parameters a = 1/(4d) and € = (1/(4d)) cg d(da). This requires
trees of height O(d) and the branching factor

max{cQ(*"), 2041y _ 90@)°

This finishes the proof of the Gacs—Day result. O

Prove that the height of the tree in the Gacs-Day theorem cannot be
less that d/4: if it is smaller, Server has a winning strategy (instead of Client).

Returning to the gap between KM and KA, we observe that the upper and
lower bounds are still significantly different: the only upper bound known says that
the gap is at most O(logn) for n-bit strings (and this is true even for K instead of
KM). One small improvement is that we can replace n by KA (z), as the following
problem shows.

Prove that KM (z) < KA (z) + O(log KA (z)).

(Hint: In fact KM (z| KA (z)) < KA (z)+ O(1). Indeed, if KA (z) =k, then z
at some point appears in the growing subtree of strings whose a priori complexity
is less than k£ + 1. This tree at all times has width (the cardinality of maximal
antichain) at most 2*¥*1, so looking at the maximal elements of this tree, we cover
it by 2¥+! growing branches. For details see Theorem 127, p. 194.)

5.6. Levin—Schnorr theorem

The definition of the a priori complexity guarantees that for any lower semi-
computable semimeasure p the inequality KA (z) < —log p(z) + ¢ holds for some ¢
and for every z. It turns out that if p is a (computable) measure, then this inequal-
ity is true not only for a priori complexity KA but also for a (larger) monotone
complexity KM.

THEOREM 89. Let u be a computable probability distribution on €, and let p
be the corresponding function on binary strings: p(z) = u(Q;). Then there exists a
constant ¢ such that
KM(z) < —logp(z) + ¢

for every string x.
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p(0) p(1)

p(00) p(01) p(10) p(11)

FiGURE 12. The construction of g

PRrROOF. The idea of the proof can be explained as follows. The difference
between KM and KA appears because we are unable to allocate contiguous space
to hierarchical users’ requests, since we do not know which of the current requests
will increase in the future. However, if we have a measure (and not a semimeasure),
we can solve this problem and allocate contiguous intervals. (Feel free to ignore
this metaphor if it is confusing: we provide a formal proof in the next paragraphs.)

For each string x we define an interval 7 inside [0, 1]. The interval 7, is defined
in such a way that:

e the length of 7, equals p(x);
e 15 =[0,1] (here A is the empty string);
e for each string z the interval 7, is split by some its point into intervals
7o (left part) and 75 (right part)
(see Figure 12).

We consider also another family of intervals that corresponds to the uniform
measure. Let I be the interval of reals whose binary representation starts with z.
We call the intervals I, binary intervals.

Now consider the set G of all pairs (x,y) of strings such that (binary) interval
I, is located inside the interior of m,. The set G is enumerable. Indeed, since the
function p is computable, we can find the endpoints of intervals m, with arbitrary
precision, and if they are strictly greater (or less) than some rational number, this
fact will be discovered eventually.

Note also that the property {z,y) € G remains true if we replace 2 by some
extension (since I becomes smaller) or replace y by any prefix (since 7, becomes
larger). If (z,31) € G and (z,y2) € G, the segments 7, and 7, have a common
interior point (they both contain I, ), therefore the strings y; and y are compatible.
So Theorem 81 (p. 127) guarantees that there exists a computable mapping of X
into itself whose lower graph is G. We use this mapping as the decompressor
in the definition of monotone complexity. Then KM p(y) equals the minus binary
logarithm of the biggest binary interval that is located strictly inside m,. It remains
for us to note that any open interval of length A contains a closed binary interval
of length h/4 and to compare D with the optimal decompressor. O

Prove the claim about binary intervals (see above).

(Hint: Let u be a power of 2 such that h/4 < u < h/2. Then any interval
of length h intersects at least three consecutive binary intervals of length u and
contains the middle one.)

Theorem 89 provides a theoretical justification for the following approach used
by Kolmogorov and his students to get upper bounds for the complexity of Russian
texts. While reading the text (one letter at a time), the reader tries to guess the
next letter. The guess is formulated as a probability distribution over the alphabet.
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Then the next letter is read and we add — logp to the complexity, where p is the
declared probability of that letter (i.e., its probability with respect to the guessed
distribution).

If we believe that the behavior of the reader is computable, the result is an
upper bound for the complexity. Indeed, the reader provides (some part of) a
computable probability distribution on the set of strings telling the conditional
probabilities along some path, and the complexity of text does not exceed the sum
of negative logarithms of these probabilities (Theorem 89).

Of course, it is not practical to require that the reader provides at each step
the list of probabilities for all the letters; one can suggest some standard types
of answers such as “the next letter is A with probability 0.5, all other vowels are
equiprobable and have total probability 0.3, all other letters are equiprobable”.
Note also that we get an upper bound for the conditional complexity of the text
where the condition is the background of the reader. (For example, if the reader
knows the text by heart or is just familiar with the author’s writings, the bound
can be very small.) '

The same trick used in compression algorithms is called arithmetic coding and
was even patented (many years after Kolmogorov’s experiments in the 1970s).

Now we are ready to formulate the criterion of Martin-L6f randomness that
uses monotone complexity: a sequence is ML-random if and only if the inequality
of Theorem 89 becomes an equality for its prefixes.

Let us formulate this statement precisely. Let u be a computable plobablhty
distribution on the set Q of all infinite bit sequences, and let p(z) be the measure
of the interval Q,: p(z) = p(Qy).

THEOREM 90 (Levin-Schnorr). A sequence w € Q is ML-random with respect
to a computable probability distribution u if and only if

—logp(z) — KM(z) < ¢
for some ¢ and for every prefiz x of w.

PRroOF. We have to prove this theorem in both directions. Let us show first
that if (for a given sequence w) the difference — logp(z) — KM (z) is unbounded,
then this sequence is not ML-random (i.e., the set {w} is an effectively null set).

Fix some constant c and consider all strings z such that —logp(z)— KM (z) > ¢
(This difference is sometimes called randomness deficiency, but this term has differ-
ent meanings. We have already used it in the previous chapter, and in Chapter 14
it is used in a different way.) This set is denoted by D..

The set D, is enumerable (since p is computable and KM is upper semicom-
putable, the difference is lower semicomputable).

LEMMA 1. The set of all infinite sequences that have a prefix in D, has u-
measure at most 27°.

Informally speaking, this is true because on this set the measure p is 2¢ times
smaller than the a priori probability (and the latter does not exceed 1). More
formally this argument can be explained as follows.

We are interested in the measure of the union of intervals Q, for all z € D..
Without changing this union, we may keep only minimal z € D, (i.e., strings z € D,
such that no prefix of z belongs to D). Let zg, 1, ... be these minimal elements
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of D.. (We do not claim the the set of minimal elements is enumerable, so this
sequence may be non-computable.)

For each z; consider the minimal description p; (according to the definition of
the monotone complexity: z; < D(p;) where D: ¥ — ¥ is the optimal monotone
decompressor). Then I(p;) = KM (z;) < —logp(z;) — ¢. Moreover, no p; is a prefix
of another one (otherwise, the corresponding z; would be conipatible). Therefore
5;271P) < 1 (being the sum of uniforin measures of disjoint sets €,,). The
corresponding p(x;) are 2¢ times smaller, so we get the statement of Lemma 1.

Our assumption guarantees that the sequence w has prefixes from D, for every c.
To prove that {w} is an effectively null set, we need to cover w by an enumerable
family of intervals with total measure not exceeding 27¢, and we can use intervals
from D..

However, there is a small technical problem here (that we already encountered
while speaking about randomness tests). We know that for intervals from D, the
total measure (i.e., the measure of their union) does not exceed 27¢ (as Lemma
1 says), but the definition needs that the sum of measures of all intervals does
not exceed 27¢. We cannot solve this problem by considering only minimal points
(maximal intervals), since the set of minimal points is not always enumerable.
Instead we can use the following statement:

LEMMA 2. Every enumerable set of strings zg,x,... can be transformed into
an enumerable set of incompatible strings with the same union | J, Qy,. This trans-
formation is effective (an algorithm that enumerates the first set can be transformed
into an algorithm that enumerates the second one).

Indeed, if during the enumeration we get a string that is an extension of the
previously enumerated one, this string can be omitted (since the corresponding
interval is already covered). If we get a string y that is a (proper) prefix of a string
x enumerated earlier, we have to split the difference £, \ €2, into a finite number
of disjoint intervals and replace y by strings that define those intervals. Lemma 2
is proven.

Applying Lemma 2, we get an enumerable set of incompatible strings; these
strings may be not in D, but this is not important. It is enough to know that they
correspond to disjoint intervals that cover w, and the union of these intervals has
p-measure at most 27¢, according to Lemma 1.

Proving the converse implication, we need to show that if a sequence w belongs
to an effectively null set, then the differences between the negative logarithms of
the measure and the monotone complexity of w-prefixes are unbounded. The idea
of this construction may be explained as follows: given a set of small measure, we
construct a monotone decompressor that treats favorably the elements of this set
(i.e., provides short descriptions for their prefixes).

Let us provide details now. Assume that w belongs to a set U which is an
effectively null set (with respect to measure u). For each ¢ we can effectively find
a family of intervals Q,,Qz,,... that cover U (and therefore w) and have total
measure less than 27¢. If we multiply the measures of all these intervals by 2¢,
the sum is still less than 1. Consider the computable sequence p; = 2¢u(Qy,).
Applying Theorem 59 (p. 96), we get a prefix-free decompressor for which the
prefix complexity of ¢ does not exceed — log p(€2;,) — ¢ + 2. A composition of this
decompressor and the computable mapping ¢ — z; is a prefix-free decompressor D,



148 5. MONOTONE COMPLEXITY

such that
Kp (z:) < —logp(Q,) —c+ 2.

(The subscript ¢ in D, is used to stress that the construction depends on c; we
use prefix-free decompressors since it will be useful later.) Monotone complexity
does not exceed the prefix one, so if the difference between the negative logarithm
of the measure and the prefix complexity is large, the same is true for monotone
complexity. It remains to combine the decompressors D, into one decompressor
(not depending on c¢).

We use the same trick that was was used in the construction of an optimal
decompressor. We want the string éu to be the description of the string v if u is a
description of v with respect to D.. Here ¢ is a self-delimited encoding of length
O(logc) for a natural number ¢. If the decompressor D is constructed in this way,
the following inequality holds (for all ¢):

Kp(zi) € —logiu(Qz,) — ¢+ O(log ).
Since the monotone complexity does not exceed the prefix one, we replace Kp,(z;)
by KM (z;) and conclude that all the strings z; (for a given ¢) have the difference
between — log p(z;) and KM (z;) at least c—O(log ). If an infinite sequence belongs
to U, it has a prefix of this type for any c, therefore the difference is unbounded for

its prefixes.
The Levin—-Schnorr theorem is proven. g

Show that in the first part of the proof (if a difference is unbounded, the
sequence belongs to an effectively null set) it is enough to have P upper semicom-
putable, while in the second part it is enough to have P lower semicomputable.

In fact the proof gives us a bit more than we claimed. Here are several modifi-
cations of the Levin—Schnorr theorem that can be extracted from it:

THEOREM 91. We may replace the monotone complexity KM (z) by the a priori
complezity KA (x) in the statement of the previous theorem.

ProOOF. The a priori complexity does not exceed the monotone one, so the
difference may only increase. So we need to change only the first part of the proof.
It is easy: in the proof of Lemma 1 we should note that ), 2~ KA(=:) < 1, since
this sum is the sum of the a priori measures of disjoint intervals §2,. a

THEOREM 92. We can also replace the monotone complexity KM (x) by the
prefiz complezity K(z).

PRrROOF. Here we go in the other direction and increase complexity, so only the
second part of the proof needs to be redone. And this is trivial—recall that in fact
we got just an upper bound for prefix complexity. O

Theorem 92 is nowadays the most popular version of the Levin—-Schnorr ran-
domness criterion (see, e.g., [103]; see [18] about the history of these results).

The use of monotone or a priori complexity seems (at least to the authors)
more natural (though the prefix version has its own advantages; see below the
formula for the randomness deficiency in terms of prefix complexity). Note that if
we use prefix complexity, the difference in the Levin—Schnorr theorem can become
negative. For example, in the case of the uniform measure — log p(£2;) is just the
length of string z, and the prefix complexity may be greater than the length (the
difference can be of order logn; see Theorem 63, p. 100).
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Moreover, the use of the monotone complexity allows us to strengthen the
Levin—Schnorr theorem as follows:

THEOREM 93. If a sequence w is not random with respect to measure u, then
the difference —logp(z) — KM (z) for prefizes x (of w) is not only unbounded but
also tends to infinity.

PROOF. In the proof of Theorem 90 we constructed a prefix-free decompressor
that provides short descriptions p; for strings z; and guarantees that the prefix
complexity of ; (with respect to this decompressor) does not exceed — log u(£2z,) —
c. To get the required bound for monotone complexity, we may use (for each 3) the
extensions of p; as descriptions of the extensions of z; in such a way that the length
of the descriptions corresponds to the measure of described strings, as was done in
the proof of Theorem 89 (p. 144).

More formally, we can use the inequality KM (zy) < K(z) + KM (y|z) (Prob-
lem 135) and the relativized version of Theorem 89: KM (y|z) < —log p2(€2y) for
any computable family of measures that (computably) depends on parameter z.
Here i, is the measure that is concentrated on the set €, and is defined as follows:
pz () = p(Qay)/p(S2).

For the case of uniform measure (where —logu(92,) = I(z)), we can use a
simpler argument and say that p;z is a description of z;z for any string z. O

This result can be reformulated as follows: if the difference logp(z) — KM ()
is uniformly bounded for infinitely many prefixes z of some sequence w, then w is
random. For the prefix version, our argument does not work, but we still can prove
a weaker statement for computable sequences of lengths.

Let A be a decidable infinite set of natural numbers (lengths), and let w
be some sequence. If K(z) > — logu(Q;) — ¢ for some ¢ and for every prefix = of
w with length in A, then w is random.

(Hint: In the proofs of Theorems 90 and 92, we can split the intervals into
parts to get the desired length.)

We provided some arguments in favor of using monotone complexity in the
randomness criterion. However, a version that uses prefix complexity has its own
advantages. Note that the notion of an ML-random sequence is invariant under
computable permutations of indices (if the measure is invariant or is changed ac-
cording to the permutation), but the notion of a prefix (and therefore the criterion
of randomness in terms of prefixes) is not. As it was noted by A. Rumyantsev,
using K one can get an invariant criterion of ML-randomness.

Let F be a finite set of indices (natural numbers), and let w be a binary se-
quence. By w(F) we denote the restriction of w onto F, i.e., the binary string
formed by bits w; such that i € F' (in the same order as in w).

Let p be a computable measure on Q2. For every finite set F' C N and string
Z whose length equals the cardinality of F, we consider the event w(F) = Z. Its
u-probability is denoted by ur z.

Let w be an ML-random sequence with respect to y. Prove that
K(F,w(F)) 2 —logurwr) — ¢

for some ¢ and for all finite F.
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(Hint: The measure of the set of all sequences for which this inequality does
not hold for some fixed ¢, does not exceed 27 ¢ multiplied by the sum of the a priori
probabilities of all pairs F, Z, and therefore does not exceed 27¢.)

(Note that if F is an initial segment of N, then F is determined by w(F') and
can be eliminated, so we return to the previous statement.)

In fact, the condition given by the last problem is also sufficient. Moreover, it
is enough to require this inequality for any increasing computable sequence of finite
sets whose union is N.

Let Fo C Fy C F» C -+ be a computable sequence of finite sets and
U, Fi = N. Assume that for some sequence w we have

K(Fiaw(Fi)) P _IOg:U'Fi,uJ(Fi) —-cC

for some ¢ and for all <. Then w is ML-random with respect to p.

(Hint: Using permutation of indices, we may assume that F; are initial segments
of N. Then we refer to Problem 143: it is enough to repeat the proof of the
Levin—Schnorr theorem using only strings of appropriate lengths and splitting other
intervals into unions of appropriate intervals.)

This statement implies, for example, that a two-dimensional bit sequence (i.e.,
a mapping Z2 — {0,1}) is ML-random with respect to the uniform measure (all
bits are independent; 0 and 1 are equiprobable) if and only if an N x N square
centered at the origin has prefix complexity at least N2 — O(1) (for all odd N).’

Let us note one more reason that makes the appearance of prefix complexity in
the randomness criterion natural. It turns out that one can prove a quantitative ver-
sion of the Levin-Schnorr theorem and get a formula for the expectation-bounded
randomness deficiency (see Section 3.5):

Let p(z) = p(;) correspond to a computable measure 4 on the Cantor
space. Prove that the function

Tiw

where the sum is taken over all finite prefixes z of w and m(zx) is the discrete
a priori probability of z, is a universal expectation-bounded randomness test.

(Hint: A lower semicomputable function on the Cantor space is a sum of char-
acteristic functions of intervals with non-negative coefficients. When a new term
is added to this sum (for interval 2, with coefficient r), we may imagine that the
“weight” of the vertex z of the binary tree increases by r. The weights of all vertices
form a lower semicomputable function u on strings, and the expectation condition
for a test corresponds to the inequality ) p(z)u(z) < 1. The maximal function
with this property is m(z)/p(z) up to a ©(1)-factor. One should also agree that
m(z)/p(x) is infinite if p(x) = 0 for some string z.)

Prove that the sum in the preceding problem can be replaced by the
supremum, and thus we obtain a quantitative version of the Levin-Schnorr theorem
with prefix complexity. For example, for the case of uniform measure, the expecta-
tion-bounded randomness deficiency is equal to sup,,[n — K(wp * - wn—1)]-

(Hint: A lower semicomputable function that is equal to a inside some effec-
tively open set and is equal to zero outside it can be represented by means of weights
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that are equal to a and are placed in incompatible vertices. Every lower semicom-
putable function can be represented up to a ©(1)-factor as the sum t(w) = >t (w),
where tj(w) = 2" if t(w) > 2* and ¢4 (w) = 0 otherwise. If all ¢, are represented as
explained above, all the summands in the formula for the deficiency are powers of
two. Then the sum equals the supremum up to a ©(1)-factor. See [13] for details.)

The statement of the last problem was proved in an old paper by Gécs [56]. The
proof gives as a byproduct the statement of Problem 146 rediscovered independently
in a more recent paper by J. Miller and L. Yu [123] under the name of “ample excess
lemma”.

(a) Let w be an ML-random sequence with respect to a computable
measure u, and let p(z) = p(Q;). Prove that the difference —logp(z) — K(z) is
not only bounded from above for prefixes of w but also tends to —oo as the length
of the prefix increases. In other words, if K(z) < —logp(z) + ¢ for some ¢ and for
infinitely many prefixes  of w, the w is not ML-random.

(b) Prove that if K(z) < —log p(z) +log!(z)+ ¢ for some ¢ and for all prefixes
z of w, then w is not ML-random.

(Hint: In both cases use the ample excess lemma, Problem 146.)

The case of uniform measure is rather important; let us write down all that we
have proven for this case:

THEOREM 94. (a) Upper bound:
KA(z) < KM(z)+ O(1) < l(z) + O(1)

for any string x.
(b) Randomness criterion: the sequence w is ML-random with respect to the
uniform measure if and only if these inequalities become equalities for prefizes of w,

KA ((w)n) = KM ((w)s) + O(1) = n+ O(1).

(¢) If w is not ML-random with respect to uniform measure, then the difference
n— KM ((w)n) (and therefore n — KA ((w),) tends to infinity as n — oo.

(d) The sequence w is ML-random with respect to the uniform measure if and
only if K((w)n) 2 n — ¢ for some ¢ and for all n.

(e) The sequence w is ML-random with respect to the uniform measure if and
only if K(F,w(F)) 2 |F| — ¢ for some ¢ and for all finite sets F.

Another version of the statement (d) is that a sequence w is ML-random if and
only if the sum 3°, 27~ K((“)n) jg finite (Problem 146).

For the case of uniform measure there exists one more criterion of Martin-Lo6f
randomness. It is interesting since it uses only plain complexity (and not the prefix
or monotone versions). It is a bit strange that this criterion was discovered only
recently (see [123]) since similar suggestions were considered at the end of the 1960s
(see [225, 117]), and the proof of this criterion uses only ideas and methods that
were well known at that time.

THEOREM 95. Assume that f: N — N is a computable total function and the
series 5. 27f(") converges. Let w be an ML-random sequence with respect to the
uniform measure. Then

Clw)nln) 2 n— f(n)—0Q1)
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(i.e., there exzists ¢ such that for every n the inequality C((w)n|n) = n— f(n) —c
holds).

PROOF. Assume that the claim is false. This means that for every ¢ there
exists an n such that
C(w)n|n) <n-— f(n)—c.
In other words, for every c the sequence w is covered by some interval 2, such that
C(z|n) <n—f(n) —c,

where 7 is the length of z. For each n there are at most 27~f(®)=¢ intervals with
this property and their total measure is at most 27f("2¢ (for a given n). The
total measure of all such intervals (for all n) is

9—¢ (Z Q—f(n)> ,

and the sequence w forms an effectively null set: choosing an appropriate c, we get
a cover for w that has small measure. Therefore, w is not ML-random. (Note that
the sum of the series > 27f (") may be a non-computable real number; this does
not matter since we may use any upper bound for it.) d

REMARK. In the proof we used only that f is upper semicomputable, so the
statement remains true for f(n) = K(n): for every ML-random sequence w (with
respect to the uniform measure) we have

C(w)n|n) Zzn— K(n)— O(1).
As we will see in Theorem 98, this is a necessary and sufficient condition.

Theorem 95 implies, for example, that for any ML-random sequence (with
respect to the uniform measure) the plain complexity of its prefix of length 7 is at
least n—2logn—0O(1) and even n—logn—2loglogn—0O(1), since the corresponding
series converge.

Making function f smaller, we make the elaim of the theorem stronger. It turns
out that for some f we get a randomness criterion in this way:

THEOREM 96. There exists a total computable function f: N — N such that
Yo 2=f(7) < 00 and having the following property: if for some sequence w and for
some ¢ the inequality

Clwnln) Z2n—f(n)—c

holds for all n, then w is ML-random with respect to the uniform measure.

PrROOF. We need to prove that every non-random sequence (i.e., every sequence
that belongs to the largest effectively null set) has simple prefixes. Note that we
also need to choose the function f.

To explain how to do this, let us assume that we are given a family of intervals
with total measure at most €. Let F' be the set of strings that define these intervals
(i.e., the family consists of intervals £, for all € F). Let us sort strings in
F according to their length and for each length n consider the total measure of
intervals that correspond to n-bit strings in F. Let it be approximately equal to
2=f(") (we assume that f has integer values, so this cannot be done exactly, but
can be done up to factor 2 in both directions; for simplicity we ignore this bounded
factor in the sequel). Then we have } 2=f(") < e. On the other hand, the set
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F contains 2"~ f(") strings of length n, and each of these strings can be described
(when n and other parameters of the construction are given) by n — f(n) bits. This
gives an upper bound for the complexity of all the strings in F. Note also that
every infinite sequence that is covered by our intervals has a prefix in F.

Now we return to the proof. Consider the largest effectively null set. For each
€ > 0 there exists its cover by intervals of total length at most €, and we can use the
construction above to get the corresponding function f with }~ 27/ (M L e. We
need to combine those functions for different e into one function f as the theorem
requires. This is done as follows.

For each ¢ = 0,1,2,..., consider the covering by a family of intervals with
total measure not exceeding 273¢, the corresponding set F, of strings, and the
corresponding function f. Then we decrease f by 2¢ and obtain a function f. such

that
Z 9= fe(n) . 9—c
n

(we get 27¢ instead of 273¢ since we have decreased f by 2c). The set F, contains
on—fe(m)=2¢ gtrings of length n, and every non-random sequence has a prefix in F.
Then f(n) is defined by the equation

9—f(n) — Z 9—Jfe(n)
c

This guarantees that
Zg—f(n) - Z Zg—fc(n) _ ZZ 9—fe(n) < Z2—c <1.
n n c c n c

On the other hand, the set F, is enumerable given ¢ (according to the definition of
an effectively null set), so any element z of length n is determined (when 7 and ¢
are known) by its ordinal number (in the enumeration of strings of length n in F.),
i.e., by n — f.(n) — 2¢ bits,

C(z|n,c) < n— fo(n) —2¢+ O(1),
which implies
C(z|n) < n— fe(n)—2¢c+ O(loge) <n— f(n)—c

for any z € F, of length n (for large enough ¢).
Now let w be any non-random sequence. As we have seen, for each ¢ the
sequence w has a prefix in F,. Let n be the length of this prefix. Then

C(w)n|n) <n— f(n)—c

(assuming that c is large enough), which contradicts our assumption.

However, this does not complete the proof, since we need a computable function
f, and the set F, is only enumerable, so we do not know when all strings of length n
have been appeared, and therefore cannot compute f. To overcome this difficulty,
recall that we started with a family of intervals (that cover the largest effectively null
set). In this covering we may split a large interval Q, into many small intervals €2,
(for all strings ¢ of some length). This allows us to make f. computable if we require
(without loss of generality) that the length of the intervals in the enumeration of
F. can only increase. The same argument can be applied to all f. in parallel and
makes f computable.
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Finally, there is a (trivial) technical problem: the statement requires f to be
integer valued, so some rounding is needed. a

The two last theorems together provide a randomness criterion that uses plain
complexity (and not monotone or prefix complexity). This criterion is robust:
one can replace the conditional complexity C((w),|n) by the unconditional one,
C({w)n), or by a conditional prefix complexity, K ((w)n|n).

Indeed, each of these replacements only increases complexity, therefore only
Theorem 96 needs to be verified. For the prefix complexity version, we use that for
each element z € A the inequality K(z|A4) < log|A| + O(1) holds (we consider a
prefix-free encoding by strings of length log|A|).

The case of unconditional plain complexity is a bit more difficult. As we do
not know n, we need to describe a string z € F. ,, (here F, , is the set of all strings
z € F, that have length n) by its ordinal number in the entire set F, (and not by
its ordinal number in F, , as before). Enumerating F, in increasing length order,
we need

log(|Feol + [Fen| + -+ + |F6.n|)
bits for that, and this bound is enough if the last term |F¢ | is greater than the
sum of all preceding terms (in this case the increase is at most twofold). We can
achieve this using the same trick as before: we replace a string by all its extensions
of some bigger length. Note that this is done separately for each ¢, so the condition
¢ remains, but this does not matter since it gives only O(logc) additional bits.

So we get the following result:

THEOREM 97. A sequence w is ML-random if and only if for any computable
total function f: N — N such that 3. 277(™ < oo the inequality

C((w)n) = n— f(n) — O(1)
holds.

This criterion uses only plain unconditional complexity and is the most popular
version of the Miller-Yu theorem.

This criterion has a drawback: there is a quantifier over f. It can be placed
differently (there exists some f that rejects all the non-random sequences, as The-
oremn 96 says), but still it would be nice to get rid of f completely. It is indeed
possible, but the price is that we have to reinsert prefix complexity into the state-
ment:

THEOREM 98. A sequence w is ML-random with respect to the uniform measure
if and only if
C((w)n) = n— K(n)—O(1).

Proor. If 3~ 27 /(") converges for a computable f, then K (n) < f(n)+0(1).
Therefore the condition with prefix complexity is stronger than that in Theorem 97,
and thus we need to prove only the converse implication: if for every c there exists
an n such that

C{(w)n) <n—K(n) —c,
then w is not ML-random. This can be done in the same way as in Theorem 95.
We need only note that the set of all strings = such that

C(z) < l(z) - K(l(z)) —c
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(here I(z) stands for the length of z) is enumerable; see the remark after the proof
of this theorem on p. 152. O

In this theorem we can also replace C{(w),) by C({(w)n|n).

Verify that this is indeed possible.
This result was proven in P. Gics paper [56, p. 391].

Show that we cannot let f(n) = 2logn in Theorem 96.

(Hint: Theorem 95 says that for an ML-random w we have a stronger inequality
C((w)n) = n —logn — 2loglogn — O(1). Therefore, if we computably interleave a
random sequence with the zero sequence {and zeros are sparse enough), we get a
non-random sequence such that C({w),) > n —2logn — O(1). A similar argument
shows that we cannot get a computably convergent series 2=7/(") for a function f
that makes Theorem 96 true.)

All the results above still do not answer a very natural question: Can one
eliminate f completely and require that C({w),) 2 n — O(1) (similar to monotone
complexity criterion)?

Of course, this would be the most natural version of the randomness criterion,
so it was tried in the very beginning. Martin-L6f noticed that this approach does
not work: any binary string is a substring of a random sequence, so any random
sequence contains arbitrarily large groups of zeros. And if a string of length n ends
with k zeros, then its complexity is at most n — k 4+ 2logk + O(1) (2logk bits are
needed for a prefix-free encoding of k and n — k bits for the rest), and the difference
between length and (plain) complexity is at least k — 2log k — O(1).

The following theorem (see [225, 117]) gives a more precise bound for the
unavoidable difference between length and complexity (we mentioned this result
earlier in Problem 54):

THEOREM 99. There exists some ¢ such that for any w € Q the inequality
Cwp)<n—logn+c
holds for infinitely many n.

PrOOF. For each n let us select (1/n)-th fraction of all strings of length n, i.e.,
[2™/n| strings of length n. We want to do this in such a way that each infinite
sequence has infinitely many selected prefixes (and the set of selected strings is
decidable).

Why is this possible? The series Y 1/n diverges so we can split its terms into
infinitely many groups, and each group has sum greater than 1. Using one group,
we get one layer of {2-covering (this means that each sequence w € ) has a prefix
among the strings that correspond to that layer). To do this, we consider the strings
in order of increasing length and select strings whose prefixes are not yet selected.
(There is a rounding problem since 2"/n is not an integer, but it can be easily
fixed.)

Every selected string of length n can be described (if n is known) by its ordinal
number, and this requires n — logn bits. Therefore, the conditional complexity of
this string (with condition n) is at most n — logn + O(1). Moreover, if we make a
combined list of all selected strings (in the order of increasing length), the ordinal
number increases by an O(1)-factor. Indeed, the number of selected strings of
given length grows almost as a geometric sequence, and adding all selected strings
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of smaller lengths increases cardinality only by an O(1)-factor. This implies the
statement of Theorem 99. O

Give another proof of this result using the following simple observation:
thie k-bit prefix of a given sequence can be considered as a binary notation of some
integer N (we add 1 at the beginning of the prefix not to lose leading zeros), and
N bits following this prefix are enough to reconstruct all £ + NNV bits.

Prove that the statement of Theorem 99 is true not only for some ¢ but
for every ¢ (including the negative ones).

(Hint: If the series Y 2~F(® diverges, we can increase a bit the function f
keeping this property: there exists a function g such that g(n) — f(n) — oo and
S 2-90) = o0.)

Show that the statement of Theorem 99 (the conditional complexity ver-
sion) remains true if we replace the logarithm by an arbitrary computable function
f such that the series 3 27/(") diverges.

Martin-Lof claims in [117] that the same generalization is possible for uncon-
ditional complexity (and refers to an unpublished paper for the proof). The same
statement (attributed to Martin-Lof) can be found also in [225]. (We do not know
how to prove it.)

Let us mention also that the statement of Theorem 95 has a slightly different
form in [117]:

@ Prove that if a sequence w is ML-random with respect to the uniform
measure and f: N — N is a computable total function such that the series 5 275
computably converges, then C((w),|n) = n — f(n) for all sufficiently large n.

(Hint: If a series computably converges, and the inequality is false infinitely
many times, the tails of the series can be used to get covers that have small mea-
sure.)

Another natural question follows: What happens if we require high complexity
not for all (sufficiently long) prefixes but for infinitely many of them? In the same
Martin-Lof paper [117] the following results are stated:

Prove that for almost all (with respect to the uniform measure) se-
quences w € ) there exists ¢ such that C((w)n|n) = n — ¢ for infinitely many n.

(Hint: If it is not the case, then for every c there exists N such that an n-bit
prefix of w has complexity less than n — ¢ for every n > N. For given c and N the
set of all w with this property has measure at most 27¢. As N increases, this set
increases, and the union over all N has measure at most 27¢ by continuity.)

If for a given sequence w there exists ¢ such that C({(w)n|n) = n — ¢ for
infinitely many 7, then w is ML-random with respect to the uniform measure.

(Hint: If w is covered by some interval in a family of total measure less than
27¢, then every sufficiently long prefix of w can be described (when length is given)
by its ordinal number in the set of all strings of this length covered by some interval,
and this requires 2logc + n — ¢ bits.)

Prove that the statement of the previous problem remains true if we
replace conditional complexity C((w)n|n) by unconditional complexity C((w),).
(Hint: Use Problem 6 or, better, Problem 55.)
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The last two problems refer to a set of measure 1 that is a subset of the set of all
ML-random sequences. Its complement is a null set; if it were an effectively null set,
we would get another criterion for ML-randomness. However, this is not the case.
Recently in [121, 148] it was shown that this set has a natural description: it is the
set of ML-random sequences relativized to oracle 0’; these sequences are sometimes
called 2-random (while ML-random sequences are called 1-random). See [16] for a
simple proof. There is a similar criterion with prefix complexity: a sequence w is
2-random if and only if K((w),) € n+ K(n) — ¢ for some ¢ and for infinitely many
n [124] (see also [5] for a simple proof).

5.7. The random number 2

The following theorem provides an interesting application of the randomness
criterion given in the previous section. Let m be a maximal lower semicomputable
semimeasure on the set of natural numbers (e.g, let m(z) be equal to 27 X®); we
can use also the distribution on the outputs of the universal probabilistic machine,
see Chapter 4). Chaitin suggested considering the number

Q= Zm(n)

(the halting probability for the universal probabilistic machine; the sum of the max-
imal lower semicomputable series) and made the following interesting observation:

THEOREM 100. The binary representation of 2 is ML-random with respect to
the uniform distribution.

Note that the value of Q depends of the choice of a maximal lower semicom-
putable semimeasure, but the statement remains true for every choice.

PrROOF. Assume that the first n binary digits of €2 are given. They form the
binary representation of a number ,, which is a lower bound for Q with approxima-
tion error at most 27". Generate lower bounds for m(0), m(1), m(2),... in parallel
until the sum of these lower bounds becomes greater than Q, — 27™. This does
happen at some point since the sum of the series is 2 and hence is greater than our
threshold. Then make a list of all 7 that appear in this sum (with a non-zero lower
bound for m(z)).

Note that this list includes all 7 such that m(i) = 227" (if some ¢ with this
property were omitted, the approximation error would exceed 2~"). Therefore, all 7
such that K (i) < n—c (for some ¢ that depends on the choice of the function m but
not on n) appear in this list. Thus, the minimal integer that is not in the list has
complexity at least n — ¢. This implies that both the list itself (which determines
this minimal integer) and the n-bit prefix of @ (which allows us to construct the
list; note that n is determined by this prefix) have complexity at least n — ¢ for
some other ¢’ and for all n. It remains to use the randomness criterion in its prefix
complexity version (Theorems 92 and 94). O

One can define the notion of a (Martin-L6f) random real number directly. A
set X of reals is an effectively null set if there is an algorithm that for any rational
£ > 0 enumerates a cover of X by intervals with rational endpoints and total
measure (length) at most €. A real number is ML-random (with respect to the
standard measure on R) if it does not belong to any effectively null set (=does not
belong to the largest effectively null set).



158 5. MONOTONE COMPLEXITY

Prove that a real number is random (according to this definition) if and
only if its binary representation is a random sequence (with respect to the uniform
measure on £2).

Prove that a square (sine, exponent) of a random real is a random real.
(Hint: A preimage of a null set is a null set, and this argument can be effec-
tivized.)

Can the sum of two random real numbers be a non-random real?
(Hint: the numbers may be dependent.)

The random number 2 (or, better to say, any Q-number, since different max-
imal lower semicomputable semimeasures lead to different numbers) is not just an
interesting example. The class of these numbers has several interesting characteri-
zations [26, 87]. Our presentation follows [19], a survey that can be considered as
an extended version of a footnote in [102].

5.7.1. Solovay reductions and completeness. Recall that a real number
« is lower semicomputable if o is the limit of some computable non-decreasing
sequence of rational numbers. (An equivalent definition is ...if the set of rational
numbers less than « is enumerable.) We want to classify computable non-decreasing
sequences according to their convergence speed and formalize the intuitive idea “one
sequence converges better (i.e., not worse) than the other one”.

Let a; — o and b; — B be two computable strictly increasing sequences con-
verging to lower semicomputable reals o and 8 (approximations of & and S from
below). We say that a, — a converges better (not worse) than b, — S if there
exists a total computable function A such that

a—apis) < B— b

for every 1.

In other words, we require that for each term of the second sequence one may
algorithmically find a term of the first one that approaches the limit as close as the
given term of the second sequence. Note that this relation is reflexive and transitive
(take the composition of two reducing functions).

In fact, the choice of specific sequences that approximate « and 3 is irrelevant:
any two increasing computable sequences of rational numbers that have the same
limit are equivalent with respect to this quasi-ordering. Indeed, we can just wait
to get a term of a second sequence that exceeds a given term of the first one.

We can thus set the following definition. Let a and 8 be two lower semicom-
putable reals, and let (a,), (bn) be approximations of a and 3, respectively. If (a,)
converges better than (b, ), we write a <; 8 (by the above paragraph, this does not
depend on the particular approximations we chose).

This definition can be reformulated in different ways. First, we can eliminate
sequences from the definition and say that o <, f if there exists a partial com-
putable function ¢ defined on all rational numbers r < 8 such that

p(r)<a and a—(r)<B—r
for all of them. Below, we refer to ¢ as the reduction function.

Prove that a lower semicomputable number « is computable if and only
if & <1 B for every lower semicomputable 3.

Here is one more useful reformulation:
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THEOREM 101. & < B if and only if 8 — « is lower semicomputable (or, said
otherwise, if and only if 8 = a+ p for some lower semicomputable real p).

Proor. To show the equivalence, note first that for every two lower semicom-
putable reals a and p we have a <3 a + p. Indeed, consider approximations (a,)
to &, (rn) to p. Now, given a rational s < a + p, we wait for a stage n such that
an + 7o > 5. Setting ¢(s) = an, it is easy to check that ¢ is a suitable reduction
function witnessing a <; a + p.

It remains to prove the reverse implication: if @ <y 3, then p = 8 — « is lower
semicomputable. Indeed, let (b,) be a computable approximation (from below) for
B, and let ¢ be the reduction function that witnesses & <, S. Then all terms
by, — @(by) are less than or equal to 8 — a and converge to 8 — a. (The sequence
b, — ¢(b,,) may not be increasing, but still its limit is lower semicomputable, since
all its terms do not exceed the limit, and we may replace the nth term by the
maximum of the first n terms.) O

Here is a special case: Let > u; and ) v; be computable series with non-
negative rational terms (for ¢ > 0; terms up and vg are starting points and may be
negative) that converge to (lower semicomputable) a and 8. If u; < v; for all ¢ > 0,
then o <3 f, since B —a = >, (v; — u;) is lower semicomputable.

The reverse statement is also true: if & <; 3, one can find computable series
> u; = a and ), v; = B with these properties (0 < u; < v; for ¢ > 0). Indeed,
B = a+ p for lower semicomputable p; take & = > u; and p = > r;, and let
vy = U + 7y

Show that a stronger statement is also true: not only can the series u; be
chosen arbitrarily (see the argument above), but the same is true for v;. Namely,
if @ <3 B =) vi, where v; > 0, then there exists a representation & = ) u; such
that 0 < u; < v; for every ¢ > 0. (All series are computable.)

(Hint: Construct u; sequentially maintaining the following invariant relation:
the current approximation A =}, ; u; to a is below a and at least as close (to a)
as the current approximation B =5 j<iVj (to B8). Initially, we choose uo applying
the reduction function to vo. When the current approximation becomes B’ = B+uv;,
we apply the reduction function to get A’, which is at least as close to a as B’ is
to 8. Then there are several cases:

(1) If A’ < A, we let u; = 0, and the next approximation is A (it is close enough
by assumption).

(2)If A< A < A+, welet u; = A' — A; the condition guarantees that
U; < V.

(3) Finally, if A" > A + v;, we let u; = v; (the invariant remains valid since the
distances to @ and £ are decreased by the same amount).)

Let a be a lower semicomputable but not computable real. By the results of
the previous section, one has

a<120=x13a<

because for all k the difference (k + 1)a — ka = « is lower semicomputable. The
reverse relations are not true, because ko — (k + 1)a = —a is not lower semicom-
putable (if it were, then a would be computable).

One may argue that this relation is therefore a bit too sharp. For example, o
and 2a have essentially the same binary expansion (just shifted by one position),
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so one may want « and 2a to be equivalent. In other words, one may look for a
less fine-grained relation. A natural candidate for this is called Solovay reducibility
(see [188]).

We say that « is Solovay reducible to 8 (o < B) if & <, ¢f for some positive
integer ¢ > 0. (A convenient notation: We say, for some positive rational ¢, that
o <% Bif < cf. Then a < fif @ <. B for some ¢.) This relation is also reflexive
and transitive (obviously).

THEOREM 102. There ezists a biggest lower semicomputable real with respect
to Solovay reducibility.

ProoF. We can enumerate all lower semicomputable reals ¢; in [0, 1] and then
take their sum a = ) w;c; with computable positive weights w; such that ) w;
converges. This  can be represented as w;c; plus some lower semicomputable real,
so a; <1 (1/w;)a. a

The biggest elements for the <-preorder are also called Solovay complete lower
semicomputable reals. One can even define some qualitative notion of completeness
deficiency: for a lower semicomputable real 5 the completeness deficiency is defined
as minimal ¢ such that a <; ¢f. Here « is some fixed Solovay complete real; the
deficiency function depends on the choice of ¢, but is still defined up to the ©(1)-
factor. The deficiency of § is finite if and only if S is Solovay complete.

It turns out that Solovay complete reals can be equivalently described as -
numbers defined above [188, 26].

THEOREM 103. Complete semicomputable reals in (0,1) are sums of universal
(mazimal) semimeasures on N and vice versa.

PROOF. Any lower semicomputable real a is a sum of a computable series
of rationals; this series (up to a constant factor that does not matter due to the
definition of the Solovay reducibility) is bounded by a universal semimeasure. The
difference between the upper bound and the series itself is a lower semicomputable,
and therefore ¢ is reducible to the sum of the universal semimeasure.

On the other hand, let & be a Solovay complete real in (0,1). We need to show
that « is a sum of some universal semimeasure. Let us start with the arbitrary
universal semimeasure m;. The sum > m; is lower semicomputable and therefore
> m; <1 ca, so @ = Y. m;/c+ 7 for some integer ¢ > 0 and some lower semi-
computable 7. Dividing m by ¢ and then adding 7 to one of the values, we get a
universal semimeasure with sum a. O

It turns out that these reals (Solovay complete lower semicomputable reals,
or Q-numbers) have one more description: they are exactly lower semicomputable
ML-random real numbers in (0, 1). The equivalence proof consists of several parts;
let us consider them one by one.

5.7.2. Solovay complete reals are random. We already have shown that
Solovay complete reals are random: each of them is an -number, i.e., a sum of the
values of universal semimeasure, and this sum is random (Theorem 100). Formally
speaking, this argument applies only to numbers between 0 and 1, but the general
case can be reduced to this special one by adding a rational number. Still there
is an interesting direct argument that does not involve complexity and the Levin-
Schnorr criterion of randomness (it is in the footnote in Levin’s paper [102]; this



5.7. THE RANDOM NUMBER £ 161

footnote compresses the most important facts about lower semicomputable random
reals into few lines).

First, recall that one can prove the existence of a lower semicomputable random
real without references to © (Problem 86). So it is enough to prove that randomness
is upward-closed: if o < f and a is random, then J is random.

We may assume without loss of generality that o <; f (randomness does not
change if we multiply a real by a rational factor). Let b; — 8 be a computable in-
creasing sequence of rational numbers that converges to 8. Assume that somebody
gives us (in parallel with b;) a sequence of rational intervals and guarantees that one
of them covers 5. How do we transform it into a sequence of intervals that covers
a (i.e., one of the intervals covers ) and has the same (or smaller) total length? If
an interval appears that is entirely on the left of the current approximation b;, it
can be ignored (since it cannot cover 8 anyway). If the interval is entirely on the
right of b;, it can be postponed until the current approximation b; enters it (this
may happen or not, in the latter case the interval does not cover §). If the interval
contains b;, we can convert it into the interval of the same length that starts at a;,
where a; is a rational approximation to o that has the same or better precision as
b; (as an approximation to f): if £ is in the original interval, « is in the converted
interval.

So randomness is upward closed, and therefore complete lower semicomputable
reals are random.

REMARK. The second part can be reformulated: if @ and S are lower semicom-
putable reals and at least one of them is random, then the sum o + 8 is random
too. The reverse is also true: if both o and 8 are non-random, then « + £ is not
random. (Later we will see different proofs of this statement.)

5.7.3. Randomness and prediction game. Before proving the reverse im-
plication (random lower semicomputable reals are Solovay complete), let us make
a digression and look more closely at the last argument. Consider the following
game. An observer watches an increasing sequence of rationals (given one by one)
and from time to time makes predictions of the following type: “the sequence will
never increase by more than §” (compared to its current value). Here ¢ is some
non-negative rational. The observer wins this game if

(1) one of the predictions remains true forever;

(2) the sum of all numbers § used in the predictions is small (less that some
rational € > 0 which is given to the observer in advance).

It is not required that at any moment a valid prediction exists, though one
could guarantee this by making predictions with § that are small and decrease fast
at each step. Note also that every prediction can be safely postponed, so we may
assume that the next prediction is made only if the previous one becomes invalid.
Then at any moment there is only one valid prediction.

One can give a criterion of randomness in terms of this game.

THEOREM 104. Let a; be a computable increasing sequence of rational num-
bers that converges to some (lower semicomputable) real a. The observer has a
computable winning strategy in the game if and only if a is not random.

PROOF. A computable winning strategy gives us a computable sequence of
prediction intervals of small total measure and guarantees that one of these (closed)
intervals contains a. We can convert them to slightly bigger open intervals.
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On the other hand, having a sequence of intervals that cover @ and have small
total measure, we may use it for predictions. To make the prediction, we wait until
the current approximation a; gets into some of the covering intervals, and we then
predict that it will never go out of this interval. When and if this turns out to
be false, we wait until the current approximation is covered again, etc. If there
are several intervals covering the current approximation, we choose the first one in
the enumeration order. Starting from some moment, we always have the interval
that covers « as one of the options, so this rule guarantees the predictions will
stabilize. a

The following is a reformulation of the same observation that does not use game
terminology:

THEOREM 105. Let a; be a computable increasing sequence of rational numbers
that converges to . The number a is non-random if and only if for every rational
e > 0 one can effectively find a computable sequence hg,hy,... of non-negative
rational numbers such that ), h; < € and a < a; + h; for some i.

ProoF. This corresponds to the game where predictions h; are made on every
step. As we have said, this does not matter since we may use zeros. a

Recall also the Solovay criterion of ML-randomness (a constructive version of
the Borel-Cantelli lemma, Theorem 31 on p. 64): A real number « is non-random
if and only if there exists a computable sequence of intervals that have finite total
measure and cover ¢ infinitely many times. The same modification can be applied
to the previous theorem, and we get the following result.

THEOREM 106. Let a; be a computable increasing sequence of rational numbers
that converges to . The number a is non-random if and only if there exists a
computable sequence ho, hy, . .. of non-negative rational numbers such that ), h; <
oo and a < a; + h; for infinitely many 1.

PROOF. If ¢ is non-random, we apply the.preceding result fore = 1,1/2,1/4, ...
and then add the resulting sequences (with shifts 0,1,2,... to the right). Each of
them provides one value of 7 such that & < a;+ h;, and these values are still suitable
after shifts and cannot be bounded due to shifts. On the other hand, if @ < a; + h;
for infinitely many i, we get a sequence of intervals with finite sum of measures
that covers a infinitely many times (technically, we should replace closed intervals
by slightly bigger open intervals). It remains to use Solovay’s criterion (or recall its
proof: The effectively open set of points that are covered with multiplicity m has
measure at most O(1/m)). a

The randomness criterion given in this section implies the following observation
(which may look strange at first). Consider a sum of a computable series of positive
rational numbers. The randomness of the sum cannot change if all summands are
changed by some ©(1)-factor. Indeed, all h; can be multiplied by a constant.

Now let us prove the result mentioned above:

THEOREM 107. If & and 8 are non-random lower semicomputable reals, their
sum o+ 3 is non-random too.

PROOF. It now seems very easy at first: Make predictions in the games for o
and 3, and then take their sum as prediction for o+ 8. (If for & we expect increase



5.7. THE RANDOM NUMBER {2 163

h and for B we expect increase k, then for a + 8 we predict increase h + k.) But
this simple argument does not work. The problem is that the same prediction for «
can be combined with many predictions for 8 and therefore will be counted many
times in the sum.

The solution is to make predictions for o and S of the same size. Let a; and
b; be computable increasing sequences that converge to o and 5. Since o and S
are non-random, they are covered by sequences of intervals that have small total
measure. To make a prediction for the sequence a;+b; (after the previous prediction
became invalid), we wait until the current approximations a; and b; become covered
by the intervals of those sequences. We take then the maximal h and k such that
(a;,a; + h) and (b;,b; + k) are entirely covered (by the unions of already known
intervals). The prediction interval is declared to be (a; + b;,a; + b; + 28) where
6 = min(h, k).

Let us show that one of the predictions will remain valid forever. Indeed, the
limit values @ and § are covered by some intervals. These intervals appear in
the sequences at some point and cover « and 8 with some neighborhoods, say, o-
neighborhoods. If the prediction is made after a; and b; enter these neighborhoods,
d is greater than ¢ and the prediction is final: a; + b; never increases more than
by 26.

It remains to bound the sum of all § used during the prediction. It can be done
using the following observation. When a prediction interval (a; + b;, a; + b; + 26)
becomes invalid, this means that either a; or b; has increased by § or more, so the
total measure of the covers on the right of a; and b; has decreased at least by 4.
Here we use that (a;,a; + 9) and (b;, b; + &) are covered completely because § does
not exceed both k2 and k. It is important here that we take the minimum. O

Let us return to the criterion for randomness provided by Theorem 105. The
condition for non-randomness given there can be weakened in two aspects. First, we
can replace computable sequence by a lower semicomputable sequence, and second,
we can replace h; by the entire tail h; + h;+1 + - -+ of the corresponding series, as
follows.

THEOREM 108. Let a; be an increasing computable sequence of rational numbers
that converges to a. Assume that for every rational € > 0 one can effectively find
a lower semicomputable sequence h; of non-negative reals such that ), h; < € and
a<a;+h+hi 4+ for somei. Then o is not random.

PRrROOF. Asswme that for every i there is a painter who gets h; units of paint
and instructions to paint the real line starting at a;, going to the right, and skipping
the parts already painted by other painters (but making no other gaps). (Since h; is
only semicomputable, the paint is provided incrementally and is used as soon as it
becomes available.) The painted zone is a union of an enumerable family of intervals
of total measure ), h; (the total amount of paints). If o« < a;+h;+hiy1+---, then
« is painted since we cannot use h; + h;+y + - -+ units of paint, starting between
a; and « (recall that all a;, are less than o) and not crossing a: by construction,
we never cover the same point by several layers of paint. (In the condition of the
theorem we have < instead of <, but this does not matter since we can increase all
h; to, say, twice their original value. For the same reason it is not important that
we covered o by closed intervals instead of open ones.) O
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This result implies one more criterion of randomness for lower semicomputable
reals:

THEOREM 109. Let a = ) r; be a computable series of non-negative rational
numbers. The (lower semicomputable) real o is non-random if and only if for every
€ > 0 one can effectively produce an enumerable set W C N of indices such that
(1) Ysew i <€ and (2) W is co-finite, i.e., contains all sufficiently large integers.

PrOOF. If a is not random, it can be covered by intervals with arbitrarily small
total measure. It remains to consider the set W of all ¢ such that

[ro+ - +7im1,mo+ - +Timy +7i

is entirely covered by one of those intervals. In the other direction the statement is
a direct consequence of Theorem 108, just let a; =19+ -+ 7;—; and h; = r; for
i €W (and h; =0 for i ¢ W). O

This result shows again that the sum of two non-random lower semicomputable
reals is not random (take the intersection of two sets W) and W, provided by this
criterion for each of the reals), so we get a new proof of Theorem 107.

The trick we used to prove Theorem 108 can be reused for the following problem
(this argument was communicated to us by L. Bienvenu; the original proof in [87)
is much more complicated).

Let U be an effectively open subset of [0,1] that has measure less than
1. Assume that U contains all non-ML-random reals. (For example, U can be one
of the open sets that form a universal Martin-Lof test.) Prove that the measure of
U is a lower semicomputable random real.

(Hint: Let a be the measure of U. If the cover of a with intervals of small
measure is given, we can construct the cover of the minimal real outside U that has
the same measure. How can we do that? Assoon as the current approximation to a
gets into some interval, we imagine that it will not get out of this interval, i.e., only
a small set will be added to the current part of U and will paint an equally small
part of the current complement of U going from left to right. If our assumption
is in fact true (and this will happen at some point), then we indeed will paint the
minimal element outside U. (The painted part is a union of closed intervals, not
the open ones, but this does not matter.))

5.7.4. Random lower semicomputable reals are complete. Now it is
easy to prove the reverse implication [87]: Every lower semicomputable random
real is Solovay complete.

Let us start with the following remark. Consider two lower semicomputable
reals « and 8 presented as limits of increasing computable sequences a; — o and
b; — B. Let h; = a;41 — a; be the sequence of increases in the first sequence. We
may use the sequence h; to construct a strategy for the prediction game against
the second sequence in the following way. We shift the interval [ag, a,] to get the
(closed) interval of the same length that starts at by (Figure 13). Then we wait
until b; at the right of this interval appears; let b;, be the first term outside it.
Then we shift the interval [a,, as] to get the interval of the same length that starts
at b;,; let b;, be the first b; on the right of it, etc.

There are two possibilities: either

(1) the observer wins in the prediction game, i.e., one of the shifted intervals
covers the rest of b; and the next b;, is undefined; or
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ap aj as as aq

FIGURE 13. Increases of a; are used in the prediction game for 3.

(2) this process continues indefinitely.

In the second case & <, B since the difference 5 — « is represented as a sum of
a computable series (“holes” between neighbor intervals; note that the endpoints
of the shifted intervals also converge to ).

After this remark it is easy to show that every incomplete § is not random.
Indeed, assume that § is not Solovay complete; we need to prove that S is not
random. Since f is not complete, there exists some a such that o £ 5. In particular,
a #1 B. Therefore, for these o and 8 the second alternative is impossible, and the
observer wins. In other words, we get a computable sequence of (closed) intervals
of total size at most > h; that covers 8. Repeating the same argument for «/2,
a/4,... (we know that a/c £, B for every ¢, since a £ ), we effectively get a cover
of B with arbitrarily small measure (since the sum of all h; is bounded by a integer
constant even being non-computable); therefore 8 is not random.

This finishes the proof of the result we mentioned:

THEOREM 110. A lower semicomputable real is Solovay complete if and only if
it is ML-random.

5.7.5. Slow convergence: Solovay functions. We have seen several results
of the following type: the limit of an increasing computable sequence of rationals
is random if and only if the convergence is slow. In this section we provide some
other results of this type [12, 67].

Consider a computable converging series > r; of non-negative rational numbers.
Note that r; is bounded by O(m(¢)) where m(¢) is the (discrete) a priori proba-
bility of integer i, and therefore prefix complexity K (i) = —logm(¢) is bounded
by —logr; + O(1). We say that the series > r; converges slowly in the Solovay
sense (has the Solovay property) if this bound is O(1)-tight infinitely often, i.e., if
r; = em(i) for some € > 0 and for infinitely many ¢. In other words, the series does
not converge slowly if r;/m; — 0.

Historically the name Solovay function was used for a computable bound S(7)
for prefix complexity K(¢) that is tight infinitely often, i.e., K (i) < S(i) + O(1) for
every ¢ and K(i) > S(i) — ¢ for some ¢ and for infinitely many values of . Thus, a
computable series ) r; of non-negative rational numbers has the Solovay property
if and only if i — —log, r; is a Solovay function. (Usually integer-valued Solovay
functions are considered, so some rounding is needed.) We provide several results
that relate randomness to slow convergence, mainly following [12, 67)].

THEOREM 111. Let o =), r; be a computable converging series of non-nega-
tive rational numbers. The number « is random if and only if this series converges
slowly in the Solovay sense.

In other words, the sum is non-random if and only if the ratio r;/m(:) tends
to 0.
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PROOF. Assume that r;/m(i) — 0. Then for every £ we can let h; = em(i) and
get a lower semicomputable sequence that satisfies the conditions of Theorem 108.
Therefore « is not random.

We can also prove that « is not complete (thus providing an alternative proof
of its non-randomness). Recall the argument used in the proof of Theorem 103:
if 7 < m(z), then > 7 <1 > m(i). And if r; < em(d), then > 7 <. > m(i).
This remains true if the inequality r; < em(i) is true for all sufficiently large i. So
for a fast (non-Solovay) converging series and its sum a we have a <. Y. m(i) for
arbitrarily small c. If o were complete, we would have also )" m(i) <4 o for some
d and therefore o <.q4 « for some d and all ¢ > 0. For small enough ¢ we have
cd < 1/2 and therefore o <,/2 a, ie., 2a <1 a, so the difference o — 2a = —a
is lower semicomputable and « is computable. (One could note also that for each
approximation to a from below we can find a twice better one, and we can iterate
this procedure.)

It remains to show the reverse implication. Assuming that @ = ) r; is not
random, we need to prove that r;/m(z) — 0. Consider the interval [0, o] split into
intervals of length 7g,7;,... (from left to right). Given an open cover of a with
small measure, we consider those intervals (of length 79,71, ..., see above) that are
completely covered (endpoints included). They form an enumerable set and the
sum of their lengths does not exceed the measure of the cover. If the cover has
measure 272" for some n, we may multiply the corresponding 7; by 2" and their
sum remains at most 27"™. Note also that for large enough i the ith interval is
covered (since it is close to a and a is covered). So for each n we get a semimeasure
M™ such that M™(i)/r; > 2™ for all sufficiently large ¢ and >, M"(i) < 27"
Taking the sum of all M™, we get a lower semicomputable semimeasure M such
that r;/M (i) — 0. Then r;/m(i) — 0 also for the universal semimeasure m. O

This result provides a (third) proof that a sum of two non-random lower semi-
computable reals is non-random (since the sum of two sequences that converge to 0
also converges to 0).

It shows also that Solovay functions exist (which is not immediately obvious
from the definition). Moreover, it shows that there exist computable non-decreasing
Solovay functions: take a computable series of rational numbers with random sum
and make this series non-increasing not changing the sum (by splitting too big
terms into small pieces).

Let U be an optimal prefix-free decompressor. Consider the function
f(p,z,n) that is equal to I(p) if U produces output z on input p making exactly n
steps, and (say) 2[(p) + 2/(z) + 2logn otherwise. Prove that f(p,z,n) is an upper
bound for K(p,z,n) and this bound is tight when p is the shortest description of
z that needs n steps to process, and give an alternative proof of the existence of
Solovay functions.

It also implies that slow convergence (in the Solovay sense) is not a property of
a series itself, but only of its sum. It looks strange: some property of a computable
series (of non-negative rational numbers), saying that infinitely many terms come
close to the upper bound provided by the a priori probability, depends only on the
sum of this series. At first, it seems that by splitting the terms into small parts
we can destroy the property not changing the sum, but it is not so. In the next
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section we try to understand this phenomenon providing a direct proof for it (and
as a byproduct we improve the results of this section).

5.7.6. The Solovay property as a property of the sum. First, let us note
that the Solovay property is invariant under computable permutations. Indeed,
consider some computable permutation 7. It changes the a priori probability only
by a constant factor: m(w(i)) = ©(m(i)). Then let us consider grouping. Since
we want to allow infinite groups, let us consider a computable series Zz 5 @5 of
non-negative rational numbers. Then

azzaijz(a00+001+"')+(a10+all+"')+"'=ZAZ',
i,J i

where A; =3, a;;.

We want to show that A; and a;; are slowly converging series (in the Solovay
sense) at the same time. Note that slow convergence is permutation-invariant, so
it is well defined for two-dimensional series.

However, some clarifications and restrictions are needed. First, ) A; is not
in general a computable series, it is only a lower semicomputable one. We extend
the definition of the Solovay property to lower semicomputable series: for such
a series we still have A; = O(m(%)), and we require this bound to be O(1)-tight
infinitely often. Second, such a general statement is not true: imagine that all
non-negative terms are in the first group Ag and all A,, A, ... are zeros. Then
>~ A; does not have the Solovay property while ) a;; could have it. The following
result (essentially from [67]) provides the needed restrictions:

THEOREM 112. Assume that each group A; contains only finitely many non-
zero terms. Then the properties A;/m(i) — 0 and a;;/m(i,j) = 0 are equivalent.

Here m(i, j) is the a priori probability of pair (,j) (its number in some com-
putable numbering; the probability does not depend on the coding up to an O(1)-
factor). The convergence means that for every € > 0, the inequality a;;/m(4,j) > €
is true only for finitely many pairs (3, j).

PROOF. Let us recall first that m(z) = > . m(4, j) up to a O(1)-factor. (Indeed,
the sum in the right-hand side is lower semicomputable, so it is O(m(i)) due to
maximality; on the other hand, already the first term m(z,0) is 2(m(¢)).) So
if a;;/m(i, ) tends to zero, the ratio A;/ >, m(i,j) does the same (only finitely
many pairs have a;; > em(4, j) and they appear only in finitely many groups).

It is more difficult to show that A;/m; — 0 implies a;;/m(4,j) — 0. (Here we
need to use that only finitely many terms in each group are non-zero.) For this it is
enough to construct some lower semicomputable /(i j) such that a;;/m(i, j) = 0,
somehow using the fact that A;/m(i) — 0. The natural idea would be to split m(%)
between (3, j) in the same proportion as A; is split between a;;. However, for this
we need to compute A; (and not only to lower semicompute it). It would be easy if
we knew how many terms among a;g,a;), ... are non-zero, but in general this is a
non-computable information. (For the special case of finite grouping this argument
indeed works.)

So we use another approach. For some constant ¢ we may let 7 (i, j) be ca;;
while this does not violate the property 3 (i, j) < m(4). (As m(i) increases, we
let (%, 7) increase when possible.) If indeed A;/m(i) — 0, for every constant ¢ we
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FIGURE 14. Two series with the same sum can be obtained by a
different grouping from the same third series.

have cA; < m(¢) for all sufficiently large ¢, so a;;/™m(%,5) < 1/c for all sufficiently
large ¢ (and only finitely many pairs (¢, j) violate this requirement, because each
A; has only finitely many non-zero terms). So for each ¢ we have constructed some
semimeasure m. such that a;;/m. (4, j) < 1/c for almost all pairs (i, j), and the sum
>ij ™e(d, J) is at most - m(i) < 1. It remains to perform this construction for all
¢ = 2" and combine the resulting 142» with coefficients 27™. O

As a corollary of Theorem 112 we see (in an alternative way) that the Solovay
property depends only on the sum of the series. Indeed, if > ;a; = >_;bj, these
two series could be obtained by a different grouping of terms in some third series

Zk ¢i- To construct cg, we draw intervals of lengths a1, as, ... starting from zero
point, as well as the intervals of lengths b;, bs, .. .; combined endpoints split the line
into intervals of lengths ¢;, ¢z, ... (see Figure 14).

In this way we get not only the alternative invariance proof, but also can
strengthen Theorem 111, which dealt with computable series of rational numbers.
Now we still consider series of rational numbers, but the summands are presented
as lower semicomputable numbers and each has only finitely many different ap-
proximations. (So r; = lim,r(¢,n), where r is a computable function of ¢ and
n with rational values which is non-decreasing as a function of n and for every %
there are only finitely many different values r(i,n).) Then the number )", r; is not
ML-random if and only if r;/m(i) — 0. Indeed, each r; is a sum of a computable
series of non-negative rational numbers with only finitely many non-zero terms. So
we can split > 7; into a double series not changing the sum (evidently) and the
Solovay property (due to Theorem 112).

Recall that an upper semicomputable function n — f(n) with integer values is
an upper bound for K(n) (up to an O(1) additive term) if and only if 5 27F()
is finite (Theorem 62, p. 100). Now we can extend this statement:

THEOREM 113. This bound is tight for infinitely many n (i.e., K(n) = f(n)—c
for some ¢ and for infinitely many n) if and only if the sum )" 2=f(™) s random.

PROOF. Indeed, decreasing integer upper bounds for f(n) provide increasing
lower bounds for 2=/ (with finitely many changes), so we use the preceding
result. a

We end this section with an alternative proof that all complete reals have the
Solovay property. First we observe that the Solovay property is upward closed with
respect to Solovay reducibility. Indeed, if > a; and > b; are computable series of
non-negative rational numbers and a; converges slowly, then ) (a; + b;) converges
slowly also (its terms are bigger). So it remains to prove directly that at least one
slowly converging series (or, in other words, a computable Solovay function) exists.
It can be done as shown in Problem 164. Another way to explain this construction
is that we watch how the values of a priori probability increase (it is convenient
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again to consider the a priori probability of pairs):
m(0,0) m(0,1) m(0,2) m(0,
m(1,0) m(1,1) m(1,2) m(l,
m(2,0) m(2,1) m(2,2) m(2,

3)
3)
3)

and we fill a similar table with rational nmumbers a;; in such a way that a;;/m(i, j) /4
0. How do we fill this table? For each row we compute the sum of current val-
ues m(%, ); if it crosses one of the thiresholds 1/2,1/4,1/8- .-, we put the crossed
threshold value into the a-table (filling it with zeros from left to right while waiting
for the next threshold crossed). In this way we guarantee that a;; is a computable
function of ¢ and j; the sum of a-values in every row differs from the sum of m-
values in the same row at most by factor 2 (in both directions); this implies that
the new series is convergent and that in every row there exists some a-value that is
at least half of the corresponding m-value. Logarithins of a-values form a Solovay
function (and a;; itself form a slowly convergent series).

Note that this construction does not give a non-decreasing Solovay function di-
rectly (it seems that we still need to use the arguments from the preceding section).

5.7.7. Busy beavers and convergence moduli. We had several definitions
that formalize the intuitive idea of a “slowly converging series”. However, the
following one (probably the most straightforward) was not considered yet. If a,, —
a, for every € > 0 there exists some N such that |a — a,| < € for all n > N. The
minimal N with this property (considered as a function of ¢, denoted by € — N{¢))
is called a modulus of convergence. A sequence (or a series) should be considered
“slowly converging” if this function grows fast (as ¢ — 0). Let us show how the the
Solovay property could be equivalently characterized in these terms.

In Section 1.2 (p. 21) we defined B(n) as a maximal integer whose complexity
does not exceed n. We used plain complexity there (since at that time no other
versions were defined), but a similar definition can be given for prefix complexity.
Let BP(n) be the maximal integer whose prefix complexity does not exceed n.

Fix an optimal prefix-free universal machine M. Let T(m) be the maxi-
mal time needed for termination of all terminating computations on inputs of length
at most m. Then

BP(m —c¢) < T(m) < BP(m+c¢)
for some ¢ and all m.

(Hint: One can use the same argument as for plain complexity (see Sec-
tion 1.2).)

Now we can prove the equivalence of different notions of “slow convergence”:

THEOREM 114. The computable series of non-negative rational numbers > r;
has the Solovay property (& has a random sum) if and only if its modulus of con-
vergence grows fast: N(27™) > BP(m —c) for some c and for all m.

PRrROOF. Let o = Y r; = lima;, where a; = rg + -+ +7;_,. Assume that o is
random. We have to show that |a —a;| < 27™ implies K (i) > m — O(1); this shows
that N(27™) > BP(m — O(1)). Since K (i) = K(a;) + O(1), it is enough to show
that every rational 27™-approximation to « has complexity at least m—O(1). This
is a bit stronger condition than the condition K(ag - am—1) = m — O(1) (used in
the prefix complexity version of the Levin—-Schnorr theorem) since now we consider



170 5. MONOTONE COMPLEXITY

all approximations, not only the prefix of the binary expansion. However, it can
be proven in a similar way.

Let ¢ be some integer. Consider an effectively open set U, constructed as
follows. For every rational r we consider the neighborhood around r of radius
9—K(r)=¢, the set U, is the union of these neighborhoods. (Since K(r) is upper
semicomputable, it is indeed an effectively open set.) The total length of all intervals
is 2-27¢y° 27K < 27(e=1) Therefore, the sequence U, forms a Martin-Lof test,
and random « does not belong to U, for some ¢. This means that complexity of
2~ ™-approximations of « is at least m — O(1).

In the other direction we can use the Levin-Schnorr theorem without any
changes: if N(2=™) > BP(m — ¢), then K (i) > m — O(1) for every 7 such that
a; is a 2~™-approximation to a. Therefore, the m-bit prefix of & has complexity
at least m — O(1), since by knowing this prefix, we can effectively find an a; that
exceeds it (and the corresponding 7). O

REMARK. Note that this theorem shows equivalence between two formaliza-
tions of an intuitive idea of “slowly converging series” (or three, if we consider the
Solovay reducibility as a way to compare the rate of convergence). However, the
proof goes through Martin-Lo6f randomness of the sum (where the series itself dis-
appears). It would be nice to find a more direct proof and (maybe) to connect the
Solovay reducibility (not only completeness) to the properties of the convergence
moduli.

Reformulating the definition of BP (m) in terms of a priori probability, we may
define BP(m) as the minimal N such that all n > N have a priori probability less
than 27™. However, in terms of a priori probability the other definition looks more
natural: let BP’(m) be the minimal N such that the total a priori probability of all
n > N is less than 27™. Generally speaking, BP’(m) can be greater than BP (m)
(see [4]), but it turns out that it still can be used to characterize randomness in
the same way:

THEOREM 115. Let a; be a computable increasing sequence of rational numbers
that converges to a random number a. Then N(2=™) > BP’(m — ¢) for some c
and for all m.

PROOF. Since all ¢ > N(2™™) have the same a priori probability as the cor-
responding a; (up to an O(1)-factor), it is enough to show that for every m the
sum of a priori probabilities of all rational numbers in the 2~™-neighborhood of a
random a is O(2™™) (recall that for each i > N{(27™) the corresponding a; belongs
to this neighborhood).

As usual, we go in the other direction and cover all “bad” « that do not have
this property by a set of small measure. Not having this property means that for
every ¢ there exists an m such that the sum of a priori probabilities of rational
numbers in the 2~™-neighborhood of a exceeds ¢2=™. For a given ¢, we consider
all intervals with rational endpoints that have the following property: the sum of a
priori probabilities of all rational numbers in this interval is more than c/2 times
bigger than the interval’s length. Every bad « is covered by an interval with this
property (the endpoints of the interval (¢ —2™™, a +27™) can be changed slightly
to make them rational), and the set of intervals having this property is enumerable.
It is enough to show that the union of all such intervals has measure O(1/c), in
fact, at most 4/c.
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It is also enough to consider a finite union of intervals with this property.
Moreover, we may assume that this union does not contain redundant intervals
(that can be deleted without changing the union). Let us order all the intervals
according to their left endpoints:

(lo,'f‘o), (llvrl)a (l2vr2)v ceey

where lp < ) < Iy € ---. It is easy to see that right endpoints go in the same
order (otherwise, one of the intervals would be redundant). Sorg <7, < 7ra < - -.
Now note that r; < [;49; otherwise, the interval (l;41,7i41) would be redundant.
Therefore, intervals with even numbers (lo, 7o), (l2,72), (l4,74), . . . are disjoint, and
for each of them the length is ¢/2 times less than the sum of a priori probabilities
of rational numbers inside it. Therefore, the total length of these intervals does not
exceed 2/c, since the sum of all priori probabilities is at most 1. The same is true
for intervals with odd numbers, so in total we get the bound 4/c. O

This statement raises some natural questions. How much could BP(m) and
BP’(m) differ? This question was answered in [4] (the maximal difference corre-
sponds to a logarithmic change in the argument), but there are many others for
which we do not know the answers. Can we use prefix-stable machines (instead of
the prefix-free ones) in the definition of BP(n) as the computation time? Can we
derive the last theorem from the version of the Levin—Schnorr theorem with a priori
complexity? Can we use the methods of this section to prove that the real number
Yozex 2-4=) is random for every prefix-free set X that contains the domain of an
optimal prefix-free decompressor?

Returning to the “philosophical meaning” of the number §2, let us note that it
can be considered as an “infinite version” of special objects of complexity n that are
considered in Theorem 15 (p. 25). Moreover, there is a direct connection between
these notions.

THEOREM 116. Let ), be the binary string formed by first n bits of the binary
representation of 2. Then 2, has the properties described in Theorem 15 with
O(log n)-precision: each of the objects listed there (say, B(n)) can be algorithmically
obtained from Qno(10gn) and vice versa (S, can be obtained from B(n+O(logn)).

Proor. We already have seen that given 2, one can construct an integer
t > BP(n) (the number of steps needed to exceed 2,). The difference between
plain and prefix complexity (that could make B(n) greater than BP(n)) can be
compensated by an O(logn)-change in n.

In the reverse direction, assume that B(n) and n are known. How do we find
Qn—0(logn)? We claim that in the current approximation for  found after B(n)
steps the first n — O(logn) bits are final (i.e., they coincide with the corresponding
bits in ). If this is not the case, there exists a threshold § that is a finite binary
fraction of length n — O(logn) bits that separates the current approximation and
Q. The complexity of 3 is at most n — O(logn). Knowing 3, we can construct a
number greater than B(n): just count the steps needed to get an approximation
greater than S. For a large enough constant in O(logn), we get a contradiction. O

Therefore we see that knowing n 4+ O(logn) bits in Q allows us to answer
any question about the termination of a program of size at most n. Since the
question about the membership in any enumerable set (e.g., questions whether a
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given statement of size n is provable in some fixed formal theory) has this form, we
can follow Chaitin and call 2 “the number of wisdon1” that contains information
about many important things. (Sounds rather roinantic, indeed.)

Returning to more meaningful statements, we have proven that Q is Turing-
equivalent to 0’ (we can compute € having an oracle for halting problem, and vice
versa).

5.8. Effective Hausdorff dimension

The notion of Hausdorff dimension is well known in measure theory (and it
became popular in connection with fractals). Here is the definition. Let o > 0 be
some real number. We say that a set A is an a-null set if for any € > 0 there exists
a sequence of intervals I, that cover A such that

S ull)® <e.
e

This definition assumes that A is a subset of a space where a class of subsets called
“intervals” is chosen and the measure of intervals is defined. We restrict ourselves
to the case of the set 2. Here intervals are the sets Q, (where Q. is the set of
all infinite extensions of a binary string ). The measure of the interval 2, equals
2—1(:1:).

Let us start with a few simple remarks:

(1) Any subset of an a-null set is an a-null set.

(2) For oo = 1 we get the standard definition of a null set (set of measure zero).

(3) For @ > 1 any subset A C Q0 is an a-null set. Indeed, one can cover A by 2"
intervals that correspond to 2™ strings of length n, and the sumn of their a-measures
tends to 0 as n — oo.

(4) Assume that 0 < o < o’/. Any a-null set is then an o’-null set (note that
measure (1) of each interval I does not exceed 1 and therefore u(1)® < p(I)%).

Give a natural definition for an a-null set of reals, and show that a set
A C [0,1] is an a-null set if and only if the set of binary representations of all
numbers in A is an a-null set according to the definition above.

(Hint: We need to verify that the more liberal notion of an interval in R where
we do not require any alignment, does not change the class of null sets.)

Our remarks imply that for any set A C § there exists some threshold d € [0, 1]
with the following property: if @ > d, the set A is an a-null set; if o < d, it is
not. (For o = d the set may be an a-null set or not.) This threshold is called the
Hausdorff dimension of the sct A.

The Cantor set is the subset of [0,1] that remains if we take out the
middle third (1/3,2/3), then take out the middle thirds of two remaining segments
(i.e., (1/9,2/9) out of [0,1/3] and (7/9,8/9) out of [2/3,1], etc.). Prove that the
Cantor set is a compact set homeomorphic to {2 and has Hausdorff dimension logs 2.

(Hint: To get an upper bound for the Hausdorff dimension, one may consider
the standard intervals, i.e., the intervals that remain after several steps of the Cantor
set construction. To get a lower bound, note that (1) we may consider only finite
covers due to compactness; (2) if a cover for the Cantor set is given, we can look
at its parts that cover the left third and the right third; each of these parts can be
scaled to the cover of the entire set due to the self-similarity of the Cantor set. If
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« is smaller than the threshold, one of these covers is better than the original one,
so we may increase the sizes of intervals, and finally get a contradiction.)

Give a natural definition of the Hausdorff dimension for the subsets of
R3. Explain why the dimension equals 3 for solids, 2 for surfaces, 1 for curves, and
0 for isolated points. Show that for any d € [0, 3], there is a subset of R® that has
dimension d.

The effective version of Hausdorfl dimension is defined in a natural way [190,
152]. A set A C Q is an effective a-null set (for a given & > 0) if there exists an
algorithm that, for any given € > 0, enumerates a set Iy, I}, I, ... of intervals that
cover A such that > (u(Ix))* < e. (Here p is the uniform measure on Q).

As in the classical case, the property is monotone (it remains true if « increases
or A decreases). The main difference between the classical and effective case is
shown by the following theorem:

THEOREM 117. For every rational o > 0, there exists the largest (with respect
to inclusion) effectively a-null set.

PROOF. The proof goes in the same way as for effectively null (=1-null) sets
(Chapter 3). The countable union of e-null sets (in the classical sense) is an a-null
set. In the same way the union of an enumerable family of effectively a-null sets is
an a-null set. On the other hand, if « is a rational number (or even a computable
real), we can enumerate all effectively a-null sets (or, better, the algorithms that
serve these sets) by enumerating all algorithms and changing them when too large
intervals are generated. O

Prove that the largest effectively a-null set consists of all the sequences
w such that the difference an — K (n) has no upper bounds.

(Hint: The proof is similar to the proof of the prefix complexity version of the
Levin—Schnorr theorem.)

The following result (A.Khodyrev) is not used in the sequel (for the definition
of the Hausdorfl dimension, rational a’s are sufficient), but it is interesting in its
own right. Let « be an arbitrary real number.

THEOREM 118. The largest effectively a-null set exists if and only if a is lower
semicomputable.

PROOF. Assume that « is lower semicomputable. This means that we can gen-
erate better and better approximations from below to «, but we do not know their
precision. If we use these approximations (instead of true ) in the requirements
for the cover (in the definition of an effectively a-null set), we get stronger require-
ments. Consider the algorithm from the previous theorem that generates covers of
the largest effectively a-null set, and let it use rational lower approximations of «
instead of « itself, with the following modification. Do not reject permanently the
intervals that violate these requirements, but postpone them and check again when
a new approximation to « arrives. If a cover satisfies the requirement for the true ¢,
all its intervals will be eventually let through.

On the other hand, let us assume that for some a there exists the largest
effectively a-null set. Consider the algorithm that generates covers for it. This
algorithm can be used to obtain lower bounds for a. Indeed, if for some rational €
the algorithm produces a finite family of intervals (at some step) and S-powers of
the measures of these intervals exceed ¢, this means that 8 < a.
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It remains to prove that these bounds can be arbitrarily close to «. Assume
that this is not the case and all of them are less than some o’ < a. In this case
every effectively a-null set would be at the same time o’-null set, which is not true
(there exist sets of any effective Hausdorff dimension; see Problem 170, p. 175). O

The effective Hausdorff dimension of a set A C {2 is now defined as the infimum
of a such that A is an effective a-null set. This number belongs to [0, 1] and is
obviously greater than or equal to the (classical) Hausdorff dimension. (Initially
the definition of effective Hausdorff dimension was given in a different way, using
computable martingales; see [111, 118], where the properties of effective dimension
were established. See also Section 9.10 about computable martingales.)

We have mentioned a paradox: The property of being an effectively null set
depends only on the type of its elements (whether they are random or not). It is
not important “how many” elements are in the set. A similar observation can be
made for Hausdorff dimension:

THEOREM 119. The effective Hausdorff dimension of the set is equal to the
supremum of the effective Hausdorff dimensions of its elements.

(By effective Hausdorff dimension of a point w € 2, we mean the effective
Hausdorff dimension of the singleton {w}.)

PROOF. Obviously the (effectively Hausdorff) dimension of a set cannot be
less than the dimension of its element. It remains to prove the converse: if the
dimensions of all singletons formed by elements of a set A are less than some
rational number r, and ' > r is another rational number, then the dimension of
A does not exceed r’. This is a direct corollary of Theorem 117;: all singletons are
subsets of the largest effectively r’-null set, so A is a subset of the same set and has
dimension at most r’. O

Therefore we need to understand only what is the (effective Hausdorff) di-
mension of a singleton. It turns out that it has a simple description in terms of
Kolmogorov complexity.

THEOREM 120. The effective Hausdorff dimension of a singleton {w}, where
W = wowiws - - -, 18 equal to

lim inf SE091° 7 @n1),

n—o0 n

(The statement uses plain Kolmogorov complexity of the prefixes of w. How-
ever, one can use other versions of complexity: since the difference between different
complexity versions is of order O(logn) for strings of length n, and we divide the
complexity by n, we get a term O(logn)/n that does not change the limit.)

Proor. This result can be derived from the statement of Problem 169, but we
provide the direct proof. We have to prove two inequalities: one for each direction.

Assume that the liminf is less than a rational number r. We have to verify
that the set {w} is an effectively r’-null set for each rational ' > r.

For each n we consider all n-bit strings that have complexity less than rn. There
are at most O(2™) such strings. The condition about liminf guarantees that for
infinitely many n the n-bit prefix of w is in the corresponding list. Consider all
intervals €2, for all z in the list (for some fixed n), and compute the sum required
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in the definition of an effectively -null set: there are O(2™) terms and each is
(2=™)™ = 27", 50 the sum is O(2("~")") and we get a converging geometric series

2(7'77*')71~
%

Deleting an initial part of this series (considering only strings of length N or more)
we make the sum arbitrarily small (when NV is large enough). At the same time our
assumption (about lim inf) guarantees that remaining intervals still form a cover
for w. So one inequality is proved.

Going in the other direction, assume that {w} has effective dimension less than r
for some rational r. Let us show that the lim inf does not exceed 7.

By definition, for each rational € > 0 we can generate a sequence of intervals.
We know that one of them contains w and the sum of rth powers of the measures
does not exceed €. Let us do this for e = 1,1/2,1/4,.... In this way we get
a sequence of intervals that have finite sum of rth powers of their measures, and
infinitely many of them cover w. In other words, there exists a computable sequence
of intervals zg, 21, 22, ... such that:

. 22—7'[(.7:,-) < 00;

e ; is a prefix of w for infinitely many 1.

The first statement implies that m(i) > ¢2-"4*:) for some c and for all i (where
m is the discrete a priori probability of natural numbers considered in Chapter 4).
Taking the logarithms, we get the bound for prefix complexity,

K(z:) < K@) + O(1) < rl(z;) + O(1)

for all . Note also that the lengths of x; tend to infinity (since the series is conver-
gent), that x; is a prefix of w for infinitely many ¢ and that the plain complexity does
not exceed the prefix one. (The definition of lim inf guarantees that if a sequence
has infinitely many terms that do not exceed r, its liminf does not exceed r.) [

Prove the following corollary: for any real « € [0,1] there exists a set
(and even a singleton) that has effective Hausdorff dimension a.

(Hint: The complexity of an initial segment can be increased by adding random
bits and decreased by adding zeros.)

Prove that for an effectively closed subset of the Cantor space (this meaus
that the complement of this set is the union of an enumerable family of intervals)
the effective Hausdorff dimension coincides with the classical Hausdorff dimension.

(Hint: Due to compactness, one may consider finite covers and search for them
effectively.)

Find the (classical) Hausdorff dimension of the Cantor set (see Prob-
lem 167) using the previous problem and the characterization of effective dimension
in terms of singletons and Kolmogorov complexity.

Prove that for every real a € [0,1] there exists a set that has (classical)
Hausdorff dimension a.
(Hint: Consider the set of all sequences that have zeros at specified places.)

Prove that the definition of effective Hausdorff dimension of a set A
remains the same if we require the existence of a computable sequence of intervals
that has finite sum of rth powers of the measures and that covers each element of
A infinitely many times.
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(Hint: If such a cover exists for some «, for a greater o’ the sanie intervals have
smaller measure, aud the decrease is more significant for smaller intervals. Note
that we can delete all short strings from the cover, due to our assumption (each
element is covered infinitely many times).)

We return to the notion of effective Hausdorff dimension in Section 9.5 where
its relation to effective martingales is explained. We show there how to translate
the proof of Theorem 120 into the martingale language.

5.9. Randomness with respect to different measures

5.9.1. Changing the measure. The notion of randomness evidently depends
on the underlying measure. For example, the strong law of large numbers guarantees
that sequences that are ML-random with respect to the Bernoulli measure B, have
limit frequency p, so for different p we get disjoint sets of random sequences. Still
from the viewpoint of computability theory the properties of ML-random sequences
(with respect to a computable measure P) do not depend on P—except for some
trivial cases.

The trivial case we have in mind is the following one: if a computable measure
u has an atom, i.e., if some sequence (a singleton) has positive y-measure, then this
sequence is random (it cannot be an element of a p-null set). Such a sequence is
always computable. This is a corollary of Theorem 79(h) (p. 123), but has also the
following simple proof. Assume that {w} has a positive probability ¢ with respect
to a computable distribution y. Let us consider p-mmeasures of the sets 2, where
z is a prefix of w. These measures decrease as x becomes longer, and their limit
is €. Wait until some of them become less than 1.1le. If z is such a prefix, only
one of the strings 0 and z1 has p-measure greater than 0.9¢, and this prefix can
be effectively found since p is computable. So the sequence can be computably
extended starting from this point.

To avoid this special case, we consider only atomless measures where each
individual sequence has measure 0. If yu; and ps are two computable atomless
measures, then the sets of ML-random sequences with respect to u; and uo are
essentially the same from the computability viewpoint:

THEOREM 121. Let py and po be two atomless measures. Then there ezists a
bijection between the sets of ML-random sequences with respect to py and po that
in both directions is a restriction of a computable mapping of type ¥ — X.

In other words, there exist oracle machines Mo, M) with the following prop-
erties: if an oracle is a sequence w that is ML-random with respect to u;, then My
is an infinite sequence that is random with respect to uo, and vice versa; these two
mappings are mutually inverse (on random sequences).

PROOF. Following [225], consider first a special case when one of the measures
(say, p2) is the uniform measure on [0, 1). We want to construct a one-to-one cor-
respondence between sequences that are pj-random and uniformly random points
in [0,1]. As usual, we split [0,1] into two intervals: the left interval my of length
11(€0), and the right interval m; of length p;(2;). Each of the intervals g and m;
is then split in a similar way, etc. Then for each sequence w consider a real number
that is a common point of all 7, for all prefixes x of w. Since p; has no atoms,
such a common point is unique.
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We have constructed a mapping of Q to [0,1] that is an isomorphism in the
sense of mcasure theory. It is not a one-to-one mapping since the endpoints of the
intervals have two preimages, but the endpoints form a (countable) set of measure 0.
The computability of the measure guarantees that effectively null sets with respect
to uy correspond to the effectively null sets with respect to the uniform measure,
therefore we get a bijection between the sets of ML-random sequences with respect
to corresponding measures. (Note that the endpoints of the segments, as well as
corresponding sequences z000--- and x111-- -, are not randomn. Note also the p;-
measure of some Q. can be zero, and then its image is one point, but this does not
matter; all the sequences starting with z are then non-random.)

It remains to do the same for u, and then take the composition of these two
bijections (using [0,1] as an intermediate step). The computabity of the corre-
sponding mappings is easy to prove since both measures p; and ps are assumed to
be computable. O

Using the language of computability theory, we can state a corollary of this
result. Recall that two sequences (or two sets: we identify a set and its character-
istic sequence) are Turing-equivalent (belong to the same Turing degree) if each of
them is computable by a machine that uses the other sequence as an oracle. The
equivalence classes are called Turing degrees. Our theorem shows that the class
of Turing degrees of ML-random sequences does not depend on the choice of an
atomless computable measure.

Prove that every sequence that is random with respect to some com-
putable measure u (not necessarily atomless) is either computable or Turing-equiv-
alent to a uniformly ML-random sequence.

(Hint: Consider the intervals 7, for  that are prefixes of w and their common
point. If it is not unique, then w is computable. If the common point z is unique,
then z is uniformly random and can be computed given an oracle for w. On the
other hand, w is computable if we have approximations to z as an oracle: we use
that z is random and therefore different from all the endpoints of the intervals.)

5.9.2. “Absolutely non-random sequences”. Consider some sequence w.
We want to find a computable measure u such that w is ML-random with respect
to u. Is it always possible? The answer turns out to be negative.

THEOREM 122. There ezists an infinite sequence of zeros and ones that is not
ML-random with respect to any computable measure on 2.

Sequences that are random with respect to some computable measure were
called “proper” in [225] (English translation). The theorem states that not all
sequences are proper. There are different ways to construct a non-proper sequence.
We start with the most intuitive one that uses the a priori randomness deficiency.
Recall that the ML-randomness criterion (for a computable measure P) can be
reformulated in the following way. For each string z consider the difference

dp(z) = —log, P(Qz) — KA (z).

The sequence w is ML-random with respect to P if this difference is bounded (by
a constant) for the prefixes of w. So we may call this difference the randomness
deficiency of a string z (with respect to computable measure P): a sequence is
random if the deficiencies of its prefixes are bounded (by a constant).
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The name “randomness deficiency” is quite general and may be understood in
different ways in different contexts. We already considered the expectation-bounded
and probability-bounded deficiencies for infinite sequences, and in Chapter 14 we
consider the randomness deficiency of an element of a finite set. However, in this
section by randomness deficiency we mean the function dp defined on finite strings
as explained above.

The definition above assumes that P(Q,) > 0; if P(Q2;) = 0 for some z, we let
dp(z) = +o00.

The randomness deficiency is always non-negative (up to a constant); see The-
orem &9.

Prove that for every string = the deficiency of at least one of the strings
z0 and z1 does not exceed the deficiency of z. (We assume that a computable
measure P used in the definition of the deficiency is fixed.)

This problem shows that we can start with an arbitrary string with finite defi-
ciency (non-zero measure) and extend it bit by bit not increasing its deficiency. The
randomness criterion guarantees that in this way we get an ML-random sequence
with respect to the measure used in the definition of deficiency.

After the notion of deficiency is introduced, we return to the proof of Theo-
rem 122,

Proor. To get a “non-proper” sequence w, we need to ensure that for every
computable measure P there is a prefix of w that has large randomness deficiency
with respect to P. So we get a countable family of requirements: for each measure
P and for each ¢ the corresponding requirement says that some prefix has deficiency
at least ¢ with respect to P.

Using a diagonal construction, we fulfill these requirements one by one. At
each step we add to a current prefix some additional bits to ensure that the next
requirement is fulfilled. So we need to check that for each string z and for each
computable measure P and constant ¢ there exists an extension y of x that has
deficiency at least ¢ with respect to P. Indeed, we may extend x by adding a bit
in such a way that the P-mneasure decreases at least by a factor of 1.5, then do this
again, etc. This can be done effectively, so the complexity of the prefixes increases
slowly, while the measure decreases fast, so we get an arbitrary large deficiency. 0O

Essentially the same argument can be explained using “generic” sequences.
Recall that a subset A of 2 is everywhere dense if it has non-empty intersection with
every interval. A famous Baire theorem says that the intersections of a countable
family of open sets A; (an open set is a union of intervals) that are everywhere
dense is non-empty and, moreover, everywhere dense.

Prove the Baire theorem starting with any string and adding suffixes to
get inside dense open sets (one by one).

Now we consider effectively open sets (unions of enumerable families of inter-
vals) that are everywhere dense. We get a countable family of open sets that are
dense everywhere. Their intersection is an everywhere dense sets whose elements
are called generic sequences. (The full technical name is weakly 1-generic sequences;
see [147, Definition 1.8.47].) Informally speaking, a generic sequence violates ev-
ery law that prohibits an enumerable dense set of prefixes. (Every string has an
extension that violates the law, and violations can be effectively discovered.)
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Prove that every generic sequence violates the Strong Law of Large Num-
bers.

(Hint: The set of binary strings of length greater that N that have more than
99% of ones is a dense effectively open set; the same is true for the set of strings
with more than 99% of zeros.)

Prove that no generic sequence is computable.
(Hint: The set of all sequences that differ from a given computable sequence is
open and everywhere dense.)

Note that the definition of a generic sequence (unlike randomness) does not
refer to any measure.

Prove that a generic sequence is not ML-random with respect to any
computable measure.

(Hint: It is enough to construct an effectively open dense set that has small
measure. This can be done by iteratively choosing a smaller half of an interval or
almost smaller if the halves have almost equal size.)

Zvonkin and Levin ([225], the remark after Definition 4.4) mentioned another
way to construct a sequence that is not random with respect to any computable
measure. They claim that it is easy to show that the characteristic sequence of
the universal enumerable set is not ML-random with respect to any computable
measure. They don’t say what kind of universality is needed, but indeed one can
find an enumerable set with this property:

Show that there exists an enumerable set whose characteristic sequence
is not random with respect to any computable measure.

(Hint: The complexity of the prefixes of every characteristic sequence of an
enumerable set is logarithmic; it remains to guarantee that any computable measure
of the prefixes decreases fast. This can be done as follows. We split N into countably
many arithmetic sequences and devote ith of them to an ith computable measure;
our goal is that the sequence of bits appearing at these places is not random with
respect to the projection of the ith measure on the corresponding coordinates. It
can be done by choosing a direction where measure decreases fast. (Then we use
Theorem 123.) Since we do not know whether the ith algorithm indeed computes
a computable measure, we get an enumerable set, not a decidable one.)

It is interesting that not every enumerable set has this property:

Construct an enunierable undecidable set whose characteristic function
is ML-random with respect to some computable measure.

(Hint (L. Bienvenu): Let a; be a computable sequence of rational numbers
that is dense in [0, 1]. Consider a computable mapping of § to itself: a sequence
a is interpreted as a binary fraction in [0,1] and mapped to a sequence w where
w;=1ifa; <aand w; =0 if a; > a. (If a is one of the a;, then w; is undefined.)
This mapping is almost everywhere defined (with respect to the uniform measure);
the image of the uniform measure is therefore a computable measure on §2, and
the image of a lower semicomputable ML-random real is a sequence that is ML-
random with respect to the image measure and at the same time is a characteristic
sequence of an enumerable undecidable set. (To prove undecidability, we use that
a; are dense in [0, 1].) See Sections 5.7 and 5.9.3.)
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We have constructed several examples of sequences that are not random with
respect to any computable measure. But one may ask a different question: Is there
a sequence that is not Turing-equivalent to any ML-random sequence? Here we do
not need to specify a computable measure, since all the measures have the same
degrees of random sequences (see above). This is possible, too:

Prove that there exists a non-computable oracle A such that no A-
computable sequence is randoni with respect to a computable measure (unless the
sequence is computable and the measure has an atom).

(Hint: First, we may consider only the uniform measure. Then we use a
diagonal construction to get the required set A. First, for every 1 we can add a
prefix of A that guarantees that A is not computed by the ith machine. On the
other hand, for every ¢ we can add a prefix that guarantees that either (1) the
ith machine with oracle A computes a non-total sequence, or (2) the ith machine
computes a sequence that has a prefix with large deficiency. Indeed, if there is some
extension of the current oracle prefix that allows the ith machine to compute a long
sequence, choose the first such extension, and the corresponding long sequence will
have small complexity; if there is no such extension, the function computed by the
ith machine is guaranteed not to be total.)

The statement of the last problem is also a corollary of several more diffi-
cult results that are not included in our book. First, V. Vyugin has shown [215]
that there exists a probabilistic machine that with positive probability generates se-
quences with this property (sequences that are not Turing-equivalent to any random
sequence). This sounds like a paradox: The property implies that for a sequence
o there is no computable measure that “explains” « (makes o random with re-
spect to this measure). On the other hand, there is a machine that generates such
“unexplainable” sequences with positive probability—so why not take the output
distribution of this machine as an explanation? The solution of this paradox: The
output distribution is a semimeasure, not a measure (the machine generates finite
sequences with positive probability).

There is another, completely different, argument: We can derive the statement
of the problem from recent (but already classical) results about low sets (see the
books of A. Nies [147], R. Downey and D. Hirschfeldt [49]; a simplified exposition
can be found in [20]). These results say that there is an enumerable undecidable set
A that is low for Martin-Léf randomness: Adding A as an oracle does not change
the set of ML-random sequences (and it also does not change prefix complexity,
but this is not needed now). For this A no A-computable sequence can be random
(since it is not A-random). In this way we get a set A with an additional property
(A is enumerable).

So for many different reasons there exists a sequence such that no ML-random
sequence is reducible to it. In the other direction the situation is different: Every
sequence is Turing-reducible to some ML-random (with respect to the uniform
distribution) sequence; see below Theorem 126, p. 189. The proof of this theorem
implies also that every Turing degree above 0’ (every Turing degree that computes
the halting problem) contains a random sequence; see Problem 190 (p. 190).

Prove that there exist a sequence w that is Turing-equivalent to a uni-
formly ML-random sequence, but w itself is not random with respect to any com-
putable measure.
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(Hint: We interleave two sequences: at positions 0,2,4,... we put a generic
sequence ; and at positions 1,3,5,... we put an ML-random sequence w that
computes . The resulting sequence is Turing-equivalent to w. Note also that if a
sequence is ML-random with respect to some measure P, that its subsequence with
even indices is ML-random with respect to the projection of P on these coordinates;
see Theorem 123.)

The sequences that are not random with respect to any computable measure,
are similar (in a sense) to non-stochastic objects in the sense of Kolmogorov (see
Section 14.2). Moreover, one can show that if a sequence « is random with respect
to a computable measure, then its prefixes are stochastic objects (Problem 349,
p. 430).

5.9.3. Image randomness. We started this chapter by considering a proba-
bilistic machine that consists of a (fair) random bit generator and an algorithm that
transforms this sequence of random bits into a finite or infinite output sequence. Let
us return to this scheme and assume that with probability 1 the output sequence
is infinite. In this case we get a computable output distribution y.

A (slightly philosophical) question arises: Which infinite sequences are plausible
as outcomes of such a machine? There are two possible answers.

First, we have a definition of Martin-Lof randomness that can be applied to the
computable distribution p. We can say that plausible sequences are the sequences
that are ML-random with respect to this distribution. On the other hand, we can
look inside the machine and ask, Which sequences are plausible as the outputs of a
random bit generator? The natural answer is ML-random sequences with respect
to uniform distribution. According to this answer, plausible output sequences are
images of ML-random sequences (with respect to uniform distribution) under the
computable transformation performed by the machine.

Which of these two answers is more philosophically convincing? Fortunately,
we do not need to make a choice here, since these two classes coincide. Here are
the exact statements and proofs.

Let p be a computable probability distribution on 2, and let f: ¥ — ¥ be a
continuous computable mapping. Consider the image of the measure p with respect
to f, i.e., a measure v on the set ¥ such that

v(U) = u(f71(U))

for any U C X. In other words, v is the probability distribution of the random
variable f(w), where w is a random variable that has distribution u. In the general
case the distribution v is not concentrated on 2 and may assign positive proba-
bilities to finite sequences; in our terminology v may be a semimeasure (and this
semimeasure is lower semicomputable), not a measure. Let us assume, however,
that it is not the case and that v is a measure on Q. (It is easy to see that in this
case v is a computable measure.)

THEOREM 123. (a) For any sequence w € {2 that is ML-random with respect to
measure u, its image f(w) is an infinite sequence that is ML-random with respect
to measure v.

(b) Any sequence T that is ML-random with respect to v can be obtained in this
way, i.e., there exists a sequence w that is ML-random with respect to u such that

flwy=r.
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Recently M. Hoyrup found that this statement remains true for the so-called
layerwise computable mappings. This class contains all computable almost every-
where defined mappings and looks like the right generalization making the proof
balanced and natural. Still we restrict ourselves to the classical case of computable
mappings in this book and refer the interested reader to the exposition in [15] for
the general case.

Proor. First, let us prove that the f-image of a p-random sequence w is
infinite. If this is not the case and f(w) is a finite string z, consider all infinite
sequences w such that f(w) = z, i.e., the f-preimage of the set X, \ (X0 U X.1).

The preimage of 2, is an effectively open set (the union of an enumerable
set of intervals), and the preimage of ¥,9 U X, is another effectively open set
that is a subset of the first one. To get the contradiction, we have to prove that
the preimage of the difference (=the difference of the preimages) does not contain
random sequences. This is a special case of the following general statement.

LEMMA 1. Let p be a computable measure on ), and let U C V be two effectively
open sets such that u(V\U) = 0. Then V\U is an effectively null set (=does not
contain random sequences).

PROOF. It is enough to consider one interval I in the set V' (and replace U by
its intersection with I). Enumerating the intervals that form the set U, we cover
more and more points in I. By continuity the measure of the covered part converges
to the measure of the interval I (since V \ U has zero measure). Therefore, we can
wait until the renlaining part of I has measure less than £ for any given ¢ and find
a cover of I \ U by a (finite) family of intervals with small total measure.

Lemma 1 is proven (and we did not use that V' is effectively open; the same is
true for every open set V).

To finish the proof of (a) we have to show that the image f(w) of a u-random
sequence w cannot be an infinite but not v-random sequence. Indeed, assume that
that f(w) is infinite but does not form an effectively v-null set. The preimages
of the intervals that cover f(w) cover w, and we get an effectively open set that
contains w and has small measure (recall that the u-measure of the preimage of an
effectively open set is equal to the v-measure of the set itself). The statement (a)
is proven.

Prove a quantitative version of this statement: The expectation-bounded
deficiency of the sequence f(w) with respect to measure v is bounded by the
expectation-bounded deficiency of w with respect to p plus a constant that de-
pends on the measures and the mapping but not on w. (In this problem we use the
randomness deficiency for infinite sequences as defined in Section 3.5.)

Let us now prove the statement (b) using the notion of deficiency (for finite se-
quences, as defined on p. 177 using a priori complexity). Assume that the sequence 7
is ML-random with respect to the measure (. This means that the deficiencies of
its prefixes are bounded (by a constant). Then we apply the following lemma that
can be considered as the finitary version of statement (b).

LEMMA 2. Let u be a string such that v(2,) > 0. Then there exists a string w
such that u < f(w) (u is a prefiz of f(w)) and d,(w) < d,(u) + O(1).

(The constant hidden in O(1) may depend on f, u, and v but not on u; d,, and
d, denote the corresponding deficiencies.)
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ProoF. Cousider the preimage F,, = f~1(3,) of &,. This is an effectively open
subset of ¥. By definition, the y-measure of the set F, (recall that the measure u
is concentrated on infinite sequences) equals v(X, ). If the deficiency d, (u) is small,
v(X,) cannot be significantly less than the continuous a priori probability of .

Now consider the continuous a priori probability of the set F,, i.e., the proba-
bility of the event “the output of an universal probabilistic machine M belongs to
F,”. This event can be rephrased as follows: the output of the machine fo M (that
applies f to the output of M) starts with u. Comparing the machine f o M and
the universal one, we conclude that the (continuous) a priori probability of the set
F, can be only a constant times bigger than the (continuous) a priori probability
of X,,. The latter is 2% () times bigger than v(X,) that is equal to the y-measure
of the set F},. Therefore we get an inequality between two measures of F;, (the a
priori probability a and u):

a(Fy)
p(Fu)

Since the set F, can be represented as the union of a (possibly non-enumerable)
family of disjoint intervals, we conclude that the similar inequality is true for some
interval ¥, in this family:

< O(2du(u))‘

a(zw) d
< 2% . 0(1).
p(Zw) M
Since ¥, C F,, we conclude that f(w) 3= u, and the preceding inequality implies
that d,(w) < dy(u) + O(1). Lemma 2 is proven.

Now we continue the proof of statement (b). Let ¢, = (7), be the prefix of
a v-random sequence 7 that has length n. The randomness criterion guarantees
that v-deficiencies of ¢; are bounded. Then the lemma says that there exists a
sequence of strings wg, wy, . . . that have bounded u-deficiencies such that f(w;) is
an extension of #;. If we knew that all w; are compatible, this would give us a
desired result (a random preimage of 7). However, there is no reason to expect
this.

Nevertheless, a standard compactness argument shows that the sequence w; has
a subsequence that either consists of identical strings or converges to some infinite
sequence w. The latter means that any (finite) prefix of w is a prefix of all but
finitely many strings in the sequence.

In the first case the sequence 7 is the image of the finite string w that appears
infinitely often in the sequence w;. This can happen for a v-random sequence 7 if
this sequence (the corresponding singleton) has a positive measure; 7 is computable
in this case. Then we let w be any p-random continuation of the string w (we know
that it exists, since the u-deficiency of w is finite and u(2,) > 0).

In the second case an infinite subsequence of the sequence w; converges to w.
To prepare ourselves for this case, let us make a digression and prove that the
randomness deficiency is almost monotone.

Recall the randomness criterion (Theorems 91 and 93). It guarantees that for
ML-random sequences the deficiency of their prefixes is bounded while for non-
random sequences the deficiencies tend to infinity. This implies that the interme-
diate situation is not possible: There is no sequence such that deficiencies of its
prefixes are not bounded but do not tend to infinity. This looks rather strange, and
one may ask why this happens. The following theorem provides some explanation.
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THEOREM 124. Let P be a computable measure on §). There exists a constant
¢ such that, for every string x and for every string y that has = as a prefiz, the
inequality

dp(y) > dp(z) — 2logdp(z) - c
holds.

Informally speaking, every continuation of a string with high deficiency has
(almost as) high deficiency; or a prefix of a string that has small deficiency, has
(almost as) small deficiency. So the deficiency function is almost monotonic.

PrOOF. For each k consider the enumerable set of all finite sequences that have
deficiency greater than k. All the infinite continuations of these sequences form an
open set Sk, and the P-measure of this set does not exceed 2% Now consider the
measure Py on §2 that is zero outside S, and is equal to 2% P inside S;. That means
that for every set U the value Py(U) is defined as 2¥P(U N Si). Actually, P is
not a measure according to our definition, since Py(f) is not equal to 1. However,
Py, can be considered as a lower semicomputable semimeasure if we change it a bit
and let Py (f2) = 1 (this means that the difference between 1 and the former value
of P(9) is assigned to the empty string).

Now consider the sum
1
S = Ek %2 b,.

It is a lower semicomputable semimeasure (the factor 2 in the denominator is used
to make the sum > 1/(2k?) less than 1); again, we need to increase S so that
S(€Q) = 1. Then we have

—log S(z) € —log P(z) — k +2logk + O(1)

for every string z that has a prefix with deficiency greater than k. Since S does
not exceed the continuous a priori probability (up to an O(1)-factor), we get the
desired inequality.

Here we assume that the deficiency of z is finite, i.e., P(Q;) # 0; if P(Q);) =
0, then P(Q,) = 0 for any y that has prefix z, and the deficiency of y is also
infinite. g

Let us return now to the proof of Theorem 123. We have a sequence of strings
(a subsequence of {w;}) that converges to some w € . All w; have small pu-
deficiencies. In this case:

(1) Any prefix of w is a prefix of some w;, and all w; have bounded p-deficiencies.
Therefore, Theorem 124 guarantees that u-deficiencies of all prefixes of w are
bounded. So the sequence w is ML-random with respect to p.

(2) As we have proved in Theorem 123(a), the sequence f(w) is infinite.

(3) The sequence f(w) cannot have a prefix that is not a prefix of 7. Indeed,
in this case w would have a prefix u whose image is incompatible with 7; then the
string u is a prefix of almost all strings in the subsequence that converges to w, but
images of w; have arbitrarily long common prefixes with 7.

This contradiction finishes the proof of Theorem123(b). O

This proof of Theorem 123 illustrates the use of the randomness deficiency
notion. One can also give a more direct proof (suggested by Muchnik in the 1980s):
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Give a direct proof of Theorem 123(b) using the definition of an effectively
null set. ’

(Hint: For a given ¢ consider the family of intervals Z, that covers the largest
effectively p-null set and has total p-measure less than ¢; let F' be the (closed) set
of non-covered sequences. All sequences in F' are random, so f is defined (=has
infinite sequences as images) and continuous on F. The image of a compact set
F is a compact set and therefore is closed. It has measure at least 1 — ¢, since its
preimage contains F'. Its complement is an open set that has measure at most ¢
and covers all the points that do not have preimages in F. The only problem is
that one should prove an effective version of the theorem that says that the image
of a compact set under a continuous mapping is compact, and conclude that the
complement to f-image of F is not only an open set, but a uniformly effectively
open set.)

A similar argument allows us to prove a quantitative version of the statement
Theorem 123(b) saying that the bound provided by Problem 185 is tight: the expec-
tation-bounded v-deficiency of w equals (up to an O(1) additive term) the infimum
of expectation-bounded u-deficiencies of all f-preimages of w. See [15] for more
detail.

Prove a statement that can be considered as a finitary version of the
statement (a) of Theorem 123: if 4 and w are binary strings such that u < f(w),
then

dy(u) < dy(w) + 2log d,(w) + O(1).

(Hint: The set of sequences having large v-deficiencies can be covered by a
set of small v-measure, therefore their preimages can be covered by a set of small
u-measure and have large p-deficiency. Note that this statement is a generalization
of Theorem 124.)

Theorem 123 has some (rather surprising) applications. Here is an example:

Let w be an ML-random sequence with respect to the Bernoulli distri-
bution (independent coin tosses) where 1 has probability 1/3. Prove that there
exists a sequence w’ that is random with respect to the uniform distribution (1 has
probability 1/2) and can be obtained from w by replacing some zeros by ones.

(Hint: Consider an ML-random sequence of independent random reals uni-
formly distributed in [0, 1], or, better to say, the random sequence of bits placed
in a two-dimensional table where (infinite) rows are considered as infinite binary
fractions. Then convert this sequence into a bit sequence using threshold 2/3.
Theorem 123 guarantees that we get an ML-random sequence with respect to the
1/3-Bernoulli distribution and that any ML-random sequence with respect to this
distribution can be obtained in this way. Then we can change the threshold to 1/2.)

Another corollary of Theorem 123 and its generalizations are discussed in the
next section.

5.9.4. Michiel van Lambalgen’s theorem. Consider a probabilistic ma-
chine that tosses a fair coin to get a sequence wowyws - -- and then outputs every
other bit, i.e., the sequence wowawy - - - ; the output distribution of this machine is
uniform. Theorem 123 for this machine therefore implies the following:

(a) if wowywy - - - is ML-random with respect to the uniform Bernoulli measure,
then wowsowy - -+ is ML-random with respect to the same measure;
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(b) for every sequence wowawy - - - that is ML-random with respect to the uni-
form Bernoulli measure, there exists a sequence wjwsws - - - such that their mixture
wowiws - -+ i1s ML-random with respect to the same measure.

The first statement is more or less obvious, but the second is more difficult. It
can be rephrased in terms of pairs of sequences: If o is ML-random with respect
to the uniform measure, there exists a sequence § such that the pair (a, 8) is ML-
random (in a natural sense, with respect to the product of uniform measures on
each coordinate).

We can go further and ask, We know that such a S exists, but what properties
of 8 are needed to make the pair (o, ) random? It is clear that 8 should be
random (see above), but this is not sufficient. For example, if we let § = o, we get
a non-random pair (o, @): it corresponds to the sequence wow - - where each bit
is doubled.

The answer to this question is provided by van Lambalgen’s theorem [90]: the
sequence 3 should be ML-random and remain ML-random even if we allow the use
of a as an oracle in the definition of ML-randomness.

Let P and @ be two computable distributions on €. Consider the product
P x @, which is a computable distribution on Q x  (this space is isomorphic to €2,
and the definitions of randomness can be easily extended onto it).

THEOREM 125. A pair of sequences {£,n) is ML-random with respect to the
distribution P x Q if and only if the following conditions are both true:

(1) &€ is ML-random with respect to P;

(2) n is ML-random relative to & (with oracle ) with respect to Q.

Speaking about relativized randomness, we mean that the algorithm, which
(for a given € > 0) enumerates the intervals in the cover, now has access to £ as
an oracle (so we get more enumerable sets, more non-random sequences, and fewer
random sequences).

Note also that the conditions (1) and (2) are not symmetric with respect to
& and 1. Theorem 125 implies that condition (1) can be replaced by a stronger
requirement: £ is random relative to 7. However, the non-symmetric version looks
more natural. It can be read as, “to produce a random pair, first choose a random
¢ and then choose a random 7 knowing £ (=random relative to £)”.

PROOF. Let us prove first that conditions (1) and (2) are true for a random
pair (£,7).

(1) If the sequence £ is not random and can be covered by intervals of small
measure, then the same intervals multiplied by §2 (along the second coordinate)
become rectangles (products of intervals along both coordinates) that cover {£,7)
and have small measure. (We can also refer to Theorem 123.)

(2) Assume that 7 is not random with oracle £&. Then for each € we can (using
£ as an oracle) enumerate intervals that cover n and have small Q-measure. This
enumeration process can be run with any oracle and it will generate some intervals
using a finite amount of information about the oracle.

Therefore, we get (for a given € > 0) a family of rectangles that is enumerable
(without oracle) and has the following property: If the first coordinate is fixed to
be £, the rectangles become a family of intervals with total Q-measure at most e.
This family can be easily converted into a family of rectangles for which all vertical
sections (not only the £-section) have the same property and all the sections where
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this inequality was true before thie conversion remain untouched. This contradicts
the randomness of (£, 7), since we can get a family of rectangles that cover (£,7n) and
have total measure at most e (since every vertical section has measure at most ).

Now let us prove that if the pair (¢, 7) is not random, then one of the conditions
(1) and (2) is false. Assume (£,7) is not random. Let U be the union of an
enumerable family of rectangles in © x Q of measure at most & that covers (£, 7).
For each fixed value of the first coordinate z, let U, denote the z-section of U, i.e.,
the set {y|(z,y) € U}. Consider the values of z such that the Q-measure of U,
is greater than /e. We get a set of P-measure at most /¢ that is a union of an
enumerable family of intervals.

There are two possibilities: Either £ is covered by an enumerable family of
intervals having total P-measure at most /¢ that we have constructed, or (£,7)
is covered by a family V' of rectangles such that the @-measure of V¢ does not
exceed 1/¢. (Other sections may have bigger measure, this does not matter.) In the
second case 7 is covered by a £-enumerable family of intervals of total measure at
most /€.

We would like to apply this argument for every € and conclude that either £ is
not random or 7 is not random with oracle £&. The first conclusion can be drawn
if for every ¢ the first possibility happens; the second one, if the second possibility
happens for every €. But what should we do if both cases happen for different
values of 7

The following simple trick helps. For every k& = 1,2,3,... we perform this
construction for e = 272¢. Then for each k we get a family V (k) of intervals (along
the first coordinate) that have total P-measure at most 2% = v2-2k. Now the
two possibilities are as follows:

(a) the family V (k) covers £ for infinitely many k;

(b) for sufficiently large k the family V(&) does not cover &.

If (a) happens, for each K the union of V' (k) for all k > K gives us an enumer-
able cover of ¢ that has total measure 2- 27X so £ is not random.

If (b) happens, then for each k greater than some K one can £{-enumerate a
family of intervals that covers 1 and has total Q-measure at most 27*, so 7 is not
&-random. (We do not know the value of K, but this does not matter.) a

This theorem also has a quantitative version (see [209], or 7] for a detailed
exposition): one can prove that the expectation-bounded deficiency d of the pair
(€,m) with respect to P X () is equal to the sum of the expectation-bounded defi-
ciency d) of £ with respect to P and the expectation-bounded deficiency dy of n
with respect to @ using the oracle for £ and a condition |d; | (the integer-rounded
value of the first deficiency). To make this statement precise, one should give the
definition of expectation-bounded deficiency with oracle and condition (as a func-
tion of a sequence, oracle, and condition), and this can be done. In this way we
get a formula that resembles the formula for the prefix complexity of a pair (and
the statement of Problem 56, p. 44). (It would be nice to prove the statement
about deficiencies using the statement about complexities and the expression for
the deficiency in terms of complexities, but it is not clear how to achieve this.)

It would be also nice to generalize van Lambalgen’s theorem to the case of
dependent random variables and to prove that the pair (£, n) is random with respect
to a computable distribution on 2 x 2 if and only if £ is random with respect to the
projection of this distribution on the first coordinate (called marginal distribution)
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and 7 is random with respect to the conditional distribution (for the first coordinate
fixed to £). However, there are several problems here. First, one needs to define
the conditional distribution (which can be done, as Hayato Takahashi has shown);
second, the conditional distribution is not necessarily computable, so it is not clear
what the randommness means here. Some results in this direction are proven in his
papers [191, 192]; the detailed exposition of these results and a counterexample
constructed by Bauwens can be found in [7].

5.9.5. Kuéera—Gdcs theorem. Let us return to the question that we have
already discussed. A probabilistic machine is given. Which sequences seem to be
the plausible outputs of this machine (or, better to say, which sequences do we
agree to believe are generated by this machine)? This question is meaningful for
an arbitrary inachine, even for the machine that generates finite sequences with
positive probability.

More formally, consider a computable probability distribution u on the set
and computable continuous mapping f: ¥ — X. Together they generate some
output distribution v that is the image of p under f. Now we do not assume
that v is concentrated on infinite sequences, so we get an lower semicomputable
sentimeasure v that is not necessarily a measure.

On the other hand, we consider the images (under f) of sequences that are ML-
randomn with respect to pu. The question is, Can we characterize this set in terms
of v7 It would be nice if, say, the Levin—Schnorr type characterization in terms of
continuous a priori probability a(-) were possible (it would say that a sequence w is
in the image of p under f if and only if the ratio a(z)/v(z) is bounded for prefixes
<X w).

Unfortunately, the arguments we used for the case when f is almost every-
where defined (and v is a computable measure) do not work anymore (there are
problems in both directions). Moreover, as was shown in [14], the image cannot be
characterized in terms of v:

Show that there are two computable mappings fi, fo: ¥ — ¥ that gener-
ate the same output semimeasure (as the image of the uniform measure on 2) but
the images f;(R) and f2(R) of the set R of ML-random sequences (with respect to
the uniform measure) are different.

(Hint: Both machines for f) and f, generate only zero bits (finitely or infinitely
many) at their outputs. Such a mapping (restricted on ) is determined by a
decreasing sequence of effectively open sets Ay D As D -+ where A; is the set
of inputs where ¢ or more output zeros are generated. The image semimeasure
is determined by the (uniform) measures of A4;. So it remains to construct two
sequences of sets with the same measures such that the intersection of one sequence
contains a random element and the intersection of the other one does not. To
construct the first one, consider a random number w that is a limit of a computable
increasing sequence 7; of rational numbers, and consider the intervals (r;, w + 1/7).
For the second one consider the sequence of intervals of the same length with empty
intersection, say, with left endpoint 0. Or take centered intervals whose intersection
contains only the non-random number 1/2.)
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However, some statement that would be a corollary of this “criterion” if it were
true (which is not the case), is still true [86, 58]):

THEOREM 126. Let o be an arbitrary sequence of zeros and ones. Then there
exist a sequence w that is ML-random with respect to the uniform measure and a
computable mapping f: ¥ — ¥ such that f(w) = a.

Using the terminology of recursion theory, this statement guarantees that every
sequence of zeros and ones is Turing-reducible to some ML-random sequence with
respect to the uniform measure. (We have already mentioned this result on p. 180.)

PrOOF. We prove a bit stronger statement and construct a computable con-
tinuous mapping f (the same for all @) such that the image f(R) (where R is the
set of all ML-random sequences with respect to the uniform measure) equals .

Moreover, for any effectively open set U (i.e., the union of an enumerable family
of intervals) of sufficiently small measure we will construct a computable mapping f
such that f(Q\ U) covers the entire . Applying this construction to an effectively
open set of small measure that covers the complement of R, we get the result.

Here is the idea of the construction. First, we split the sequences into blocks
of length kg, &y, ..., and in this way we represent the Cantor space as the space of
paths in a tree with branching factors 2¥¢ 2%, ... (instead of the binary tree). The
numbers k; grow fast enough as 7 increases (see below). We choose some binary
subtree in this tree and declare that f maps it onto a full binary tree in a natural
way. In other words, we select two strings so and s; of length kg that are mapped
by f to 0 and 1, respectively, then select extensions sgg, Sgr (of Sp) and s;g, 511 (of
s1), mapping them to 00, 01, 10, 11, respectively, etc.

At the same time, we enumerate the intervals of the effectively open set U. If
none of them covers any path in the chosen binary subtree, we have nothing to
worry about: f(Q\ U) will cover Q. If an interval covers some vertex in the chosen
binary subtree, we replace this vertex by another one (that is not yet covered),
and extend f to this vertex (and the entire subtree rooted at this new vertex). To
prevent this, the adversary needs to make unusable all 2¥° sons of the root except
one; to make each of them unusable one needs to make unusable all of its sons
except one, etc. We conclude that the set U must be of size at least

2ko —1 2k —1 2k — 1

() ( 2ko )( 2k1 )( 2k2 )
and we can choose kg, k;,... growing fast enough to make this product strictly
positive (or even close to 1).

Now let us explain the details. For a given (computable) sequence ko, k1, k2, . . .,
we consider strings of length ko (as 2% sons of the root), then strings of length ko +
Ky, ko + k1 + ko, etc., as vertices of the tree T (with branching factors 2o, 2%1 .. ).
We call them T-vertices (to distinguish from the vertices of the binary tree).

First, we choose (in some computable way) a binary subtree in T and map its
vertices to the vertices of the binary tree in a natural way. Then we enumerate
the intervals that form the effectively open set U. Without loss of generality we
may assume that all these intervals are formed by T-vertices. When a new interval
appears, we do the following:

6To derive this statement from the “criterion”, one can take a mapping f whose output
distribution is the continuous a priori probability.
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e Declare the corresponding T-vertex as bad.

o Propagate bad T-vertices to the root. A T-vertex that has only one good
son in T becomes bad, too. In this way we get a chain of bad T-vertices.

o If some T-vertices of the binary subtree of T become bad (the subtree
intersects the chain of bad T-vertices), take the first bad T-vertex in the
subtree (closest to the root) and replace its by its good brother. (This is
possible since its father is good and therefore has at least two good sons.)
Then grow a replacement binary subtree starting from the new T-vertex
and using only good T-vertices. (Again this is possible since every good
vertex has at least two good sons.)

¢ Extend the mapping f to the new part of the binary subtree of 7.

There is only one case when this construction is impossible: if the root becomes
a bad vertex. If this happens, then all its T-sons (except maybe one) are bad, all
the T-sons of these bad T-sons (except maybe one) are bad, etc. In this way we
get a subtree of bad T-vertices, and its leaves (the T-vertices that became bad not
because of their sons) are intervals of U. Then backward induction shows that the
size of U is at least (), and we get a positive lower bound assuming that the series
3> 27*: converges. (The infinite product [[(1 — ¢;) is positive if and only if 3" ¢; is
finite.) So one may take, for example, k; = [2logi] (for ¢ > 2), and then for small
enough sets U the root will never become bad.

To justify this construction, we need to note that:

o the set of bad T-vertices can only increase;

o the current binary subtree of T" avoids bad T-vertices;

o the T-vertices excluded from the binary subtree will never be added to it
again (so the extension of f will not contradict the old values).

All these properties are direct consequences of the construction. (The last one:
if a T-vertex was excluded, one of its ancestors was bad at the moment, it remains
bad, and the binary subtree can never use it again.)

It remains to prove that (for f constructed in this way) every sequence a €
has an f-preimage outside U. By definition, at any stage ¢ of the construction
there exists f-preimage w; that is not covered by the already discovered part of U.
Moreover, as t increases, the points w; converge to some limit sequence w (we prove
the stabilization property at level ¢ by induction over i; note that the number of
possible changes on level i is bounded by 2%i). It remains to verify that w does not
belong to U and that f(w) = a.

By way of contradiction, assume that w is in U. Then w belongs to some
interval that is discovered on some step. After that the sequences w; do not belong
to this interval—a contradiction with the convergence.

Finally, let us verify that f(w) = @. Let z be an arbitrary finite prefix of a.
We have to show that f(w) starts with z. Let k be the length of z. At every stage t
there exists a k-block string (a level k vertex of T') that is mapped to z. When ¢
increases, this string ultimately reaches its final value and therefore w has a prefix
that guarantees that f(w) starts with z. O

Prove that the random sequence constructed in the proof is computable
given both the oracles for o and for 0 (the halting problem).
(Hint: The limit position of the embedded binary tree is computable given 0.)
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Using this argument, prove that for any sequence « there exists an ML-
random sequence w such that « is Turing-reducible to w, and this reduction needs
only an n + o(n)-bit prefix of w to generate an n-bit prefix of a.

(Hint: Instead of the binary tree, one may use in the proof the tree of branching
factor 2™. Then we need the convergence of the product (1 — 2™ /2%), i.e., of the
series 2™k, We may let m; =i and k; =i + 2logi.)

One may speculate about the “philosophical meaning” of this theorem as fol-
lows: For any sequence o we can a posteriori explain how it could appear during
an experiment. Indeed, for a random w this is the philosophical assumption, and
the transformation f is computable and therefore can be implemented.

The Kucera—Gécs theorem could look strange if we compare it with another
result: If some sequence & has a positive probability to be computable with a
random oracle (the set of sequences that compute o has a positive measure), then
a is computable. To see why this result is true, note that the set of all oracles that
compute « is a union of sets of oracles that compute « via some oracle machine M
(the union is taken over all M). So one of these sets has positive measure, the a
priori probability of « is positive, and « is computable. So for a non-computable o
the set of all oracles that compute « is a null set. On the other hand, the Kuéera—
Gaécs theorem says that there exists a random sequence that computes «. There is
no contradiction here; it just means that the null set in question is not an effectively
null set.



CHAPTER 6

General scheme for complexities

6.1. Decision complexity

We started with a plain Kolmogorov complexity C and then considered also
a prefix complexity K and a monotone complexity KM. All three complexities
were defined in terms of shortest descriptions, but the notion of a description was
different in each case. For plain complexity the description modes (decompressors)
were just computable functions, for prefix complexity the description modes were
computable continuous nappings of type X — N, and for monotone complexity
the description modes were computable continuous mappings of type ¥ — X.

To be uniform, we may use computable continuous mappings of type N; — N
for plain complexity. Recall that topology on the set N; (and the set itself) was
introduced in Section 4.4.3 (p. 89). It is easy to see that there are two possibilities
for a continuous mapping f: N; — N, : either f(L) is some natural number (and
not 1) and the mapping is a constant one, or f(1) = L and the values f(n)
for natural n can be arbitrary. There is a one-to-one correspondence between the
mappings of the second type and partial functions of type N — N if we use L
as a replacement for an undefined value. As before, computability is defined in
the following natural way: the mapping f: Ny — N, is computable if the set
of pairs (z,y) such that y < f(x) is enumerable. All the constant mappings are
computable, and for non-constant ones computability means that the corresponding
partial function is computable. (Recall that a partial function of type N — N is
computable if and only if its graph is enumerable.)

So using this “new” definition of a description mode (decompressor) as a com-
putable continuous mapping of type N, — N, , we get the same plain complexity.
Indeed, we add constant functions that map everything, including the element L,
to some constant ¢, but they do not change complexity more than by O(1). (A
meticulous reader will stress that the function that maps everything to ¢ should
not be identified with the function that corresponds to a total function N — N that
maps everything to ¢, since the latter one still maps 1 to L.)

All this formalism, however, is used only as a motivation for the following
scheme that explains the origin of the complexities considered (see Figure 15):
Each of the three complexities is obtained when we consider computable continu-
ous mappings of the description space into the object space as description modes
(decompressors).

This table has an empty cell; for this cell the description modes are computable
continuous mappings of type N; — X. Let us consider the corresponding definition
in more detail; we call this complexity decision complezity and denote it by KR (the
notation KD was used too, but now KD is often used for the so-called distinguishing

193
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objects
Ny v
N, | C ?

z K KM

descriptions

FiGure 15. C, K and K revisited

complezity so we use KR for decision complexity to avoid confusion). This notion
of complexity was first considered by D. Loveland [108].

Let us give a definition of decision complexity using some class of machines.
Consider a machine that gets a binary string as input (and some end-marker is
written on the tape, so the machine knows where the input ends) and prints bits
on the output tape (one by one). The machine is not obliged to stop, so for any
input string z we obtain a finite or infinite bit sequence as machine’s output. (If
the output sequence is infinite, it obviously is computable.)

Any machine of the type described defines a mapping of the set of all binary
strings (that can be identified with the natural numbers in N, ) into a set ¥ of
all finite and infinite sequences. If M is a machine of this type, the complexity
KR p;(z) of a string = (with respect to decompressor M) is defined as the minimal
length of a string y such that M (y) (the output sequence for input y) starts with z.

Check that there exists an optimal decompressor M in the described
class of decompressors (i.e., the decompressor M that leads to smallest KR s up
to an O(1)-additive term).

Give the definition of computable continuous mappings N; — ¥. What
is the difference between this definition and the class of the machines described
above, and why it is not important for the definition of complexity?

(Hint: A continuous mapping can map L into some non-empty string.)

Therefore we can fill the empty cell in our table (Figure 16).
The following theorem lists the main properties of decision complexity:

THEOREM 127. (a) If a string x is a prefix of a string y, then KR(z) < KR (y).

(b) The complexities of prefizes of a sequence w € Q form a non-decreasing
sequence that is bounded if and only if the sequence w is computable. (The limit of
the complexity of prefizes may be called the decision complexity of the sequence w.
This complexity is finite for computable sequences and infinite for non-computable
ones.)

< C(z) + O(1) for every string x.
) KR (z) < KM (z) + O(1) for every string x.
e) KM(z) < KR(z) + O(log KR(z)) for every string x.
f) Clz |l( )) € KR (z) + O(1) for every string x.
— ¥ is a computable continuous mapping, then
(z) + O(1) (the constant in O(1) may depend on f but not on ).
Z) — N, s a computable continuous mapping, then
z)) 4+ O(1) (the constant in O(1) may depend on f but not on x).
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objects
N_ z

N, | C KR

b)) K KM

descriptions

FIGURE 16. Four complexities

(i) If f: N. — X is a computable continuous mapping, then
KR (f(z)) < C(z) + O(1) (the constant in O(1) may depend on f but not on z).

(j) A prefiz-free set of strings (none is a prefiz of another one) that have deci-
sion complezity less than n, has cardinality less than 2™.

(k) The function KR is upper semicomputable (enumerable from above).

(1) The function KR is the smallest (up to a constant) function satisfying the
last two conditions: if some function k is upper semicomputable and for every n the
cardinality of every prefiz-free set of strings x such that k(z) < n for all elements
of this set is O(2™), then KR (z) < k(z) + O(1).

(m) KR(z) < KA (z)+ O(1) for all strings x.

PRrROOF. (a) This is an immediate corollary of the definition (description of a
string is at the same time description of any its prefix).

(b) Assume that the sequence w is computable. Consider the machine that
ignores its input and prints w bit by bit, as a decompressor (description mode).
All prefixes of w have zero complexity with respect to this decompressor (since the
empty string is their description), and therefore they have O(1)-complexity (with
respect to the optimal decompressor), On the other hand, if the complexities of all
prefixes of w are bounded, some string has to be a description of infinitely many
prefixes, therefore w is computable.

(c) Any partial computable function whose arguments and values are binary
strings can be considered as a KR-decompressor (do not output anything before
the computation is finished, then print the result bit by bit).

(d) Any continuous computable mapping ¥ — ¥ can be considered as a KR-
decompressor (after restriction to finite strings; we may say that we type the input
string on the keyboard of a robust machine immediately after the computation
starts, and we do not touch the keyboard anymore).

(e) Let R : N —» X be an optimal decompressor used in the definition of
decision complexity. Consider a computable mapping R: % - ¥ defined as fol-
lows: R(Zu) = R(x), where % is a self-delimiting encoding of z (say, the z itself is
prepended by the binary encoding of I(z) with duplicated bits and the separator
01) and v is an arbitrary string (needed to ensure the monotonicity).

(f) Let again R : N — X be an optimal KR-decompressor. Define the condi-
tional decompressor S by letting S(y,n) be the first n bits of the sequence R(y) (if
n exceeds the length of R(y), then S(y,n) is undefined).

(g) Consider a new KR-decompressor that is a composition of the optimal
KR-decompressor and the mapping f, and compare this new decompressor with
the optimal one.
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(h) Consider the composition of an optimal KR-decompressor and f as a C-
decompressor.

(i) Consider the composition of an optimal C-decompressor and f as a KR-de-
COmpressor.

(j) Two incompatible strings cannot share a description (since in this case they
would be prefixes of some sequence, and the shorter string would be a prefix of
the longer one). If all elements of a prefix-free set of strings have complexity less
than n, then their descriptions are different strings of length less than n, and there
exist fewer than 2" such strings.

(k) Applying in parallel the optimal description mode to all strings, we get
upper bounds for KR (that may decrease when new descriptions are found); they
converge to KR.

(1) This is the first interesting claim in this theorem (up to now we had only
simple variations on known themes).

Let k be a function that satisfies (j) and (k). Adding a constant to k, we may
assume without loss of generality that there are at most 2™ pairwise inconsistent
strings z such that k(z) < n.

We construct a description mode that gives every string z such that k(z) < n
a description of length exactly n. This is done independently (and in parallel) for
each n. Namely, we watch the decreasing upper bounds for £ and write down the
(increasing) list of strings = such that k(z) < n. Consider a subtree of a full binary
tree that is formed by the strings in the list and all their prefixes. This is a growing
subtree that has (all the time) at most 2™ leaves. (Indeed, the leaves are pairwise
incompatible strings x such that k(z) < n.) Let us attach a label to each leaf; this
label is a string of length n. When the subtree grows by adding some new string,
this string either extends one of the leaves (so it is not a leaf anymore) or creates a
new branch (being attached to some internal node). In the first case the new string
is a leaf, and this leaf keeps the label of the superseded one. In the second case we
provide a new label for the new leaf (which is possible since we have fewer than 2"
leaves).

Let us fix a label and look what happens with leaves carrying this label. Initially
the label is unused. It is possible that the label remains unused forever (we do not
need that many labels), but if it is not the case, the label is attached to some leaf
and then moves up the tree (the next position is a son of the previous one). So this
label marks some branch of the tree (finite or infinite sequence of zeros and ones).
In this way we get a function that maps strings of length n (i.e., labels) to % (the
strings that are not labels are mapped to A, the empty sequence).

Combining these mappings for all n, we get a KR-description mode that guar-
antees complexity at most n for all strings z such that k(z) < n, just as we claimed.

(m) If z; are pairwise inconsistent binary strings, then 3 27 K4 (%) < 1 (since
2~ KA (1) equals the a priori probability of the set ¥z,, and these sets are disjoint).
Therefore we have at most 2" strings such that KA (z;) < n and may refer to the
previous statement. O

Prove that KR (z) can be defined as follows: for any computable function
S of two arguments (the first is a binary string, the second is a natural number;
values of f are zeros and ones), let KR g(z) for a string £ = zg---z,_, be the
minimal length of the string y such that S(y,i) = z; foralli =0,1,...,7n—1. Then
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we choose an optimal function among all functions of this class, and it defines the
decision complexity.

Show that the decision complexity of a string z equals (up to O(1)) the
minimal value of C(p) for all programs p (in a given programming language, say,
Pascal) that ignore their input and output the string x or some its extension.

Show that if we replace C by K in the preceding problem, we get in a
similar way an upper bound for monotone complexity. Show that this bound is not
O(1)-tight.

(Hint: The monotone complexity of all n-bit strings is bounded by n + O(1).
The programs for these strings (or their extensions) should be all different, and
there are not enough strings having prefix complexity n + O(1).)

6.2. Comparing complexities

There are four complexities in our table (two options for the space of objects are
combined with two options for the space of descriptions). The following diagram
(Figure 17) shows the inequalities between them (up to an O(1)-additive term):

K

KR

FIGURE 17. Inequalities between complexities

Some people would like to avoid references to topological notions like continu-
ous mappings, though these notions are quite relevant here as the theory of abstract
data types shows (Dana Scott lattices and related notions of fp-spaces in the sense
of Ershov); see [L76]. Those readers will appreciate the following simplified con-
struction [195] that is still enough to define the four complexities in the table.

Consider the set = = B* of all binary strings and two binary relations: z = y
means that strings z and y are equal; z < y means that z and y are compatible
(one is a prefix of the other one). Let o and § be one of these two relations (so
there are four combinations for the pair ¢, ).

A set S C E x E is called a-fB-regular if the following condition is true for any

StI'iIlgS T1,22,Y1,Y2:
(z1,11) € 5, (z212) € 5, T1az2 = Y1PY2

For example, =-=-regular binary relations are just graphs of functions.

(a) Show that every <-=-regular relation determines a continuous map-
ping of type ¥ — N .

(b) Show that every =-x=-regular relation determines a continuous mapping of
type X — X.

(c) Show that every =-=-regular relation determines a continuous mapping of
type N; — %.
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Now by a-83-description mode we mean an enumerable a-S-regular binary re-
lation on = x . For each description mode S we define the complexity function
Kgs: let Kg(x) be the minimal length of a description of z, i.e., the minimal value
of I(y) for all y such that (y,z) € S.

THEOREM 128. For each of the four combinations o, € {=, =} there exists
an optimal a-B-description mode (that provides minimal complexity function up
to O(1)) and the corresponding complexity is one of the four known complexities
C,K,KM,KR.

ProoF. In all four cases enumerable a-3-regular relations correspond to com-
putable continuous mappings of the corresponding sets (see Problem 197) that gives
the same complexity function, and vice versa. O

So we can provide new labels for rows and columns of our table (Figure 18):

objects

) =
g

= = C KR
L

S

% = K KM
e

FIGURE 18. a-B-complexities

For pairs of strings show how one can define:

(a) monotone complexity (using computable continuous mappings ¥ — X x &
as decompressors; such mappings are in one-to-one correspondence with pairs of
computable mappings ¥ — X);

(b) a priori probability (using probabilistic machines that have two output
tapes where bits are printed sequentially);

(c) decision complexity (using computable continuous mappings N; — X x X).

Prove that the decision complexity of a pair (z,y) (see the previous
problem) does not exceed I(z) + I(y) + O(1).

(Hint: The string z can describe the pair (z, z
left.)

A surprising result: this property remains true for triples [72] and even for
k-tuples of every fixed k (it is a corollary of the results of [146]). For monotone
complexity a similar property is not true as was shown by Pavel Karpovich in
[72]: the value of KM (z,y) may exceed l(z) + [(y) by a quantity of order logn
for n-bit strings. (Therefore the monotone complexity of pairs may exceed a priori
complexity by the same margin, since a priori complexity of a pair is obviously
bounded by the sum of lengths.)

Ry, where 2% is z from right to

Another classification scheme for complexities (which goes back to [95]) defines
each version of complexity as the smallest upper semicomputable function in some
class (of functions that satisfy some restrictions). We have already considered these
restrictions, so we just collect the results obtained and give the conditions for each
complexity version:
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¢ the number of strings  such that k(z) < n is O(2") (plain complexity C,
Theorem 8, p. 19);

e the series ) 27*() converges (prefix complexity K, Theorem 62, p. 100);

o every prefix-free set of strings = such that k(z) < n has O(2") elements
(decision complexity KR, Theorem 127, p. 194);

® Y .ex 27¥® < 1 for every prefix-free set X of binary strings (a priori
complexity KA, Theorem 80, p. 126).

This scheme gives the same four complexities with one important exception:
we get a priori complexity instead of monotone complexity. (There is no problem
with prefix complexity, since it coincides with the negative logarithm of the discrete
a priori probability, the largest lower semicomputable semimeasure on N.)

Combining these two quadrilaterals, we get a pentagon (Figure 19).

K

KM

KA

KR
FiGURE 19. Five complexities

Let us recall the basic results that relate complexities in this pentagon. First,
all five complexities differ at most by O(logn) for strings of length n. Indeed,
Theorem 65, p. 102 says that K(z) < C(z) + O(log C(z)). On the other hand,

C(z) € Clz|l(z)) + C(l(z)) £ KR (z) + O(logn).

So the two most distant complexities in the pentagon (the upper one and the lower
one) differ at most by O(logn) for strings of length n.

A more complicated picture arises if we want to bound the difference between
two complexities in terms of the complexities, not their length (note that a com-
plexity can be much less than length). This is indeed possible for two lines that go
in the north-east directions:

K(z) < C(z) + O(log C(z))
(see Theorem 65) and
KM(z) < KR(z) + O(log KR (z))

(Theorem 127). (A similar inequality with KA instead of KM follows, as we have
already mentioned in Problem 140, p. 144.) For “north-west” lines the situation
is different: KM and KR are bounded for prefixes of a computable sequence (e.g.,
for strings that contain only zeros) while C' and K are not (the string of n zeros
has the same complexity as the integer n, and this complexity is of order logn for
some ). We have already discussed this question in Theorem 86 and noted that
the difference between K and KM can be of order logn in both directions (for
infinitely many 7 and for some z of length n). Theorem 87 says that the difference
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between KM and KA for n-bit strings can be about loglogn (so here we have a
gap between the known lower and upper bounds).

None of the mentioned results guarantees that the difference between K (z) and
C(z) tends to infinity as z goes to infinity (here we consider z as a natural number).
But this follows from Theorem 73 (p. 112). Some other bounds relating different
versions of complexity are mentioned in [195].

6.3. Conditional complexities

We have already considered several versions of conditional complexity (of a
string relative to the other one). In Section 2.2 we have defined the conditional
complexity C(z|y) as the minimal length of a string p that describes = when y is
given, 1.e., a string p such that S(p,y) = z. Here S is the conditional decompressor
that is optimal in the class of all partial computable binary functions.

In Section 4.7 we defined the conditional prefix complexity K(z|y). In this
definition we required S(p,y) to be prefix stable with respect to p for every fized y:
this means that if S(p,y) = z for some p, then S(p’,y) = z for all strings p’ that
have prefix p.

Finally, in the proof of Theorem 93 we mentioned the conditional monotone
complexity KM (z|y). For its definition a description mode (decompressor) is a
computable family of computable continuous mappings D,: ¥ — ¥ (indexed by
string y). The computability of this family means that the set of triples {y,u,v)
such that v < Dy(u) is enumerable.

The conditional decision complexity can be defined in a similar way.

In these four definitions we consider conditions as terminated bit strings, and
the behavior of the decompressor is unrelated for different conditions: if we know
that p is a description of z relative to y, this gives us no information about the
values of decompressor for other values of y.

In other words, a decompressor (say, for the conditional prefix complexity) can
be considered as a computable mapping

D: ¥ xN—>Ny;

in the pair (p,y) € ¥ x N, the string p is considered as a description (and D is
monotone with respect to p) and y is a condition, and no monotonicity is required.

If we change this and consider conditions also as vertices of a binary tree re-
quiring monotonicity over conditions, we get four other versions of conditional com-
plexity. These versions are not widely used ([40] is a rare exception).

In this way we get eight versions of conditional complexities (for each of three
components, i.e., conditions, descriptions, and objects, we have two possibilities).
The most non-technical definition of these complexities goes as follows. Let a;, 8,y €
{=, =} (see Section 6.2). An («, 3)|y-decompressor (description mode) is an enu-
merable set S of triples {p, z,y), such that

(P, 71,0) €8, (p2,72,82) €5, praps, Yy = 11622
The we define Kg(z|y) as the minimal length of a string p such that (p,z,y) € S.

THEOREM 129. In all eight cases there exists an optimal decompressor S that
gives the smallest complexity Kg (up to O(1)) among all the decompressors of that
class.
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Give a detailed proof of this theorem (it follows the same scheme as in
the case of plain or prefix conditional complexity).

In each of eight classes let us fix some optimal (e, 8) | y-decompressor and denote
the corresponding complexity by K4, g)|,. In this notation K(z|y) (as defined
earlier) is K~ = and C(z|y) is K= =y|=.

Show that by replacing = by = in place of v we may only increase the
complexity.

(Hint: This replacement adds more restrictions for a decompressor, so we get
fewer decompressors. For the same reasons the plain complexity does not exceed
the prefix one.)

It would be interesting to study how large this increase could be (and establish
other properties of these conditional complexities).

Let us give an example of a statement that involves conditional complexities
as they are defined above:

Prove that
C(z) < K(=.=)|=(z|y) + KR (y) + O(log KR (y)).

Let us now describe one more approach to the definition of the conditional
complexity that goes back to Kolmogorov’s interpretation of logical connectives as
operations on problems [76]. The conditional complexity of z when y is known can
be described as the complexity of the problem “transform y into 2”; moreover, this
problem can be considered as a set of all functions that map y into x (each function
that maps y to z is a “solution” of this problem).

More formally, let us consider the space F whose elements are all partial func-
tions whose argunients and values are natural numbers. Let us introduce the fol-
lowing partial order on this set: fi < f2 if fo is an extension of f; (i.e., fi(y) ==
implies f2(y) = z). By finite elements of F we mean functions with finite domain.
For each finite element f € F consider its cone, i.e., the set of all its extensions
{y | f < y} (both finite and infinite). We call a continuous mapping T: N; — F
computable if the set of pairs (a, f) such that a € N, f is a finite element of F
and f < T(a), is enumerable. Continuous computable mappings N; — F are used
as decompressors for functions. For each function f € F, we define the complexity
of f (with respect to decompressor T) as the minimal length of a string (or the
logarithm of the number—recall that we identify strings with natural numbers) a
such that f < T(a).

Prove that there exists an optimal decompressor (in this sense) and that
the complexity of the function y — z (whose domain is a singleton {y} and whose
value is z) is C(z|y) + O(1).

We can give a similar interpretation of all eight conditional complexities defined
above: for every two spaces Y, X € {N,,X}, we define the space of functions
(Y — X) and then consider computable mappings of the space of descriptions
P € {N_,XZ} into the function space (Y — X). The definition of the function
space is given in the spirit of Scott domain theory (or the theory of fo-spaces in
the sense of Ershov, see [176] for details).

A slightly different interpretation of (plain) conditional complexity as the coin-
plexity of the problem “transform y to z” is considered in Chapter 13; it does not
use computability notions for function spaces.
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A related notion of complexity for functions was considered by Schnorr [168,
170]. Recall that a numbering (an important notion in the recursion theory) is a
mapping v that maps each natural number n into some (partial) function v, whose
arguments and values are natural numbers. A numbering v is computable, if the
(partial) function of two arguments

{n,z) — vp(x)

is computable. A numbering v is called a Godel numbering if for any other com-
putable numbering u there exists a computable function that reduces p to v in
the following sense: pip, = V() for every n. (In particular, the range of a Gédel
numbering is the set of all computable functions.)

Following Schnorr, we make this condition stronger and require additionally
that h(n) = O(n) (in other words, the length of the string i(n) exceeds the length of
string n at most by a constant, if we identify natural numbers with binary strings).
If such a funuction h exists for every computable numbering y, the numbering v is
called optimal.

THEOREM 130. There exist optimal numberings.

Proor. Consider any reasounable programming language for functions of two
arguments, and let 4v be a v-number of the function obtained by fixing first argu-
ment equal to v in the function that has program u. (Here 4 is some self-delimiting
encoding of u, e.g., u with doubled bits and 01 appended.) -0

Schnorr [168, 170] defined the complexity of a computable function as the
logarithm of its minimal number on an optimal numbering. (As before, tlie minimal
complexity of a function that maps z to y turus out to be equal to C(y|z).) Schnorr
has shown that any two optimal numberings v; and v, can be translated into each
other by a computable permutatiou 7 that changes the size at most by O(1) (in both
directions): this means that v)(n) = va(w(n)) for every n and that w(n) = O(n)
and 7=}(n) = O(n). The detailed proofs of these results can be found also in [11].

6.4. Complexities and oracles

6.4.1. Relativized complexity. Relativization is a well-known 1nethod iu
computability theory. We take a definition or statement that involves the class
of computable functions and replace computable functions by functions that are
computable with some oracle (computable relative to this oracle). The oracle is
usually a total function @ whose arguments and values are natural numbers and/or
binary strings, for example, a characteristic function of some set A. An algorithm
is allowed to call an external procedure that computes the value a(n) for a given
value of the parameter n. If a is a characteristic function of a set A, this means
that we may ask whether some n belongs to A or not. If the function « is not
computable, this permission to ask a-oracle increases our capabilities, and we get
a class of a-computable functions that contains all computable functions but also
some non-computable ones (including «).

Then we can develop the general theory of algorithms as usual and define,
say, a-enumerable sets, or a-computable real numbers, or (closer to our subject)
a-lower-semicomputable semimeasures, etc. And practically all the theorems of
general theory of algorithms (and their proofs) remain valid, we just neqd to add
“a-" for all the notions. This procedure is called relativization.
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In particular, for a given set A we may define the notion of A-relativized Kol-
mogorov complexity allowing deconipressors to use oracle A. This can be done for
plain, prefix, and all other versions of complexity that we have considered (uucou-
ditional or conditional). The use of an oracle is shown by a superscript, so, e.g.,
K4(z) denotes prefix complexity relativized by oracle A.

In fact we can do a bit more: instead of defining complexity for a giveu or-
acle A up to an O(1)-additive term (by proving the existence of an optimal A-
decompressor), we may define (with the same precision) the function of two argu-
nients:

(A, z) — EA(2)
(here k is one of the complexity versions, say, K or KM ).

Show that this indeed can be done and that the resulting complexities
coincide with the limits of conditional complexities defined in Section 6.3:

K (2) = K£_(2) = lim K< |x)(z]|4n),

where A, is the prefix of length n of the characteristic sequence of the set A.
(Similar statements are true for other complexity versions.)

Note that relativized complexity does not exceed the non-relativized oue (up
to O(1)), since the algorithm with an oracle is not obliged to use it, so all decom-
pressors are A-decompressors.

For some oracles A and sowme strings = the A-complexity of z can be ruch
smaller than oracle-free complexity. For example, let A be the universal enumerable
set: This set is usually denoted by 0. In other words, the 0’-oracle is an oracle for
the halting problem. We may send any program (with its input) to this oracle, and
the oracle will tell us whether this program terminates for this input.

Using this oracle, we can find for every string a its shortest description (in
the standard sense, without oracle) since the oracle tells us which computations
terminate. Therefore, the function C is 0’-computable (the sanie is true for K,
conditional complexities, etc.), and the list of all strings of complexity less thau n
(that has n + O(1)-complexity without the oracle), as well as the numbers B(n)
and BB(n) (see Section 1.2) now have 0’-complexity only O(logn).

On the other hand, most strings of length n have 0’-complexity n — O(1), and
therefore their 0’-complexity is close to their non-relativized complexity (and to
their length).

Assume that for some set A its use (as an oracle) does not change the
plain complexity function, i.e., C(z) = C4(z) 4+ O(1). Show that A is decidable.
Show that the same is true also for KM, KR, KA instead of C.

(Hint: One can characterize the computability of a binary sequence in terms
of complexities of its prefixes, see Problem 49, p. 42.)

It is not the case for prefix complexity: there exist K-low sets that do not
change prefix complexity being used as oracles. This is a very important recent
result (see [147, 49|, or the popular exposition in [20]).

This result implies that there is no formula that can express the value of
plain (mouotone, decision, a priori) complexities in terms of prefix complexity with
O(1)-precision. Note that the same is true for conditional prefix complexity: it
cannot be expressed in terms of the unconditional one, since it determines the
class of computable functions. Indeed, a sequence a is computable if and only if
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K(ap -+ an-1|n) = O(1). Note that Theorem 72 characterizes plain complexity in
terms of conditional prefix complexity.

6.4.2. Complexity with large numbers as conditions. Let us define a
new type of conditional complexity, i.e., the complexity of a string z relative to the
set A. Informally speaking, we want to measure the complexity of the task, “obtain
x given an arbitrary element of A”. This complexity has several equivalent (up to
O(1)) definitions.

Here is one of them. Fix some reasonable programming language. (Formally
speaking, “reasonable” means that the numbering corresponding to this language
is a Gdédel numbering, i.e., there exists a translation algorithm from any other
programming language, see [184] for details.) Now let us define the conditional
complexity of an object z with condition A as the minimal (plain) Kolmogorov
complexity of a program that maps every element of A into z. (A generalization
of this definition is considered in Chapter 13.)

The existence of a translation algorithm guarantees that this notion is well
defined, i.e., that the complexity defined in this way does not depend on the choice
of a programming language (G6del numbering).

One should not mix this complexity with a completely different notion: a con-
ditional complexity of z with condition A, where the finite set A is given as a finite
object (say, as the list of its elements). In our case we do not get the list of all ele-
ments of A, but only one of them, and we should be prepared to deal with arbitrary
elements of A. To stress this distinction, we use the notation C(x || A) for the new
complexity (while C(z| A) denotes the condition complexity of z if a finite set A is
given as a list of its elements).

A different (but equivalent) definition of C(z|| A) can be given as follows. Let
D (decompressor) be a computable partial function of two arguments. Let z be
a binary string, and let A be a set of binary strings. We define Cp(z|| A) as the
minimal length of a string p such that D(p,y) = x for every y € A.

Prove that there exists an optimal decompressor in this class (that gives
the minimal function Cp(-|-) up to an O(1)-additive term). Prove that Cp for
optimal D coincides (up to an O(1)-term) with the complexity defined above.

For a singleton A = {a}, both the complexities C(z|A) and C(z|| A) coincide
with the standard conditional complexity C(z|a) up to an O(1)-term (see Prob-
lem 28).

Now let A be the set of all integers greater than some (presumably) large
number n. (As usual, we identify natural numbers with binary strings.) The com-
plexity of a string = with respect to this set is denoted by C(z|| = n). Obviously,
this complexity does not exceed C(z) and is a non-increasing function of n (and,
more generally, C(z|| A) can only decrease if A becomes smaller; it becomes O(1)
for the empty set A). So there exists some limit as n — oc.

THEOREM 131.
nl_i_l)lgo C(z|| =n)=C"(z) +0(1).

ProoF. Assume that the limit equals k. Then there exists a program p of
complexity & that maps all sufficiently large numbers to z. If an oracle 0’ is avail-
able, this program can be considered as a 0’-description of z. Indeed, given this
program, we search for N and y such that p does not map anyn > N into an object
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that differs from y. The emphasized property can be checked using a 0’-oracle since
it has an enumerable negation. And our assumption guarantees that y equals z.
Therefore,
C%(z) < lim C(z| =n)+O(1).
—00

On the other hand, let y be a description of z with respect to a 0’-optimal
decompressor, and let k& be the length of y. Consider a following program that
has additional input N: make N steps of the enumeration of the universal set 0
and then use the set of enumerated elements as an oracle for decompression of
y. This program can be constructed effectively given y, therefore its complexity
does not exceed C(y) + O(1) < I(y) + O(1) = k+ O(1). On the other hand, if N is
large enough, this program generates z (since only a finite number of oracle calls are
performed during the decompression of y, for all sufficiently large NV these questions
get correct answers even if the oracle is replaced by its N-approximation). O

It turns out that a similar result is true where we replace C(z| > n) by
SUD,, 3, Cz|m). Note that
sup C(z|m) < C(z| = n),
m2zn
since the optimal program in the right-hand side can be used for any m in the
left-hand side. This is easy; the surprising result is that both sides have the same
limit as n — oo (up to an O(1)-term):

THEOREM 132. ,
limsup C(z|n) = C° (z) + O(1).

n—00

PRroOF. We have to prove that if (for some string z and integer k)
C(z|n) < k for any sufficiently large n,

then 0’-complexity of z does not exceed k+O(1). The difficulty here is that (unlike
in the previous theorem) the program of length less than k that maps n to z may
depend on n, and none of these programs is guaranteed to work for all sufficiently
large n.

Note that there is less than 2% strings z with this property (for a given k).
Indeed, if we have more of them, then for sufficiently large n we run out of programs
of length less than k.

It would be enough to prove that the set of strings x that have this property is
a 0’-enumerable set whose enumeration effectively depends on k (in other words, it
would be enough to prove that the function z — limsup C(z|n) is 0’-enumerable
from above). However, the natural description of this set,

AN (Vn = N) [C(z|n) < k],

shows only that it is a 33-set (the condition in brackets is enumerable and two
quantifiers precede it), so we choose an another approach.

Note that we do not really need this set to be 0’-enumerable. It is enough to
show that it is a subset of a 0'-enumerable set that contains less than 25 elements
for a given k. This can be done as follows.

Consider two-dimensional enumerable set of pairs (n, z) such that C(z|n) < k.
This set (for each k) is thin in the following sense: all vertical sections of this set
(for fixed n) contain fewer than 2* elements.
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Consider some point {n,z). Let us try to add a horizontal ray that goes on the
right from this point to our set (i.e., add all pairs {m,z) for all m > n). The set
may remain thin or not, and these two cases can be distinguished by a 0’-oracle.
Indeed, the negation of being thin is an enumerable property (there exists a section
that has at least 2% different elements including the added one).

Let us perform these attempts (to add the horizontal ray starting fron: some
pair {n,z)) sequentially for all pairs in some order. (If some ray is added suc-
cessfully, then its elements are taken into account for all subsequent attempts.)
This process is 0’-computable and therefore the ordinates of all added rays form a
0’-enumerable set.

This set has fewer than 2F elements (since we add rays only if the resulting set
is still thin) and contains every x such that limsup C(z|n) < k. Indeed, for such
an z there is some ray that lies entirely in the initial set, and this ray can be added
at any time. a

(This proof is a simplified version of the proof given in [196]. See also similar
arguments in [16].)

We can also obtain the results for prefix complexity that are similar to The-
orems 131 and 132. However, the definition of conditional prefix complexity with
respect to a set is quite subtle, so we postpone its discussion and start with the
second theorem.

THEOREM 133.
limsup K (z|n) = K (z) + O(1).

n—>00
Proor. Using a priori probabilities (conditional and unconditional), we rewrite

the statement as follows:
0’(

lim inf m(z|n) = m° ()

n—00
(the equality is understood up to a bounded factor in both directions).

Let us show first that the left-hand side is greater than the right-hand side
(up to an O(1)-factor). Indeed, consider a 0’-oracle probabilistic machine whose
output has distribution m® . Then for any integer n we may run this machine with
a changed oracle: instead of the entire oracle we use its approximation obtained
after n steps. This, of course, changes the output distribution, however, the lim inf
of the probabilities to get some z using n-approximation to the oracle (as n — o0o)
is greater than or equal to the probability of getting = with the entire oracle.
Indeed, the latter probability is the measure of an open set of all bit sequences that
are mapped to z using a 0’-oracle. This open set is a union of intervals, and for
each interval the computation depends only on some finite part of the oracle, and
therefore the same random bits will give the same output z if the approximation
to the oracle is good enough (i.e., n is sufficiently large). (Note that liminf can
be bigger than the probability of getting z with the final oracle, since approximate
oracles can force output z for combinations of random bits that do not generate x
with the final oracle.)

Now let us prove the reverse inequality. This proof resembles the proof of
Theorem 132. We have a lower semicomputable family of semimeasures: for each n
the function z — m(z|n) is a semimeasure (i.e., Y- m(z|n) < 1 for each n). It
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follows that the function

m/(z) = lim inf m(z|n)
n—00
is also a semimeasure, i.e., the sum ) _ m/(z) does not exceed 1. If this function
were 0’-lower-semicomputable, this would finish the proof; however, we have the

equivalence
T < linl)infm(:v[n) & (3¢ > r)3N (Yn > N)[qg < m(z|n)],
n—r00

where the right-hand side has too many quantifiers (note that the property in the
brackets is enumerable, not decidable). But again we may replace the function m’
by any larger function, so it remains to construct a 0’-lower-semicomputable upper
bound for m’.

To achieve this goal, let us consider triples (N,z,e) (where € is a positive
rational number). For a given triple we try to increase the values m(-|-) up to €
on a ray that consists of pairs (n,z) for fixed z and for all n > N. This change is
performed only if we get semimeasures (i.e., for every n the sum over all 2 does not
exceed 1).

As before, we can check whether such an increase is possible using a 0’-oracle.
(Indeed, the violation is an enumerable event.) Let us consider sequentially all
triples and perform the increase when possible (the increased values are taken into
account on the subsequent steps). Then for each possible increase we keep the
values of z and e. In other words, we consider a function that on every z is equal
to the upper bound of all € that are used for increase together with that z. In this
way we get a 0’-enumerable family of semimeasures that is an upper bound for m’.
Indeed, if m' is greater than e for some z, the function m is greater than £ on some
ray, an increase does not really change anything and therefore is permitted. g

To formulate a similar statement for K(z|| > n), we should first of all define
this prefix complexity relative to a set. Here we have several possibilities, and it is
unclear which of them is “the right thing”.

We may try to define K(z| A) and the minimal prefix complexity of a pro-
gram that outputs z when applied to every element of A. However, Problem 109
(p. 104) shows that this definition does not match K (x|a) for singleton conditions,
so probably this definition is not a good one.

Another definition is similar to the approach used in Problem 206. Consider
an arbitrary computable function (p,z) — D(p, z) that is prefix stable with respect
to its first argument (if the second one is fixed). For any z and for any set A we
then define Kp(k||A) as the minimal length of a string p such that f(p,n) = k
for all n € A. The difference (compared to plain complexity) is that we require
the conditional decompressor to be prefix stable with respect to the first argument.
There exists an optimal decompressor in this class that gives the least function
Kp {(up to an O(1)-additive term). This function can be called prefix complexity
K(zx| A).

Show that the same complexity (up to O(1)) is obtained if decompressors
are computable continuous mappings ¥ — F (here ¥ is the space of finite and
infinite sequences of zeros and ones, and F is the space of partial functions from
N to N) and complexity is the length of a shortest string that is mapped to some
partial function that is equal to z on all elements of A.
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We can also define the prefix complexity with set condition using prefix-free
functions instead of prefix-stable ones. Again, in the class of computable prefix-free
functions there exists an optimal one (that gives the smallest complexity function
K¢(z|| A)). In this way we get the definition of some function K’(x| A) that re-
sembles the conditional complexity K'(k|n) and coincides with it (up to O(1)) if
A= {n}.

Finally one can define a priori probability m(z| A). For that we consider
some probabilistic machine that has input y and the measure of the set of all
sequences w € ) that (being used as random bits) makes the machine transform
every input y € A into z. Again, there exists an optimal machine that maximizes
this probability (up to an O(1)-constant factor), and for singletons this definition
coincides with our definition of the conditional a priori probability.

The inequalities

—logm(k | A) < K(k|A) +0(1) < K'(k|| A) + O(1),

can be proved in the same way as for conditional prefix complexity, but the argu-
ment that showed that all three expressions coincide does not work as before. As
Elena Kalinina [71] has shown, the second inequality is not an equality; we do now
know what happens with the first inequality. But it is easy to see that all three
expressions are not less than
—log inf m(k|z) = sup K(z|a),
T€EA €A

so each of them can be used in the theorem similar to Theorem 131. In particular,
for K(z||A) (which seems to be most natural among all three) we get the following
result:

THEOREM 134.
. _ o/
nh_)r%o K(z| =2n)=K" (z)+ O(1).

Prove that all three quantities K(k|| A), K'(k|| A), and C(k|| A) differ at
most by O(the logarithm of the smallest one), i.e., by O(log C(k| A)).

We do not know whether C(z| A) can be bounded by a linear (or even com-
putable) function of —logm(k|| A) (at least for finite A, or even for A that contains
only two elements).

Let us mention here that there is another type of problem in which the natural
notions of complexity and a priori probability differ significantly: the enumeration
problems considered by R. Solovay [189]. Let us consider non-terminating algo-
rithms whose input is a binary string. Such an algorithm enumerates some (finite
or infinite) set by printing its elements one by one. (If an algorithm starts to print
some output element, it is obliged to print it completely, and then it may resume
the computation.) If A is an algorithm of this type and S is some enumerable set,
we define the complexity of S with respect to A as the minimal length of the input
for which A enumerates S:

CE4(S) = min{i(p) | M(p) enumerates S}.

As usual, it is easy to see that there exists an optimal algorithm A that makes
CE 4 minimal up to O(1). We fix an optimal A and call CE4(S) an enumeration
complezity of S. It is denoted by CE(S) and is finite if and only if S is enumerable.



6.4. COMPLEXITIES AND ORACLES 209

On the other hand, we may consider probabilistic enumeration algorithms, i.e.,
the non-terminating algorithms without input equipped with a fair random bits
generator and producing output elements as explained above. The output set of
a probabilistic enumeration algorithm A is a random variable, and for a given set
S we consider the probability of the event “A enumerates S”. This probability is
denoted by m4(S). Again it is easy to see that there exists an optimal A that
makes m4 maximal up to an O(1)-factor; we fix some A and omit the subscript
A, calling m(S) the enumeration a priori probability of S. It was shown by de
Leeuw, Moore, Shannon, and Shapiro [91] that m(S) is positive if and only if S is
enumerable.

Prove the statement above.

(Hint: If a subset of 2 has positive probability, there is an interval where the
fraction of this subset exceeds 1/2.)

It is easy to see that CE(S) < —logm(S) + O(1). The reverse inequality, even
with logarithmic precision, i.e., the inequality — log m(S) <CE(S)+ O(log CE(S)),
is unknown. There are some partial results. It is true with factor 3:

—logm(S) € 3-CE(S) + O(log CE(S)),
as shown in [189], and for finite sets the constant 3 can be replaced by 2 (see [197]).

6.4.3. Limit frequencies and 0'-relativized a priori probability. We
conclude this section by a result from [133]; it relates the frequencies in computable
sequences to the 0’-relativized prefix complexity. (See also the simplified exposition
in [16].)

Let f(0), f(1),... be a computable sequence of natural numbers. For a given n
and k, let us count the appearances of k among f(0),..., f(n — 1) and divide the
result by n. The ratio can be called the frequency of k among the first n terms of
the sequence.

Now for a fixed k& consider the liminf of this frequency as n — oo; we call it
the lower frequency of element k in the sequence f.

Let px be a lower frequency of k in a given sequence. It is easy to check that
>k Pk < 1. Indeed, if some partial sum of this series exceeds 1, then a finite sum
of lim inf’s exceeds 1, and for sufficiently large n the sum of the frequencies among
the first n terms of the sequence exceeds 1, which is impossible.

The following statement is true for any computable sequence f:

THEOREM 135. The function k — py, is 0’-lower-semicomputable.

(Here py, is the lower frequency of k; the definition of the lower semicomputable
function is given in Section 4.1; now we consider a 0'-relativized version of this
definition.)

PROOF. Indeed, the statement r < pi (where 7 is some rational number) is
equivalent to the following one:
there exist a rational number p > r and an integer N such that

the frequency of k among the first n terms of f exceeds p for all
n > N.

The property printed in italics is co-enumerable (has an enumerable negation):
if it is not true, we can establish it by showing a number n that violates it. Therefore
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this property is 0’-decidable (we apply the oracle to the algorithm that searches for
that n). So the property r < pj is 0'-enumerable. |

In fact we use the following general observation:

Let r, be a computable sequence of rational numbers. Show that
liminfr, is a 0’-lower-semicomputable real number and the corresponding 0’'-
algorithm can be effectively found given an algorithm for r,,.

By the way, the reverse statement is also true:

Any 0’-lower-semicomputable real number is a liminf of a computable
sequence of rational numbers.

(Hint: This number is a supremum of a 0’-computable sequence of rational
numbers 7,. Each 7, is an ultimate value of a stabilizing sequence 7, . Let
s be the maximum of 7gk,...,r;—1 & where ¢ is the minimal number such that
Tk 7 Ttk—1-)

It turns out that for an appropriate computable sequence f the function k — py,
is a maximal 0’-lower-semicomputable semimeasure. This is a corollary of the
following result:

THEOREM 136. For any 0’-lower-semicomputable sequence qo,q1,... of non-
negative reals such that )", q; < 1, there exists a computable sequence f(0), f(1),...
such that for all k the lower frequency of k in the sequence f is at least qy.

This allows us to give an equivalent definition of 0’-relativized prefix complexity
of k: it is the negative logarithm of the lower frequency of & in the optimal sequence
f (that gives maximal lower frequencies up to O(1)-factor).

PROOF. Since g is lower semicomputable, the set of pairs (r, k) where r is
a rational number smaller than ¢, is 0’-enumerable. As we know from general
computability theory (see, e.g., [184]), 0'-enumerable sets are ¥s-sets, i.e., there
exists a decidable property R such that

r < qr < JuVv R(r, k, u,v).

We use a slightly different representation of X-predicates: there exists a com-
putable total function (r, k,n) — S(r, k,n) with 0/1-values such that r < g if and
only if the sequence S(r, k,0),S(r,k,1)--- has finitely many zeros. The sequence
S(r.k,0),S(r,k,1)--- can be constructed as follows. We consider (sequentially)
the values « = 0,1,2, ..., and for each u we search for v such that R(r,k,u,v) is
false. While searching, we extend the sequence adding zeros. When v is found, we
add 1 to the sequence and switch to the next value of u. The number of zeros in the
constructed sequence is finite if and only if the search was unsuccessful for some wu,
ie., if r < gx.

It is convenient to visualize this process as follows. From time to time the
request “please make g, greater than r” appears for some k and 7 (and the previous
request with the same k and r is canceled). Then we consider the requests that
appear and are never canceled later; they correspond to pairs (r, k) such that r < gy.
(The moments when requests appear correspond to zeros in the sequence S.) This
process is computable. We may also assume without loss of generality that at each
given moment there is only finitely many requests. (This does not matter since
only the limit behavior of the sequence is important.)
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Recall that we need a computable sequence f(0), f(1),... for which the lower
frequency of k is at least gi.. To achieve this goal, it is enough to represent the given
0’-lower-semicomputable semimeasure as the liminf of a computable sequence of
measures with rational values, i.e., to construct a two-dimensional table of rational
numibers

»y ) P
o pi 23

Pg P P%

such that each row has only a finite number of non-zero elements, these elements
have sum 1, and the lim inf in the kth column is at least ¢r. Indeed, let us assume
that such a table is constructed. Without loss of generality we may suppose that in
the ith row all the numbers are multiples of 1/ (we may take approximation with
precision 1/ not changing the limit). Then the sequence f can be constructed as
follows: first we use the first row as the table of frequencies, then switch to the
secoud row and use it for a much longer time (to make the influence of the first
row negligible), then we use the third row even longer (to make the influence of the
first and second rows negligible), etc.

So it remains to construct a table p§ with the following property: if some request
“please make gy greater than r” appears at sonte moment and is not canceled later,
then the kth column has liminf at least g;. This is done as follows: in coustructing
the nth row (at time n), we try to satisfy all current requests (that have appeared
and are not canceled) according to their age (the oldest request is treated first).
For each request we increase the corresponding p,. up to a given r if this is possible
(if it does not make the sum greater than 1). We may assume that there are many
requests, and at some point the sum becomes greater than 1. At that moment we
cut the last request (so the sum is 1), and this finishes the construction of nth row.

Why does this help? Imagine that » < ¢ is true. Then the request “please
make g, greater than r” appears at some moment and is never canceled later. (It
need not to be the first appearance of this request.) Let us look at all requests that
appear before this one. Some of them are canceled later (while others are “final”).
Let us wait until all these cancellations happen. After that, only “true” requests
(ones that are never canceled later) are older than our request, and for these true
requests we have r’ < q,s. Their sum therefore does not exceed 1 together with our
request, so the requests with high priority at that time will not interfere with our
request. (]

Prove that there exists a computable sequence where the lower frequen-
cies coincide with g.
(Hint: Combine the proof of this theorem with the solution of Problem 211.)

One more result from the same paper [133]:

Prove that Theorem 136 remains true if we consider partial computable
functions f from N to N instead of sequences: for any partial computable function f
from N to N there exists a (total) computable sequence g(0), g(1}),... that has the
same (or bigger) lower frequencies: for any k the lower frequency of k in g is at
least its lower frequency in f(0), f(1),... (which is defined as the limit inferior of
the number of appearances of & among f(0),..., f(N — 1) divided by N).
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(Hint [16]: For every N the frequencies in the initial segment of length N form
a lower semicomputable semimeasure (it was a measure for total sequences); the
construction used in the proof of Theorem 133 allows us to find an upper bound
for the limit frequencies that is a 0’-lower-semicomputable semimeasure. Then we
apply Theorem 136.)



CHAPTER 7

Shannon entropy and Kolmogorov complexity

7.1. Shannon entropy

Consider an alphabet A that contains k letters ay,...,ax. We want to encode
each letter a; by a binary string ¢;. Of course, we want all ¢; to be different to avoid
confusion. But this is not enough if we write codewords without any separator. For
example, imagine that letters A, B, and C are encoded by strings 0, 1, and 01.
All three codes are different, but two strings ABAB and ABC have identical codes
0101. So additional precautions are needed to guarantee unique decoding.

We want the code to allow unique decoding. At the same time we want it to
be space eflicient. It is good to have the strings c¢; as short as possible (without
violating the unique decoding property). And if we cannot make all codewords
short, the priority should be given to the frequent letters. (Similar considerations
were taken into account when Morse code was designed.)

7.1.1. Codes. Let us give formal definitions. A code for a k-letter alphabet
A = {a1,...,ax} consists of k binary strings c;,...,cy. These strings are called
codewords (for the code considered); letter a; has encoding c;. Any A-string (a
finite sequence of letters taken from A) has an encoding; to get it, we encode each
letter and concatenate their codes (without separators).

A code is injective if different letters have different codes. A code is uniquely
decodable if every two different A-strings have different codes. A prefiz code is a
code where no codeword is a prefix of another codeword. (This is a traditional
terminology; however, the more logical name prefiz-free code is also used.)

THEOREM 137. Every prefiz code is uniquely decodable.

Proor. The first codeword (the encoding of the first letter) is determined
uniquely (due to the prefix property), so we can separate it from the rest. Then
the second codeword is determined, etc. O

Show that there exist uniquely decodable codes which are not prefix
codes.
(Hint: Consider a suffiz code.)

Construct an explicit bijection between the set of all infinite sequences
of digits 0,1, 2 and the set of all infinite sequences of digits 0, 1.
(Hint: Use the prefix code 0 — 00, 1+ 01, 2 — 1.)

Consider prefix codes ci,...,cx (for a k-letter alphabet) and di,...,d;
(for an I-letter alphabet). Show that strings c;d; (concatenations of codewords from
these two codes) form a prefix code for a kl-letter alphabet.

Before asking which of two codes is more space efficient, we should fix frequen-
cies of the letters. Let py, ..., px be non-negative reals such that p; +---+p, = 1.

213
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The number p; will be called the frequency or probability of letter a;. For each code

cy,...,cr (for alphabet ay,...,ax) its average length is defined as
> pil(ci).
i
Now we can formulate our goal: for a given p;,...,px we want to find a code of

minimal average length inside some class of codes, e.g., a uniquely decodable code
of minimal average length.

Which injective code has minimal average length (among injective codes)
for given py,...,pn7

(Hint: Put all letters in order of decreasing frequency and all binary strings in
order of increasing length.)

7.1.2. The definition of Shannon entropy. Shannon entropy provides a
lower bound for the average length of a uniquely decodable code. It is defined (for
given non-negative p; such that > . p; = 1) as

H = py(—logp)) + p2(—logpa) + -+ + pr(—log py).

(We assume that plogp = 0 for p = 0, making the function plogp continuous at
the point p = 0.)

There is some motivation for this definition. Letter a; appears with frequency
pi, and each occurrence of a; carries —logp; “bits of information”, so the average
number of bits per letter is H. But then we should also explain why we believe
that each occurrence of the letter that has frequency p; carries —logp; bits of
information. Imagine that somebody has in mind one of 2" possible numbers, and
you want to guess this number by asking yes-or-no questions. Then you need n
questions, and each answer gives you one bit of information; so when an event
having probability 1/2™ happens, it brings us n bits of information.

Of course, the previous paragraph is just a mnemonic rule for the definition
of entropy. The formal reason to introduce this notion is given by the following
theorem:

THEOREM 138. Let py,...,pn be non-negative reals such that py+---+py = 1.
(a) The average length of every prefiz code ¢y, . .., ¢y is at least H (the entropy):

> pil(ci) = H.

(b) There exists a prefiz code such that
Zpil(ci) <H+1.

ProoFr. Note that this theorem deals only with the lengths of codewords (but
not the codewords itself). So it is important to know when given integers ny,. .., n
could be lengths of codewords in a prefix code. Here is the criterion:

LEMMA (Kraft inequality). Assume that non-negative integers ny,...,ng are
fized and we want to find binary strings e1, ..., cx of these lengths (I(¢;) = n;) that
form a prefiz code (i.e., ¢; is not a prefix of c; for i # j). This is possible if and

only if
domgl
1
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We have already seen this statement, see the lemmas used to prove Theorenis
56 (p. 92) and 58 (p. 93). In one direction, if c; is never a prefix of the other string
¢j, then the corresponding intervals of lengths 27" are disjoint and the sum of
their lengths does not exceed 1. (Using probabilistic language, a random string of
zeros and ones has prefix ¢; with probability 277/; these k events are disjoint, so
the sum of probabilities does not exceed 1.)

Going in the opposite direction, we can use a simpler argument that was used
before (in the proof of Theoremn 58). Simplification is possible since we have only
a finite number (k) of integers and they are given in advance. We can simply place
the corresponding intervals of lengths 2= inside [0, 1] from left to right going in
decreasing order of length. Then each interval is properly aligned and corresponds
to a binary string of length n;. The lemma is proven.

Let us prove the theorem now. Without loss of generality we may assume that
all p; are strictly positive (since null values do not change Shannon entropy and
average code length). Theorem 138(a) says that if n; are non-negative integers and
>°;27™ < 1, then ) pin; > 1. It is true for any non-negative reals n; (even if
they are not integers). Indeed, let g; be equal to 27 ™. In these coordinates the
statement reads as follows: if g; > 0 and ) ¢; < 1, then

> pi(—logg:) > Y pi(—logp:).

This inequality is sometimes called the Gibbs inequality. To prove it, we rewrite
the difference between right-hand side and left-hand side as

(%) Zpi logg

Then we use the convexity argument: the weighted sum of logarithms does not
exceed the logarithm of the weighted sum )" p;logu; < log(3", piui) (if all u; are
positive). In our case we see that (*) does not exceed

log <¥p,%> = log (Z qi) <logl=0.

Item (a) is proven.
Let us mention also that the non-negative number

Y pilog &
- g

is called the Kullback-Leibler distance between two probability distributions p; and
g; (so we assume that Y g; = 1) or the Kullback-Leibler divergence; the latter name
is better since this “distance” is not symmetric. The convexity of the logarithm (its
second derivative is negative everywhere) guarantees that this distance is always
non-negative and equals zero only if p; = g; for all 4.
To prove item (b), consider the integers n; = [— log, p;] (where [u] is a minimal
integer greater than or equal to u). Then
pi
2
The inequality 27" < p; allows us to use the lemma, so there exist codewords
of corresponding lengths. The inequality p;/2 < 27™ implies that n; exceeds
(—logp;) by less than 1, and this remains true after averaging: the average code
length (3" pin;) exceeds H = ) p;(—logp;) by less than 1. 0

<27 g < pi
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This proof is a kind of a “relaxation argument”: if we forget that code-lengths
should be integers and allow any n; such that >°,27™ < 1, the optimal choice is
n; = — log p; (convexity of the logarithm function); making n; integers, we lose less
than 1.

THEOREM 139. The entropy of the distribution py, ..., pn (with n possible val-
ues) does not exceed logn. It equals logn only if all p; are equal.

Proor. If n is a power of 2, the inequality H < logn follows from Theorem 138
(consider a prefix code where n codewords all have length logn. In the general case
we use Gibbs inequality for ¢; = 1/n (for all 7) and recall that this inequality
becomes an equality only if p; = g;. O

7.1.3. Huffiman code. We have shown that the average length of an optimal
prefix code (for given pi,...,px) is somewhere between H and H + 1. But how can
we find this optimal code?

Let ny,...,ng be the lengths of codewords for an optimal code (for given fre-
quencies py, ..., pg). Rearranging the letters, we may assume that

P <p2< - < Pk
In this case we may assume that
nyZNg 2 2 Nk

Indeed, if one letter has a longer code than another letter that is less frequent, the
exchange of codewords (between these two letters) decreases the average length of
the code.

One can note also that ny = ny for an optimal code (the two less frequent letters
have the same code length). Indeed, if ny > ng, then n; is greater than all n;. So
the first term in the sum ), 27™ is smaller than all other terms, the inequality
>, 27™ < 1 cannot be an equality (all terms except the first one are multiples of the
second term), and the difference between its two sides is at least 27 ™. Therefore,
we can decrease n; by 1 and still not violate the inequality },27™ < 1. This
means that the code is not optimal (contrary to our assumption).

We can look for an optimal code among codes that have n, = ny; this optimal
code minimizes the sum

piny +pang + p3n3 + -+ prng = (p1 +p2)n + pans + - - -+ Drng

(here n is the common value of n; and ny). In the last expression the minimum
should be taken over all sequences n,ns,...,ng such that

2742427 b 2T
This inequality can be rewritten as
2=l pgmme 4o
and the expression that is minimized can be rewritten as
(p1 +p2) + (1 + p2)(n — 1) + pang + - - - + peny.

The term (p; + p2) is a constant that does not influence the minimal point, so
the problem reduces to finding an optimal prefix code for k — 1 letters that have
probabilities py + p2,ps3, . - -, Dk-
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We obtain the recursive algorithm that finds the optimal prefix code as follows:

e combine the two rarest letters into one (adding their probabilities);

e find the optimal prefix code for the resulting probabilities (a recursive call);

e replace the codeword z for a “virtual” combined letter by two codewords
z0 and z1 which are one bit longer (note that this replacement keeps the prefix
property).

The optimal code constructed by this algorithm is called the Huffman code for
a given distribution p,,...,pn.-

7.1.4. Kraft—McMillan inequality. So far we have studied prefix codes. It
turns out that they are as efficient as general uniquely decodable codes, as shown
in the following theorem.

THEOREM 140 (McMillan inequality). Assume that ¢y, ..., cr are codewords of
a uniquely decodable code, and let n; = I(c;) be their lengths. Then

Yomcr

i
Therefore (recall the lemma above) for any uniquely decodable code there is a
prefix code with the same lengths of codewords.

PROOF. Let us use letters u and v instead of digits 0 and 1 when constructing
codewords (e.g., the codes 0, 01, and 11 are now written as u, uv, vv). Now take a
formal sum (c; +- - - +¢x) of all codewords and consider its Nth power (for some N
that we choose later). Then we open the parentheses without changing the order
of factors v and v (as if u and v were two non-comnmuting variables). For example,
the code above gives (for N = 2) the expression

(u + uv + vv)(u + uv + vv)
= uu + vuv + vvv + uvu + vvuv + uvve + vou + vvuv + vovv.

Each term in the right-hand side is a concatenation of some codewords. The unique
decoding property guarantees that all the terms are different. Now we let u =v =
1/2. The left-hand side (¢; + - -- + ;) becomes (27" + -+ + 27" )N For the
right-hand side we have an upper bound: if it consisted of all strings of length ¢,
it would contain 2¢ terms equal to 2=t (each), so the sum would be equal to 1 (for
each length ¢). Therefore, the right-hand side does not exceed the maximal length
of strings in the right-hand side, which equals N max(n;).

If>°27™ > 1, we immediately get a contradiction, since for large enough N the
left-hand side grows exponentially in N while the right-hand side is linear in N. O

This proof looks like an extremely artificial trick (though a nice one). A more
natural proof (or, better to say, a more natural version of the same proof) is given
below; see p. 222.

7.2. Pairs and conditional entropy

7.2.1. Pairs of random variables. Dealing with Shannon entropies, we use
the terminology which is standard for probability theory. Let £ be a random variable
which takes finitely many values &), ..., &, with probabilities p;,...,px. Then the
Shannon entropy of a random variable £ is defined as

H(&) =pi(—logp1) + - + pe(—log ).
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This definition allows us to consider the entropy of a pair of random variables £
and 7 (that have a common distribution, i.e., are defined on the same probability
space). Indeed, this pair is also a random variable with a finite range. The following
theorem says that the entropy of a pair does not exceed the sum of entropies of its
components.

THEOREM 141.
H({&m) < H(E)+H(n).

We consider random variables with finite ranges, so this is just an inequality
involving logarithms. Let is write this inequality. Assume that £ has k values
ST ,&, and n has [ values #,...,7. Then the maximal possible number of
values for the pair (£,7) is ki, and these values are (&;,7;) (some of them may never
appear or have probability 0). The distribution for (£,7) is therefore a table that
has k rows and ! columns. The number p;; (ith row, jth column) is the probability
of the event “(§ =¢&;) and (n=1;)” (heret=1,...,kand j =1,...,1). All p;; are
non-negative and their sum equals 1. (Some of the p;; can be equal to 0.)

Adding the numbers in each row, we get the probability distribution for £: the
probability of the event £ = £; equals ; Pij- We denote this sum by p;.. Similarly,
7 takes value 7; with probability p.; which equals the sum of all numbers in the
jth column.

Therefore, the theorem in question is an inequality that is applicable to any
matrix with non-negative elements and sum 1:

> pij(—1ogpi;) <Y pin(—logpi) + Y paj(—logp.;)
i,J i

J

(here p;. and p.; are the sums of the rows and columns).

This inequality again is a consequence of the convexity of logarithni, but it is
useful to understand its intuitive meaning. Let us forget for a while that entropy is
not exactly equal to the length of the shortest prefix code (and ignore the difference
that does not exceed 1). Then this inequality can be proven as follows. Assume that
space-efficient prefix codes for £ and 7 are given, and they have codewords ¢y, ..., cx
and dy, ..., d, respectively. Then consider a code for (£, 7) that assigns to the value
(&;,m;) the string c;d; (the concatenation of ¢; and d; without a separator). We get
a prefix code (indeed, to separate a codeword that starts an infinite sequence, we
first find the prefix ¢; and then the prefix d; in the remaining part; both operations
can be performed uniquely). The average length of this code equals the sum of
the average lengths of its components. This code may be non-optimal (which is
natural, since the inequality could be strict), but it provides an upper bound for
the length of the optimal code.

PROOF. Let us transform this informal argument into a proof. Recall the
proof of Theorem 138 (p. 214). We have seen that the entropy is a minimal value
of >, pi(—logy ¢;) taken over all tuples of non-negative reals g; that have sum 1.
In particular, the entropy of the pair (the left-hand side) is the minimal value of

Z pm —log qu
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taken over all tuples ¢;; of non-negative reals that sum up to 1. Let us restrict our
attention to “rank 1” tuples that have the form

Qij = Qix ° Qxj
for some tuples of non-negative reals ¢;» and g,; (both tuples have sum 1). Then
(—log ¢;;) can be decomposed into (—logg;.) + (—1logg.j), and the entire sum is
decomposed into two parts, which after partial summation over one coordinate
becomes equal to

Zpi*(— log gi.)

i

Zp*g —log g.;),

respectively. The minimal values of the two parts are H(£) and H(n).

Therefore, the left-hand side of our inequality is the minimum over all tuples
and the right-hand side is the minimum over rank 1 tuples, and the inequality is
proven. ([

and

7.2.2. Conditional entropy. Recall the definition of conditional probability.
Let A and B be two events. The conditional probability of B with condition A
(denoted as Pr[B|A]) is defined as the ratio Pr[A and B]/Pr[A]. This definition
assumes that Pr[A] > 0. The motivation is clear: We are interested in the fraction of
outcomes when B happened but restrict our attention to the case when A happened.

Let A be an event (that has non-zero probability), and let £ be a random vari-
able with finite range &), ..., £;. Then we may consider the conditional distribution
of £ when A happens. We get a new random variable: now £; has probability
Pr[(€ = &;)|4] instead of Pr[¢ = &;]. The entropy of this distribution is called con-
ditional entropy of € with condition A and is denoted by H(£|A). (The distribution
itself could be denoted by (£]|4).)

Show that H(£|A) can be greater than H{£) and can be less than H(£).

(Hint: The distribution (£]A) has not much in common with the distribution
of £, especially if A has small probability.)

Informally speaking, H(£|A) is the minimal average code length if the average
is taken only over the cases when A happens.

Now let us consider two random variables £ and 7 (as was done in the previous
section). Let as assume that each value of both £ and n has non-zero probability
(zero-probability outcomes could be ignored). For each value n; (for n) consider
the event n = n;. (Its probability was denoted by p.;.) Consider the conditional
entropy of variable £ having this event as the condition. In other words, consider
the entropy of the distribution ¢ — p;j/p.;. Then we average these entropies,
using probabilities of the events n = n; as weights. The resulting average is called
conditional entropy of £ with condition n. It is denoted by H(€|n). So by definition

H(gln) = > Prln = n;]H(éln = n;)
J

or, using the notation above,

H(&ln) = ZP*] Z p”, (— log ﬁ—j) :
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The following theorem sums up the basic properties of conditional entropy (that
are true for any random variables £ and 7):

THEOREM 142. (a) H(£|n) = 0;

(b)Y H(&|n) = 0 if and only if € = f(n) with probability 1 for some function f
(in other words, we ignore the cases that have zero probability);

(c) H(¢ln) < H(E);

(d) H({&,m) = H(n) + H(¢|n).

PRroOF. Item (a) is evident: all H(§|n = n;) are non-negative, so the same is
true for their weighted sum.

{(b) If the weighted sum of non-negative terms equals zero, theu all the terms
that have non-zero weights are equal to zero. So for each value 7; the restricted
variable (£|n = n;) has zero entropy, and therefore has only one value if we ignore
values that have probability 0.

Statement (c) can be explained as follows: H(£|n) is the average length of an
optimal code for £ if we allow different codes for £ for different values of 7 (for
each value of 7 we consider the code that is optimal with respect to conditional
distribution). This provides some additional freedom (compared to the case when
the same code should be used for all values of 17), and this freedom can only decrease
the optimal code length.

The same argument is made formal: For each j the value of H(&|n = 7;) is the
minimal value of the sum )

Z sz —log % 5

taken over all non-negative values of the variables q1j + qoj + -+ - + qxj = 1 (we use
different variables for each j). Therefore, H(£|n) is the minimal value of the sum

Dis
Zp*j Z —(~log gij)
J %

taken over all tables that contain non-negative reals ¢;; and each column has sum 1.

If we restrict ourselves to tables where all columns are equal (g;; = ¢;), the sum
turns into

Zp*a‘Z%(—log%)=Zzpu(—logq@ sz* log g;),
J i o R

and its minimum is H(£). Therefore H(£|n) < H(£).
Finally, item (d) is just an exercise in transformation of logarithms:

Pij{— ngu Dxj Og P+j
Z ( ] Z Z pu pzj 1 )
iJ
= Zp*j Z pi - IOg pi) + ZP*]‘ Z pi(_ Ing*j)
; 3 p*g Dxj F 3 Dxj
= ZP*JH(HU 77] )+ ZP*J Ing*J H(&ln) + H(n).

The theorem is proven. O

This theorem implies Theorem 141 (p. 218). We see also that the entropy
of a pair of random variables cannot be less than the entropy of any of variables
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(since conditional entropy is non-negative). Thus we easily obtain the following
statement:

THEOREM 143. Let £ be a random variable with a finite range, and let f be a
function defined on that range. Then

H(f(§)) < H(&),

where f(€) is a random variable that is a composition of f and £ (i.e., f is applied
to the value of £).

In terms of distribution the transition from £ to f(£) means that we combine
several values into one that sums up the corresponding probabilities.

PROOF. Indeed, the random variable (£, f(£)) has the same distribution as &,
and its entropy cannot be less than the entropy of the second coordinate. a

Provide an interpretation of this result in terms of minimal average length
of codes, and the direct proof.

When does the inequality of Theorem 143 become an equality?

7.2.3. Independence and entropy. The notion of independent random vari-
ables could be easily expressed in terms of entropy. Recall the variables £ and 7 are
called independent if the probability of the event “¢ = &; and n = 7;” is equal to
the product of probabilities of the events £ = ¢; and 7 = 7. (To reformulate: The
conditional distribution of £ with condition 1 = 7; coincides with the unconditional
distribution. Also we can exchange £ and 7 and say that conditional distribution
of n with condition £ = &; coincides with the unconditional distribution.)

In the notation used above the independence can be written as p;; = DjuDsj
(probability matrix has rank 1).

THEOREM 144. Random variables £ and 1 are independent if and only if
H((§,m) = H(&) + H(n)-

In other words, we get an independence criterion: The inequality of Theo-
rem 141 becomes an equality. Using Theorem 142, we can rewrite this criterion as

H(&) = H(¢|n) (or, symmetrically, H(n) = H(n|§)).

PROOF. Let us use once more that the logarithm is a strictly convex function:

the inequality
log (Z Pifﬂi) Z Zpi log z;
holds for all positive weights p; with sum 1 and all positive z;. This inequality

becomes an equality only if all z; are equal.
Therefore, for positive p; with sum 1 the expression

> pi(—loga:)
(where g; are positive and sum up to 1) takes its minimal value only at the point

qi = Di-
Now recall the proof of Theorem 141 above. The minimum over rank 1 matrices
(that makes the right-hand side equal to the sum of entropies) was achieved for

Qij = Dix * Dxj-
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If this minimum coincides with the minimum taken over all matrices ¢;; (the latter
is achieved for g;; = pi;), then we have

Pij = Dix " Pxj>
and variables £ and 7 are independent. a

Provide an another (though similar) proof using Theorem 142.

Prove that three random variables «, 3, are independent (this means
that the probability of the event (o = o, 8 = B;,v = &) equals the product of
three probabilities for each of the variables) if and only if

H({e, 8,7)) = H{(a) + H(B) + H(7).

Theorems 141 and 144 show that the difference H(£) + H(n) — H(({,n)) is
always non-negative and equals zero if and only if £ and 7 are independent. So we
can take this difference for a quantitative measure of dependence between £ and
7n. This difference is denoted by I(£ : 1) and is called the mutual information of
two random variables £ and 7. Theorem 142 allows us to rewrite the definition for
I(€ : 1) in the following way:

I(€:m) = H(n) — H(nl§) = H(§) — H(¢|n)
(mutual information shows how much the knowledge of one random variable de-
creases the entropy of the other one).

To see all these notions in action, let us return to the McMillan inequality. Now
we change the order and prove first that a uniquely decodable code for a random
variable £ has the average length of the codeword at least H(£).

First note that for an injective code where all codewords have length less than ¢
the average length is at least H(£) — loge. Indeed, if n; are the lengths of the
codewords, the sum of 27" does not exceed c (for every fixed length the sum does
not exceed 1). Therefore, the inequality of Theorem 138 is violated at most by
logc.

This is not enough, and to get a tight bound we consider N independent iden-
tically distributed copies of the random variable £. We get a random variable that
could be denoted by ¢V. Its entropy is NH(£). Let us use our code for each of
N coordinates and then concatenate all the strings. The unique decoding property
guarantees that this is an injective code. Its average length is N times greater than
the average length of initial code for £ (linearity of expectation). And the maximal
length does not exceed cN where ¢ is an upper bound for the length of the code-
words of the uniquely decodable code we started with. So the previous paragraph
gives us

N - (average length of the uniquely decodable code) > NH (&) — log(cN).

Now we divide over N and take N — oco. Since log(cN)/N — 0 as N — oo, this
gives us the bound H () for the average length of a uniquely decodable code.

Now the McMillan inequality is easy. Assume that the uniquely decodable
code has code lengths ni,...,n, and >, 27™ > 1. We start with probabilities
p; = 27" and then proportionally decrease all of them making their sum equal
to 1. Consider the random variable that has the distribution p; (obtained in this
way) and its coding by means of our uniquely decodable code. The average length
is > pyn; which is less than H = > p;(—logp;) (rvecall that n; < — log p; since we
have decreased the values p;).
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Look closely at this proof and trace the correspondence between it and
the proof given above.

7.2.4. “Relativization” and basic inequalities. All the statements about
entropy have “relativized” (counditional) versions. For example, we could add some
random variable & as a condition in the inequality

H({¢&,m) < H(E)+ H(n)

and get its conditional version
H((¢,m)a) < H(|e) + H(n|a).

The conditional version is an easy consequence of the unconditional one. Indeed,
for each fixed value «; of a random variable «, we have

H((§mla = o) < H(la = i) + H(nler = o)

(Theorem 141 is applied to conditional distributions of £ and n with condition
o = ¢;). Then we sum up all these inequalities with weights Prja = o).

So we get a conditional inequality as a consequence of the unconditional one.
Now, going in the opposite direction and using the equation

H(Bly) = H(B,v)) — H(7),

we can express all conditional entropies in terms of unconditional ones.
After canceling some terms, we get the following inequality:

THEOREM 145 (Basic inequality).
H(,m0)+ H(a) < H(, @) + H(n, o).

We use a simplified notation and write H(£,7, @) instead H({£,7, @) {or even
more formal H({(£,n),a))).

Similar relativization (adding random variables as conditions) can be applied
to mutual information. For example, we can naturally define I{a : 8|y) as

H(aly) + H(Blv) — H((o, B)1)-
The basic inequality (Theorem 145) says that I{« : 8|y) > 0 for all random variables
o, B,7.
Prove that I({a, B) : v) = I{a : ).

@Prove that
I({e, B) :v) = I(a:v) + I(B : 7|).

If I(c: 4|B) = 0, the random variables « and « are called independent relative
to B (when £ is known). Experts in probability theory say in this case that &, 5,
form a Markov chain where the dependence between the past (o) and the future
() is caused only by the current state (3).

Prove that in this case I{a : v) < I(a : B), and therefore I{a : v) < H(fB).

To prove all these (and similar) statements, one could use the diagrams that
are similar to the diagrams for Kolmogorov complexity discussed in Chapter 2.
The diagram for two variables consists of three regious. Each region carries a non-
negative value. The sum of these values for two left regions is H(a) and for two
right regions is H(S) (see Figure 20).
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o B

FIGURE 20. Entropies of two random variables

For three variables a, 3,y we get a more complicated diagram (Figure 21). The
central region carries a number that is denoted by I(a : 8 : 7). It can be defined
as I(a : B) — I(a : Bly) or, equivalently, as I{« : ¥) — I(a : v|B), etc. In terms of
unconditional entropies we get the following expression:

I{a: B:v)=H(a)+ H(B)+ H(y) - H(a, f) — H(e,7) — H(B,7) + H(e, B, ).

FIGURE 21. Entropies of three random variables

Note that (unlike the other six values shown) the value of I(a : B : ¥) can be
negative. For example, this happens if variables a are 8 independent, but become
dependent when -~ is known.

Construct three variables a, 3, with this property.
(Hint: Following the example given on p. 51, consider uniformly distributed
independent variables o and B with range {0,1}, and let v = (o + 3) mod 2.)

(Fano inequality) Prove that if the random variables « and B8 differ with
probability at most € < 1/2 and o takes at most a values, then

H(alp) < eloga + h(e),
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where h(e) is the entropy of a random variable with two values and probabilities €
and 1 —e.

(Hint: Let v be a random variable with two values; v = 0 when « # § and
v =1 when o = 8. Then H(«|B) < H(y)+ H(c|B,7). The first term is h(e), and
the second one can be rewritten as

Priy = 01H ((a|B)|y = 0) + Prly = 1]H((«|B) |y = 1),
ie.,

Prla # BlH ((a|B)|e # B) + Prla = BlH((a]B)|a = B),
which does not exceed eloga +0.)

Assume that H(a|8,7) =0 and I(8 : @) = 0. Prove that H(vy) > H(a).

This problem has the following interpretation. If a spy wants to send to the
headquarters a secret message o as a plain text § using a key 7y (that is agreed upon
in advance) and wants the adversary, who does not know 7, to get no information
about a, tlien the entropy of key -y cannot be less than entropy of the message .
This statement is sometimes called the Shannon theorem on perfect cryptosystems.

Prove that
2H(a, B,7) < H(e, 8) + H(B,7) + H(e,7)

for any three random variables a, 3,~.
(Hint: See the proof of the corresponding statement about Kolmogorov com-
plexity, Theorem 26 (p. 48).)

Prove a similar inequality for n random variables:
(n—1)H(ay,...,on) < H(ag,...,an) + -+ H(ay,...,0n_1).

(The right-hand side contains n terms where one of the variables is omitted.)

(Shearer inequality [43]) Prove the following generalization of the pre-
ceding inequality. Let T3,...,T} be arbitrary tuples made of (some of) the ran-
dom variables a;,...,a,, and each variable appears in exactly r tuples (among

., Ty). Then

TH(alaa%"'ﬂaﬂ) <H(T1)++H(Tk)

@ Prove that the inequality of Problem 231 implies the upper bound for the
volume of an n-dimensional body in terms of the volumes of its (n — 1)-dimensional
projections onto coordinate hyperplanes (the case n = 3 was mentioned on p. 12):
If V is the volume of the body and Vi,...,V,, are volumes of its projections, then

VLKV Vo Vi

(Hint: First consider the discrete version when the body is made of unit cubes
on the grid. For this a random variable that is uniformly distributed among these
cubes is useful. An arbitrary case can be treated as the limit of the discrete one.)

The last inequality is a special case of a general Loomis—Whitney inequal-
ity [105].
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7.3. Complexity and entropy

As you surely have noticed, the properties of Shannon entropy (defined for
random variables) resemble the properties of Kolmogorov complexity (defined for
strings; see Chapter 2). Is it possible to formalize this similarity by converting it
into exact statements?

This question has two interpretations. First, one can prove that Kolmogorov
complexity and Shannon entropy have similar properties (in particular, the same
linear inequalities are true for them; see Section 10.6, p. 326). On the other hand,
one may compare the numeric values for complexity and entropy, and this is what
we do in this section.

The problem here is that Kolmogorov complexity is defined for strings while
Shannon entropy is defined for random variables, so how could one compare them?
However, sometimes this comparison is possible, as we shall see. Let us start with
a very vague and philosophical description of the results below: Shannon entropy
takes into account only frequency regularities while Kolmogorov complexity takes
into account all algorithmic regularities, so in general the latter is smaller. On the
other hand, if an object is generated by a random process in such a way that it has
only frequency regularities, entropy is close to complexity with high probability.

Let us give now some specific results that illustrate this general statement.

7.3.1. Complexity and entropy of frequencies. Consider an arbitrary fi-
nite alphabet A which may contain more than two letters. Kolmogorov complexity
for A-strings can be defined in a natural way. (Note that we have never used that
finite objects whose complexity is defined are binary strings. However, it is im-
portant that binary strings are used as descriptions: complexity measured in bytes
would be eight times less than complexity measured in bits!)

Let z be an A-string of length N, and let py,...,pr be the frequencies of
letters in z. All these frequencies are fractions with denominator N and integer
numerators. The sum of frequencies equals 1. Let h(p1,...,pr) be the Shannon
entropy of corresponding distribution.

THEOREM 146. Cla) Olog V)
x og
— < h(pr,...,px) + —=—=
N (Prye - pR) + ——
Here the constant in O(log N) does not depend on N, z and the frequencies
P1,--.,Pr- However, this constant may depend on k (we consider an alphabet of a

fixed size).

ProOF. In fact this is a purely combinatorial statement. Indeed, the complex-
ity C(z|N,p1,...,pr) does not exceed log C(N,p1,...,pr) + O(1), where

N!
C(N,p1,...,px) = (pN)!(p2N)! -+ - (pr.N)!

is the number of A-strings of length N that have frequencies py,...,pr. (Each
string with given frequencies can be determined by its ordinal number in this set if

the parameters N,pi,...,pr are known, and this number has log C(N,py,...,pr)
bits.)
The number C(N,py,...,pr) can be estimated using Stirling’s approximation.

Ignoring factors bounded by a polynomial in N (that appear due to the term v/27k
in Stirling’s approximation formula k! = v/27k(k/e)*), we get exactly 2VA(PL--Px),
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This computation was performed (for k = 2) when we proved the Strong Law of
Large Numbers (Theorem 27, p. 56). The general case (for arbitrary k) can be
treated in the same way.

Finally, note that we need about k log N bits to specify N, py,...,pr (we need to
specify k integers whose sum is N), so by deleting the condition in C(z|N, pi, ..., pi)
we increase the complexity by O(log N) (and the constant in O(log N)-notation is
close to k). O

Another proof uses the upper bound for monotone complexity (Theorem 89,
p. 144). Consider a probability distribution on infinite A-sequences that corre-
sponds to independent trials with probabilities py, ..., px in each trial.

The event “a sequence with prefix z appears”, where z is an A-string of length N
that has frequencies q, ..., qx, equals

N N
ol
(letter a; has probability p; and appears ¢; IV times). The binary logarithm of this
probability is equal to

=N - (qi(=logp1) + -+ qu.(— log pi))-

For the special case g; = p; we get —Nh(p1,...,pr); therefore the monotone com-
plexity has upper bound Nh(pi,...,pr). (Recall also that monotone complexity
differs from other complexity versions by a term O(log N) for strings of length N.)

In fact, this argument is flawed. When we proved the upper bound for mono-
tone complexity, we had assumed that distribution is fixed. The constant term,
therefore, may depend on the distribution. And now we try to estimate KM (z)
using a measure that depends on the letter frequencies in the string z. So formally
Theorem 89 is not applicable. But if we recall its proof, we see that it provides a
bound for conditional monotone complexity when py,...,p are given. The differ-
ence between this conditional complexity and the unconditional one is O{log N), so
we indeed get another proof for Theorem 146.

What is a value of a constant hidden in O(log N) (as a function of k)?
(Hint: Both proofs give k(1 + o(1)) log N.)

Show that when all frequencies p,,...,pr are not very close to 0, the
statement of the previous problem could be improved up to (k/2 + O(1))log N.

(Hint: In the first proof one should take into account the square roots in Stir-
ling’s approximation—most of them are in the denominator. The second proof can
also be modified: instead of exact values of frequencies, one can consider approxi-
mate frequencies with an error of order O(1/+/N). This gives a weaker bound, but
the difference is bounded by a constant. (Recall that a smooth function is qua-
dratic near its minimum.) In this way we can save half of the bits when specifying
P1,---Pk-)

Note that the inequality provided by Theorem 146 may be very far from equal-
ity. Indeed, if A has two letters and they alternate in a string z, then the right-hand
size equals 1 and the left-hand size is of order (log N)/N. This is not surprising and
fits well into the general picture: the complexity is small since it reflects all the reg-
ularities (not only frequencies). In the next sections we prove that the complexity
of a randomly generated string is close to the entropy with high probability.
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7.3.2. Expected complexity. Let us fix &, a k-letter alphabet A, and k
positive numbers py, ..., py whose sum is 1 (for simplicity we assume that all p; are
rational numbers).

Consider a random variable £, whose values are letters of A and probabilities are
pi1,--.,Pk. For each N consider a random variable £y consisting of NV independent
identically distributed copies of £. Its values are A-strings of length N. Now we may
ask a question: What is the expected complexity of a string generated according
to this distribution?

THEOREM 147. The ezpected value of K(N|N) is NH(€)+O(1) (the constant
in O(1) may depend on £ but not on N).

Note that (for positive p;) all A-strings of length N are among the values of
¢N. Some of them have complexity much greater than N H (except for the case of
uniform distribution), but others have complexity much less than NH.

PROOF. For each A-string of length N (i.e., for each value of £5) consider its
shortest description (with respect to some fixed prefix-stable decompressor). These
descriptions form a prefix code (in the sense of Section 7.1.1). The average length
of the codeword is exactly the expected value of K(¢V). Therefore, Theorem 138
(p. 214) guarantees that this expected value cannot be less than H(¢V) = NH(¢).
The lower bound is proved (and even the O(1)-term can be omitted).

The same theorem is useful for the upper bound, too. Indeed, it guarantees that
there exists a prefix code that has average length of a codeword at most H(¢V)+1.
Such a code can be constructed by an algorithm if N (and numbers p;, which are
fixed) is given. For example, one may use the construction used in the proof of
Theorem 138, or use Huffman code, or even just try all codes until a good one is
found.

Anyway, the constructed code can be used as a conditional decompressor (with
N as the condition) such that average length of the shortest description of £V does
not exceed H(¢V)+ 1 = NH(£) + 1. Replacing this decompressor by an optimal
one, we increase the average length by O(1). O

Show that one can slightly improve the upper bound and prove that the
average value of monotone complexity KM (¢V) does not exceed NH(¢) + O(1).

(Hint: Apply Theorem 89 to the distribution of £°°.)

We assumed that ps, ..., pr are fixed rational numbers. One may wish to get a
uniform bound that is true for all tuples py,...,pr. Then we should add p1,...,px
to the condition and prove bounds for the expected value of K(¢V|N,pi,...,pk)
instead of K (¢V|N). The lower bound is not affected at all, since it is true for
any prefix code, and for the code construction the information in the condition is
sufficient. (We assume that p; are rational numbers. This is not very important,
since one may replace arbitrary reals by their approximations with sufficiently small
error.)

Formulate the exact statement and prove it.

This theorem says that average complexity equals entropy though individual
values of complexity could be much smaller or much larger. In fact, a stronger
statement it true: most values of £V have complexity close to NH(¢). More for-
mally, the event “the complexity of string ¢/ differs significantly from NH(£)” has
small probability. This statement could be considered as an algorithmic version of
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the Shannon theorem on (noiseless) channel capacity, and we will return to this
question in Section 7.3.4.

7.3.3. Prefixes of random sequences and their complexity. In this sec-
tion we consider infinite ML-random sequences and compare complexities of their
prefixes with the entropy of a generating distribution. Again, let A be an alphabet
that has k letters, and let p,, ..., px be a probability distribution on A. We assume
that py, ..., pr are computable positive reals.

Consider the space A of infinite A-sequences and the probability distribution
on this space that corresponds to independent identically distributed variables with
distribution pj,...,pr. This is a computable probabilistic measure on A*, so the
Martin-L6f definition of randomness can be used. (In fact, we have defined Martin-
Lof randomness for a two-letter alphabet, but essentially the same definition can
be used for any finite alphabet.)

THEOREM 148. Let w be an ML-random sequence with respect to this distribu-
tion. Let (w)y be its prefix of length N. Then
C(w)n)
N
where H 1is the Shannon entropy, i.e., H =) p;(—logp;).

lim

= H,

Prove that for uniform distribution this statement is an immediate con-
sequence of the randomness criterion (Theorem 90, p. 146).
(It is a rare occasion when the uniform case is really special.)

The statement refers to the plain complexity C; however, this is not important,
since different versions of complexity differ only by O(log N) = o(N). So we may
use monotone complexity in the proof, and this is convenient.

PROOF. The Levin-Schnorr randomness criterion (Theorem 90, p. 146) says
that complexity of a prefix of a random sequence is close to the negated logarithm
of probability that this prefix appears. The probability refers to the distribution on
A considered above, and the negated logarithm equals N ) ¢;(—logp;) where g;
is the frequency of ith letter in (w)y. It remains to use the SLLN, which guarantees
that ¢; tends to p; as N — oo for a random sequence. O

Looking at this proof, we see that the difference between the complexity (per
letter) and entropy has three reasons: first, the randomness deficiency from the
Levin—-Schnorr theorem that gives an O(1)/N difference; second, the difference be-
tween the plain and monotone complexities (of order O(log N/N)); and, finally, the
difference between frequencies and probabilities which makes the most important
term. (The law of iterated logarithm says that this term typically is a bit larger
than O(vN)/N.)

We have assumed that p; are computable reals, otherwise the notion of Martin-
Lof randomness cannot be used. If they are not computable, we can still consider
the set of sequences such that complexity of their prefixes (per letter) do not have
entropy as a limit. Then we can prove that this set has measure zero (with respect
to the corresponding distribution).

Prove this statement.

(Hint: For an upper bound we can use some approximations for p;; the precision
1/N? is enough if we consider prefixes of length N. The additional information
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needed to specify these approximate values is of size O(log N). The lower bound
does not use at all the algorithmic properties of p;; for example, we can get a bound
for relativized complexity with any oracle A that makes all p; computable.)

7.3.4. The complexity deviations. Theorem 148 is asymptotic. One may
look for a bound of difference between complexity and entropy of frequencies for
finite sequences. (This follows the example provided by the probability theory
that has the SLLN for the limit values as well as large deviation bounds for finite
sequences. )

Let A be a k-letter alphabet, and let p;,...,pr be a distribution on A. Again
we assume for simplicity that p; are rational (or at least computable). Consider
the product distribution on AY that corresponds to N independent trials with
probabilities py,...,pr- So each A-string of length N has certain probability (and
certain complexity). We already know from Theorem 147 that the average value of
complexity is close to NH, where H = > p;(—logp;). But we want to know also
how far this complexity deviates from its average value.

The simplest case of two equiprobable letters (which is quite untypical, as we
shall see) gives a uniform distribution on all binary strings of length N. We know
that all these strings have complexity at most N + O(1) and the (overwhelming)
majority of strings has complexity close to N: The fraction of strings that have
complexity less than N — ¢ is at most 27¢. So in this case the significant difference
between complexity and entropy has an exponentially small probability.

The case of uniform distribution on a k-letter alphabet is similar. However, if
not all the letters have the same probability, the situation changes significantly.

Here is the key observation. For any string z of length N we compare proba-
bilities p; with empirical frequencies q;(xz) (frequencies of letters in z). It turns out
that with high probability the complexity of a random string (with respect to our
distribution on AN) is close to k(z) = N, ¢i(z)(— logp;). Indeed, Theorem 89
(p. 144) says that monotone complexity can exceed k(z) by at most O(1). On
the other hand, the argument used in the proof of Levin—-Schnorr theorem (p. 146,
Lemma 1) shows that for any ¢ the probability of the event KM(z) < k(z) — ¢
(according to the distribution considered) does not exceed 27°.

Therefore, the question about complexity reduces to a question about the dis-
tribution of empirical frequencies. This question has been studied in probability
theory for centuries. It is known (Moivre-Laplace theorem) that this distribution is
close to a normal (Gaussian) one: the expectation of frequency equals the probabil-
ity, and the variance is proportional to 1/N. This is the main term, since it is much
larger than terms caused by the O(log N) difference between different complexity
versions and by using N as a condition. This argument (made precise) gives us the
proof of the following statement:

THEOREM 149. Let £ be a random variable with k values. For each positive
€ > 0 there exists ¢ such that for all N the probability of the event

NH(¢) —cVN < C(z) < NH(¢) + VN
is at least 1 — . (Here z is a string formed by N independent copies of £.)

In fact our arguments assumed that p; are computable. However, this assump-
tion can be dropped if we replace p; by their approximations with sufficiently small
error (the precision 1/N? is enough and requires only O(log N) additional bits).
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7.3.5. Shannon coding theorem. The theorem of the last section is a natu-
ral translation of classical Shannon results into complexity language. These results
deal with the length of a code that allows us to transmit N-letter blocks correctly
with high probability (according to the given distribution).

Let £ be (again) a random variable with & values (letters of A) and some fixed
distribution. Let N be a positive integer. By ¢V we denote a random variable with
range AN that is formed by N independent copies of £&. We want to encode values
of €N by m-bit strings (see Figure 22).

N d d d ? N
— N —»
I3 encoder bits ecoder 13

FIGURE 22. Using m bits for transmission of £V

Here an encoder is any mapping of type AY — B™, and a decoder is any
mapping of type B™ — AN. A given value of £V causes an error if the input
and output A-strings (of length N) differ. The probability of error is measured
according to the distribution of £V. The question is: What conditions on m and N
guarantee the existence of an encoder/decoder pair that has small error probability?
First, let us make the following evident remark:

THEOREM 150. For given N,m and € > 0, the code with error probability at
most € exists if and only if the 2™ most probable values of £V have total probability
at least 1 — .

PROOF. Indeed, when m bits are used for encoding, one may transmit (without
errors) at most 2™ values. To minimize the error probability, we should choose 2™
most probable values. O

In the next theorem the alphabet A and the random variable £ are fixed.

THEOREM 151. For each € > 0 there exists a constant ¢ such that:

(a) The values of €V can be encoded/decoded with NH(€)+cv/N bits with error
probability at most €;

(b) Any code for €N of length at most NH(€) — cv/N has error probability at
least 1 — € (i.e., the probability of correct decoding is at most €).

PROOF. (a) As we know, for a suitable ¢ the value of random variable £V has
complexity less than m = NH(€)+cv/N with probability at least 1—e. So for these
values one can use shortest descriptions (see the definition of plain complexity} as
codes. (Formally speaking, we get strings not of length m, but of length less than m,
but there are at most 2™ of them, and they can be replaced by strings of length m.)

Note that coding is not performed by an algorithm, but the theorem (as stated)
does not say anything about that, it claims the existence of a code mapping.

(b) Here we need to use some trick. If there exists a code of given length,
then such a code can be constructed algorithmically using the previous theorem
(or just by an exhaustive search). Then the decoding function for this code can be
considered as a conditional decompressor (where conditions are p; and N). There-
fore, all values of ¢V that are decoded without error, have complexity at most
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NH(€) — ¢v/N + O(log N) (the latter term corresponds to the complexity of pa-
rameters and can be omitted if we increase ¢). As we know (Theorem 149, p. 230),
the probability of this event is at most €. O

As before, we assume that probabilities p; are known exactly, and if p;
are not computable, we get some problems. Correct the argument replacing p; by
their approximations with sufficient precision.

Give a statement and proof for a similar result about conditional coding
and conditional entropy.

(Hint: Assume that two dependent random variables £ and 1 are given. We
make n independent trials, the value of 7"V is known both to the sender and the
receiver, and the sender wants to send m bits in such a way that the receiver could
reconstruct the value of ¢V. How large should m be?)



CHAPTER 8

Some applications

8.1. There are infinitely many primes

Let us start with a toy example and prove that there are infinitely many primes.

Assume that there are only m different prime numbers p;,...,pm. Then every
positive integer x has a prime decomposition of the form

T = pl’l\flplzﬂQ . 'pl:ri"

and can be described by the list of exponents ki,...,Ak,. Each of k; does not
exceed logz, since the base is at least 2, and has complexity at most O(loglogz)
(its binary representation has O(loglog z) bits). Since m is fixed, i.e., m is the sane
for different z’s, the complexity of the tuple (ki, ks, ..., kn) is O(loglogz). As z
can be obtained from that tuple, its complexity is O(loglog ). But for a “random”
(incompressible) n-bit integer = the complexity is close to n and is not O{logn), as
this formula says (the logarithm of an n-bit number does not exceed n). Euclid’s
theorem is proven.!

Is this a real application of Kolmogorov complexity or just cheating? A skep-
tical reader would say that we just retell, in terms of Kolmogorov complexity, the
following counting arguments. If there are only m prime numbers, then there are
at most (logz)™ different integers between 1 and z, since any integer in this range
is determined by the m powers in its decomposition, and each power is less than
log z. This immediately leads to a contradiction, since z > (logz)™ for large z.

This is indeed true: our reasoning using Kolmogorov complexity is a direct
translation of this argument (and is a bit more cumbersome due to asymptotic
notation). However, such a translation may still have sense, since the new language
provides new intuition, and this intuition may be useful even if later the same
argument can be translated into the standard language.

We return to this discussion after looking at other applications.

8.2. Moving information along the tape

The other toy example is a well-known result saying that duplication of an
n-bit string on the tape of a Turing machine (with one tape only) requires en?

1In [103] this argument continues as follows. If N has a prime factor p, (the nth prime), then
we may encode N as a pair (n, N/pp), so C(N) < K(n)+C(N/pn)+O(1). If N is incompressible,
then log N < C(N) < K(n) + log(N/pn) with O(1)-precision, so logp, < K(n) + O(1). This
gives an upper bound for p, for infinitely many n; one should note only that (as we have seen)
incompressible integers may have arbitrarily large factors.

The combinatorial translation of this argument goes as follows. Let us choose some threshold
m, and consider all integers that have only prime factors below m. These integers form a minority
among large integers, and all other integers have large prime factors. This implies that every tail
of the series ) 1/p (inverse primes) is at least 1/2, so this series diverges.

233
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FIGURE 23. A buffer zone of size b

steps in the worst case. This classical result was obtained in 1960s using so-called
crossing sequences; our proof is just a translation of this argument into the language
of Kolmogorov complexity. (We assume that the reader is familiar with the basic
notions related to Turing machines; see, e.g., [184]).

Consider a zone of size b on a tape of a one-tape Turing machine; this zone
is considered a buffer, and we want to transmit information across this zone, say,
from left (L) to right (R); see Figure 23.

Initially the buffer zone and R are empty (filled with blanks), and L is arbitrary.
We give an upper bound for the complexity of R after ¢ steps. The upper bound
is (tlogm)/b+ O(logt) where m is the number of states that our Turing machine
has and b is the width of the buffer zone. Informally the argument is quite simple:
each state of the Turing machine carries log m bits of information, and during one
computation step this information can be moved to the neighbor cell, so moving it
at the distance b requires b times more time.

Now we have to convert this intuitive explanation into a formal argument.

THEOREM 152. Let M be a Turing machine that has m states. Then there
exists a constant ¢ such that for any b and for any computation that starts with
an empty buffer zone of size b and an empty tape on the right of the buffer zone
the complexity of the contents R(t) of the right part of the tape after t steps of
computation does not exceed

tlogm

+4logt +c.

PROOF. Let us consider some line between cells inside the buffer zone as a
border, and let us write down the state of M when it crosses the border from left
to right (as was done in the time of the Iron Curtain). The sequence of states is
called the crossing sequence. Knowing the crossing sequence, we can reconstruct
the behavior of M abroad (on the right of the border) not using the contents of
the tape on the left. Indeed, we should artificially put the machine into the first
state of the crossing sequence and let it go abroad. When M returns back, we put
it in the second state of the crossing sequence and let it go abroad again. In this
way we correctly reconstruct the abroad behavior of the machine (since it does not
remember anything except its state when crossing the border). In particular, at
some moment t' the tape on the right of the buffer zone contains R(t). Note that
t’ may be different from ¢ since we do not take into account the time M spends on
the left of the border, but ¢’ cannot exceed t. Therefore, to reconstruct R(t) we
need to know the crossing sequence, ¢/, and the distance between the border and
R-zone. So there exists a constant ¢ (depending on M but not on b and t) such
that for any crossing sequence S and any b and ¢ we have

C(R(t)) < U(S)logm +4logt + c.
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n n/2
FIGURE 24. Buffer zone for duplication

Here we multiply the length I(S) of the crossing sequence by logm since S is a
string in an m-letter alphabet and each letter carries logm bits. To add ¥’ and ¢/
in a self-delimiting encoding, we need at most 2logb + 2logt bits. We may assume
that ¢ > b, otherwise R(t) is empty since the head never visited R. The constant ¢
appears when we switch to the optimal decompressor.

This inequality is true for any contents of L and for any placement of the border.
Now if for the given contents of L we consider the shortest crossing sequence, the
length of this sequence is less than ¢/b (there is b+ 1 possible positions of the border,
and at each step only one of the positions is crossed, so the sum of the lengths of
crossing sequences does not exceed t). In this way we get the inequality stated by
the theorem. a

Show that this bound can be improved by replacing b in the denominator
by 2b.

(Hint: The return trips need almost the same time (the difference is at most
b).)

The quadratic lower bound for the duplication of an n-bit string immediately
follows.

Assume that a one-tape Turing machine M duplicates its input: If initially the
tape contains a binary string z (followed by blanks), at the end of the computation
the tape has a second copy of z (i.e., it contains zz).

THEOREM 153. There ezists a constant € > 0 such that for every n there exists
an n-bit string that requires at least en? steps to duplicate it.

Proor. For simplicity let us assume that n is even, and let z be a string
whose second half u has complexity close to its length (i.e., to n/2). Then apply
the inequality we have proven considering the zone of size n/2 on the right of z as
the buffer (Figure 24).

Assume that duplication takes t steps. Then the complexity of R zone after ¢
steps (which is at least n/2) does not exceed tlogm/b+ 4logt + ¢, where b is the
size of the buffer zone, i.e., n/2. Therefore,

no tlogm

2 n/2

+4logt+c.

We may assume without loss of generality that ¢ < n? (otherwise the statement is
trivial). Then we replace 4logt by 8logn and conclude that

n?

t>
~ 4logm

- O(nlogn);



236 8. SOME APPLICATIONS

the second term is small compared to the first one for large n (we may then forinally
extend the result to every n by decreasing the coefficient €). O

Is Kolmogorov complexity essential in this proof? The skeptical observer may
say again that we in fact just counted the number of different strings that can be
copied in a limited time (using the fact that different strings should have differ-
ent crossing sequences, otherwise the behavior of the machine at the right of the
boundary would be identical). Indeed, the original proof follows this scheme (in
fact, it deals with palindrome recognition, not the duplication, but the technique
is the same). Does the language of complexity make the proof more intuitive and
easy to understand? Probably this is a matter of taste.

Many bounds in computational complexity theory can be proven in the same
way, using the string of maximal complexity as the worst case and proving that the
violation of the bound would imply this string is compressible. Many applications
of this type (and further references) are given in the classical textbook [103]; its
authors, Ming Li and Paul Vitdnyi, played an important role in development of
this approach, called the incompressibility method. Note that in several cases the
historically first proof was obtained using Kolmogorov complexity.

In the next section we consider one more application of the incompressibility
method, then we switch to other applications. The most interesting thing in these
applications is not the statements in themselves but the various methods that allow
us to apply Kolmogorov complexity to prove statements that do not mention it.

8.3. Finite automata with several heads

A finite automaton with k heads is similar to the ordinary one (we assume
that the reader is acquainted with basic notions related to finite automata; see,
e.g., [185]}, but it has k one-way read-only heads. Here one-way means that the
head can only move from left to right.

Initially all k£ heads observe the leftmost character of the input string. At each
step the behavior of the automaton is determined by its state and the & symbols
it observes (under k heads): the automaton changes the state and instructs some
heads (at least one) to move to the right. Then the automaton performs the next
step, etc.

The input string is followed by a special marker; the automaton terminates if all
the heads observe this marker. (We assume that the head that sees the marker does
not move to the right.) Automaton accepts the string if it gets into an accepting
state after processing this string. We say that the automaton recognizes the set of
all accepted strings.

Example. Consider the language (=set of strings)} z#x where z is any binary
string. It is well known that this language cannot be recognized by a standard
(one-head) automaton. However, it is easily recognized by a two-head automaton.
Indeed, we should send one head to look for the separator #, when the separator is
found, two heads move synchronously and check that they read the same symbol.

So two heads are better than one (more languages can be recognized). It turns
out that the same is true for more heads: k + 1 heads are (strictly} better than k
heads.

THEOREM 154. For every k there exists a language that can be recognized by a
(k + 1)-head automaton but not by a k-head one.
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ProOF. For each m > 1, consider the language L, that consists of all strings

wi# - WmHFWmH W

(for any binary strings w;,...,wn). Each w; is repeated twice, and in the right
half the strings w; go in reverse order (this is crucial for the argument).

A k-head automaton can recognize this language if m is not very large (is at
most (’2“), see below). One of the heads goes to the right half, and the remaining
k — 1 heads are placed before ws, ..., wx—1. Then each of these k — 1 heads checks
its string while the first head crosses its copy. After that the first k — 1 strings are
checked, the first head is of no use (it is at the end of the input string), but the
remaining k — 1 heads are useful since they are on the left of the remaining strings
Wi, Wk+t1, - - .- INOW we repeat the same trick: one of the k¥ — 1 heads is sent across
the right half, k — 2 heads check the next k — 2 strings, etc. Repeating this, we can

check )
k(k—1 k
(k—1)+(k—2)+---+1=—2—: (2)

strings. (Note that m is fixed, so for finding a substring with a given number, the
finite memory is enough.)

Therefore, the language L., can be recognized by a k-head automaton if m < (’2“)

It remains to show that if m > (’;), the language L., cannot be recognized by
a k-head automaton. Assume that is not the case and some k-head automaton
M recognizes this language. To get a contradiction, let us consider independent
random strings w, ..., wm, of sufficiently large length N. More formally, consider
a string of length mN and complexity at least mN and split it into m strings of
length N denoted by w, ..., w,. By assumption, the string

W =w#  wn#un# w

is accepted by M; we get a contradiction by showing that either w; - - - wp, is com-
pressible or the automaton does not recognize L,,.

Let us say that a given pair of heads of M wvisited w; if at some moment (while
processing W by M) these heads were simultaneously inside two copies of w;. A key
observation: a given pair of heads cannot visit both w; and w; for i # j. Indeed,
consider the moment when w; was visited. After that the left head reads only w;
with j > 1 and the right head visits only w; with j < i.

By our assumption m > ('2”), therefore there exists ¢ such that w; is not visited
by any pair of heads. Let us show that either w; is compressible or one of its copies
can be counterfeited in such a way that M will still accept the string (so M does
not work correctly).

Let us observe the actions of M on W. Special attention is needed when one
of the heads enters or leaves w; (any of two copies): We write down the positions
of all heads and the state of M at these moments. The obtained “log-file” P has
complexity O(log N) where the hidden constant depends on k, m, and the number
of states in M but not on N. Indeed, there are at most 4k moments to consider
(four per head) and at each moment we record the state of the automaton and head
positions, and this requires O(log N) bits.

Let us show that (if M recognizes L,, correctly) the string w; can be uniquely
reconstructed if all other w; (with j # 4) and P are given. This would imply that
the complexity of the string wy - - - wy, does not exceed (m — 1) N (the number of



238 8. SOME APPLICATIONS

bits in w; for j # i) plus O(log N) (the complexity of the log-file) plus O(1), which
is less than mN for large N, so we get the desired contradiction.

The reconstruction goes as follows: we try all strings of length m as candidates
for w; (keeping w; with j # 7 intact). For each candidate w we run M on the
resulting string and check whether we get the same protocol P. There are three
possible cases:

(1) If (for some w) M rejects (does not accept) the string, then A/ does not
recognize our language.

(2) M accepts all these strings (for all candidates) and the protocol P appears
only once, for w = w;. Then reconstruction is possible (and w; - - - wy, is compress-
ible).

(3) M accepts all these strings, and P appears both for w; and for some w # w;.
Let us show that in this case M accepts a string not in L,,, namely, the string W’
that has w; in the left half while in the right half w; is replaced by w.

Indeed, there are two accepting computations of M: one if w; is used on both
sides and the other one for w. Let us split both of them into parts; the splitting
points are moments when one of the heads enters or leaves w; (or w). The positions
of all other heads and the states of M are recorded in P so they are the same for
both computations. (Note that the moments of time can be different since they
are not recorded. In fact, we may add them also, but this is not needed.) So we
can glue the computation intervals for both cases; let us show that we can get an
accepting computation of M on a bad string (the left half has w; while the right
half has w).

By our assumption during the processing of W, there is no moment when
both copies of w; carry some heads; since the border crossings for both copies are
recorded in P, the same is true when w; is replaced by w. So for each interval
between two protocol events related to w; /w there are three possibilities: (a) there
is a head in the ith string on the left; (b) there is a head in the ith string on the
right; (c) neither of the above. Then we can copy-and-paste the intervals into a
new computation: for part (a) we use the computation of M on W; for part (b) we
use the computation of M of changed input (where w; is replaced by w); for part
(c) we can use either of two (they are the same). Then we get a computation of M
on a mixed string W', so M does not work properly. a

8.4. Laws of Large Numbers

The Strong Law of Large Numbers was proven in Section 3.2 (Theorem 27,
p. 56) without any references to Kolmogorov complexity by straightforward count-
ing. We consider (mainly) the uniform case. In this case the SLLN says that the
set. of all sequences w = wow; - - -, such that the sequence

_Wotwy + - twpog
n — n

has limit 1/2 as n tends to infinity, has full measure (with respect to the uniform
Bernoulli measure on ). In other words, the SLLN says that the complement of
this set (i.e., the set of sequences w such that p,, either have no limit or have limit
not equal to 1/2) is a null set. Later (Theorem 32, p. 65) we have shown that
this null set is in fact an effectively null set; this implies that for every ML-random
(with respect to the uniform measure) sequence w the sequence p,, converges to 1/2
(Theorem 33, p. 65).
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However, we can go in the other direction. Namely, we may first prove that
for any ML-random sequence the frequencies converge to 1/2 using the randomness
criterion in terms of complexity (Theorem 90, p. 146). This criterion says that
for an ML-random (with respect to the uniform Bernoulli measure) sequence w the
monotone complexity of its prefix (w),, of length n is n+O(1). This property implies
that the frequency of ones in (w), (i.e., pn) converges to 1/2. Indeed, Theorem 146
(p. 226) says that the complexity of w, does not exceed nh(pn,1 — pn) + O(logn),
50 h{pn,1 —pn) = 1+ O(logn/n) for any ML-random sequence. (Note that the
difference between plain and prefix complexity of w, is O(logn), so any of them
can be used.) This implies that p, — 1/2 as n — oo (see the graph of the entropy
function, Figure 8, p. 57). So the SLLN is true for all ML-random sequences, which
form a set of full measure.

The skeptical observer would say that this is not a different proof, or we have
just repeated the same arguments using different language. And she is probably
right. If we recall the proof of Theorem 146, we see that it uses the same estimate
(based on Stirling’s approximation) that was used for the proof of SLLN. (Another
argument, where monotone complexity is bounded by a negative logarithm of the
measure, Theorem 89, also has a direct translation in the probabilistic language; it
was discussed in Section 3.2 after the proof of Theorem 27 on p. 56.)

So what do we get by using complexity language? First, we find a broader class
of sequences that satisfy the SLLN:

THEOREM 155. Let w be a binary sequence such that C((w),) = n+o(n). Then
the sequence p, (the frequency of ones in (w),) converges to 1/2.

PROOF. The proof remains essentially unchanged: in this case h(pp,1 —pp) is
still 1 + o(1). O

Second, we not only can prove that p, — 1/2 but we also can give some
estimates for the convergence speed. The corresponding result in probability theory
is known as the Law of the Iterated Logarithm, and V. Vovk [208] has shown that it
is valid for ML-random sequences. Following his argument, let us use Kolmogorov
complexity to give a (rather simple) proof of the upper bound provided by this law.

THEOREM 156. Let w be an ML-random sequence with respect to the uniform
measure. Let p, be the frequency of ones in (w),. Then for every ¢ > 0, the
inequality
Inlnn

2n

lpn —1/2| < (1 +¢)
holds for any sufficiently large n.

PRrROOF. Let us first look at what bound can be obtained by the argument
above (that uses Kolmogorov complexity). We know that

n—0(1) < KM((w)n) < nh(pn,1 — pn) + O(logn),

therefore
h(pn,1—ps) = 1—O(logn/n).

The function

p+ h(p,1—p) =p(—logp) + (1 —p)(—log(1 - p))
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has maximum at p = 1/2, and the second derivative at this point is non-zero (equals
—4/1n2). Therefore, the Taylor expansion gives us

2 2
B(1/2+6) =1 = =8 +o(s?)

as 6 — 0, and for §, = p,, — 1/2 we have
52 = O(logn/n),

b —1/2 =0 (\/1"5”) -

So we get at least something, though the bound we need is much stronger. (Let us
mention that in the probability theory the final bound was obtained in many steps.
First Hausdorff (1913) proved the bound O(n®//n); then Hardy and Littlewood
(1914) improved it and replaced n¢ by +/logn; then Steinhaus (1922) came with
the bound (1 +€)4/(21nn)/n, and only later Khinchin (1924) got the final result.
So we are now on the level of Hardy and Littlewood in this respect—not that bad.)

Let us think about possible improvements for the upper bound that we had
for KM ((w)r). This upper bound was obtained by comparing KM ((w),) and the
negative logarithm of the probability of the prefix (w), with respect to the Bernoulli
measure with parameter p,. This logarithm is exactly nh(p,,1 — p,), but the
Bernoulli measure used for comparison depends on n, so the construction used in
the proof of Theorem 89 needs an additional term that is K (p,) (we start with
a self-delimiting encoding of p,). Here K(p,) does not exceed (2 + €)logn, since
both numerator and denominator of the fraction p, do not exceed n. Altogether
we get the bound

2
m(pn - 1/2)2 71— h(pn,1—pn) < (2+¢)logn/n,

which is still not good enough.

What else can we do? Note that we already know that py, is rather close to 1/2:
with denominator n the numerator differs from n/2 by 1/n or a bit more. So (when
the denominator n is known) we can use fewer bits to describe the numerator, and
this allows us to replace 2 by 1.5 in the right-hand side. But this is still not enough
for us.

The crucial idea is to use approximations for p,, instead of the exact values. Let
us assume that p, = 1/2+6, > 1/2 (the case when p,, < 1/2 is similar). Instead of
pr, we use (while constructing the Bernoulli measure used to get the upper bound for
complexity) its approximation 1/2 + 4/, where &/, is an approximation to &, from
below with a small (fixed) relative error. For example, let us take &, such that
0,96, < &/, < 8. Such a &, can be founded among the geometric sequence (0,9)%,
and its complexity is about log k, i.e., about log(— log 6,/ 1og 0,9) = log(— log 6, )+c.
Note that if §,, < 1/4/n, then we have nothing to prove, so the complexity of 8,, can
be upper bounded by (1+¢) loglogn (for every e this bound holds for all sufficiently
large n).

This is good news; the bad news is that we have a more complicated bound for
the complexity of (w),. Now instead of h(p,,1 — p,) we have

ie.,

(%) pn[=logpy,] 4 (1 — pa)[—log(1 — p},)],
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where pj, = 1/2 + §!,. Recalling our discussion of entropy, we may say that a
sequence (w), where frequencies of zeros and ones are p,, and 1 — p,, is encoded by
a code adapted to the simplified frequencies p!, and 1 — p},. The expression (x) can
only increase if we replace p, by p},: since p, > p}, > 1/2, the second expression in
square brackets is greater than the first one, and increasing its weight by decreasing
Pn, We increase the entire expression (x).

Finally we get the bound

n —O(1) < nh(py,1 - py,) + (1 +¢) loglogn
for every € > O (the inequality holds for all sufficiently large n). As before, it implies
8!, < (14¢€)y/In2-loglogn/2n.

For a true 0, we get a slightly bigger bound (1/0.9 times bigger); since 0.9 can
be replaced by an arbitrary number less than 1, we get the desired statement (the
factor In2 is used to convert the binary logarithm to the natural one, while the
replacement of the second binary logarithm by the natural one can be compensated
by a change of ¢ in the factor (1 + ¢)). O

Show that this argument can be used to prove the statement of Theo-
rem 156 not only for ML-random sequences but also for arbitrary sequence w such
that n — KM ((w),) = o(loglogn).

8.5. Forbidden substrings

8.5.1. Forbidden and simple substrings. The statement we prove in this
section is an example of a non-trivial application of Kolmogorov complexity (that
cannot be directly translated into a counting argument).

THEOREM 157. Let o < 1 be a positive real number. Assume that for each n
some binary strings are called forbidden strings and there are at most 2°™ forbidden
strings for any length n. Then there exists some ¢ and an infinite sequence of zeros
and ones that does not have forbidden substrings of length ¢ or more.

For example, we can declare strings of length n and (plain) complexity less
than an as forbidden strings. Then we get the following corollary (called Levin’s
lemma, see [51]):

THEOREM 158. Let o < 1 be a positive real number. There exists an infinite se-
quence of zeros and ones such that any of its substrings of sufficiently large length n
has complexity at least an.

It is instructive to compare this statement with the randomness criterion for
the uniform measure (Theorem 94, p. 151). In this criterion we considered only
the prefixes of the sequence (instead of all substrings); on the other hand the lower
bound for complexity was n — O(1) instead of a weaker bound an that we have
now. (The bound n—O(1) was for monotone complexity; it implies the n—O(logn)
bound for plain complexity that we use now). The following problem shows that
such a strong bound cannot be true for all the substrings (not a surprise, since a
truly random sequence contains all substrings, including simple ones).

For each infinite sequence w of zeros and ones there exist & < 1 and infin-
itely many substrings that have complexity per letter (the ratio complexity /length)
at most a.
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(Hint: Consider two cases: If all binary strings appear as substrings, the claim
is evident. If w does not contain some string » of length k, we can split long
substrings into blocks of length k and use efficient coding that takes into account
that block u is never used and does not need a code; this gives complexity per letter
at most (log(2F — 1))/k.)

The proof of Theorem 157 consists of two steps. First we prove its special case,
Theorem 158. Then it turns out (surprisingly) that the general case follows from
this special one.

PROOF. To prove Theorem 158, let us consider an intermediate 8 such that
a < B < 1. Using Theorem 71 (p. 111), we find a number N with the following
property: to each string « we can append N bits (on the right) in such a way that
the prefix complexity of the string increases at least by SN,

Let us use this property iteratively starting from the empty string. We get an
infinite sequence of N-bit blocks; the prefix complexity increases at least by SN
when the next block is appended. This implies that the complexity of every group
of consecutive k blocks is at least SkN —O(1). Indeed, by appending this group, we
increase complexity by kN at least, but the inequality K (zy) < K(z)+K (y)+0(1)
shows that K(y) 2 K(zy) — K(z) — O(1).

This implies that for every substring « (not necessarily block aligned) the com-
plexity of u is at least Bi(u) — O(1) since the change in complexity and length due
to boundary effects (by cutting the incomplete block on the border) is O(1). It re-
mains to note that we have some reserve due to the difference between o and 3, and
this reserve is enough to compensate both the boundary effects and the difference
between plain and prefix complexities (for sufficiently long substrings). |

Give a similar argument that uses plain complexity instead of prefix
complexity.
(Hint: Use Problem 46, p. 42.)

Prove the statement of Problem 47 (p. 42) with prefix complexity instead
of plain complexity.

PRrROOF. Now let us prove Theorem 157; the simplest approach is to use the
relativized version of complexity. Let us consider the set F of forbidden strings as
an oracle; this means that we consider algorithms that can ask (for free) whether
a given string is forbidden or not. As usual, this relativization goes smoothly both
in the statement of Theorem 158 and its proof, and this theorem is true for F-
relativized complexity.

Now all forbidden strings of length n have F-complexity at most an+O(logn),
since each forbidden string can be determined by n and by its ordinal number in the
list of all forbidden strings of length n. In fact the stronger bound an+0O(1) is valid
since we can use the list of all forbidden strings in the order of increasing length,
but this does not matter much since a small change in a covers this difference. So
it remains to apply Theorem 158 and to get a sequence which does not have long
substrings with complexity less than 8 (per letter), for some 8 > a. a

One can also make the following (rather unexpected) observation [160]: The-
orem 157 can be derived from Theorem 158 directly, without any relativization,
using the following statement:
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THEOREM 159. If for some rational o and some set F of forbidden strings
the statement of Theorem 157 is false (F has less than 2°™ forbidden strings for
each n, but there is no infinite sequence without long forbidden strings), then the
same happens for a decidable set F'.

(Note that for a decidable F' the relativization does not change anything; the
restriction to rational « is also not important, since we can increase « to a greater
rational number.)

PROOF. Assume that for some o < 1 and some set F' the statement of Theo-
rem 157 is false. Then for each ¢ we may find a set F, in such a way that:

(a) F, contains only strings of length greater than c;

(b) F. contains at most 2%* strings of length k (for every k);

(c) each infinite sequence contains at least one substring that belongs to F.

(Indeed, we can let F, be the set of all strings in F' that have length greater
than c¢.)

The standard argument (compactness, Kénig’s lemma) shows that every suffi-
ciently long string has at least one substring in F, so one can find finite F,. with the
same properties. Moreover, such a finite set can be found by an exhaustive search,
so we get F, that has these properties and can be found effectively when c is given.
(Why do we first need to switch to finite sets? To make the search possible.)

Now we construct the sequence ¢; such that c;y; is greater than the lengths of
all strings in Fi,. The union of all F, is a decidable set that violates the statement
of Theorem 157. O

Note the structure of our arguments: knowing that an object with some prop-
erty exists, we perform an exhaustive search and effectively find a (perhaps different)
object with the same property. This observation is often useful when dealing with
Kolmogorov complexity.

Prove that if for some set F of strings there exists a (one-sided) infi-
nite sequence that does not contain substrings from F, there exists a bidirectional
sequence that does not contain substrings from F.

(Hint: The compactness argument shows that both properties are equivalent
to the existence of arbitrarily long finite sequences that do no contain substrings
from F.)

J. Miller [125] suggested a direct proof of Theorem 157, where the required
sequence is constructed inductively, and we at each step guarantee that some quan-
tity (the emergency level) is not very large. Let us explain how the emergency level
is computed and why it can be kept bounded.

Fix a set of forbidden strings F. The emergency level for a string = (the
already constructed part of the sequence) is denoted by w.(z), where ¢ will be
some constant slightly greater that 1/2. The value of w.(z) is big if we have almost
got a forbidden substring. The definition follows: For every possible occurrence of
a forbidden string z € F in the possible extension of z (this means that z is on the
right of z, but there is a non-zero overlap, Figure 25), we take the number k of bits
of z that are missing in x, and add c* to w.(z). In other words, w.(x) is the sum
of ¢* for all z € F and for all possible occurrences.
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FIGURE 25. A possible occurrence of a forbidden string z: part of
z is already in z, but k bits are missing. This occurrence adds c*
to we(z).

When ¢ = 1/2, it is easy to explain the meaning of w.(z): it is the expected
number of occurrences of forbidden strings that overlap z, assuming that z is ex-
tended to the right by a sequence of independent random bits. Having this inter-
pretation in mind, it is easy to see that

wy/2(z) = Swy/2(20) + Jwy (1) — > (1/2)!).
zeF

Indeed, we add 0 with probability 1/2 and add 1 with probability 1/2, and we need
to take into account that in this way we count also those occurrences that happen
immediately after « (and they should not be counted—the definition requires non-
zero overlap with z). In fact, this equation is a purely combinatorial fact and is
valid for arbitrary ¢ (assuming that z does not contain forbidden strings):

we(z) = cwe(z0) + cwe(z1) — Z d@,
z€F

Initially (when z is empty) the value w.(z) is zero, and if = contains a forbidden
substring, then w.(z) is at least 1. So it is enough to show that we can maintain
the invariant relation “w.(z) < 1”7 when adding the next bit. It is enough to prove
that

we(20) + we(z1) = %(wc(m) £ <2
z€F

(assuming we(z) < 1), and this does happen if 1+ Y, ¢!® < 2c.

To finish the proof of Theorem 157, it remains to make the sum Y, p /()
finite by choosing ¢ close enough to 1/2 (the value of ¢ depends on « and becomes
closer to 1/2 as a approaches 1), and then to make this sum small by deleting the
strings of small lengths from F'.

Using this argument, prove an effective version of Theorem 157. If the set
F satisfies the conditions and is decidable, then there exists a computable sequence
that does not have short substrings from F'.

The result of the last problem can be extended to bi-infinite sequences (as noted
by K. Makarychev): One can also prove the existence of a computable bi-infinite
sequence with the same property. (His argument follows Miller’s scheme, but we
should define “left” and “right” emergency levels and look how they change when
several characters are added: one of the levels should decrease significantly while
the other should not increase much.) A more general argument is given in [159];
it uses an effective version of Lovasz local lemma (see the next section) and can be
generalized to multidimensional case.
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8.5.2. Lovasz local lemma. We have seen how a statement about Kol-
mogorov complexity (the existence of a sequence without simple substrings) may be
used to prove the combinatorial version of this result (the existence of a sequence
without forbidden strings). In this section we move in the opposite direction. We
start with a combinatorial statement (namely, the Lovész local lemma) and use
it to prove statements about Kolmogorov complexity. But first let us make some
general remarks.

Probabilistic existence proofs. To prove that there exists an object satisfying
some conditions, one can consider a probability distribution on objects and compute
for each condition the probability that it is violated. If these probabilities are very
small and their sum (over all conditions) is less than 1, the random object with
positive probability satisfies all the conditions, and the existence is proven.

In this argument we use the following (trivial) property: If the probability of
an event A; is at most ¢;, then the probability of the union of the events A,;,... A,
is bounded by the sum of €;, and the probability of avoiding all these events is at
least

l—e6—€—-—e¢n.

When computing probabilities, we often count “bad” elements in some class; if
the total number of bad elements is less than the cardinality of the class, there exist
“cood” elements. This reasoning can also be translated to complexity language:
If there are only a few bad elements, then bad elements have small complexity, so
every random (incompressible) element of the class is good.

However, we cannot use arguments of this type to prove Theorem 157. Indeed
the probability of finding a bad string in a given position is small (2(>~1)7), but
if there are many possible positions, the sum of probabilities exceeds 1. (Recall
that we need to prove the existence of arbitrarily long strings without forbidden
substrings.) However, there is an important observation that can be used to save
the argument: If two positions are disjoint (do not overlap), then the appearance of
a bad string in the first position and in the second position are independent events.
This is what the Lovasz local lemma is about.

The case of independent events. Let us consider first the case when all events
A; are independent. If the probability of A; equals €;, then the probability of the
event “none of A; happens” is equal to

(I—a)-(1-€2)-...-(1—€n)

(and it is also greater than 1 — e; — €3 — ---, as guaranteed by the Bernoulli
inequality).

So for any independent A; the probability of avoiding all A; is positive even if
the sum of €; exceeds 1; the only thing we need is that each €; is less than 1.

The Lovéasz local lemma deals with an intermediate situation when there are
many events (so our first observation does not help), and not all events are inde-
pendent (so our second observation does not help either).

Assume that n events Ay, ..., A, are given, and for each i € {1,...,n} some
set N(i) C {1,...,n} is fixed that does not contain i. The elements of N(i) are
called neighbors of i in the sequel. (We do not require the neighborhood relation
to be symmetric, so a number may not be a neighbor of its neighbor.)

Assume that each event A; is independent with all other events, except for
1 itself and i’s neighbors (for simplicity we identify index 7 and event A;). More



246 8. SOME APPLICATIONS

precisely, we assume that A; is independent with the tuple of all non-neighbor
events (not only with each of them). Then the following bound can be proven.

THEOREM 160 (Lovész local lemma (LL)). Assume that for eachi =1,2,...,n,
a positive real €; < 1 is fized such that

Prid] <e [] (1-¢))
JEN(3)
for all i. Then the probability of avoiding all the A; is at least
l-e&a) (1-€)-...- (1 —en).

So we get the same bound as in the case of independent events, but the condi-
tions are stronger: For each neighbor event j we need to add the factor (1 —¢;) in
the right-hand side of the assumption.

PRrOOF. The proof of LL is a bit strange: All the steps are quite easy, but the
intuition behind them is rather unclear (so it was probably difficult to invent it,
and it is even quite difficult to reproduce it). So we prepare ourselves by making
simple observations first.

(a) For every two events A and B we have

r[A
Pr[B]’
Indeed, the conditional probability is Pr[A A B]/ Pr[B] and Pr[A A B] < Pr[A]. (As
usual, A stands for “and”.)

(b) One can add some condition C to all the events in the previous inequality
(the relativization trick), and get

o

Pi[A|B] <

Pr[A|C]

Pr[B|C]

This observation is used in the proof of Lovész local lemmma for independent A and
C (in this case the numerator Pr[A|C] equals Pr[A]), and the denominator Pr[B|C]
is not very small.

Now we are prepared to prove LL by induction. As often happens, we need a
stronger statement for induction purposes. Let us prove the following statements
(here — stands for the negation, or complement, of the event):

(1) For every i and for every p,q, ... that are not equal to i and to each other,
we have

Pr{A|BAC) <

Pr[A;|—Ap A—AgA -] < g
(2) For every two disjoint families of events ¢, 7,... and p, q, ... we have
Pr—A; A=Aj A |mAp A-AgA - ]2 (1 —€) - (1—¢g5)-....

Note that the first statement implies the second one for the case when the family
i,J, ... consists of one event i: If the probability of A; (with some condition) is at
most €;, then the probability of its negation is at least (1 — ;).

Moreover, this argument can be extended to the case when there is more than
one event in the family %, j,.. .:

Pr[—A; A—Aj [ A A—Ag A -]
=Pr[—|AZ|—|AJ/\—|Ap/\—|Aq/\.._] 'Pr[_'AjI_'Ap/\_‘Aq/\--'];
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it rentains to apply (1) to each factor.

On the other hand, the following argument derives (1) from (2). Let us split
the conditions in (1) and consider separately the events inside N(i) and outside
N(t). (Here i is the number of the event in the left-hand side of (1).) Let N and
F be the conjunctions of the negations of the events in these two groups (near and
far). Then, following the scheme explained above, we estimate the probability as
follows:

Pr[A;|F]  Pr[4]

Py[N|F]  Py[N|F]

We can use inequality (2) and conclude that the denominator in the last fraction is
at least the product of (1 —eg;) for all ¢ € N, and it remains to recall the assumption
of LL where these factors (and, maybe, others) appear. We assume here that there
are neighbor events among the conditions. If not, the left-hand side in (1) equals
Pr[A;] (due to independence) and is bounded by &;.

It remnains to explain why the reductions of (1) to (2) and vice versa (which we
have described) do not lead to a vicious circle. Reducing (1) to (2) as explained
above, we use (2) in the situation where tlie number of events in the inequality
(on both sides of “|”) is smaller than in inequality (1), which we want to prove.
(Indeed, the event A; disappears). The other reduction, where we derive (2) from
(1), does not increase the total number of events in the inequality. 0O

Pr[4;|N A F] <

Here is an example of a combinatorial problem where LL is useful:

A finite tape is given where each cell may contain a number between 1
and N. For each borderline between neighbor cells some pairs of numbers (I.7) are
prohibited, in the sense that one should not put ! on the left and » on the right of
this border. Prove that if for each border the fraction of prohibited pairs (among
N? pairs) is at most 4/27, then one can fill all cells satisfying all restrictions.

(Hint: For each border consider the event “a prohibited pair appears”. Each
event has at most two neighbors, and for ¢; = % one can apply the LL.)

Prove a similar result (even with slightly better parameters) without
using the LL. If each set of forbidden pairs contains less than 1/4 of all pairs, then
one can satisfy all the restrictions.

(Hint: In each position more than half of candidates accept more than half right
neighbors, and more than half of candidates accept more than half left neighbors.
So there exists some candidate that accepts more than half of left neighbors and
more than half of right neighbors at the same time. Starting with this number, one
may add numbers from the left to the right, using the fact that two sets containing
more than half of the elements always have a common element.)

8.5.3. Lovasz lemma and forbidden strings. Now let us use LL to prove
Theorem 157. As usual, it is enough to prove the existence of arbitrarily long
strings without forbidden substrings (due to the standard compactness argument).

So we fix some length and consider random strings of this length where all the
bits are independent and uniformly distributed. A bad event happens when some
forbidden string appears at some fixed position (different positions give different
events). For every n consecutive bits, the appearance of a forbidden string in this
position has probability 2(*~17  Using the LL, we need to fix some number &; for
each event A;, and for this event (the appearance of a forbidden string in a given
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position of length n), we use 28=1" for some constant 3 € (o, 1). Then we need
to check that for suitable S the conditions of the LL are satisfied.

Let I be the position of some event (the interval where we look for a forbidden
string). The neighbor events happen at intervals J that overlap with I (all other
events are independent). The bounds ¢; depend on the lengths, so we group all
possible intervals J according to their lengths. There exist n + k — 1 intervals J of
length k£ that have a non-zero overlap with a given interval I of length n. Each of
them adds a factor (1 — 2(8=1¥) on the right-hand side of the condition of the LL,
and in total we get

(1 _ 2(ﬁ—1)k)n+k—1'

Now we have to multiply these expressions for all k, starting with some N (if we
construct a sequence with forbidden substrings of length at least N). So to apply
the LL, we need to prove the inequality

gla=1)n < 9(B=1)n . H (1= 2(B=Vkynth=1,
k=N

(In fact, we included I while considering intervals of length k = n, though we were
not obliged to, but this makes our task only more difficult.) Now we use a quite
rough bound: we replace n + k — 1 by nk, take nth roots, and use the Bernoulli
inequality. It remains to prove that

207B 1 - ) k2B,
k>N

The infinite series ), k2B—Vk converges when 8 < 1, and the left-hand side is less
than 1 for a < f, so the inequality is true if N is large enough.

Let us repeat what we are doing. First, we take arbitrary 8 € (o, 1) and then
choose a suitable N that makes the tail of the series small. Then we apply the
LL to an arbitrarily large finite length and show that there exists a string of that
length which does not have forbidden strings of length N or more. (Our bounds
work for arbitrary lengths.) Finally, we use the compactness argument to get an
infinite sequence.

Prove a two-dimensional version of Theorem 157: one can fill an infinite
cell paper by zeros and ones in such a way that every rectangle of large enough
area is not forbidden. (We assume that for every rectangle of area k, at most 2%
forbidden combinations of zeros and ones inside this rectangle are fixed, for some
constant o < 1.)

(Hint: Similar bounds can be proven, and the LL can be used.)

8.5.4. Forbidden subsequences. In the previous section we considered for-
bidden substrings, i.e., forbidden combinations of consecutive bits. But why should
the bits be consecutive? This looks artificial, and we may consider a more general
setting, as in [158]. Assume that ‘we have a countable family of Boolean variables
and some restrictions; each of them forbids some combination of values for some
variables. We are interested in a result of the following type: If the restrictions are
not too numerous, there exists an assignment of Boolean values to all the variables
that satisfies all the restrictions. (In this kind of result, we do not care about exact
combinations of values that are forbidden; the only thing we use is that there are
not too many restrictions.)
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In other words, we want to prove the satisfiability of a formula in a conjunctive
normal form (CNF}, i.e., a conjunction of several clauses. For example, in the
formula

(maVbV)A(aVeV-d)A---

the first clause (—a V bV ¢) forbids the combination of values a =1, 5 =0, ¢ = 0.
Our goal is to find a satisfying assignment, a combination of values that satisfies
all the requirements. )

Assuming that all variables are independent, we observe that disjoint clauses
(that do not have common variables) are independent. So, if we want to apply the
LL, we have to bound the number of clauses that contain a given variable.

Let us fix some notation. Let w = wowyws -+ - be an iufinite sequence of bits.
For a finite set I C N, we denote by w(F') a string composed of w; for i € F (in
order of increasing 7). Consider a pair (F, X} where F is a finite set of indices and
X is a binary string whose length is equal to the cardinality of . We say that a
sequence w is forbidden by the pair (F, X) if w(F) = X. We call the pair (F, X) a
restriction, and the number of elements in X is called the size of this restriction.
We say that the restriction (F, X) covers the indices in F. Now we are ready to
formulate and prove the statement we spoke about [158]:

THEOREM 161. Let @ € (0,1) be a constant. Assume that we have a set of
restrictions (F, X) such that for every position i and for every positive integer n
there are at most 2" restrictions of size n that cover i. Then there exist a number
N and a sequence that is not forbidden by any of the restrictions of size greater
than N.

PROOF. For compactness reasons, it is enough to prove the statement for finite
sequences (and for some N that is the same for all lengths).

For each restriction we have the event “this restriction is violated”. The prob-
ability of such an event for a restriction of size n is 27™. To apply the LL, let us
choose ¢; for restrictions of size n as 27" where § is some constant in (a.1) (in
fact, every value in this interval can be used).

The neighbors of some restriction are the restrictions that have common vari-
ables with the first one. To apply the LL, we need to consider a restriction of size
n and check that 27" does not exceed 277" times the product of all the factors
(1 —27A™) for all neighbor restrictions.

We split the product into parts that correspond to common variables. There
are n parts (for each of the variables involved in the restriction). If a neighbor
shares two or more variables, we arbitrarily break the tie and choose one of them.
In each part, we classify the factors according to their sizes. Then for each variable
and for each size m, we get at most 2% factors, each equal to (1 — 27%™). Then
we take the product over all m, and the nth power (since we have n parts that
correspond to n possible common variables}. So we need to show that

9—n < 2—[371 H (1 _ 2—[3711)2“’”17’
m>N
or (since all the terms are nth powers)

2,3_1 g H (1 _2—,6]”)2{’"'
m>N
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Using thic Bernoulli inequality, we see that it is enough to prove that

23—1 <1-— Z 2(1'1112—[3711.-

m>N

The left-haud side is less than 1, and
Z 2(0— B)m
m

is a couverging geometric series, so this inequality is true for large enough N.

Let us repeat how the proof goes: First we choose some 8 € (a, 1), then we note
that the series is converging and choose a suitable N, then (for every length) we
apply the LL and show that there exists an assignment of this length that satisfies
all the restrictions, and finally we use the compactness argument. O

A direct proof of Theorem 161 (that does not refer to the LL but uses some ideas
similar to the proof of the LL) was suggested by An. Muchnik and A. L. Semenov.
This proof goes as follows. Assume that a set of restrictions is fixed that satisfies
the conditions of this theorem. Let N be the minimal size of restrictions in this set.

For each finite set of indices I C N, let us denote by ¢(I) the number of valid
partial assignments, i.e., the number of mappings I — {0,1} that do not violate
any restrictions. (Here we consider only restrictions (F,X) where ' C I. Our
mapping is defined only on I, and we cannot check the restrictions that involve
variables outside I.) For empty I we let ¢(I) = 1.

Fix some 8 € (a,1). Let us prove that ¢(I) is multiplied by at least 27 when
we add a new point to I. (We assume that N is large enough.) This implies that
c(I) = 2P% if I contains k variables. In particular, ¢(I) > 0 (this is what we really
need, but for induction purposes we use a stronger statemeunt).

Imagine that we add to I a new point (=variable, index) ¢, and I’ = I' U {i}.
Every good assignment for I creates two assignments for I’ (the new variable may
have two values), but not all of these 2¢(I) assignments for I’ are good, so we
need to subtract the number of assignments that violate the restrictions. Since
the I-assignment was good, the violated restriction should contain ¢ in addition to
some other points in I. Fix some restriction, and let K C I be the set of these
other points used in this restriction. How many assignments do we lose because
of this restriction? Since the variables that are part of the restriction are fixed to
make it false, the number of lost assignments is bounded by the number of good
assignments on I\ K, and this number is bounded by c(I)/2* due to the induction
assumption. (Indeed, if we increase the number of assigninents by at least a factor
of 27 when adding a new point, then we decrease the number of assignments by at
least the same factor when deleting one of the points.) Now we need to sum up all
the deleted assignments for all k = N — 1, N,..., I, and for each k there is at most
2a(k+1) yestrictions that involve i and also k elements in I.

In this way we get the bound

M- 3 ned)
c(I') = 2¢( )—kz;_l 98k "
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Let us make it weaker: replace 2% by 2, and include all & > N —1 in the sun. Then

we get
, 2(\"\'
eI’y > 20(])(1 - > W)
kE2N-1

The series in the right-hand side converges; therefore for large enough N the factor
in the right-hand side (in parentheses) is at least 2°~!, and the induction step is
finished. (Note that we applied the inductive assumption only to sets of size less
than |I|, so there is no circle in our argument.)

8.5.5. Complex subsequences. Now we want to translate the result of the
previous section into complexity language and prove that there exist a sequence
that has complex subsequences and not only substrings (as before).

What kind of statement can we get? Can we guarantee that every subsequence
of (large enough) length m has complexity at least am for some o < 17 (A similar
result was true for substrings.) Of course not—one can select a subsequence that
consists only of zeros (or ones). But in this case the set of indices may have high
complexity. So we should take into account both the complexity of the set of indices
and the complexity of the subsequence.

Indeed a result of this type can be proveu, as we saw in Problem 145 (aud
Theorem 94, p. 151, for the case of uniform measure): if a sequence w is ML-
random with respect to the uniform measure, then

K(F.w(F)>|F|-c

for some c and for all finite sets F.
But now we want to prove a different result [158]:

THEOREM 162. Let a € (0.1) be a real number. There exist a sequence w and
a constant N such that
1}1&3{6’(F,0.)(F) |t) = a|F]

for every F that contains at least N elements.

To understand better the meaning of this result, let us consider the following
corollary: for every finite set F of size at least N there exists t € F such that

C(w(F)|F,t) > a|F| - 2C(F|t)

(the constant 2 can be made swnaller, but we want a simple statement). Omitting
t in the left-hand side, we may conclude also that for every finite F' the inequality

C{w(F)|F) =z ofF| - 21}1&3(0(F|t)

holds.

This implies that all substrings are complex. Indeed, if F' is an interval, theu
the complexity C(F|t) is logarithmic for every ¢ € F and can be absorbed by a small
change in . Moreover, this gives us also a two-dimensional version: If indices form
a planar grid and F is a rectangle, the complexity C(F|t) is also logarithmic in
the size of F', and the same trick works. So we get the statement of Problem 251
(p. 248) as a corollary.

Note also that this corollary shows that ML-random sequences do not have the
required property and LL is essential here.
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Proor. In fact, Theorem 162 is just a complexity reformulation of Theo-
rent 161. Indeed, consider the set of all restrictions (F, Z) such that C{F, Z|¢) <
«|F| for all t € F. Then for every index ¢ the number of restrictions (F, Z) of size
k, where F contains ¢, is at most 2%*, and we can apply Theorem 161. O

8.5.6. The “effective” proof of the Lovasz local lemma. Are the prob-
abilistic existence proofs “constructive”? No, in the sense that they do not provide
an explicit example of an object with required properties. (One can perform a
brute-force search and call the first object with the property an explicit example,
but this looks more like cheating, and the search usually takes a very long time.)
On the other hand, if the probability of the event “random object has the required
property” is close to 1, we at least have a probabilistic algorithm that generates an
object with required properties, with small probability of error (and rather fast).

What can be said about existence proofs based on the LL? In these proofs the
probability is exponentially small (though positive). Random choice is no more an
option: We cannot just take a random object according to the distribution used
in the LL. However, we can use random bits in a more clever way, and in this
section we explain how (and get a new proof for the LL in some special cases as a
byproduct).

Assunmie that we want to construct a binary string (an assignment) that sat-
isfies some restrictions (=clauses of a CNF, see Section 8.5.4). Let us first choose
independent random values for all the bits. Most probably some small part of the
restrictions will be violated. Take one of them and try to improve the situation
by resampling all the variables that appear in this restriction. (Resampling means
that we assign fresh random bits to these variables.) Most probably this will solve
the problem with this restriction; it is quite unlikely that we will get the same bad
values for these variables once more. Of course, other restrictions may still be vi-
olated, and new violations may happen (for the restrictions involving the changed
variables). Then we can repeat the process: Take some restriction that is currently
violated, and perform the randomn resampling for its variables. And so on.

More formally, the initial values of all variables are chosen at random, and
then we iterate the following procedure: While some restrictions are violated, take
one of them (say, the first one in some ordering, or the random one, or use some
other rule) and perform the resampling for all variables that appear in it. This is
repeated until all restrictions are satisfied. It looks like a miracle, but R. Moser and
G. Tardos recently proved [130, 131] that this trivial algorithm indeed achieves the
goal rather fast and with high probability. (Before them, much more complicated
algorithms were studied and much weaker results with much more complicated
proofs were obtained.)

We do not present their proof in full generality; instead we consider a special
case when all the clauses have the same number of variables. Moreover, we assume
that the resampling is made in some special order (determined by recursive calls,
see below). In this case a simple argument using Kolmogorov complexity can be
used, and we explain this argument, following L. Fortnow.

So let us assume that a CNF is given with n variables and N clauses, and each
clause has some fixed length m (contains m variables). We say that two clauses are
neighbors if they have a common variable. Assume that every clause has at most ¢
neighbors. We claim that if ¢ is not very large, the LL guarantees the satisfiability
of the CNF in question.
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How large can be ¢t to make the LL applicable? Since all the clauses have the
same size, it is natural to use the same value of € for all of them. This ¢ should
satisfy the inequality

27 L e(l—e)t
(the left-hand side is the probability that a given clause is false). The right-hand
side is maximal when ¢ = 1/(¢+ 1), but to simplify the computation we let € = 1/¢
instead. Then the right-hand side is (1 — 1/¢)!/¢, which is almost 1/et. So we need
(approximately) ¢ < 2™ /e to apply the LL. In the constructive proof we use a bit
stronger requirement, namely, ¢ < 2™/8.

THEOREM 163. There exists a probabilistic algorithm that founds a satisfying
assignment for a given CNF with n variables and N clauses of size m where each
clause has at most 2™ /8 neighbors, in time polynomial in n + N and with success
probability at least 1/2.

(As usual, the bound for success probability can be amplified easily: Repeating
the algorithm s times, we find a satisfying assignment with probability at least
1-27%)

ProOF. Our algorithm uses the recursive procedure Fiz(d) (where d is some
clause) and works as follows:

for all clauses d of a given CNF:
if d is false: Fiz(d)

All the clauses of a given CNF are processed in some order. The processing of a
clause d is simple: If d is not satisfied yet, is is “fixed” by calling Fiz(d). To prove
the correctness of the algorithm, we need the following property of the procedure
Fiz(d): It makes clause d true and keeps true all clauses that were true before the
call. (Some clauses that were false before the call may become true; this is even
better for us since it saves some future work.)

The procedure Fiz(d) is simple, too:

resample all variables in d using fresh random bits;
for all clauses d’ that are neighbors of d:
if d' is false: Fiz(d')

Note that it may happen (with small probability) that the new random values
are in fact the same as before, so the resampling does not make d true. It would be
natural to perform the resampling again until we get new values, but it is easier to
postpone this and just consider d as its own neighbor (so that the resampling will
be performed later as part of the loop, if it would still be necessary at that time).

The correctness of this procedure (assuming that the recursive calls work cor-
rectly) is obvious: During the resampling only the clauses that are neighbors of
d may become false, and they all will be fixed in the loop (including d itself, if
necessary). The only problem is to prove that the process terminates with high
probability in polynomial time. For that let us analyze how this process uses ran-
dom bits. (We assume that random bits are produced in advance and used when
needed.)

First of all, we use n random bits as initial values of the variables. Then each
call Fiz(d) uses the next m random bits to resample variables in d. (Recall that
we do not resample d twice even if the resampling gives the same bad values; it
simplifies our analysis.) The following is a crucial observation: At every step
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the values of used random bits can be reconstructed if we know
(1) the current values of all the variables of the CNF; (2) the
list of clauses for which the procedure Fiz(d) was called, in the
order of calls.

Indeed, the call Fiz(d) is performed only when d is false, and this determines
the values of variables in d before the call. And their values after the call are just
the next random bits. Unrolling the execution backwards, we can reconstruct the
values of variables between the calls and finally n initial values, so we know all the
random bits used.

Now the idea of the proof can be explained as follows. If the algorithm makes a
lot of calls, then we can compress the values of random bits used by the algorithm,
because the list of clauses for which Fiz was called has a shorter description. To
finalize the proof, we should estimate the complexity of this list. Here it is very
important that Fiz(d) calls Fiz(d’') only for those d’ that are neighbors of d, and
these d’ can be specified by their ordinal number in the list of neighbors.? (Here
we use the bound for the number of neighbors.)

Now let us compare the number of random bits used and the number of bits
needed to describe them (as explained in the previous paragraph). Consider the
situation after k calls of Fiz. At that time the algorithm has used n + km random
bits. To reconstruct them, we need to know the following:

e the current values of the variables;
o for which clauses the procedure Fiz was called in the main loop;
e which recursive calls of Fiz were made during each of those calls.

Current values are n bits; the list of clauses called in the main loop can be
described by N bits (for each clause we say whether it was processed or not; the
order of clauses is fixed, so N bits are enough). To estimate the complexity of
the third component, let us consider trees of recursive calls. For example, the tree
illustrated in Figure 26 starts with a call Fiz(a). This call generates three calls
for b, c,d; the call for b generates calls for e, f, g, the call for ¢ does not generate
anything, and the call for d generates only one call for h. The chronological order
of all the calls is a, b, e, f, g, c.d, hh (the left to right ordering of the sons of a vertex
corresponds to the order of calls). Indeed, we call ¢ only after we return from b-call
(that generated calls for e, f,g), and then make d-call that geuerates h-call. In
other words, the order of calls can be described as follows: imagiue that our picture
is a bird’s view of a wall; we start walking around it from a and always touch the
wall by the right hand. The we visit the vertices in the order

a-b-e-b-f-b-g-b-a-c-a-d-h-d-a,

and this corresponds to the control flow during the execution. New random bits
are used when we come to some vertex for the first time (from below).

So to specify the processed clauses (and the order of processing) it is enougl
to encode the tree walk. It consists of steps up and down. For a step up, we
need to specify not only the fact that we are going up but also the number of the
neighbor where we are going. In total we use 1 + logt bits (one for the direction,
and one for the number). Here ¢ is the upper bound for the number of neighbors,

280 (as we have mentioned) it is a bit surprising that the result is true for other rules that
select the next clause for resampling. (We want to stress that the argument we provide depends
on the choice of the rule, though the result does not.)
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e f 9 h
b¥ ¢ d
a
FIGURE 26

ie., 2™/8 = 2™~3 according to the assumption. When going down, only one bit
that indicated the direction is sufficient. (In other words, when making a recursive
call, we perform a push operation for the stack of calls, and we should specify the
top of the stack; for pop operation no additional information is needed.)

So for each vertex (except the root) we use logt + 2 bits (we need logt + 1
bits when we come to this vertex from below, and then one more bit when going
back to its father). In total (for all the vertices) we need N + n + k(logt + 2) bits
for description. If the random bits used in the algorithm are incompressible, then
N +n+ k(logt+2) 2 n+ km, and we get an upper bound for k. Namely, we get
the bound k < N (recall that logt+2 = m — 1), so we make at most N calls of the
procedure Fiz, and the algorithm is polynomial (in N + n).

Some final clarifications are needed still.

1. If we literally use Kolmogorov complexity, then some constant appears, and
we should keep track of all these details. As usual, when the idea is clear, we can
switch to the probabilistic language: If £k = N + ¢, then the difference between the
number of random bits used and the number of bits in the description is ¢. This
means that the number of random bit strings that cause N + ¢ or more calls of Fiz
is 2¢ times smaller than the total number of possible strings, so the probability is
bounded by 27°.

2. When we describe several objects by a sequence of bits, we should check
that no separators are needed to perform the decoding. Here it is indeed the case:
The number of variables, clauses, and the clause size (as well as the bound for the
number of neighbors) are known; after a bit that specifies the direction (whether
we go up or down) is read, the decoder knows how many bits it should read next.

3. The last problem: It may happen that we stopped the execution at the
moment when one of the trees is only partially processed, so we should be able to
describe the unfinished tree walk. But our way of description works in this case as
well; we should only note that at every moment the number of steps down does not
exceed the number of steps up (the number of Fiz-calls). O

8.6. A proof of an inequality

As we have said (see p. 12), the inequalities for Kolmogorov complexity have
quite unexpected consequences. In this section we explain one of them, a version
of the Loomis—Whitney inequality (this topic will be continued in Chapter 10).
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THEOREM 164. Let X, Y, and Z be finite sets. Let f: X xY = R, g: YxZ = R,
and h: XxZ — R be some functions with non-negative values. Then

(ngwy (o2 ) (zfzxy)~(;g2<y,z>).<§h2(x,z)).

PROOF. Believe it or not, this inequality is in fact a corollary of the inequality
2K(z,y,2) € K(z,y) + K(y,2) + K(z,2) + O(logn)

for prefix complexity (Theorem 26, p. 48). We wrote the last inequality for prefix
complexity, not plain complexity, but this does not matter since the difference is
O(logn). (For prefix complexity this inequality is true up to O(1)-precision (see
Problem 114, p. 111); for now the O(log n)-precision is enough.)

It is convenient to assume that elements of the finite sets X, Y, Z are binary
strings. It is enough to show that if the sums in the right-hand side of the inequality
do not exceed 1, the same is true for the left-hand side. (Indeed, we can multiply
f by an arbitrary constant ¢, and both sides of the inequality are multiplied by the
same factor, so we can normalize f; the same for g and h.)

Now assume that ) (=, y) = 1 and that the same is true for two other
sums. We have to show that 3> f(2,y)9(y,2)h(z,2) < 1.

The idea is simple: The function f? is a probability distribution on pairs
(z,y), so K(z,y) < —log f%(z,y) = —2log f(x,y) (we temporarily ignore the
constant in the comparison of this distribution and the a priori one). Similarly,
K(y,z) < —2logg(y,2) and K(z,z) < —2logh(z,z). Then we apply the inequal-
ity for K(z,y,z) (temporarily ignoring the logarithmic term) and get

2K($$ Y, z) < -2 10g f(Ia y) -2 logg(:’ﬁ Z) -2 logh(a:, z)a
ie.,
f(z,9)9(y, 2)h(z, 2) < g~ K(@v2),
Since the sum of 2~ (*:¥:2) over all triples z,y, z does not exceed 1 (Theorem 57,
p- 92), we get the desired inequality.

This argument is, of course, too simple to be valid. All our bounds are of as-
ymptotic nature, so we have to switch somehow from individual strings to sequences
of strings. Let us show how it can be done.

We start with a simple remark: It is enough to prove the inequality for functions
f, g, h with rational values (by continuity).

Let N be some natural number (later we take the limits as V tends to infinity).
Consider the sets XV, Y, and Z" whose elements are N-tuples (of elements
of X, Y, Z, respectively). Consider a probability distribution on X¥ x YV =
(X x V)V that corresponds to N independent copies of distribution f2 on X x Y.
Formally speaking, the probability of a point {{zi1,...,zZn), {y1,-..,yn)) is equal
to the product f2(z1,y1) - ... f2(zn,yn). We get a family of distributions that
computably depends on N. Therefore, there exists a constant ¢ such that

K(<$1""$$N>7<yla - YN |N Z logfmz’yl))+c

for all N and for all zy,...,Zn,¥1,-..,yn (We compare our distribution with a priori
probability). We can delete the condition N in the left-hand side, and replace ¢ by
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clog N in the right-hand side. Then (as before) we add three inequalities of this
type and apply the inequality for complexities. Then we get

K(($1,...,$N>, (yl, . ..,yN>, (Zl,. . .,ZN))
<Y (~log f(zi,5:) + Z(— log g(ys, zi)) + Z(— log h(zi, 2;)) + clog N

2
for some constant ¢ and for all N, z1,...,ZN, ¥1,---,YN, 21,-..,2n. (Note that
the total length of all the strings z;,y;,2; for i = 1,..., N is O(N), so all loga-
rithmic terms are absorbed by clog N.) Combining this bound with the inequality
o 2-K(®) < 1, we conclude that for every N the sum

Z H f(xi, ys)g(yi, z:)h(zi, ;)

(over all tuples ), ...,ZN, Y1,---, YN, 21,---,2n) does not exceed 2008 V) e, it
is bounded by a polynomial in N. But this sum is the Nth power of the sum

Z f(:c,y)g(y,z)h(:c,z),

(z,9,2)EXXY XZ

so polynomial growth is possible only if the latter sum does not exceed 1. This
ends the proof. 0

Show that this inequality implies the bound for the volume of a three-
dimensional body in terms of its two-dimensional projections mentioned on p. 12.

(Hint: We can let f, g, h be the characteristic functions of the projections. This
works for the discrete case; for the continuous case we should either approximate
the body using a cubic grid or approximate the integral by finite sums.)

For comparison let us give two other proofs of the same inequality. Here is the
first one (rather simple) using the Cauchy—Schwarz inequality (u,v)? < ||u||?- ||v]?,
or, in coordinates, (Y u;w;)? < (3] u?)(Y_v2). We can argue as follows:

(x;zf z,9)9(y, 2 ) (Zf z,y ) (; (Ez:g(y, Z)h(:v,z))Q)
(g5 )
= (; fz(:c,y)> (yz 7, Z)> (zz 1 (z, Z))-

Another proof uses Shannon entropy (and can be considered as a translation of
the Kolmogorov complexity argument into probabilistic language). Let us assume
that > f2 =3 g% = h? = 1. We want to prove the inequality y__ 22 P(@9,2) <
1, where p(z,y, z) = f(z,y)g(y, z)h(z, z). Assume that is not the case and this sum
equals ¢ > 1. Then we can multiply it by 1/c and get a probability distribution p’
on X XY x Z:

p'(2,y,2) = ¢ f(z,9)9(y, 2)h(z, 2).
The corresponding random variable (whose range is X X Y x Z) is denoted by &. It
can be considered as a triple of (dependent) random variables &;, &, £&,. One can
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also consider the joint distributions &,, = (£;,&,), etc. For example, the random
variable &,, takes the value (z,y) with probability ) p'(z,y, 2).

Recall that by definition the Shannon entropy of the distribution (p),...,px)
equals > p;(—logp;); it does not exceed > p;(—logg;) for any other distribution
(q1,--.,qx). Therefore the entropy H(£zy) can be bounded (from above) by using
f%(x,y) as the “other” distribution,

H(Ey) <Y (Zp'(x,y,z)> (—2log f(z,y)).

z,Yy
Then we write similar bounds for two other projections and apply the inequality

H(€) = H(éz, &y, &2) < §(H(Exy) + H(Eyz) + H(éaz))
{(Problem 230, p. 225). We conclude that

H(§) <) p(w,y,2)(~log f(z,y) — log g(y, z) — log h(z, 2))

z,y,z

=Y p'(z,9,2)(~ logp(z,y, 2))-
Z,Y,z
By definition H(¢) = 3, , . p'(z,y,2)(— logp'(z.y, z)), so we get a contradiction,
since p’ is c times sinaller than p (and therefore — logp’ exceeds — logp by logc).

8.7. Lipschitz transformations are not transitive

In this section we apply Kolmogorov complexity to analyze the properties of
infinite sequences. Let us start with the following definition related to the Cantor
(metric) space Q of infinite binary sequences.

A mapping f: Q — Q is a Lipschitz one if

d(f(w1), f(wa)) € cd(wr,w2)

for some constant ¢ and for all wi,ws € Q. Here d is the standard distance in the
Cantor space defined as 27% where k is the first place where two sequences differ.

Informally speaking, Lipschitz property means that the first n digits of the se-
quence f(w) are determined by n+O(1) first digits of w. In particular, all mappings
defined by local rules (each bit in f(w) is determined by some its neighborhood in w)
have Lipschitz property.

We are interested in the following property of a mapping f: For every two
sequences wi, we and for every € > 0, there exist a number N and sequences w}
and w) such that

wh = F(F(FC- F@h) ) (V iterations)

and

d(wy,w)) <&, d{wa,wh) <e.
(In other terms, for any two open neighborhoods there exists an orbit that starts in
the first one and gets inside the second one.) We call this property the transitivity
of f (in this section).

It is easy to check that left shift (that deletes the first bit of the sequence)
is transitive: If we need a sequence that starts with z; and is transformed (after
several shifts) into a sequence that starts with xq, just take a sequence that starts
with z;2,.



8.7. LIPSCHITZ TRANSFORMATIONS ARE NOT TRANSITIVE 259

Now we pose the following question: Does the left shift remain transitive if we
change the definition and replace Cantor distance d by tlie so-called Besicovitch
distance,

plwr,we) = limsup dy, (wy,ws)/n
=00

(where d,, is a number of discrepancies among the first 7 terins, i.e., the number of
i < n such that sth terms of w; and wy differ)?

It turns out that in this case the left shift is no more transitive (is not Besi-
covitch-transitive). Moreover, the following statement is true (we reproduce the
proof given in [17]):

THEOREM 165. No Lipschitz mapping can be Besicovitch-transitive.

(Speaking about the Lipschitz property, we have in mind the original definition
using Cantor distance.)

The reason is quite simple. The Lipschitz mapping does not significantly in-
crease the complexity of the prefixes of a sequence, since n bits of the output
sequence are determined by n 4+ O(1) bits of the input sequence. (We assume that
transformation rule is computable; if not, we have to relativize complexity by a suit-
able oracle.) On the other hand, if two sequences are Besicovitch-close, then their
prefixes have almost the same complexities (a change in a small fraction among the
first n bits can be encoded by a short string compared to n).

PROOF. For a formal proof it is convenient to use the notion of effective Haus-
dorff dimension of a sequence (which is equal to lim inf C(wp - - - wp—1 }/n for a sin-
gleton {w}; see Theorem 120, p. 174).

LemmMmA 1. A computable Lipschitz mapping does not increase the effective
Hausdorff dimension of a sequence.

(Speaking about computability of a Lipschitz mapping f: Q — Q, we meau that
n first bits of f(w) are effectively determined by n + ¢ first bits of w for some c.)

PRrROOF. Indeed, if f(w1) = ws, then the complexity of an n-bit prefix of ws
does not exceed {up to O(1)) the complexity of an (n + ¢)-bit prefix of w;, and for
the dimension these constants are not important.

LEMMA 2. If Besicovitch distance p(wy,ws) is less than €, then effective Haus-
dorff dimensions of wy and wy differ at most by H(e).

(Here H(e) is the Shannon entropy of a random variable with two values that
have probabilities ¢ and 1 — €.)

PROOF. Indeed, if the first n terms of wy and wy differ in k places, then the com-
plexities differ at most by the complexity of the bitwise xor of these two sequences
(since knowing one sequence and their xor we easily get the other one). And every
sequence of length n that has k ones has complexity at most nH(k/n) + O(logn)
(Theorem 146, p. 226). Lemma 2 is proven.

So if we take a sequence of a zero dimension (say, a computable sequence), then
any sequence that is Besicovitch-close to it has small dimension, and a computable
Lipschitz mapping does not increase this dimension, so we can get only sequences
of small effective Hausdorff dimension. On the other hand, any sequence that is
Besicovitch-close to a random sequence (that has dimension 1) has dimension close
to 1 (Lemma 2 again).
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So we have proven our theorem for computable Lipschitz mappings. It remains
to note that all our arguments are relativizable and that every Lipschitz mapping
is computable relative to some oracle. O



CHAPTER 9

Frequency and game approaches to randomness

9.1. The original idea of von Mises

Nowadays the axiomatic approach to probability (that makes it a special part
of measure theory) is standard, and it is difficult to forget all we know now and
return to the situation in the beginning of the twentieth century when Richard von
Mises suggested basing probability theory on the notion of a random sequence (he
used the word Kollektiv). Still let us try to describe von Mises’ ideas.

Some natural phenomena are easy to predict (after we have discovered the laws
of nature they obey). For example, the laws of classical mechanics can be used to
predict the positions of planets in the sky with very high precision. But there exists
another class of phenomena: Even as we try very hard to predict the outcome of
coin tossing, usually we get about 50% of predictions correct. Those phenomena,
are the subject of probability theory.

So the basic notion of probability theory (according to von Mises) is the notion
of a Kollektiv—a sequence w of outcomes (we will assume there are two possible
outcomes 0 and 1) that is hard to predict. Since this is a basic notion, we do not try
to give a definition that would reduce it to other mathematical notions; instead we
formulate a frequency stability axiom that captures the main property of Kollektivs:

There exists a limit

p= lim o FF o

n—00 n

Moreover, p remains the limit if we consider not the entire se-
quence w but some of its subsequence selected according to some
rule; for example, the subsequence wsy,, or the subsequence of w,,
with composite n, or the terms that follow ones (i.e., w, such
that Wp—1 = 1)

This p is called the probability of 1 in a given Kollektiv.

Why do the Kollektivs exists? We know that gambling facilities are commer-
cially successful, and this would be impossible if some selection rule existed that
allowed the gamblers to select a subsequence of games with different frequencies of
outcomes.

This is a short (but faithful, we hope) summary of what von Mises wrote;
see, e.g., his book Wahrscheinlichkeit, Statistik und Wahrheit [127]. But his book
was written not in the times of Euclid or Spinoza, but in the beginning of the
twentieth century, when people tend to ask nasty questions about exact definitions
and for detailed proofs. Indeed, one can declare that the existence of sequences
with some properties is an axiom that is confirmed experimentally (though to speak
about experimental confirmation of the statement that deals with limits of infinite

261
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sequences is a bit strange). But even then one should say exactly what property
we have in mind.

The problem is with the selection rules: We did not say what kind of selections
are allowed. Mises gave only some examples of admissible selection rules (we gave
three examples of this type), and noted that the decision to select (or do not
select) some w, should not depend on the value of w,, itself; otherwise, we can
select a subsequence of zeros (or ones) only from every sequence, and this violates
the frequency stability property.

Trying to make Mises’ ideas precise, one can give different formal definitions
of admissible selection rules and can therefore get different notions of Kollektivs.
After some version is chosen, one can ask whether Kollektivs exist. This question
is a mathematical one, while the question of whether coin tossing really gives a
Kollektiv belongs to natural sciences or philosophy (and can be put aside).

For simplicity we restrict ourselves to the case of a symmetric coin (p = 1/2)
unless the opposite is not said explicitly. To simplify the statement, let us define
a balanced sequence of zeros and ones as a sequence where the frequency of ones
(and, therefore, the frequency of zeros) has limit 1/2.

9.2. Set of strings as selection rules

The first (and, probably, the most natural) interpretation of Mises’ ideas of an
admissible selection rule is the following one. We decide whether to select some
term w, looking at all the preceding terms, i.e., wowy - - -wn—y. So an admissible
selection rule is a function that maps all binary strings wq - - - wp—) to a two-element
set {select, do not select}. In other words, a selection rule is a set R of binary strings
(corresponding to the value select).

Formally speaking, for every set R of binary strings we define a selection rule as
a mapping Sg that maps an infinite binary sequence w € 2 into a (finite or infinite)
subsequence Sg(w). Namely, Sg(w) consists of terms w,, such that wp---wy_; € R.
(The order of terms is the same as in the original sequence.)

We give an example: If R consists of strings whose lengths belong to some set
{no,ni,...} (where ng<mny <--- is an increasing sequence of integers), then Sg(w)
is wpown, -+ (note that the length of xo - xx—; is k). We give another example:
The rule “select terms that follow ones” corresponds to the set R which contains
all strings with last bit 1.

Assume that we fix some R and then go to a casino where a sequence w of zeros
and ones is generated by tossing a fair coin. Then we get some subsequence Sg(w).
(In other words, we use R to decide when to make bets). It is natural to expect
that this selection does not give us any advantage, and the limit frequency of ones
in the subsequence is still 1/2. There is an important point, however: We assume
that we have chosen R before we came to the casino. After the game it is easy to
find a rule R that would win if it were used in the game. In other words, we make
the following (obvious) observation: For every sequence w there exists a set R such
that Sr(w) consists only of zeros or consists only of ones, and therefore Sg(w) is
not balanced. So we cannot define the Kollektiv as a sequence w such that Sg(w)
is balanced for all R. With this definition there are no Kollektivs at all.

However, as Wald noted in [217], for every countable family of selection rules
Sg, (that corresponds to a countable family of sets R;) there exists a sequence
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w that has a frequency stability property with respect to all R;: For every i the
sequence Sg, (w) is balanced (or finite).
This is easy to prove by a probabilistic argument:

THEOREM 166. Let R be an arbitrary set of strings. Then the set of all se-
quences w € ) such that Sr(w) is an infinite unbalanced sequence is a null set with
respect to the uniform measure on €.

This theorem says that every selection rule discards a null set. So a countable
class of selection rules generates a countable family of null sets, and the union of
these null sets is a null set. So there are sequences not discarded by any selection
rule in the class (moreover, this happens with probability 1).

ProoF. This statement follows from the Strong Law of Large Numbers (the
set of unbalanced sequences is a null set, see Section 3.2) and the following lemma
that holds for every selection rule Sg.

LEMMA. Let U C Q be a null set. Then its preimage S}EI(U) is a null set.

Informally, each next bit of the sequence Sg(w) has the same chance to be zero
and one (for every fixed combination of previous bits); the difference with uniform
distribution is that the next bit may be absent (if the sequence is finite), but this
may only decrease the probability.

(Recall an old question: Will the percentage of men change if families stop
giving birth to children after a son is born to keep their heir unique? The answer
is negative for the same reasons.)

Now let us present the formal argument.

Consider the set X, of all finite and infinite extensions of z and two of its subsets
¥zo0 and X;;. Let us prove that Sg-preimages of X9 and X;; have equal measure
(in other words, 0 and 1 can appear after z in Sg(w) with the same probability).

Indeed, consider all strings z such that z € R and Sg selects x from 2. They
correspond to the situation when z is already selected and the next bit will be
selected right now. So every two strings z with this property are incompatible, and
the sets 2,0 are disjoint. The union of these sets is the preimage of the set X ..
Similarly, the preimage of ¥, is the union of disjoint sets 2,;. So we have split
the preimages into equal parts so the preimages have equal measures.

Now it is easy to prove by induction that the measure of the Sg-preimage
of ¥, is bounded by 27*). Therefore, the preimage of a null set is a null set
too. Indeed, consider the cover of U by intervals £2,, with small total measure.
Consider the preimages of ¥;,; each of these preimages is a countable union of
intervals. Combining all these intervals, we get a cover of S;'(U) with small total
measure. So the Lemma—and Theorem 166 as well—is proven. O

Note that the standard measure-theoretic argument (a measure of a set is the
infimum of the measures of its covers) now implies that

n(Sz' () < w)
for every measurable U C Q. If Sg(w) is infinite for every w (or for almost every
w}, then we can guarantee also that Sp(w) is uniformly distributed,

u(Sg'(U)) = u(U),

for every measurable U. (Consider U and its complement.)
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Fix some selection rule R. Show that if w has a Bernoulli distribution
(independent trials with the same probability p, not necessarily equal to 1/2), then
Sr(w) has the same distribution (assuming that it is infinite with probability 1).

So the definition of Kollektiv gives a non-empty notion (Kollektivs exist) if we
restrict ourselves to some countable family of sets K and consider corresponding
selection rules. But which countable family should we choose?

9.3. Mises—Church randomness

The ideas of von Mises appeared before the notion of algorithm (or computabil-
ity) was formalized. As soon as the notion of computable function appeared, it
became possible to use it in the Mises’ scheme. This was done by A. Church [44],
so selection rules Sk that correspond to decidable (=computable, recursive) sets R
are called Church-admissible in the sequel. The corresponding class of sequences,
i.e., sequences w such that Sg(w) is finite or balanced for every Church-admissible
rule, are called Mises—Church random, or Church stochastic.

We know already that they exist and form a set of full measure. Moreover, the
following stronger statement is true:

THEOREM 167. Every ML-random sequence (with respect to the uniform mea-
sure) 1is Mises—Church random.

ProOF. The effective version of the SLLN (Theorem 32, p. 65; see also Sec-
tion 8.4) guarantees that the set U of non-balanced sequences (that do not have
the limiting frequency or have it different from 1/2) is an effectively null set.

Let us show that for a Church-admissible selection rule Sg the preimage of
an effectively null set is an effectively null set. Indeed, if R is decidable, the con-
struction used in the proof of Theorem 166 becomes effective (one can effectively
enumerate all the intervals that form a preimage of a given interval). So an ML-
random sequence does not belong to this preimage, i.e., its image is balanced (or
finite). O

What else can we prove about Mises—Church random sequences, except for
the SLLN (that is satisfied by definition)? For example, we can prove that each
substring (not only each symbol) appears with a correct frequency:

THEOREM 168. Let w be a Mises—Church random sequence, and let U be a
binary string. Consider the positions k where U appears in w (this means that
UoU, -+ = wiwiy1 -+ ). The fraction of those i among the first N positions tends
to 1/21V) as N — oco.

ProoF. We already know that zeros appear in (approximately) half of the
positions. Consider now the rule “select terms that go just after zeros”. Mises-
Church randomness guarantees that the selected subsequence contains (approxi-
mately) equal numbers of zeros and ones. This means that the groups 00 and 01
have approximately the same frequency, so the limit frequency of each group is 1/4.
The same is true for 10 and 11. Now consider the rule “select terms that follow 00”
(or “select terms that follow 017”), etc. O

Consider a Mises—Church random sequence and split it into k-bit blocks
(for some k). Show that in the resulting sequence (in a 2*-letter alphabet) each of
2% blocks appears with limit frequency 1/2F.
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(Hint: This problems differs from the preceding theorem, because now we take
into account only k-aligned blocks. However, the same argument works.)

The sequences where each combination of letters (of every fixed size) has the
same limit frequency (as claimed by Theorem 168), were considered independently
of Mises; they are called normal.

@ Let us change the definition of normality of a bit sequence o and require
that for every m the sequence of m-bit strings, obtained by splitting o into m-
bit blocks, contains every m-bit string with limit frequency 2=™. Prove that this
definition is equivalent to the original one.

(Hint: The difference is that now we consider only aligned m-bit occurrences
instead of all occurrences. Still we can prove equivalence considering not only m-bit
blocks but also M-bit blocks where M is a large multiple of m. Assume that aligned
M-bit blocks appear with right frequencies. Then for a fixed position inside each
long M-bit block (modulo M) all short m-bit blocks appear with right frequencies,
and short blocks that cross the boundaries between large blocks are rare (m < M).
In the other direction, assume that non-aligned frequencies are OK. Most M-bit
blocks are good in the sense that frequencies of short blocks inside them are almost
right. Bad blocks are exponentially (in M) rare in terms of non-aligned frequencies.
Aligned frequencies could be at most M times bigger, and the factor M is absorbed
by the exponent.)

The reals whose binary representations are normal sequences, are called normal
in base 2; similarly one can define reals that are normal in base b. If a real is normal
in base b for every integer b, it is called absolutely normal.

Prove that the same reals are normal in base b and in base b*.
(Hint: Use the preceding problem.)

One can prove that the class of normal in base b reals depends on b, but this is
a non-trivial number-theoretic result [161], and we will not prove it here.

Let us consider a bit sequence w as a binary representation of a real
a € [0,1]. The tails of w form a sequence of points in [0, 1] which is the orbit of «
under the mapping z — {2z} where {u} stands for the fractional part of u. Show
that w is normal if and only if this orbit is uniformly distributed in [0,1]. (The
latter means that for every interval the fraction of points that are in this interval
has a limit proportional to the length of the interval.)

Prove that multiplication by an integer factor preserves normality: If o
is normal in base 2 and k is an integer, then ak is normal in base 2. (The same is
true for other bases.)

(Hint: Use the preceding problem. Applying the nth iteration of the mapping
x — {2z} to some real u, we get {2"u}. For every integer k the number {2"(ku)}
is obtained from {2"u} by the transformation y — {ky}. It remains to prove that
this mapping preserves the uniform distribution property.)

One can prove that normality is also preserved when we divide a number by
some integer (and therefore, when we multiply a number by an arbitrary rational
mimber). This was shown by D. Wall [218] (see also [88]), but the proof is non-
trivial and we do not provide it here; see [182] for the proof.

We know that Mises—Church random sequences are normal, but one can also
find a computable normal sequence. For example, if we write numbers 1,2,3,... in
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binary and concatenate all these strings, we get a normal sequence

110111001011101111000100110101011---

(Champernowne’s example [36]; he considered base 10, but this does not matter
much).

Prove this statement.

(Hint: Fix k, the block size. Starting from some point, the numbers have many
more than k digits, and after that the boundaries between numbers do not change
the frequencies significantly. And the average of block frequencies in all strings of a
given length N is as it should be. (Some care is needed to deal with the case when
we stop in the middle of strings of length N.))

This construction of a computable normal sequence is performed for one base,
and we cannot use it to get a computable absolutely normal number. But such
a number (whose b-ary representation is a computable normal sequence for every
base n) exists. This observation was made long ago by Turing in his unpublished
notes; see (8].

Prove that a computable absolutely normal number exist.

(Hint: Numbers that are not normal in base b, form a Schnorr effectively null
set; this is true for all b, and the union of these sets is also a Schnorr effectively
null set, so there exists a computable point outside it.)

Unlike normal sequences, Mises-Church random sequences cannot be com-
putable for obvious reasons (otherwise we can select a sequence of zeros or a se-
quence of ones by a computable rule). Moreover, the following statement is true:

THEOREM 169. For every total algorithm that gets bits of a sequence from left to
right and predicts the next bit before getting it, the fraction of successful predictions
for a Mises—Church random sequence tends to 1/2.

PROOF. Indeed, a (total) algorithm that makes predictions can be converted
into two selection rules: one selects the terms where the algorithm predicts zero, the
other selects the terms where the algorithm predicts one. So our sequence is split
into a “mixture” of two subsequences, and Mises—Church randomness guarantees
that each of the two sequences is balanced (or finite, but then the statement is
trivial). So the fraction of successful predictions for each subsequence tends to 1/2;
so the total fraction of successful predictions tends to 1/2. ]

This statement can be generalized further. Consider the following game: before
the next term of the sequence appears, we may make a bet on zero or one; the
amount of a bet is a rational number in [0,1]. If our guess is correct, we get the
doubled amount; if not, we lose the money. A strategy in a game of this type is
a function S whose arguments are binary strings (the bits already disclosed) and
the values are rational numbers in [—1,1]. The positive values mean that we bet
on 0, the negative values mean that we bet on 1. The total gain of the strategy S
playing with the initial segment wq - - - wy,—1 is then

n—1
> S(worwio1) - (—1)¥

=0

the negative values correspond to our loss (in this game we can go below zero).
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THEOREM 170. Let S be a total computable strategy of this type, and let w be a
Mises-Church random sequence. Then the gain of S playing against w is o(n) after
n steps.

PROOF. Assume that the strategy may have only values 1 and —1. Then it is
essentially equivalent to guessing the next bit. We already know that the fraction
of successful guesses tends to 1/2, and this means that the average gain per bit
tends to 0.

Now consider more general strategies whose values are rational numbers be-
tween —1 and 1 with denominator & (i.e., multiples of 1/k), for some fixed k. Every
strategy S of this type can be considered as an average of 2k strategies with values
—1 and 1 only, and the gain of S after n bits is at most en, if n is large enough.
We know that for each of themn the gain is o(n), so the average is also o(n).

Finally, we consider an arbitrary strategy with rational values. For each € > 0
we need to prove that the gain of S after n bits is at most en, if n is large enough.
So let us fix some . Choose k in such a way that 1/k < €, and approximate S by
a strategy S’ whose values are multiples of 1/k (taking the closest multiple). The
approximation error is bounded by /2. For S’ we already know that its gain is
o(n), so it is less than (¢/2)n for large enough n, and the difference between gains
of S and S’ is at most (e/2)n. O

Here is one more property of Mises—Church random sequences. (It was men-
tioned by Mises as one of the basic property of Kollektivs.)

THEOREM 171. Applying a Church-admissible selection rule to a Mises—Church
random sequence, we get either a finite sequence or a Mises—Church random one.

PrOOF. It is easy to see that the composition of two Church-admissible selec-
tion rules is a selection rule of the same type. If we select some terms (by looking at
the previous ones) into a subsequence and then again select some terms of these sub-
sequence looking at the previous ones, the resulting decision for some w; (whether
it will survive the first and the second selection or not) is determined by wp - - - w;—_;.
(And the composition of two computable selection rules is computable.) O

Later (Section 9.12, p. 291) we consider more general selection rules (non-mono-
tonic ones) and modify accordingly the notion of randomness (the so-called Mises—
Kolmogorov-Loveland randomness or Kolmogorov-Loveland stochasticity). This
new class of selection rules will not be closed under composition, and, moreover,
the corresponding notion of randomness in not closed under selection rules (see
Theorem 203, p. 307.)

We have not discussed yet the relation between Martin-Lof randomness and
Mises—-Church randomness. As we will see soon, they differ, and not all Mises-
Church random sequences are Martin-L6f random. But first let us make some
remarks about Mises’ definition.

9.4. Ville’s example

We have seen already that for every countable family of sets R; there exists a
sequence that satisfies the frequency stability property with respect to all selection
rules Sg, (each of these rules selects a finite or balanced subsequence). Indeed, the
set of sequences with these properties has measure 1. This is an existence proof;
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can we give a more explicit construction of such a sequence? Indeed this is possible,
and we now explain such a construction following A. Wald [217], J. Ville [206],
and D. Loveland [108].

Let us first consider the case when there is only one selection rule Sp that
corresponds to some set R. Then it is easy to construct a sequence w such that
Sgr(w) = 01010101 - - - (zeros and ones alternate), so Sg(w) is balanced. Indeed, we
construct w from left to right. When the rule Sg informs us that it intends to select
the next term, we look at the number of this term in the subsequence (whether it
is even or odd) and choose the next term to be 0 or 1 depending on this number.
(The terms of w that are not selected by Sg can be chosen arbitrarily.)

Now assume that we have m sets Ry,..., R,, that define selection rules. We
want to construct a sequence w such that Sg,(w) is finite or balanced for each R;.
Again we construct the sequence from left to right. Before we choose the value of
the next term wy, let us apply all the rules to the previous terms and see which of
the rules Sg, will select w,. We get a m-bit vector, so we can classify the terms
of w into 2™ classes depending on this vector, even before the value of the term is
chosen. The sequence w, therefore, is a mixture of 2™ interleaving sequences (some
of them niay be finite).

We have not said yet how we construct w. We use the following rule. All
the 2™ subsequences (corresponding to 2™ values of the m-bit vector) should be
01010101---. This can be achieved in a unique way: Before w, is chosen, we
know wg -+ -wpn_y, and we know which rules will select w,, so we know in which
subsequences is w, and we cau choose its value.

Note that Sg,(w) is a mixture of 2™~ subsequences (that correspond to 2™~}
bit vectors that have 1 at position ). Therefore Sg,(w) is balanced; moreover, we
can guarantee that in each prefix of Sg,(w) the number of ones does not exceed the
number of zeros, and the difference is bounded by 2™~! (one for each subsequence).

Now we switch to the general case of countably many rules R;. The main idea
is that we add these rules one by one, and at each moment deal with finitely many
rules. If we do it slowly, the transition effects are negligible, and every selection
rule selects a balanced subsequence.

If this is not convincing, here are the details. Assume that we have already
constructed some prefix wp---w,—; of the sequence w. Then it is already known
which rules Sg, will select the next term w, (while the value of w, is yet to be
determined). This information is now not an m-bit vector, but an infinite bit
sequence ujug -+ (where u; = 1 if Sg, selects the next term). We consider the
sequence ujus - -- as a path in an infinite binary tree.

Fix some increasing sequence kg < k; < ko < of positive integers. We
assume that it grows fast enough; for example, we may let k; = 2%*. At each step
of the construction (for each term w,) one of the tree vertices will be declared as
active. Namely, following the path ujus---, we select the first vertex that was
active fewer than k; times, where 7 is the height of this vertex, and we declare it
as active. In other words, an active vertex (at the step when w, is chosen) is a
shortest string z such that

o the ith bit of z is 1 if and only if Sg, selects wy;
e at previous steps of the construction (when wp - - - w,—; was constructed),
the vertex z was active fewer than k(4) times.
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So first the root is active, until it happens kg times. Then 0 or 1 is active (depending
on whether the rule Sg, selects the next term or not) until they become “tired” of
being active k) times, etc.

In this way we construct a sequence wow, --- that is a mixture of countably
many finite subsequences that correspond to countably many possible active ver-
tices. The subsequence that corresponds to vertex z (the terms constructed at the
steps when x was active) has length at most k;;y (but it may be shorter). As
before, we choose w, in such a way that all these subsequences are of the form
010101 ---. .

Let us look at the subsequence selected from w by Sg, and show that it is
balanced (or finite). Now the situation is a bit more complicated: First, we have
countably many subsequences, and second, the rule Sg, was initially ignored (when
the active vertices were shorter than 7). Let us look at the subsequence selected
by Sg, more closely. It consists of terms of two types. First, there are some terms
that correspond to active vertices of height less than ¢, so Sg, was not taken into
account. Second, Sg, includes all the terms that correspond to active vertices
where the ith bit equals 1. The number of terms of the first type is bounded by
20ko 4 -+ + 28" Yk;_,, so we can safely ignore them.

As for the terms of the second type, note that for every active vertex the
subsequence corresponding to this vertex is 010101---, and each of its prefixes
contains no more ones than zeros, and the difference is at most 1. So the imbalance
in the selected subsequence (if we ignore terms of the first type) at some moment
t is bounded by the number of active vertices appearing at that moment. Let NV
be the maximal height of the active vertices used before ¢; we assume that N > i
(otherwise there is no term of the second type). Then at most O(2V) active vertices
were used, and the imbalance is at most O(2"V). On the other hand, since the vertex
of height N became active, the preceding active vertices should be used completely,
so the length of the sequence is at least ky_;. It remains to use that 2V = o(ky_1).

So we have described an explicit construction of a sequence that has the fre-
quency stability property with respect to a given countable family of selection rules.
Does it give something really new when compared to the probabilistic existence
proof? Yes. For example, we may note that in this sequence each prefix contains
at least as many zeros as ones, since this is true for all the 010101 - - - pieces. So we
have proved the following result:

THEOREM 172 (Ville’s example). There ezists a Mises—Church random se-
quence where each prefiz contains at least as many zeros as ones.

(We can also get a sequence whose prefixes have strictly more zeros than ones
just by starting with first bit 1 and then using the construction.)

This result can be used to prove that there exists a Mises—Church random se-
quence that is not ML-random. For that it would be enough to prove that this
property (more zeros than ones) is not possible for an ML-random sequence. It
is indeed that the case, and it is a consequence of the Effective Law of the Iter-
ated Logarithm—but, unfortunately, not the part that we proved in Section 8.4
(Theorem 156).

Prove that in this case we do not really need the effective version: If the
set of sequences that have more zeros than ones in all prefixes is a null set, then it
is an effectively null set.
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(Hint: Let p, be the probability of the event “up to length n all prefixes have
more zeros that ones”. The sequence p, is a decreasing computable sequence, and
its limit is the measure of the set in question. So if this limit is 0, for a given € > 0
we can wait until p, becomes less than €. One can also refer to the results about
Kurtz randomness (p.70).)

Prove that the set of sequences that contain more zeros than ones in all
prefixes in an effectively null set, not referring to the Law of the Iterated Logarithm.

(Hint: For every n the probability of the event “the n-bit prefix has more zeros
than ones” is about 1/2. If we take a sequence of values of n that grow fast, these
events will be almost independent (the deviations for the short prefixes is negligible
compared to the expected deviation for the long prefixes).)

We do not provide the details of this argument here. Instead, we prove in a
different way that there exist Mises—Church random sequences that are not Martin-
Lof random. Namely, we show that there exists a Mises—Church random sequence
whose prefixes have logarithmic complexity, using the same explicit construction.

THEOREM 173. There exists a Mises—Church random sequence w = wowy - - -
such that
Clwg - -wp—1) = O(logn).

PRrROOF. To construct such a sequence, we apply our construction to the count-
able list of all Church-admissible selection rules: The sets R; are all decidable sets
of strings. This is not an effective construction, since we cannot enumerate all de-
cidable sets (all total algorithms)—this is not a surprise, otherwise we would get a
computable Mises—Church random sequence!

We can enumerate all programs, but then we need some extra advice: Some-
body should tell us which of the programs define decidable sets (so we can replace
the bad ones by some fixed decidable set). This information for the first m programs
takes m bits (one bit per program), and it is enough to perform our construction
until we reach active vertices of height (length) m. At that moment we have con-
structed at least km—1 = 22™~2 bits of the sequence. So the amount of additional
information (advice) is logarithmic in the length of the prefix. a

Let us repeat again the important corollary of this result:

THEOREM 174. There exists a Mises—Church random sequence that is not
Martin-Lof random (with respect to the uniform measure).

If the Mises—Church definition is too weak, maybe we should make it stronger?
For example, one can consider a broader class of selection rules or a different type of
gambling. In the following sections of this chapter we consider some generalizations
that involve non-monotonic rules (the order of terms in the subsequence is not the
same as in the entire sequence) and martingales (where we start playing with a
fixed amount and can bet all the money we have).

9.5. Martingales

When discussing why Kollektivs exist, we referred to gambling practice. But
from the practical viewpoint our gambling framework looks quite unnatural: a gam-
bler comes to a casino where a fair coin is tossed, he selects some of the bits (before
they are produced) and then “wins” (discredits the casino’s source of randomness)
if the selected outcomes are imbalanced (do not have limit frequency 1/2).
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As we have said (trying to make the game more natural), we get the same
definition if we allow the gambler to make a bet of fixed size at some moments
(having the unlimited credit needed for long sequences of losses), and we require
that the gambler’s average gain (per game) tends to zero as the number of games
increases. One can also allow variable bets of bounded size to be made; see above.

J. Ville suggested another setting that looks more natural. Here the gambler
comes to the casino with some fixed amount of money, say $1. Before a coin is
tossed, the gambler splits the capital into two parts: the first is used to make a
bet on 0, and the second is used to make a bet on 1. One of the bets is successful;
the corresponding amount is doubled (and the other part is lost). For example, a
cautious gambler may split the current amount into two equal parts, then one is lost
and the other one is doubled, so the capital remains unchanged. (It is clear therefore
that a special option to leave some part of the money aside is not necessary, it can
be emulated anyway.) Now we cannot go into negative, so both parts should be
non-negative numbers.

After a game is described, it is clear how the notion of a gambler’s strategy in
this game should be defined: a strategy is a function that maps the history of the
game (the sequence of already seen bits) to the next move (how much should be
bet on 0 and on 1). In fact, we will use more a convenient representation of the
strategy: let m(z) be the gambler’s capital after playing with x (if she follows the
strategy). This (non-negative) function determines the strategy uniquely: After
seeing z, we bet m(z0)/2 on 0 and m(xl) on 1. Not all non-negative functions
correspond to strategies; two conditions are necessary (and sufficient):

e m(A) =1 (as we agreed, the initial capital when we observed the empty
string A equals 1);

o m(z) = (m(z0) + m(x1))/2 (the sum of bets on both outcomes is equal
to the current capital).

A non-negative function m that has both properties is called a martingale with
respect to the uniform measure on the Cantor space. Later we also consider mar-
tingales with respect to other measures on the Cantor space. In probability theory
a more general notion of martiigale is used, but for our purposes this will be suffi-
cient. So from now on we speak mostly about martingales instead of corresponding
strategies.

Let v be an arbitrary measure on the Cantor space. It is easy to check that
the ratio v(£2;)/u(2z) (here u is the uniform measure on the same space and 2,
is the set of all extensions of z) is a martingale, and every martingale is obtained
in this way from some measure.

Show that this is indeed the case.

The following intuitively obvious statement is sometimes called the Doob in-
equality or Kolmogorov inequality:

THEOREM 175. Let m be some martingale, and let k be some positive threshold.
Consider the set of strings where the martingale exceeds k, and consider all infinite
sequences that have a prefiz in this set. Then the (uniform) measure of the set of
all these sequences does not exceed 1/k.

PROOF. Let us follow the strategy that corresponds to m, but when the capital
achieves k (or more), we stop playing and go home. This modified strategy has an
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expected return of at most 1 (since the game is fair), so that the probability that
we achieve k or more is at most 1/k.

To make this argument formal, consider the corresponding measures. Assume
that m(z) is v(Qy)/u(z) for some measure v (and p is the uniform measure). We
consider vertices (strings) = such that the v-measure of cone 2, is k (or more) times
bigger than the y-measure of the same cone. Now consider only the minimal strings
z with this property (this does not change the union of §2;). They correspond to
disjoint cones. The total p-measure of these cones is k times smaller than their
total v-measure (or even smaller), and the latter is at most 1. d

Prove that for a lower semicomputable martingale m the function
t(w) = sup m(x)

rw
is a probability-bounded randomness test in the sense of Section 3.5.

We have seen that the set where the martingale wins a lot has small measure.
The reverse statement is also true: for every set S of small measure, there exists a
strategy (martingale) that wins a lot on every sequence in S.

THEOREM 176. Let U C Q be an open set of measure € > 0. Then there exists
a martingale m with the following property: Fach sequence w € U has a prefic x
where m{z) > 1/¢.

PRrROOF. Consider a measure v such that ¥(X) = p(X NU)/e. (This measure
is zero outside U, and it is (1/¢) times the uniform measure inside U.) Then the
function m(z) = v(Qz)/ () is a martingale with the required properties. Indeed,
if w € U, there exists a prefix z of w such that Q, C U and m(z) = 1/e. O

This theorem can be explained as follows. Imagine the there are dishonest
people in the casino’s management who are ready to sell some “insider information”.
Namely, they specify some open set U and guarantee that the sequence of future coin
tossing (due to cheating) is in U. What is the “market value” of this information
(together with the option to start the game with initial capital 1 in the casino)?
Our theorem says that it is 1/u(U). For example, if the insiders tell us (in advance)
the first N bits, the corresponding open set has measure 1/2", and indeed we can
win 2V by betting all the money on the known outcome for N first games. The
same is true for more complicated types of cheating. For example, if the insiders tell
us that some outcome is not possible (“In our casino we never have N consecutive
zeros after opening”), this is still something valuable (this information allows the
gambler to make 2V /(2V — 1) dollars out of 1).

The proof of the theorem also can be explained easily in these terms. If at the
first step the set U is split between Qg and 2, proportional to ag : a;, we split our
money in the same proportion. (For example, if all elements of U start with 0, we
bet all the money on 0.) Then the ratio

current capital
the fraction of U among the extensions of current situation

does not change during the game. Initially the numerator is 1 and the denominator
is € (or even less). When we bump into U (and this will surely happen, unless the
insiders sold us false information), the denominator is 1, so the numerator is at
least 1/e.
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Similar statements are true for the limit behavior of a martingale. Let us
say that a martingale m wins on a sequence w if the values of m on the prefixes
of w are not bounded. The following result, discovered by Ville (who introduced
martingales), was one of his main motivations.

THEOREM 177. (a) Let m be a martingale. Then the set of sequences on which
m wins has measure 0.

(b) Let X be a set of measure 0. Then there exists a martingale m that wins
on all elements of X.

ProOF. (a) The set U of sequences, where m reaches the value k or more,
has measure at most 1/k and is open; all sequences where m wins belong to Uy, for
every k.

(b) For every k consider the open set Uy, of measure at most 1/k that contains
X, and the corresponding martingale m; that achieves k or more on all elements of
Ur. Now we need to combine these martingales into one. Note that the weighted
sum of martingales is a martingale (we may split the capital into pieces and use a
separate strategy for every piece). Let us use martingale my» with initial capital
(weight) 27" for all n in parallel (note that 1 = 3" 27"). Then for all sequences
that belong to Uy~v, we guarantee a return of 4™ - 27" = 2™ (plus, maybe, some
return from other investment strategies). So the return on every element of X is
infinite. O

The proof of this result is similar to the proof of the randomness criterion
(Theorem 90, p. 146); we can say that we now have proved the classical version of
Theorem 90 by the same argument.

In fact we have proved a bit more that was promised. Let us say that m strongly
wins on the sequence w if its values on the prefixes of w are not only unbounded
but have limit +00. In the proof of Theorem 177 we have constructed a martingale
that strongly wins on all elements of X. (Indeed, the martingale constructed in the
proof of Theorem 176 is at least 1/¢ on all sufficiently long prefixes.)

Again, Theorem 93 on p. 149 can be considered as a constructive version of
this stronger result. (We will discuss later the connection between randomness and
effective versions of the martingale notions.)

Combining these observations, we get the following corollary:

THEOREM 178. For every martingale m there ezists (another) martingale m’
that strongly wins on all sequences where m wins.

PrRoOOF. As we have noted, we can obtain m’ going to sets and back. There is
also a very intuitive direct construction. The martingale m’ should behave like a
wise stock market player: when it achieves capital 2 (using the m-strategy), it puts
aside half of its money as a safety measure (i.e., this part of the money is bet on
0 and 1 in equal parts), and the other half is used according to m (but with twice
smaller amounts). When the capital reaches 4 (i.e., when m would reach 8), again
the half (2) is saved, and the rest is used for playing, etc.

Here is another version of the argument (which is better if we want to keep
the martingales enumerable from below): For each martingale m and each number
¢ > 0, consider the martingale m, which imitates m while the capital is smaller
than ¢, and then stops. Then the limit of m, is at least ¢ on every sequence where
m reaches c at least once. It remains to take the weighted sum of m . with weights
2k, O
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Choosing the weight more carefully, one may prove the following general state-
ment [171, 47]. Let f: [1,400) — [0, +00) be a non-decreasing continuous function
such that [ 1°° f(t)/t?dt < 1. Then for every martingale m there exists a martingale
m' with the following property: If at some sequence w the martingale m reaches ¢
at some moment, then m’ reaches f(c) at the same moment and never goes below
f(e) later. (The integral bound in the condition is sharp.)

Up to now we assumed that the coin is symmetric—the probabilities of heads
and tails declared by the casino are equal. This means that in a fair game the
bets on zeros and ones should be doubled. But we can consider other settings.
Imagine that casino claims that 0 appears with probability 1/3 and 1 appears with
probability 2/3. To make the game rules consistent with this claim, the casino
should return bets on 0 multiplied by 3, and bets on 1 multiplied only by 1.5. The
definition of the martingale changes accordingly: m(z), the capital after z, should
be equal to the sum of its two parts—the amount bet on 0 equals m(z0)/3, and
the amount bet on 1 equals to 2m(z1)/3. So we get the condition

m(z) = lm(:cO) + gm(ml),
3 3

which can also be read as “the capital before the next game is equal to the expected

capital after it”.

Let us now give a formal definition. Let @ be an arbitrary probability distri-
bution on 2 (informally, the casino claims that the coin behaves according to it).
The corresponding function on strings will also be denoted by =, so w(z) = 7().

A non-negative function m on binary strings is called a martingale with respect
to 7 (with initial capital 1) if m(A) =1 and

m(z)w(z) = m(z0)m(z0) + m(z1)x(z1)

for all z. (This definition corresponds to the informal discussion above: Dividing
the equation by n(z), we get conditional probabilities 7 (z0)/m(z) and 7 (z1)/7(z)
of 0 and 1 after z.)

In other words, we require that the function m(z)r(z) is a measure, so a mar-
tingale with respect to 7 (or a w-martingale) is just a ratio of some other measure
and m. Now we can extend the results above (essentially with the same proofs) to
the case of arbitrary measures:

(1) Let m be a m-martingale, and let k be some threshold. The w-probability
of the event “m reaches k on some prefix of w” is at most 1/k.

(2) For every open set U there exists a martingale that reaches 1/7(U) on all
elements of U.

(3) A set X is a m-null set if and only if there exists a m-martingale that wins
(or strongly wins) on all elements of X.

The Doob-Kolmogorov inequality guarantees that every martingale is bounded
almost everywhere. The following stronger statement { Doob’s theorem) is also true:

THEOREM 179. For every m-martingale m for w-almost every sequence w, the
values of m on prefizes of w have a finite limit.

(In other words, the set of sequences w, where m does not have a finite limit,
is a w-null set.)
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Proor. Kolniogorov’s inequality guarantees that m is bounded on prefixes of
w with probability 1. So it remains to prove that for every rational p,q such that
0 < p < g, the following event has probability zero: “The capital on prefixes of w
oscillates becoming less than p infinitely often and greater than g infinitely often.”
To show this, we consider another martingale m’ that is unbounded at all sequences
w where the oscillations happen. The martingale m’ implements the classical “buy
low—sell high” strategy: it looks at the capital of the original martingale, but
keeps its own capital unchanged until m becomes less than p. Then m’ behaves
like m (with some constant factor) until m reaches capital greater than g¢; then m’
again keeps the capital unchanged until m goes below p, etc. At each iteration m’
increases its capital by factor (q/p), so it tends to infinity for sequences where m
oscillates. O

This theorem can be used to define conditional probabilities. Consider some
measure u on the product 2 x 2. Then we can consider u;, which is the projection
of p at the first coordinate (the marginal distribution). We also want to define the
conditional distribution of the second coordinate when the first coordinate is equal
to some o € 2. We cannot use the elementary definition of conditional probability
with some event as a condition since the event “the first coordinate is equal to
o” often has zero probability. Usually the conditional probability is defined (for
pyr-alntost every «) using the Radon-Nikodym derivative, but in our case we can
give a more concrete definition using the Doob theorem.

Let A be some property of the second coordinate. Consider the conditional
probability of A with the condition “the first coordinate has prefix a = ag - - - arp—1".
For a fixed A this probability (as a function of a) is a uj-martingale (up to a con-
stant), so the Doob theorem guarantees that for y,-almost every a these probabili-
ties converge to some limit. This limit (defined p,-almost everywhere) is called the
conditional probability of A when the first coordinate is equal to a. (It is possi-
ble that some prefix has probability 0, and then the conditional probability is not
defined, but this creates problems only for a set of measure 0.)

The advantage of this construction is that it allows us to define the conditional
probability for computable measure p on 2 x and every ML-random (with respect
to p1) sequence. See [7] for details.

Returning to our main topic, we conclude this section with the following (evi-
dent) observation:

THEOREM 180. For every martingale there exists a sequence on which it does
not win (and, moreover, is bounded by 1 on all prefizes).

PROOF. The definition of martingale implies that one of the numbers m(z0)
or m(z1) does not exceed m(z), so to each z we can add one bit not increasing the
value of the martingale. O

(If the casino can choose the outcome of coin tossing after the gambler makes
a bet, it can guarantee that the gambler never wins anything.)

9.6. A digression: Martingales in probability theory

Theorem 177 can be interpreted as follows:
(a) to prove that some set has p-measure 0, it is enough to construct a pu-
martingale that wins on all its elements;
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(b) this method can be applied to every null set (by finding a suitable martin-
gale).

This interpretation is important for two reasons. First, from a purely technical
viewpoint, we get a tool to prove that some set has measure zero (by constructing
a martingale that wins on all its elements).

To illustrate the point, let us present in this style the proof of the Strong Law
of Large Numbers. Let p = B, the Bernoulli distribution with independent trials
and success probability p.

For a given ¢ > p, let us prove that the Bp-probability of the event “the
frequency of ones exceeds ¢ infinitely many times” is zero. (For ¢ < p and the
event “the frequency of ones falls below ¢ infinitely many times” the arguments
are similar.) To achieve this, consider Bp-martingale B,/B,. For a sequence z of
length n, where the frequency of ones is r (with nr ones and n(1 — r) zeros), the
value of this martingale is

an(l _ q)n(l—r)
pnr(l _ p)n(l—r) ’

and the logarithm of this value is

n[(rlogg+ (1 —r)log(l - q)) — (rlogp + (1 —r)log(1 — p))].

Since ¢ > p, the latter expression is an increasing linear function of 7; the coefficient
is log[g/p] +log[(1 — p)/(1 — ¢)] and both terms are positive. So for r > g (the case
we are interested in), we can only decrease this expression replacing 7 by g, so the
logarithm of the martingale value is

n[(qlogq+ (1 — ¢)log(1 — q)) — (qlogp + (1 — g) log(1 — p))].

The Gibbs inequality (p. 215) guarantees that the expression in the square brackets,
the Kullback-Leibler distance between the distribution (g,1 — ¢), (p,1 — p), is
positive. So the martingale is unbounded on the sequences where frequency exceeds
g infinitely often.

This proof of the SLLN does not follow completely the scheme outlined above:
We consider not one martingale but a family of martingales (one for each gq). Each
of the martingales is used to prove that some set has measure zero, and then we
observe that the countable union of null sets is a null set.

Instead, we could take a countable family of g; (say, all rational ¢), construct
a martingale for each ¢;, and then mix all these martingales with positive weights.
If some of the martingales are infinite, the mix will be infinite, too.

Essentially the same proof of the SLLN was discussed in Section 3.2 (Prob-
lem 67, p. 58), but there we considered finite sequences and did not use the term
martingale speaking just about the ratio of two measures. (Similar arguments will
be used later in Section 9.13.)

The second reason why martingales are important is more philosophical. What
do we do when we prove some theorem using the martingale approach? We consider
some property L of binary sequences (“to be balanced” for the case of the SLLN)
and some martingale m. Then we prove that for every binary sequence w at least
one of two things happens:

e the sequence w has the property L;
e the martingale m wins on w.
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Moving in this direction, one can suggest the following market (or game) approach
to the notion of randomness and say that

the randomness of a bit sequence is not the property of the se-
quence but the type of insurance provided for this sequence.

It sounds a bit strange at first, but it still makes sense. Imagine a shop where we
can pay $1 in exchange for a bit sequence written on a scratch card. The sequence
is guaranteed to be random: The seller guarantees that our martingale (its copy is
given to the seller in a sealed envelope) will not win much on that sequence. More
precisely, we discover the bits on the card one by one (from left to right), and at
every moment we may get back the value of martingale on the currently discovered
bits.

In other words, we come to the shop with $1 and a description of some mar-
tingale in a sealed envelope. Giving the money and the envelope to the seller, we
get in exchange the scratch card with an (infinite) bit sequence. Then we reveal
the bits on the card sequentially, and at every moment (at our discretion) we can
get m dollars as a refund, where m is the value of our martingale on the sequence
of bits that we have read. (After that the seller has no other obligations.)

Note that it is important that we do not see the next bits. Otherwise we
could cheat—if the next bits decrease the martingale, we demand the refund now,
otherwise we wait for a better refund.

Buying the random bits from such a seller, we may hedge the risks of getting a
“bad” sequence of random bits. If we have a randomized algorithm that works fast
for most values of random bits and we were unlucky and bought a bit sequence that
makes it work long, then we can at least get some refund according the martingale
(it was carefully chosen when we made the purchase—this martingale should be
large on rare sequences that make the algorithm work long). So we need to deposit
different martingales depending on the future use of the sequence. For example, if
we use the sequence in the probabilistic algorithm that generates large primes (i.e.,
produces a large prime number with high probability), the martingale should be
large on random sequences that lead to composite numbers. Then, if we lose some
money because of the nonprimality of the generated number, we at least can get a
refund from the randomness provider.

To make the story more realistic, one should consider finite sequences, but
the scheme remains the same. Also note that the parties should agree about the
measure on bit sequences when making a deal (because the notion of a martingale
depends on it). According to this philosophy, one may say that the probability
distribution does not exist anywhere in the real world, but is a part of the contract.
(However, a wise seller would take into account this part of the contract when
producing the sequence for sale.)

This approach to probability theory is discussed thoroughly in the book of
V. Vovk and G. Shafer [172].

9.7. Lower semicomputable martingales

The results about martingales proven above have a natural effective version.
We already have studied the notion of effective null sets. Since null sets are related
to martingales, one could expect that effectively null sets correspond to some class
of martingales. This is indeed the case.
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Fix some computable measure 7 on 2. In this section we consider martingales
and null sets with respect to m; we do not require now that the initial capital of
tlie martingale is 1. Now consider lower semicomputable martingales in the sense
of Section 4.1 (a function m is lower semicomputable if the set of pairs (r, z), where
a rational number r is less than m(z), is enumerable).

The following problem explains why we should not require the initial capital
to be 1.

Show that a lower semicomputable martingale m with m(A) = 1 is always
computable.

The following effective version of Ville’s result (Theorem 177) was discovered
by C. Schnorr [166]:

THEOREM 181. (a) Let m be a lower semicomputable martingale. Then the set
of sequences on which m wins is an effectively null set.

(b) Let X be an effectively null set. Then there exists a lower semicomputable
martingale m that wins on all sequences in X.

PROOF. (a) Since m is lower semicomputable, the set of sequences where it
exceeds an integer k at some prefix is effectively open and has measure at most
1/k. (Here we consider the measure of an open set that is a union of a computable
sequence of intervals. As usual, we should modify the sequence and make these
intervals disjoint.) )

(b) If a set is effectively open and has measure less than 1/k, then the martingale
constructed in the proof of Theorem 176 is lower semicomputable (when a new
interval appears, the approximation to the martingale increases). One precaution
is necessary, though: we should divide the measure of the intersection not by the
measure of the set (it may be non-computable) but by its upper bound 1/k (so we
should multiply the measure by k). The root value of the martingale is then less
than 1, but this is allowed.

It remains to sum up the martingales for different k with suitable (computable)
coefficients, as is done in the proof of Theorem 177. Note that the sum will also be
semicomputable. O

This result can be strengthened in two directions. First in the proof of (b) we
actually construct a martingale that strongly wins on all sequences in X (as we
have discussed). In fact, we also can repeat the second proof of Theorem 178 and
convert a lower semicomputable martingale into another martingale which is also
lower semicomputable and strongly wins on all sequences where the first one wins.

Second, we can extend the notion of martingale and consider lower semicom-
putable semimartingales, also called supermartingales. Supermartingales corre-
spond to games where the player at each step can donate some part of the capital.
The definition of a supermartingale requires that

m(z) = (m(z0) + m(z1))/2

(for the uniform measure) or |
m(z)mw(z) = m(z0)w(20) + m(zl)n(zl)

(for arbitrary measure 7) instead of the corresponding equality. Since the dona-
tions can only decrease the capital, the upper bound for the probability of winning
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reniains the same, so the proof of the part (a) still works. And the part (b) be-
comes only weaker, so we can replace martingales by supermatringales everywhere
in Theoremn 181.

It is clear that a m-supermartingale is just the ratio of some semimeasure and
m. Since 7 is computable, lower semicomputable martingales correspond to lower
semicomputable semimeasures. Therefore, we immediately see that there exists the
largest (up to O(1)-factor) supermartingale, and it is equal to

m(z) = a(z)/n(z).

This gives us a new proof of the Levin—Schnorr theorem in the version for an

a priori probability (Theorem 91, p. 148): A sequence w is ML-random with respect

to a computable measure 7 if and only if the ratio a(z)/7(z) is bounded for the
prefixes of w.

9.8. Computable martingales

The notion of a lower semicomputable martingale is rather unnatural from the
gambler’s point of view: The proportion i which the capital is split between two
bets is then a ratio of two lower semicomputable reals, which is rather strange.

Maybe we should consider only computable martingales? Let us assume that
a computable measure 7 on  is fixed and all the values 7(z) = 7(Q;) are strictly
positive (this is important since these values are in the denominators). Then a
computable martingale corresponds to a computable (in the natural sense) strategy
in the game.

We say that a sequence w is computably random with respect to 7 if no com-
putable m-martingale wins on it, i.e., every computable martingale is bounded on
its prefixes. (The name “computably random” sounds a bit strange; it would be
better to say something like “random with respect to computable martingales”, but
here we stick to the commonly used terminology even if it is not perfect.)

{(a) Show that we get an equivalent definition if we consider only martin-
gales that are separated from zero; for example, we can consider only martingales
with values at least 1/2.

(b) Assume that 7(€,) are positive rational numbers that can be computed
given z (exactly). Show that we get an equivalent definition if we consider only
martingales with rational values and require them to be exactly computable.

(Hint: (a) Take the average of a given martingale and the constant 1. (b) If all
the values are separated from zero, we can approximate the proportions by rational
numbers, and it is easy to guarantee that the approximation error does not affect
the winning property.)

How does the notion of a computably random sequence relate to other defini-
tions of randomness? The following theorem gives some answer to this question.
The first two statements are valid for every computable measure 7, while the two
following ones are for the uniform measure. (They can be also stated for the case of
Bernoulli measure By, with computable probability p; the proof remains essentially
the same.)

THEOREM 182. (a) Every ML-random sequence is computably random.

(b) There exists a computably random sequence whose prefizes have logarithmic
complezity. (So the previous statement cannot be reversed.)

(c) Evey computably random sequence is Mises—Church random.
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(d) Not every Mises~Church random sequence is computably random.

PRrRoOOF. (a) We know from Theorem 181 that even lower semicomputable mar-
tingales (not only computable ones) cannot win on an ML-random sequence.

(b) We have already mentioned that for every martingale there exists a sequence
on which this martingale is bounded (we should go in the direction where the
martingale does not increase).

If a martingale is computable, one can find a computable sequence on which
this martingale is bounded. It is a bit more difficult—now we cannot find the
minimal value among m(z0) and m(z1) since we can compute these numbers only
with some precision. But this is in fact not needed. It is enough to choose an
extension where the martingale increases at most by 1/2™ (and this can be done
easily if the approximation errors on step n are small compared to 1/2%).

(An immediate corollary is that the largest computable martingale does not
exist. This is one of the main reasons to consider lower semicomputable martingales
and supermartingales.)

But we need to continue the proof of (b). The next step is to consider two com-
putable martingales and find a computable sequence where both are bounded. It is
easy to achieve. Take a weighted sum (e.g., the average) of these two martingales;
it is a computable martingale, so we know already that there exists a computable
sequence where the average martingale is bounded. Then both martingales are
bounded (with twice bigger bound—recall that martingales are non-negative func-
tions).

A similar argument can be used to deal with a computable sequence of com-
putable martingales (i.e., of programs for them). Then we may mix all the martin-
gales in a weighted sum with weight 27¢ for ith martingale.

The problem is that there is no computable sequence that would include all
computable martingales (otherwise there would be a computable sequence on which
all computable martingales are bounded, which is evidently not the case—it is
easy to win on a computable sequence). So to construct a sequence w such that
no computable martingale wins on it requires some non-algorithmic steps. There
is additional information that allows us to perform this construction: For each
program we should be informed whether this program computes a martingale, so
we require one bit of information per program. To get a sequence with logarithmic
complexity, we should use this information in a very economic way, taking into
account the information about ith program only after a long prefix of the sequence
(say, of length 2¢, or even more) is constructed.

Let us describe the construction in more detail. At every step we have some
bit string z (the bits already fixed) and some linear combination

my(z) + eama(z) + - -+ + exmp(z)

with positive coefficients. Here m; is a martingale computed by ith program (or
some replacement martingale, or just zero, if the ith program does not compute a
martingale according to the advice we got). We maintain the invariant relation: this
combination is strictly less than 2. (Initially, z = A, we have only one martingale
m;, and the combination is equal to 1.)

As we already discussed, the string x can always be extended by one bit in such
a way that the expression remains less than 1 (and this can be done effectively as
we know the programs for martingales). So we can extend z while keeping k (the
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number of martingales involved) unchanged. On the other hand, we may (from
time to time) add a new term e,my(z) to this linear combination, choosing € > 0
so small that the sum remains less than 2 (the closer the combination is to 2 and
the bigger is the value my(x) for current z, the smaller €, should be).

In this way we get a sequence on which all m; are bounded, because each m;
appears in the sum (bounded by 2) with a positive coefficient (though maybe very
small one).

The decision complexity of this sequence is bounded by the number of used
advice bits and can grow as slow as we want (if we add new martingales only
rarely). And the plain (or prefix) Kolmogorov complexity of the initial segments is
O(logn), as we promised.

(c) Recall that the SLLN says that the set of unbalanced sequences has measure
zero, and the corresponding martingale (that wins on all unbalanced sequences) can
be chosen to be computable (see Section 9.6 where we coustructed martingales for
each threshold and then mixed them; it can be done in a computable way).

Moreover, if R is a set and Sg is the corresponding selection rule, we can
easily construct a martingale that wins on every sequence w such that Sg(w) is
not balanced. Indeed, the martingale should ignore the terms that are not selected
by Sgr (keeping the capital unchanged) and use the martingale from the preceding
paragraph playing with the selected terms.

For computable R we get a computable martingale, so for every sequence that
is not Mises—Church random, we can find a computable martingale that wins on it
and thus proves that it is not computably random.

(d) Consider a Mises—Church random sequence where each prefix contains as
many zeros as ones (or more); see Theorem 172. Let p, be the probability (with
respect to the uniform Bernoulli distribution) that all prefixes of length at most
n contain at least as many zeros as ones. As we already discussed (Problems 261
and 262), the probabilities p,, form a computable decreasing sequence that converges
to zero. For each n we can computably find a martingale M, that wins 1/p, on
every sequence such that all prefixes up to length n contain at least as many zeros
as ones. It remains to take a weighted sum of some M,, (in such a way that 1/p,
increases faster than the coefficients decrease) and get a computable martingale
that is not bounded on the sequence we started with. a

Give an explicit construction of a martingale used in the proof of (d).

(Hint: Assume that we come to a casino knowing in advance that every prefix
of the game sequence has at least as many heads as tails. Then we can make
bets of fixed size being sure that we never run out of money. If the difference
between the number of heads and tails tends to infinity, this is the winning strategy
(martingale). If it is not the case, there exists some moment ¢ and some number !
such that, starting from ¢, the difference between heads and tails is at least [ and
is equal to ! infinitely often (liminf). Then after ¢ we can make a bet on tails when
the difference is I, and we always win. So we get a martingale for the first case and
a family of martingales (with parameters ¢ and [} for the second case; it remains to
combine them into one martingale.)

Note that the statements (b) and (c) imply that there exists a Mises—Church
random sequence with logarithmic complexity of prefixes. In this way we get a new
proof of Theorem 173 (following [120]).
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Prove the following stronger version of the statenient (b) in the last
theorem: Let f be a total computable nou-decreasing unbounded function with
natural arguments and values. There exists a computably random sequence w such
that C{wg -+ wn—1 [n) £ f(n) + OQ) for all n.

(Hint: Adding a new artingale costs us one bit of advice—it should be done
only when the value of f increases.)

Moreover, there exists a computably random sequence w such that the state-
ment of the last problem is true for every total computable non-decreasing un-
bounded function f [120].

Show that for a computable measure P on 2 x §2 and for every sequence
o that is computably random with respect to the first projection of P, one can
define the conditional probability along the second coordinate with condition “the
first coordinate equals o, using a computable version of Doob’s theorem (p. 275).

Let us stress again that all the results about computable martingales can be
translated into the language of computable gambling strategies (algorithms that
look on the known bits and compute in which (rational) proportion the current
capital should be split between two bets. (Recall that the underlying measure P,
which determines the rules of the game, is assumed to be computable and strictly
positive for all intervals. When performing the rational approximations, we may
assume that martingale values are separated from zero, e.g., by taking the average
with a martingale that equals 1 everywhere.)

9.9. Martingales and Schnorr randomness

The notion of computable randomness is closely related to Schnorr randomness
(see Section 3.4). Both these notions were introduces in C. Schnorr’s book [166]
The following statement was also proved there:

THEOREM 183. Let w be a computable measure, and let all intervals 2, have
positive w-measure. A sequence w is not Schnorr random if and only if there ez-
ists a computable m-martingale m and computable total non-decreasing unbounded
function g: N — N such that

m(wowy - wn—1) = g(n)
for infinitely many n.

This theorem says that sequences that are not Schnorr random are not com-
putably random, and, moreover, there is a martingale that is not only unbounded,
but unbounded in a strong sense (exceeds infinitely often some computable non-
decreasing unbounded function).

PROOF. Assume that w is not Schnorr random. As we have seen in Section 3.4
(Problem 90, p. 70), there exists a sequence of strings zg, 1, s, ... such that the
series Y m(z;) computably converges and infinitely many of z; are prefixes of w.

Let us split the series w(zo) +7(z1)+m(x2)+---+7(z;)+- - into groups (each
contains finitely many consecutive terms) in such a way that the sum of kth group
is at most 4~% (discard some initial segment of the series if necessary). Since the
series converges computably, this splitting can be performed in a computable way.
We may also assume without loss of generality that the groups can be separated
by string lengths: there exists a computable sequence ng < n; < ng < -+, and
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strings in the kth group have length in the interval [ng, np+1). Indeed, every string
x; can be replaced by a group of strings of some large length (the interval is split
into many intervals of the same size), and we can do this for all x; sequentially
using longer and longer strings (this does not change the covering property and the
sums in groups).

Consider now separately the strings from kth group. The corresponding inter-
vals have total measure less that 4~%, and there exists a martingale my, that reaches
4* on all these strings. Now we mix all these martingales and get a combined mar-
tingale m = >.2 %my. It reaches 2¢ at the strings of kth group. It remains to
let g(n) = 2% for all n between ny and ny41 and note that infinitely many groups
contain prefixes of w.

Now the reverse direction. Assume that a computable martingale m and a
total unbounded computable function g are givenn. We need to cover a sequence w
for which we know only that m(wg -+ -wn—1) = g(n) for infinitely many n. And the
measure of this cover should not exceed some given € > 0 and be computable. How
do we do this?

First of all, we increase g at some initial segment of N and assume that it is at
least 1/e + 1 everywhere (this does not matter when we speak about events that
happen infinitely often). Now we consider all the strings in the order of increasiug
lengths and select those where m exceeds g. (More precisely, since we know m only
with some precision, we select strings in such a way that m > g — 1 for all selected
strings and all strings with m > g are selected.)

The assumption guarantees that the intervals, which correspond to the selected
strings, cover w. Since for these strings the martingale is at least 1/¢, the total
measure of intervals does not exceed e. Finally, the sum of ineasures is computable:
To find it with error at most §, we wait until g becomes bigger than 1/8+ 1; all the
subsequent (longer) intervals can change the sum of measures at most by 4. a

A similar argument can be used to prove the following criterion of Schnorr
randomness in terms of prefix complexity [10]:

Prove that a sequence w is Schnorr random with respect to a computable
measure y if and only if for every computable total upper bound & for prefix com-
plexity and for every non-decreasing unbounded computable function h: N — N
the inequality

k((w)n) = —logy i(Qw), ) — h(n) — O(1)
holds for all n (the constant in O(1) does not depend on n).

(Hint: For computable k and & the cover constructed in the proof of the Levin-
Schnorr theorem has computable measure. The argument in the other direction is
similar to the proof of the preceding theorem: We split the cover into groups of
strings of the same length, where the nth group has total measure less than 477,
increase the measure of strings in nth group to get 27" instead of 4™, and use the
Kraft—Chaitin lemma to get a computable bound for prefix complexity; h can be
found since all strings in the nth group have the same length.)

This result can be used to show that there exists a Schnorr random sequence
(with respect to uniform measure) that is not Mises-Church random [10]. Indeed,
it shows that if K((w)n) = n — h(n) — O(1) for some non-decreasing unbounded
function h that tends to infinity slower than every computable non-decreasing un-
bounded function, then w is Schnorr random. Such functions h exist (diagonal
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construction), and it remains to select one of them and find a sequence that satis-
fies the inequality above but is not Mises—Church random.

How can we do this? Take a random sequence «, and insert zeros at some
places. These zeros will later form an unbalanced subsequence (so the sequence
is not Mises—Church random). What are the requirements for the places of ze-
ros? They should be (1) computable (or at least one can find them by look-
ing at the previous bits), and (2) very rare (so the complexity of prefixes does
not decrease significantly). The requirement (2) hints that the function F:n —
(place of the nth insertion) should grow faster than any computable function, but
how do we combine this with (1)? The key idea is that the Kuéera-Gécs theorem
says that we can take arbitrary F' and then find a sequence o that computes F.
There is a subtle point: We are able to compute F having access to the entire o,
and only some prefix is available. But this is not a problem—if the current prefix
of o is not enough to compute F, we just wait (and place zero after the value of
F is computed; if this place is farther than we planned, the better). It remains to
estimate prefix complexity. Here we note that by adding zero at predictable places,
we do not change the prefix complexity of an initial segment.

Provide the missing detail in this argument, and prove that there exist
Schnorr random sequences that are not Mises—Church random.

(These sequences will not be computable random, so we also know now that
Schnorr randomness is strictly weaker than computable randomness.)

It turns out that Kurtz randomness also can be characterized in terms of mar-
tingales.

Prove that a sequence w is not Kurtz random (Section 3.4, p. 70) if and
only if there exists a computable martingale such that computable converges to
infinity on prefixes of w (an equivalent formulation is that there is a computable
monotone lower bound that is not bounded).

(Hint: The sets of small measure that cover w and are finite unions of intervals
can be converted to martingales. We know how long the prefix of w should be for
this martingale to work, and this can be used to find a computable lower bound for
the final martingale. On the other hand, knowing the martingale m and a length
I, where the martingale should exceed some ¢, we can consider all the strings of
length | where m exceeds ¢ and get a finite cover of w of measure at most 1/c¢.)

This shows that Schnorr random sequences are Kurtz random (and the inclusion
is strict, since some Kurtz random sequences do not satisfy even the SLLN; see
Problem 92, p. 70).

9.10. Martingales and effective dimension

In the previous section we have seen how the notions of null, effectively null,
and Schnorr null sets can be translated into the language of martingales. A similar
translation is possible for the notion of Hausdorff dimension. In one sentence this
translation can be described as follows: The smaller the dimension of a set is, the
faster martingales can grow on its elements. (In this section we consider martingales
with respect to the uniform measure.)

Let us start from a statement that relates classical Hausdorff dimension (no
algorithms) and martingales.
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THEOREM 184. A set A C Q is an a-null set if and only if there exists a
martingale m such that for every w € A the ratio
m(z)
2(1—a)i(z)
is not bounded on prefixes of w.

(For a = 1, we get Theorem 177.)

This result can be reformulated as follows. Assume that the gambler is taxed.
After each game she pays a tax proportional to her capital, so the capital is multi-
plied by some constant factor 2~ < 1. Then the capital m(z) (as a function of a
history z of the game) is no more a martingale, but satisfies the condition

a—1 _ m(l‘O) m(xl)
27 m(z) = 5 + —5
and this can be rewritten as

2%m(z) = m(z0) + m(z1).

Functions that satisfy this condition are called (following [110]) a-gales. They also
can be defined equivalently in terms of measures: An a-gale is a function

p(2)2®,

where p(z) = 7(Q,) and 7 is a measure on Q2 (we do not require here that () = 1
or m(A) = 1). Similarly we can define a-supergales, where an additional decrease
in capital is allowed after each game. The condition is

2%m(z) = m(20) + m(z1).

In this language the statement of Theorem 184 says that for every a-gale the set
of sequences, for whose prefixes this a-gale is unbounded, is an a-null set; every
a-null set is contained in a set of this kind (for some o-gale).

ProOF. The proof is just a slightly modified argument used to prove Theo-
rem 177. We use the language of a-gales (see above). Let m be an arbitrary a-gale.
We need to show that the set of sequences, where m is unbounded, is an a-null set.
Tt is enough to show that strings z, where m achieves k (or more) for the first time,
have the sum of a-powers of measures at most 1/k. Writing m(z) as p(z)2°®), we
see that for these strings we have p(z) > k27°!(%), All the strings are incompatible
(none of them is a prefix of any other). So the sum of p-measures is at most 1, and
so the sum of 272®) for all these z (=the sum of a-sizes of corresponding intervals)
does not exceed 1/k.

In the other direction, let A be an a-null set. We need to construct an a-gale
that is unbounded on prefixes of w for every w € A. For each k, consider a cover
of A by intervals with sum of a-sizes at most 1/k. We will construct an a-gale my
that reaches k on these intervals. (Then we compute the sum of all a-gales mu
with coefficients 2¥, since the sum of a-gales is an a-gale.)

How do we construct my? For each z we consider an a-gale that equals 1 on x
and equals 0 on all other strings of the same length; the values for shorter strings
are determined uniquely by the definition of a-gale, and for longer strings we choose
some extension. On the root (empty string) the value of this a-gale is 274%) je.,
the a-size of z. So the sum of values of this a-gale (over all z in the cover) is at
most 1/k in the root, and multiplying it by &, we get my. ]
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Now we switch to the effective version of this theorem. Let o € (0,1] be a
computable real. We can define the notions of lower semicomputable a-gale (or
o-supergale) in a natural way. As in the case @ = 1, we do not require that
m(A) = 1, only that m(A) < 1. One may expect that lower semicomputable a-
gales (or supergales) correspond to effectively a-null sets and this can be proved by
an effective version of the argument above.

In one direction it is indeed the case:

THEOREM 185. Let o € (0,1] be a computable real number, and let A C Q be
an effectively a-null set. Then there exists a lower semicomputable a-gale that is
unbounded on prefizes of w for every w € A.

PROOF. Indeed, the construction above gives computable my, and their mix is
lower semicomputable. O

In the other direction the situation is more complicated. Let m be a lower
semicomputable a-gale. For some integer k£ we may consider the set of strings z
such that m(z) > k. This is an enumerable set. Moreover, the sum of a-sizes of
its minimal elements is bounded by 1/k. The problem is that the set of minimal
elements of an enumerable set is not guaranteed to be enumerable, and if we consider
all (not only minimal) elements, we do not have the bound for the sum of a-sizes
anymore. So we cannot use this argument to prove that the set of sequences, where
a given lower semicomputable a-gale is unbounded, is an effectively a-null set.

In fact this is not true. Lower semicomputable a-gales correspond to a weaker
notion of an effectively a-null set where we bound not the sum of a-sizes of all
intervals in a cover but only the sum of a-sizes of subfamilies of disjoint intervals.
(An equivalent definition considers only maximal intervals that are not part of other
intervals in the cover.) But if we are interested only in effective dimensions, all these
subtle differences are easily compensated for by an arbitrarily small change in «,
and the following statement is enough:

THEOREM 186. Let m be a lower semicomputable a-gale. The set of the se-
quences w, such that m is not bounded on the prefizes of w, is an effectively B-null
set for every B > «.

(We assume here that a and 8 are computable.)

PROOF. Let k be a positive integer. Consider strings z such that m(z) > k and
the corresponding intervals. We get a cover of the set in question. What can be said
about the sum of 3-sizes of the covering intervals? As we have seen, every subset of
disjoint intervals in this family has a sum of a-sizes at most 1/k. In particular, for
every length N the sum of a-sizes for strings of length N in the family is at most
1/k, and the sum of B-sizes is at most (1/k)2~N(F=) So taking the sum over all
lengths, we multiply the bound 1/k by the sum of the geometric series, which is
finite. O

Two last results give the following corollary:

THEOREM 187. For an arbitrary set A C Q, its effective Hausdorff dimension
15 equal to the infimum of the set of o such that there exists a lower semicomputable
a-gale that is unbounded on all elements of A.
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The same is true for a-supergales instead of a-gales (with the same proof).

This result provides an alternative proof of Theorem 120. Indeed, a-supergales
are semimeasures multiplied by 22/(#), So there exists a maximal lower semicom-
putable a-gale that corresponds to a maximal lower semicomputable semimeasure
(=continuous a priori probability). In the last result we can therefore consider only
this a-supergale, and the effective dimension of {w} is equal to the infimum of &
such that a(wow; « -+ wy—1)2%" is an unbounded function of n. The logarithm of
this expression is an — KA (wow; - - wp—1), so the infimum of those o is

lim inf M
n
(In Theorem 120 we used plain complexity instead of a priori complexity, but the
difference is O(logn) while we have n in the denominator.)

9.11. Partial selection rules

Returning to the selection rules, note that we required the selection rule to be
total (the selection always says, in finite time, whether to select the next term or
not, for all possible sequences). But this condition can be relaxed. Of course, if
the rule is undefined on some prefix of the given sequence, then it does not select a
subsequence. But the rule may hang in some other situations (that do not happen
for our sequence).

Let us define this broader class of rules formally. Let r be a computable par-
tial function that maps (some) bit strings to {0,1}. To decide whether the term
wy, should be selected (while applying the rule to some sequence w) we compute
r{wo + - wn—1)- The value 1 means that we select w,, the value 0 means that we do
not select w,,; if the value is undefined, the selection process hangs, and we get a
finite sequence. This selection rule is denoted by S,.. (It is equivalent to the rule Sg
where R is the set of all x such that r is defined on all prefixes of z and r(z) = 1.
Note that this R is not always decidable for computable partial functions f.)

This class of selection rules was considered by R. Daley [46]; we call them
Church—Daley admissible selection rules. The sequence is called Mises—Church-
Daley random if every Church-Daley admissible rule selects a balanced (or finite)
sequence.!

Prove that a Church-Daley admissible selection rule applied to a Mises-
Church-Daley random sequence gives a Mises—Church-Daley random sequence.

This extension of the class of selection rules makes the class of random sequences
smaller, which follows from Theorem 173 (p. 270) and the following result proven
by W. Merkle [120]:

THEOREM 188. There is no Mises-Church-Daley random sequence w such that

C(wo -+ - wn—1) = O(logn).

PROOF. Assume that

Clwo - wp-1) < clogn

1W. Merkle called them the “Mises—Wald—Church stochastic sequence” in [120], though the

historical reasons for this name are unclear. Church never considered partial computable rules,

while Mises and Wald did not consider computability at all, so the difference between partial and
total rules was not essential for them.
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for some ¢ and for some large enough n. We want to show that w is not Mises—
Church-Daley random, i.e., construct a rule that selects an unbalanced sequence.

Let us first consider the case when ¢ < 1. The set of all strings of complexity
less than clogn is an enumerable set of at most n¢ elements, and for large n the
number or elements in this set (we denote it by C,,) is bounded, say, by n/10. Fix
some of those large values of n.

Reading the n-bit prefix from left to right, we try to the predict the next bit
(after reading all the previous ones). Let us show that we can guarantee at least
90% success. Enumerating C,,, we find a first element in this enumeration, call it
the “current candidate”, and predict the bits that are there until our prediction
turns out to be incorrect. As soon as this happens, we continue the enumeration of
Cp until we find a new element that is consistent with all already discovered bits.
Then it becomes the current candidate, and it is used for predictions until one of
the predictions turns out to be incorrect, etc. Since we know that the actual prefix
is in Cy,, we will never run out of candidates, and the number of changes (=number
of errors) is bounded by the cardinality of Cp, i.e., by n/10. So at least 90% of the
predictions are correct.

This can be done for every large enough n. To deal with an infinite sequence,
we consider a fast growing computable sequence ng < ny < ng--- where ng is
large enough (so our prediction method works for all n;). Using C,,, for predictions
between n;_, and n;, we make at most 0.1n; errors, and in total we get at most
0.2n errors (even if all previous predictions are false, which is not the case, but
we do not need a better estimate). So our prediction method will be successful
infinitely often.

It remains to note (as was done in Theorem 169) that the prediction algorithm
corresponds to two selection rules: one selects terms when we predict ones, and the
other selects terms when we predict zeros. If predictions are successful, at least
one of these selection rules will select a highly unbalanced sequence. This ends the
proof for ¢ < 1.

This trick does not work for ¢ > 1. For example, if ¢ = 1.5 we have n!® candi-
dates, and all our predictions could be false (leading to the change in the current
candidate without any contradiction). But we can use a more clever argument.

Let us split the string wg - - - w,—; into two halves and get a pair (u,v) where
u and v are (n/2)-bit strings. The complexity of this pair is at most 1.5logn (we
still consider our example with ¢ = 1.5). On the other hand, the complexity of
the pair is equal to C(u) + C(v|u) up to O(log C(u,v)), so either C(u) < 0.8logn
or C(v|u) < 0.8logn. In both cases we can apply the trick used for ¢ < 1, since
n%® is much less than n/2. Note also that, while predicting the bits in the second
half, we already know the bits in the first half, so the condition u in the inequality
C(v|u) < 0.8logn is not an obstacle.

So at least one of the two prediction algorithms is successful (on its half). Then
one of the two selection rules corresponding to this algorithm will select a highly
unbalanced sequence. (The selection rule does not select any terms from the other
half.)

There is a problem, however. All this can be done for every n, but how do we
combine the selection rules for different n? Imagine, for example, that we tried to
predict bits in the left half assuming that C(u) < 0.8n while in fact that is not the
case. Then our algorithm can make many errors (this is not a big problem) and

1.
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can even hang (and this is the problem, because then it cannot be used as a step
in a prediction algorithm for an infinite sequence).

To get around this problem, we should recall the proof of the formula for the
complexity of pairs (Theorem 21, p. 37) and use it as a part of our construction.
Let us explain what this means.

As before, we make predictions for the left and the right halves (v and v) of
the n-bit prefix separately. When we read the right half v bit by bit, we enumerate
the set C, of possible candidates for the n-bit prefix (=strings of complexity less
than 1.5n), waiting until a candidate appears that is consistent with u and already
known bits of v. When such a candidate is found, we use it for predictions until
one of the predictions turns out to be false. Then we look for the next candidate,
etc.

Will this prediction algorithm be successful? It depends on u. More specifically,
it depends on the number of different v such that wv € C,. If there are many of
them, we can make an error and change the candidate at each step. But at least
our prediction algorithm will not hang as far as uv is indeed in C,,.

Now we discuss the left half. Here we use as candidates the values of u such
that there is at least n%8 different v with uwv € C,. The prediction in the left half
is guaranteed to be successful if u is among the candidates (and this will happen
if the predictions in the right half are not successful). But if not, this prediction
algorithm may hang (at some moment we could wait forever for a candidate which
is consistent with known bits).

What happens when we combine these algorithms for different prefixes? First
we consider the joint algorithm based on the predictions of right halves for each n;.
This algorithm never hangs (we assume that ng is large enough, so all prefixes of
length n; have complexity less than 1.5n;). If for infinitely many ¢ the prediction is
successful, then we are done (the fraction of successful predictions does not converge
to 1/2). So it is enough to consider the case when the right half prediction works
only for finitely many . Then for all sufficiently large 7 the left half prediction works,
and the finite number of bad prediction algorithms can be replaced by something
safe (that never hangs).

So we see that in both cases w is not Mises—Church-Daley random.

This proves the theorem for ¢ = 1.5 (and the same trick works for every ¢ < 2).
But what should be done for bigger values of ¢? One can split the sequence not into
two halves, but into k pieces of equal size for some k& > 2. One should take k greater
than ¢, and repeat the same argument. The prediction algorithm for the rightmost
piece never hangs, so we can combine these algorithms into a prediction algorithm
for the entire sequence. If it is successful for infinitely many prefixes, we are done.
If not, it fails starting from some moment, and then the prediction algorithm for
the second (from the right) piece is total (but not necessarily successful). If it is
successful infinitely often, we are again done. If not, we should consider the third
piece, etc. (A more formal exposition with all details can be found in [120].) O

So we know the Mises—Church-Daley random sequence cannot have O(logn)-
complexity of prefixes. However, it can only slightly exceed this bound (e.g.,
O(lognloglogn) complexity is possible), as shown in [120]:

THEOREM 189. Let f: N — N be a total non-decreasing unbounded computable
function. Then there ezists a Mises—Church-Daley random sequence whose n-bit
prefiz has complezity at most f(n)logn + O(1) for all n.
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ProoOF. Recall how we constructed Mises—Church random sequences in Theo-
rem 173. The advice information there was very small, only one bit per algorithm
(that may or may not compute a selection rule) — we needed to know whether it
would compute a selection rule. Now this is not enough, because the selection rules
are partial. Now we can enumerate all selection rules, but for each selection rule
we need to know when it becomes undefined for the first time (so it can be replaced
by something harmless starting from this moment). So, if we use f(n) programs
to construct the first n bits, the total size of the advice needed is f(n)logn bits
(for each of f(n) programs we need logn bits to specify the first place where it is
undefined — we may agree that this place is n + 1 if it is defined for all currently
known prefixes).?

Note that we use n in the condition, but the O(logn) change does not matter
since this corresponds to the O(1)-change in f. O

A similar extension (allowing partial functions) can be done for martingales.
Recall that we may define computably random sequences using total computable
functions with rational values as martingales. Now we can consider also partial
computable functions requiring the equation (defining martingales) to be true if
all three quantities m(z), m(z0), and m(z1) are defined.?> We call these functions
partial martingales. A partial martingale wins on a sequence w if it is defined for
all prefixes of w and is unbounded. A sequence is partial-computably random if no
computable partial martingale wins on it. Now, following [120], we may generalize
Theorem 189:

THEOREM 190. (a) Every partial-computably random sequence is also Mises—
Church—Daley random.

(b) Let f: N = N be a non-decreasing unbounded computable function. Then
there exists a partial-computably random sequence w such that the n-bit prefizx of w
has complezity at most f(n)logn + O(1).

(These two statements together imply the statement of Theorem 189.)

PRrOOF. (a) We use that same construction to convert a selection rule into a
martingale as in Theorem 182(c). If the rule is partial, we get a partial martin-
gale. But if the rule selects an infinite subsequence from some sequence w, the
corresponding martingale is defined on all prefixes of w.

(b) Here again we may follow the argument used to prove Theorem 182(b).
For each martingale that is added to the construction, we need to know at which
moment it becomes undefined (so we can replace it by something harmless, e.g.,
by its last value). This information requires at most logn for each martingale used
to construct the first n bits of the sequence, and if at this moment we use at most
f(n) martingales, we get the required bound. O

20ne may ask also why we need to know exactly the moment when the algorithm becomes
undefined for the first time, not just one bit saying whether this happened or not. This is because
the constructions for different n should give prefixes of the same infinite sequence.

3From the gambling point of view it is natural to require that m(z0) and m(z1) are both
defined or both undefined; one cannot toss the coin before both bets are made. However, it is not
important: If m(z) and m(xz0) are defined, we can compute m(z1) knowing that m is a martingale,
and vice versa.
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9.12. Non-monotonic selection rules

Up to now we considered selection rules that keep the ordering of terms in
the input sequence (read it from left to right). However, this restriction can be
relaxed in a natural way. Such a relaxation was suggested by Kolmogorov in [77]
and independently by D. Loveland in [106, 107].

Let us explain informally how it is done. Imagine that a casino outsources the
coin tossing to some producer of random bits who writes these bits on paper cards
and puts the cards on a table face down. The gambler may then ask to reveal some
bit, then the corresponding card is turned over. Also the gambler may select some
bit that is not revealed yet; then the corresponding card is also turned over, and
the bit written on it is added to the subsequence.

More formally this class of selection rules can be described as follows. The
cards (and corresponding bits) are indexed by natural numbers. The selection
rule is determined by a pair of functions F' and G. The function F' maps binary
strings to natural numbers and says which bit should be revealed at the next step
(depending on the bits already revealed). We assume that the values of F on
every two compatible bit strings (one is a prefix of the other) are different. This
guarantees that the same bit is never requested again. The second function, G, is
also defined on binary strings and has values in {0, 1}. The value 1 means that the
bit chosen by F is selected (and becomes the next bit of the output subsequence);
the value 0 means that it is observed but not selected.

According to this description, for every two partial functions F' (that satisfies
the condition above) and G, we define the selection rule Spg: @ — X as follows.
First we consider a (finite or infinite) sequence of integers ng,ni, ... where

Mo = F(A), ny = F(wno)v Ny = F(wnnw"1)7

(the construction stops when the next value of F' is undefined). The condition for
F guarantees that all n; are different.

Then we select the terms wy,, for which the value of G on wp,wy, - wn,_, is
defined and equal to 1, and, moreover, the values of G on all prefixes of this string
are defined. The corresponding w,, (in order of increasing i) form the output
subsequence Sga(w). (We call it a subsequence though usually subsequences are
defined as monotonic subsequences, keeping the ordering of the initial sequence.)

The selection rules Sr ¢ that correspond to computable partial functions F° and
G are called Kolmogorov-Loveland admissible selection rules. A sequence w € ) is
called Mises-Kolmogorov-Loveland random, or Kolmogorov-Loveland stochastic, if
every Kolmogorov-Loveland admissible rule selects a balanced (or finite) sequence.

We consider mainly the case of the uniform measure, but a similar definition
can be given for Bernoulli measure B, (independent trials with success probability

p).
The following simple (though unexpected) observation was made by W. Merkle
in [119]:

THEOREM 191. Restricting the class of selection rules and requiring F' and G
to be total, we get the same class of Mises—Kolmogorov-Loveland random sequences.

ProoF. Assume that some selection rule Sp ¢ applied to some sequence w se-
lects an infinite unbalanced subsequence. Let us split the selected subsequence into
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two: wy, is included in the first subsequence if n; is even, and in the second subse-
quence otherwise. At least one of these two subsequences is infinite and unbalanced.
So we can assume without loss of generality that the selection rule produces an in-
finite unbalanced sequence that consists only of terms with even numbers (or only
of terms with odd numbers—this case is similar). Knowing that we select only bits
with even numbers, we can read other bits at any time; this will not interfere with
the selection since these bits will be never selected. So if the partial computable
rule starts a long computation, we may in parallel read the bits with odd numbers
(they may be requested later by the original rule or not; if the original rule requests
them, we have them already at hand and do not read them again). This new selec-
tion rule is defined by total functions F’ and G’ (if the original algorithm hangs at
some point, then the new one reads the terms with odd numbers one after another,
and never selects anything). a

This proof reduces one partial selection rule to two total ones.
How is the new definition of randomness related to the one previously given?
A partial answer is provided by the following theorem:

THEOREM 192. (a) Every Mises-Kolmogorov-Loveland random sequence is
Mises—Church-Daley random (and, therefore, Mises—Church random).
(b) Every ML-random sequence is Mises—Kolmogorov—Loveland random.

More precisely, (a) holds for every real p € (0,1); in (b) we assume that the
measure is uniform or equals By, for some computable p (and both notions of ran-
domness are understood accordingly).

PRrROOF. (a) Church-Daley admissible selection rules (including Church admis-
sible rules) are a special case of Kolmogorov-Loveland admissible rules.

(b) Here we use essentially the same argument as for Mises—Church randomness.
Assume that some computable p is fixed in the definition of Mises—Kolmogorov—-
Loveland randomness, and we require that every selected subsequence should be
finite or have limit frequency p. For Martin-Lof randomness we consider the com-
putable Bernoulli measure B, that corresponds to independent trials with success
probability p.

Fix some computable (partial) functions that consider the corresponding selec-
tion rule Sgg. For every integer n and for every rational g, consider the set Dy, 4
of all n-bit strings where the frequency of ones exceeds q. We know that for the
fixed ¢ > p and for n — oo, the Bp-measure of the set D, 4 (more precisely, the
B,-measure of the set D, 4 of all sequences that have a prefix in D,, ;) decreases
exponentially.

Now consider the preimage of this set with respect to Sr,g; more precisely, con-
sider the set of all sequences w for which the selection rule produces a subsequence
of length at least n and the frequency of ones among the first n terms exceeds g. It
is easy to see that B,-measure of this set is bounded by Bp(Dy q).

Informally speaking, this happens because the output distribution of the selec-
tion rule applied to Bp-distributed sequence has the same distribution B,, if we
ignore that some sequences are cut at some point (output sequence can be finite),
and cutting may only decrease the probability. More precisely, let ¢ be a binary
string of length & — 1. Consider the conditional probability of the event “E = kth
bit of the selected sequence is 17 with the condition “C = selected sequence has
length at least k& and preceding bits are t”. This probability is equal to p. Indeed,
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there are many cases when bits equal to ¢ are selected and the next bit to be se-
lected is chosen (depending of the values of the revealed but not selected bits) so
the condition C' can be split into a union of disjoint subsets C;, and for each of
them the conditional probability Pr[F|C;] equals p: the event C; determines the
position of the bit that will become the kth bit in the selected sequence, and C;
is determined by the values of the other bits (before this position). Then we (by
induction) conclude that the probability that the first n selected bits form a given
string v is bounded by the probability of getting u according to Bp, and we sum
these inequalities over all u € Dy, 4.

It remains to note that the set of sequences w, such that Sg ¢ (w) has a prefix in
D, 4, not only has small measure but also is effectively open (since we can enumerate
different scenarios when such a prefix could appear). So for each g we get (as in
the proof of the effective version of the SLLN) an effectively null set. (Similar sets
should be considered for all rational ¢ < p.) So an ML-random sequence does not
belong to these sets, and this finishes the proof. O

In the next section we prove the following generalization of statement (b): if
a computable sequence p,, of real numbers in (0,1) computably converges to some
p € (0,1), then every sequence that is ML-random with respect to the product
measure (independent trials with success probability p; in the ith trial) is Mises-
Kolmogorov-Loveland random with parameter p. This statement is an impor-
tant tool (suggested by M. van Lambalgen) for constructing examples of Mises—
Kolmogorov-Loveland random sequences with pathological properties (not ML-
random, having more zeros that ones in all prefixes, and others).

Now we take another direction and show (for the case of uniform measure)
that every Mises-Kolmogorov-Loveland sequence has almost maximal complexity
of prefixes. (Recall that this is not the case for Mises—Church and Mises—Church-
Daley random sequences.)

THEOREM 193. Let w be a binary sequence such that C(wo -+ wp—1) < an for
some a < 1 and for all sufficiently large n. Then w is not Mises—-Kolmogorov—
Loveland random.

This result (proven by An. Muchnik in the late 1980s) was later strengthened:
it turned out that if the inequality is true for infinitely many n, the sequence is
not Mises—Kolmogorov-Loveland random. But we prove only the original weaker
statement.

For this proof we need some auxiliary statement about the price of “insider
information” in the game with fixed size bets. Let us state and prove this statement
first, and then come back to the proof of Theorem 193.

Assume that we come to a casino when a sequence of random bits is generated
by coin tossings, and before each of them we can make a bet u € [—1,1], where
positive (resp. negative) u means that we bet on 1 (resp. on 0). After the coin is
tossed, we get u dollars if the bit is 1 and —wu dollars if the bit is 0.

Note that (unlike for martingale games) our maximal bet is always 1 and does
not depend on how much we have won (or lost) in the previous games. So our
potential loss is not bounded (in the martingale games the loss was bounded by the
initial capital). To avoid confusion, let us stress also that we play with the bits in
the same order as they appear (we do not consider the non-monotonic rules yet).
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LEMMA. Assume that we know in advance some set A of n-bit strings that
contains at most 2° elements for some s < n. Then there exists a strategy in the
described game that guarantees that we win at least n — s on every element of A
(for every series of n games when the sequence of outcomes belongs to A).

For example, if A contains only one string (in other words, we know in advance
all the outcomes for all n games), the lemma says that we can win n dollars (not
a surprise: we win one dollar in each game). For comparison, in the martingale
setting we could make 2™ dollars out of 1 dollar. If we know results of some k
games, the lemma guarantees that we can win k dollars (and this is again trivial).
A bit more complicated example is to assume that we know that the number of
ones is even; in this case s = n — 1. The lemma says that we can win one dollar.
(Indeed, we can make zero bets until the last game, and then put 1 dollar on the
right outcome which is known at that moment.)

PROOF. At each moment we know some prefix w of the sequence; let j be its
length. There are 2”77 possible extensions of j (up to an n-bit string), but only
some of them are in A. Let us consider their fraction (the conditional probability
of A after w); a negated logarithm of this fraction is called the information capital
of the player.

Initially this capital equals n — s. We will show that we can make bets in such
a way that the sum of the information and real capitals never decreases. Then at
the end of the game, when the sequence is in A and the information capital is 0,
the real capital is at least n — s, as required by the lemma.

Why can we make a bet that guarantees the non-decrease? Assume that the
information capital is now (—logp) for some p (the current fraction of A-elements
among the extensions). Knowing A, we can compute this capital. We know also
how it will change after the next game: if 0 appears, it becomes equal to (— logpo),
and if 1 appears, it becomes equal to (— logp, ), where pg and p; are fractions of A
among the extensions of w0 and wl. Evidently, p = (po + p1)/2. We need to find
a bet d such that in both cases the sum of information and real capitals does not
decrease:

_logpa

—logpo—d >
—logp, +d = —logp,

or (finding the corresponding bounds for d)
—logpo +logp > d > —logp + logpy,
—log(po/p) > d > log(p1/p)-

Such a d exists if and only if p/py = pi/p. This can be rewritten as p> = popy
and follows from the inequality between arithmetic and geometric means. Note
also that pp and p; do not exceed 2p, so the bounds for d (and d itself) are in the
interval [—1,1]. The lemma is proven.

One can explain the relation of this lemma and martingales (and an alternative
proof of the lemma) as follows. The martingale makes some decision about the
proportion between two opposing bets, and this decision determines a multiplication
factor for the capital in a given round. The possible choices are parametrized by a
point in a closed interval. The factors for different rounds are multiplied, so their
logarithms are added. The choices for the different values of the parameter can be
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FIGURE 27. Possible choices of a gambler presented in usual (left)
and logarithmic (right) scale. A dashed line represents possible
choices for the game with bounded bets considered in the lemma.

shown in a logarithmic scale, then we get a curve (instead of a line segment, if we
use a normal scale); see Figure 27. It is easy to see that this curve is below the
tangent line, so the game will be better for us if we replace the curve by the line.
And this line corresponds exactly to the game with bounded bets considered in the
lemma.

Now it is easy to prove the following statement (where both the condition and
the claim are stronger than in Theorem 193):

THEOREM 194. Let k be an arbitrary computable upper bound for the function
C, and let w be a sequence such that

k(wo - wn_1) < an

for some a < 1 and for all sufficiently large n. Then w is not Mises—Church
random.

ProoOF. For every n we can compute the list A, for all n-bit strings « such
that k(z) < an. This list contains at most 2¢"+9(1) strings, and for all sufficiently
large n the n-bit prefix of w is among them.

For these n the strategy constructed using our lemma (for the set A,) wins
at least (1 — a)n — O(1) dollars playing with the first n bits of w. Consider a
computable fast growing sequence of n; (we assume that n;_; /n; — 0}, and combine
the strategies for all A,, into one. In fact, the strategy for A,, will be used only
after n;_; (where the preceding one stops), but this is a negligible fraction of n;.
So the combined strategy is successful: Its gain on the first n bits exceeds en for
some fixed € and for infinitely many n. (Take € < 1 — a and n = n; for large 3.)

This is not possible for a Mises—Church random sequence (see Theorem 170 on
p. 267). O

Now we are prepared to prove Theorem 193.

PROOF. Following the same scheme, we consider the set A, of all n-bit strings
that have complexity at most an; it contains about 2®™ strings, including the prefix
of w. However, now we cannot compute the list of all elements of A,, we can only
enumerate it, and we never know whether all the elements appeared or not. So we
cannot use A, in the lemma. To overcome this problem, we use non-monotonic
selection rules.

Again, we need to select a fast growing sequence n;, for example, n; = 3!, and
cut the sequence into pieces of size n; — n;—;. Increasing «, we may assume that
the complexity of the ith piece is at most o times its length, so the complexity
per letter is at most . Let A; be the set of all strings of length n; — n;—; where
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complexity per letter is at most . We know that the ith piece of w (we denote it
by w; in the sequel) is in A;, and we can enumerate A; given . (The problem is
that we cannot compute A; as a list of strings.)

Let £; be the number of steps of the enumeration of A; that are needed for w;
to appear. Let us group the values of 7 into pairs and compare the values ta,, and
tomy1- Trivially, either to, < tomyy OF fome1 < ta2m (or both). How does this help?
We can now construct two strategies: One reads ws,, not making any bets, then
waits until we,, appears in Aas,, thus finding t9,,, and then makes the same number
of steps enumerating As,,,+1 and uses the discovered part of Agp,y) to construct a
gambling strategy (in the hope that wam41 is already discovered). This works only
if tam 2 tom41, otherwise we may lose all bets. But then the symmetric strategy
(the one that reads wom+1) waits until womy) appears in A4y and makes the
same number of steps enumerating As,, will win.

So for every sufficiently large m we have a pair of strategies (that makes bets
in [—1,1]) and we know that at least one of them is successful (it wins at least
1 — a per bet). Omitting small m, we can combine them into two strategies in the
infinite game. One of them is monotone, and we may (as we did in Theorem 170)
approximate it by an average of finitely many selection rules. The number of the
selection rules depends on the required precision; we need the error to be small
compared to 1 — «, and this can be achieved by a fixed (=not depending on m)
number of Church admissible selection rules. We denote this number by N. The
other strategy is not monotonic, and we get N Kolmogorov-Loveland admissible
selection rules. In total we get 2N selection rules.

Recall that n;_;/n; is small; we note that the frequency deviation for some m
cannot be compensated by any behavior for previous m. So for each m at least
one of 2N selection rules leads to a significant deviation. Therefore, there exists
one rule that leads to a significant deviation for infinitely many m, and w is not
Mises-Kolmogorov-Loveland random.

Theorem 193 is proven, O

Together with Theorem 189 we get the following corollary:

THEOREM 195. There exist Mises—Church-Daley random sequences that are
not Mises-Kolmogorov-Loveland random.

There is a natural question related to Theorem 193: Is there some finite coun-
terpart for this result? Assume that we know that the complexity of some (finite)
string z is small. Is there a non-monotonic selection rule of small complexity that
selects from x some unbalanced sequence? Of course, the exact statement of this
type should include several parameters: the length n of the strings, its randomness
deficiency d, the complexity of the selection rule (with n as a condition), and the
required imbalance in the selected subsequence. In [53] the following result in this
direction is proven: There exists a selection rule of complexity O(log(n/d)) (with
n as a condition) that selects a subsequence where the number of ones and zeros
differ at least by Q(n/log(n/d)). In particular, if the randomness deficiency is pro-
portional to n (as in Theorem 193), then the complexity of the selection rule is
bounded, and the imbalance is proportional to the length.
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9.13. Change in the measure and randomness

In this section we describe a tool (suggested by M. van Lambalgen) that allows
us to construct Mises—-Kolmogorov-Loveland random sequences with pathological
properties (not ML-random, with more ones that zeros in prefixes, etc.).

9.13.1. Randomness with respect to two measures. Let us start with a
question that is interesting in itself: Imagine that we change slightly the measure.
What happens with the class of random sequences (with respect to this measure)?

Here are two examples of opposite types.

EXAMPLE 1. Let u be the uniform Bernoulli measure p = B,/;. Consider
another measure y’ that has independent trials with success probability 1/2 in all
trials except the first one where the success probability is (for example) 2/3. It is
intuitively clear that the same sequences should be random with respect to both
measures (for all reasonable notions of randomness): only the first trial is different,
and in both cases both outcomes are possible (though the probabilities are not the
same). Indeed, this happens for Martin-Lof randomness: The effectively null sets
are the same (because for every set its u-measure and p’-measure differs at most
by a factor of 2).

Show the same result using the complexity criterion for randomness.

Show that the class of computably random sequences for these two mea-
sures is the same.

ExAMPLE 2. Consider the uniform Bernoulli measure B, /5 and also some other
Bernoulli measure, say Bj/3. Is it possible that some sequence is ML-random with
respect to both of them? No, because for a random sequence with respect to
Bernoulli measure B, the limit frequency is p, so it cannot be both 1/2 and 2/3 at
the same time.

So we come to the following question: Imagine that two sequences of reals
pi,0; € (0,1) are given. Consider the measures for independent trials with prob-
abilities p; (call it ) and p} (call it u’). What can be said about the classes of
ML-random sequences with respect to these two measures? Our examples suggest
that if p; and p; are close to each other, then these classes should coincide, and if
p; and pj differ significantly, these classes should be disjoint.

Let us prove that this is indeed the case, assuming that p; and p] are separated
from 0 and 1, i.e., all belong to (g,1 — €) for some positive e. We also assume
that p; and p) are computable sequences of computable real numbers (we need the
measures to be computable; otherwise, Martin-L6f randomness is not well defined).

V. Vovk proved the following result [207] which is a constructive version of the
classical Kakutani’s theorem:

THEOREM 196. (a) If the sum > (p; — p})? is finite, then the classes of ML-
random sequences with respect to u and ' coincide.
(b) If the sum > (p; — pi)? is infinite, these classes are disjoint.

The classical version of this result [70] says that in the first case the classes of
null sets coincide, and in the second case the measures are orthogonal, i.e., there
exists a set that has probability 0 with respect to one measure and probability 1
with respect to the other.
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PROOF. Let us first try the following naive approach to (a). Assume that
w € Q is random with respect to p (that corresponds to probabilities p;). Then
the (monotone) complexity of its n-bit prefix is close to a negated logarithm of the
measure of the corresponding interval, which equals

n—1

H Tiy

i=0
where r; = p; if w; =1 and r; =1 —p; if w; = 0. If p; is close to pf, then r; is
close to 7} (defined in the similar way as r;, but for the other measure). So the
product of all r; is close to the product of all 7}; thus, randomness with respect to
one measure implies randomness with respect to the other.

All this is indeed true and can be formalized easily, but for this argument we
need to know that the sum

|
—-

n—1 n

(+) > (~logri) = ) (~logr})

i=0 i

Il
o

is bounded; this is indeed true if Y |p; — p}| < oo (recall that we assume that p;
and p} are separated from 0 and 1). But this is a much stronger assumption than
the one we have—we know only that the sum of squares is bounded.

How can we improve this argument? Note that it is enough for us if the
difference (*) is bounded for every random with respect to i sequence. Let us see
why this happens. Indeed, if w is random with respect to u, then

n—1

KM(wo - wno) =Y _(~logr;) + O(1).
i=0
Since the complexity and the negated l