
HAL Id: lirmm-01819290
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01819290

Submitted on 20 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Point Pattern Search in Big Data
Fabio Porto, Joao Guilherme Rittmeyer, Eduardo Ogasawara, Alberto

Krone-Martins, Patrick Valduriez, Dennis Shasha

To cite this version:
Fabio Porto, Joao Guilherme Rittmeyer, Eduardo Ogasawara, Alberto Krone-Martins, Patrick Val-
duriez, et al.. Point Pattern Search in Big Data. SSDBM: Scientific and Statistical Database Man-
agement, Jul 2018, Bozen-Bolzano, Italy. pp.#21, �10.1145/3221269.3221294�. �lirmm-01819290�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01819290
https://hal.archives-ouvertes.fr

Point Pattern Search in Big Data
Fabio Porto

LNCC, DEXL Lab

Petropolis, Rio de Janeiro, Brazil

fporto@lncc.br

João N. Rittmeyer

LNCC, Dexl Lab

Petropolis, Rio de Janeiro, Brazil

joaonr@lncc.br

Eduardo Ogasawara

CEFET-RJ

Rio de Janeiro, Brazil

eogasawara@ieee.org

Alberto Krone-Martins

University of Lisboa

Lisbon, Portugal

algol@sim.ul.pt

Patrick Valduriez

Inria, LIRMM, Computational Biology

Institute and University of

Montpellier, France

patrick.valduriez@inria.fr

Dennis Shasha

New York University

New York, USA

shasha@courant.nyu.edu

ABSTRACT
Consider a set of points P in space with at least some of the pairwise

distances specified. Given this set P, consider the following three

kinds of queries against a database D of points : (i) pure constel-

lation query: find all sets S in D of size |P| that exactly match the

pairwise distances within P up to an additive error ϵ ; (ii) isotropic
constellation queries: find all sets S in D of size |P| such that there

exists some scale factor f for which the distances between pairs in

S exactly match f times the distances between corresponding pairs

of P up to an additive ϵ ; (iii) non-isotropic constellation queries: find
all sets S in D of size |P| such that there exists some scale factor f and
for at least some pairs of points, a maximum stretch factormi, j > 1

such that (f ×mi, j×dist(pi,pj))+ϵ > dist(si,sj) >(f × dist(pi,pj)) -
ϵ . Finding matches to such queries has applications to spatial data

in astronomical, seismic, and any domain in which (approximate,

scale-independent) geometrical matching is required. Answering

the isotropic and non-isotropic queries is challenging because scale

factors and stretch factors may take any of an infinite number

of values. This paper proposes practically efficient sequential and

distributed algorithms for pure, isotropic, and non-isotropic constel-

lation queries. As far as we know, this is the first work to address

isotropic and non-isotropic queries.

CCS CONCEPTS
• Information systems→ Information systems applications;
Information retrieval query processing; Decision support sys-
tems;

KEYWORDS
Point set Registration; Geometrical Patterns, Spatial Patterns; Pat-

tern Search; Isotropic; Big Data; Distance Matching

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6505-5/18/07. . . $15.00

https://doi.org/10.1145/3221269.3221294

ACM Reference Format:
Fabio Porto, João N. Rittmeyer, Eduardo Ogasawara, Alberto Krone-Martins,

Patrick Valduriez, and Dennis Shasha. 2018. Point Pattern Search in Big

Data. In SSDBM ’18: 30th International Conference on Scientific and Statistical
Database Management, July 9–11, 2018, Bozen-Bolzano, Italy,Michael Bohlen,

Johann Gamper, and Dimitris Sacharidis (Eds.). ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3221269.3221294

1 INTRODUCTION
Finding collections of objects having some metric relationship of

interest to one another hasmany applications in astronomy, geology

and design applications such as architecture and town planning,

to name a few. The problem has different names depending on the

discipline, including Object Identification [19], Graph Queries [22],
Point Set Registration [12, 20] and, in general, Pattern Recognition [4].
When the goal is to find just one matching set of points to a given

pattern set of points, the problem is called point set registration
and includes problems such as finding submarines in a sonar noise

cloud and aligning images of stars [12, 20]. By contrast, this paper

focuses on methods that match a pattern to all subsets of points
in a database at different scales and with different stretch factors

within an additive error.

Consider the following use case: given the points describing a

known pattern, say a hexagon, find sets of stars that form a hexagon

at all scales allowing additive noise.

Figure 1: Can we find all matching sets of stars having this
hexagonal shape no matter what the scale and allowing an
additive error?

Extracting such point patterns or constellations from large datasets

entails matching a pattern query to sets of points, such that each

set obeys the geometric constraints expressed by the pattern query

according to some matching criterion. We consider three matching

criteria in order of increasing generality. We begin with a discus-

sion of pure constellation queries in which responsive sets of points

must match the pattern distances exactly up to an additive factor.

https://doi.org/10.1145/3221269.3221294
https://doi.org/10.1145/3221269.3221294

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy F. Porto et al.

This is very similar to point set registration. The paper then shows

how to extend pure constellation queries to isotropic queries in
which responsive points match the pattern up to an arbitrary scale

factor and an additive error factor. Finally, the paper discusses non-
isotropic constellation queries in which at least a subset of distances

can be stretched up to a certain point. Our running example will

come from astronomy, but the algorithms are generally applicable.

Our contributions are:

(1) Constructing algorithms to answer isotropic queries even

though scale factors can take on any value.

(2) Extending isotropic query algorithms to the non-isotropic

setting where, in addition, stretch factors can take any value

from 1 to some user-specified maximum.

(3) Exploring a space of algorithmic trade-offs under a Spark

distributed implementation.

The remainder of this paper is organized as follows. Section 2

formalizes the problem of answering general constellation queries.

Next, in section 3, we introduce algorithms for Pure Constellations.
In section 4, we show how to extend pure constellation queries

to isotropic and non-isotropic queries. That section presents our

major algorithmic innovations. In section 5, a thorough experimen-

tal evaluation explores the problem parameter space based on a

distributed implementation of all algorithms using Apache Spark.

Section 6 highlights related work. Finally, section 7 concludes.

2 PROBLEM FORMULATION
A Dataset D is defined as a set of elements having coordinates in

some n-dimensional space.

A constellation pattern Qk = {q1,q2, . . . ,qk } is (i) a set of k
elements at certain locations and an additive error factor ϵ .

As introduced informally above, we define three kinds of constel-

lation queries, in increasing levels of generality: (i) pure constella-

tion; (ii) isotropic constellation, and (iii) non-isotropic constellation.

Solutions to pure constellation queries consist of sets of k elements

whose pairwise distances exactly match those of the query up to

an additive ϵ . A set s1, ..., sk of elements of length k in D purely
matches query pattern Q = p1, ...,pk if, for all i and j between

1 and k, dist(si , sj)=(dist(pi ,pj))±ϵ . Because the match depends

only on distances, pure constellation queries are translation- and

rotation-invariant.

Isotropic constellation queries admit any solution equal (up to an

additive factor) to the original query but where distances can all be

multiplied by a single scale factor that can take an arbitrary value. A

set s = s1, ... , sk elements inD isotropically matches queryQ if there

exists a scale factor f such that for every i, j ≤ k , dist(si , sj)=f ×
(dist(pi ,pj))±ϵ . The challenge is to find every match even though

f can take any arbitrary value.

Finally, non-isotropic constellation queries admit controlled de-

formations at one or more pairwise distances. That is, a set s =
s1, ... , sk in D non-isotropically matches a query pattern Q = p1,
..., pk if there is some scale factor f and some set of stretch factor

modifiersmi, j ≥ 1 such that dist(si , sj) is within (f × dist(pi , pj))
- ϵ and (f ×mi, j × dist(pi , pj)) + ϵ . The additional challenge here
is that each stretch factor for each pair i and j can also take an

arbitrary value between one andmi, j . Again, we want to find all

such matches for every f and every stretch factor up tomi, j .

Figure 2: Geometric pattern query a, assuming zero additive
error for purposes of illustration: b is a pure constellation
query solution forming a rotated square, c is an isotropic
constellation query solution forming a larger square, and d
is a non-isotropic constellation query solution (a square can
match one of a constrained but infinite set of quadrilaterals).

Figures 2.b, 2.c, and 2.d depict different kinds of Constellation

Queries expressed by Figure 2.a. In Figure 2.b, a pure constellation

solution offers the same distances among stars, with the constella-

tion slightly rotated in its center. Solution of Figure 2.c is isotropic

concerning the query, whereas the solution of Figure 2.d is a trape-

zoid, reflecting a stretch to three sides, forming a non-isotropic

solution. When noise is present, even pure constellation queries

may cause a square query, as in this example, to match non-square

constellations.

This paper first shows how to process pure constellation queries,

because such queries are the simplest to process and because our

algorithms for processing isotropic and non-isotropic queries gen-

eralize the algorithm for pure constellation queries.

3 PURE CONSTELLATION QUERIES
Answering pure constellation queries on astronomical data requires

efficient query processing techniques as the catalog may hold bil-

lions of sky objects. The SDSS data release 14, for instance, holds

approximately 1.3 billion objects, which would lead to the evalu-

ation of roughly
1.3B4

4!
= 1.2 · 1035 candidate sets for a query of

size 4. (Note that the solution set size could in fact be of that order

of magnitude. For example, 1/4 of the stars could be at each of the

four corners of a square.) Point set registration algorithms, such

as Iterative Closest Point (ICP) can do this in O(n ∗m) time, where

n is the number of elements in the query and m is the size of the

dataset. However, ICP requires the two sets of points to be roughly

of the same size and near one another, which is too restrictive for

point pattern search. Thus, to render the problem computationally

tractable, when

(|D |
k
)
is big, our strategy to process pure constella-

tion queries involves three main techniques. First, we use a quadtree

Point Pattern Search in Big Data SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

to retrieve stars at most at a max-distance from each star. Second,

we use query element properties (like brightness and frequency

in the astronomical context) to constrain sets of candidate neigh-

bors. Third, for each star and its candidate neighbors, we solve a

k-1 spatial star join combined with a bucketed k-2 spatial join. For

example, to look for a triangle having side lengths L1, L2, and L3,

we want to find points a, b, c such that the distance between a and

b is of distance L1 (±ϵ), between b and c is of distance L2 (±ϵ), and
the distance between c and a is L3 (±ϵ).

The next sections describe the query processing techniques in

detail.

3.1 Data Partitioning
Answering pure constellation queries involves matching each star

in the catalog against all neighboring stars at appropriate distances

based on the query, a costly procedure in large catalogs. To reduce

this cost and make the deployment on Spark more efficient, we par-

tition the dataset off-line in a pre-processing step. Data partitioning

applies an equi-depth histogram [14] based algorithm on one of the

spatial dimensions.

The output of the partitioning procedure splits the dataset into

p primary partitions. In the astronomy case this will yield rings

around the earth. Each primary partition is extended with a neigh-

borhood set containing objects in the two neighboring partitions

at most a max-distance from the borders. Max-distance represents

the maximum radius from the anchor (intuitively, the median cen-

troid) of any query of interest. For astronomy, max distance has

been defined as 5, 10 and 15 arcsecs (0.0041 degrees), based on feed-

back from astronomers. The minimum width of each partition is

max-distance plus the error bound, so that any star in the primary

partition that potentially maps to the anchor of the query will find

all relevant stars in the primary partition itself or in one or both of

the two neighboring partitions.

Partitioning enables the parallelization of the search procedure

as all stars of one partition can be tested as matches to the query

anchor in parallel with all stars of other partitions.

3.2 Indexing Data Spaces
Our method parallelizes across partitions, so we explain what hap-

pens within each partition. The data space in a partition includes a

primary and two neighboring partitions (for the two-dimensional

case). To reduce search time, we build a quadtree index [17] cov-

ering the complete data space of a partition. (Thus, quadtrees of

neighboring partitions will include some of the same stars.) The

quadtree construction process builds a tree such that leaf nodes

maintain the following property: any two stars covered in a leaf

node quadrant do not both appear in a solution. This is achieved

by specifying the tree height as a function of the shortest distance

among elements of the query.

Expanding on the intuition above, the anchor of a query is a

point in the query whose maximum distance to any other point in

the query is minimal. If there are several such points, any one will

do.

Now for each leaf L of the quadtree (different leaves can be

treated in parallel), find all the other leaves that could possibly have

relevant stars based on the size of L and the maximum distance from

the anchor to any other point in the pattern query. Now consider

each star in L as a potential match to the query anchor.

3.3 Filtering Step
The neighborhood filtering step is illustrated in Figure 3, in (a) a

query Q has an anchor element q0, and the max-distance corre-

sponds to the largest distance ρ to the remaining query elements

d0,2. In (b), a star from the current leaf L (which we will call an

anchor representative) is picked as a potential match to the an-

chor, and all neighboring stars within distance d0,2 + ϵ . These are
preliminary candidates for distance matching.

Figure 3: (a) Pure constellation query with anchor andmaxi-
mum distance (b) Neighboring elements of anchor represen-
tative

3.4 K-1 Spatial Join
As noted above, the query anchor q0 is the point closest to all

points in the query (whose maximum distance to another point in

the query is minimum). Thus, for each pattern element qi ,i , 0, we

determine whether the distance between a neighbor star s ′ to the

anchor representative s is dist(q0, qi) ± an additive factor of ϵ . If
so, s ′ is placed in bucket bi , for 1 ≤ i ≤ k − 1. Note that s ′ may be

placed in several buckets.

3.5 Composition algorithms
Recall that each bucket i holds the set of stars whose distance from
the candidate anchor star s is equal (±ϵ) to the distance between

the query anchor and star i of the query.

3.5.1 Spatial Bucket Join. The most straightforward way to find

star sets that match the pattern is by directly joining the buckets of

candidate elements based on the corresponding pairwise distances

between query elements. Fortunately, this works well. In order

to form a candidate solution, each bucket is viewed as a relation,

having as a schema each candidate star’s spatial coordinates and

id, Bi (starid, ra,dec). A solution is obtained whenever a tuple is

produced having one neighbor element from each bucket, such that

the distances between each element in the solution distance-match
those among respective query elements, ±ϵ . Bucket_S J performs

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy F. Porto et al.

a spatial nested loop algorithm to traverse the buckets of candi-

date elements and checks for distance predicates. Specifically, the

distance-match constraint corresponds to applying a cyclic join

among all buckets in the bucket set followed by a filter among

non-neighbors in the cycle. For example, Bucket_S J would find

pairs (t1, t2) where t1 is from Bi with and t2 from Bi+1 if dist(t1, t2)
is within dist(pi , pi+1) ±ϵ . Then given these pairs for buckets 1 and

2, buckets 2 and 3, buckets 3 and 4, etc, Bucket_S J will join these

cyclically. Then for any k-tuple of stars s1, s2, ..., sk that survive the

join, Bucket_S J will also check the distances of non-neighboring

stars (e.g., check that dist(s2,s5) = dist(p2, p5) ±ϵ).
A filter join algorithm using matrix multiplication has been

studied elsewhere [16] and sometimes helps. We leave it out here

because this paper focusses on general constellation queries which

come up in the next section.

3.6 Algorithm for Pure Constellation Queries
3.6.1 Main Algorithm. The Pure Constellation Query algorithm

consists of five steps. It receives as input a pattern query q, a data
partition p, element predicate fe , similarity threshold θ , and error-

bound ϵ .
i) Build a quadtree qt on stars at each partition pi ∈ p, according

to 3.1. (This could be done once if there are to be many queries to

process.)

ii) For each leaf L of quadtree qt , find the relevant neighboring

leaves based on the maximum length from the anchor in the query

pattern to any other point of the query pattern.

iii) Each star s in L is a candidate to match the anchor node of

the pattern.

iv) For each neighboring star s ′ to s , determine whether its dis-

tance to s , dist(s, s ′), matches within an additive ϵ the distance from
the anchor point in the query to some other pattern element pi . In
that case, put s ′ into bucket i . As noted above, a given star s ′ could
be put into several buckets.

v) Apply spatial bucket join to evaluate match stars in different

buckets.

Once steps i) through v) have been executed, a set of collections

of stars conforming to the pattern query have been detected.

4 GENERAL CONSTELLATION QUERIES
In this section, we show how to extend pure constellation queries

to isotropic, and non-isotropic queries. Pure constellation queries

specify both the properties and the distances of a pattern and require

any matching sequence of stars to match the distances ± an error

ϵ . Essentially then, pure constellation queries find star collections

that match a pattern, allowing rotation and translation.

Isotropic constellation queries find star collections that match a

pattern, allowing rotation, translation, and linear (isotropic) scaling.

Ignoring the error for a moment, a square pattern will scale to a

large square in the sky. Formally, isotropic constellation queries

allow s1, ..., sk to match a pattern p1, ...,pk if there is some scale

factor f such that, for all i and j between 1 and k, dist(si , sj) is
within (f × dist(pi , pj)) ±ϵ .

Non-Isotropic constellation queries find star collections that match

a pattern, allowing rotation, translation, and skewed scaling. That is,

some distances may be scaled differently than others. For example,

again ignoring the error, a square pattern in which one side could

expand or contract could match a trapezoid.

4.1 Isotropic Constellation Queries
Because the scale f can take on any real value in isotropic con-

stellation queries, the challenge is to find a sufficient discrete set

of scale factors that will mimic trying the uncountable infinity of

possible scale values of f and to do so efficiently.

Running Example (Isotropic Case): An example will illustrate the

issues and point towards a solution. Suppose the search is for an

equilateral triangle consisting of pattern points p1, p2, p3. Since this
is an equilateral triangle, all intra-pattern distances are the same.

So, we can set the maximum intra-pattern element distance to 1

without loss of generality. Suppose the additive error term ϵ has

the value 2. If stars s1, s2, s3 have the following pairwise distances
dist(s1, s2) = 8, dist(s1, s3) = 12, dist(s2,s3) = 12, then our algorithm

might match p1 and p2 to s1 and s2. As a consequence, a naive

algorithm might try to set the scale factor to dist(s1,s2)/dist(p1,p2),
which is 8. In fact, however, a scale factor of 8 will not work because

of the length 12 sides. Instead, we would want a scale factor f of

10, even though no two stars are at a distance 10 of one another.

So our algorithm has to discover f . We discuss how this happens

below.

Our method starts by choosing two stars s1 and s2 and setting

a candidate scale factor called scalebasic to dist(s1, s2)/dist(p1, p2).
The following conditions express constraints on any final scale

factor f that maps s1 and s2 to p1 and p2. (As the pattern distances

are all relative, in the sequel, we set dist(p1, p2) to be 1, without loss
of generality. This simplifies the notation.)

isotropic f condition: If dist(p1,p2) = 1 and scalebasic = dist(s1,
s2)/dist(p1,p2), let f range from aminimumvalue fmin = scalebasic−
ϵ to a maximum value fmax = scalebasic + ϵ . The scale factor f
will have to lie between these two values.

isotropic acceptable lengths: For pattern points pi , pj , the
acceptable length for a corresponding pair of stars si and sj must

fall between (fmin×dist(pi ,pj)) −ϵ and (fmax×dist(pi ,pj))+ϵ .
It will turn out that these two conditions will allow us to find

all collections of stars that match the pattern collection up to any

scale factor f and additive error ϵ and will allow us to specify f .

4.1.1 Isotropic ConstellationQuery Algorithm. Our algorithm
consists of six steps, starting from a pattern of k locations and

an additive error bound ϵ . The query may have other constraints

too, such as a minimum or maximum possible scale factor. Other

constraints may have to do with non-spatial attributes. Collectively,

we call these constraints C .
i) find the most distant pair of pattern points in the query, which

we will denote as p1 and p2, and set their distance, without loss of

generality, to be 1.

ii) For every pair of stars that satisfy constraints C , call them s1
and s2, set a scale factor scalebasic to be sb = dist(s1,s2)/dist(p1,p2).
Thus s1 and s2 will be candidate stars to match p1 and p2. Compute

fmin and fmax according to the isotropic f condition.
iii) include a candidate star s as a possible match to pattern

point pj (for j , 1 or 2), if dist(s1, s) and dist(s2, s) conform to the

isotropic acceptable lengths condition with respect to dist(p1,
pj) and dist(p2, pj). All such stars s would go into bucket Bj .

Point Pattern Search in Big Data SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

iv) Bucket B1 consists of just s1 and bucket B2 consists of just s2.
All other buckets are calculated as in step iii.

v) Perform a k-1 Spatial join as in the pure constellation query

algorithm.

vi) Post-processing: Any sequence of matching stars has to be

validated concerning an error bound of ϵ as explained below.

4.1.2 Theory and Explanation. Given an additive error bound

of ϵ , our initial search effectively uses an error bound of 2ϵ . Our
running example to find an equilateral triangle shows why this

might be useful.

Application of first steps to our Running Example (Isotropic Case)
In our example, the additive error term ϵ = 2 and stars s1, s2, s3
have the following pairwise distances dist(s1, s2) = 8, dist(s1, s3) =
12, dist(s2,s3) = 12. Our algorithmmight match p1 andp2 to s1 and s2
and set the variable scalebasic to sb = dist(s1,s2)/dist(p1,p2), which
is 8. Because fmin= 6 and fmax= 10 according to the isotropic
f condition, the minimum and maximum side lengths can range

from 4 to 12 based on the isotropic acceptable lengths condition.
So, s3 would also be considered a match up to step vi. The post-

processing (to be described below) step shows in fact that s1, s2, and
s3 are a good match with an error bound of ϵ using a scale factor
of 10. So steps i through v avoid false negatives.

Steps i through v may however find star combinations that are

false positives. Step vi (post-processing) discards those. For true

positives, step vi finds a possible scale factor f . Here is how. For each
i, j such that 1 ≤ i, j ≤ k , determine the minimum and maximum

scale factorminscalei, j andmaxscalei, j such that:

dist(si , sj) = (minscalei, j× dist(pi , pj)) + ϵ ,
dist(si , sj) = (maxscalei, j×dist(pi,pj)) - ϵ .

Let the maximum of the minimum scales be denoted MaxMin

and the minimum of the maximum scales be denoted MinMax. If

MaxMin ≤MinMax, then any valuev in the range betweenMaxMin

and MinMax will be a satisfying scale factor provided it satisfies the

isotropic f condition, i.e., that value v is within ϵ of scalebasic .
Otherwise there is no satisfying scale factor and the candidate

solution is a false positive, so is discarded.

Running Example Shows How Step vi Generates a Scale Factor,
if At Least One Exists: We are looking for an equilateral triangle

(so dist(p1,p2) = dist(p2,p3) = dist(p3, p1) = 1) and ϵ = 2. If s1, s2,
s3 have the following pairwise distances dist(s1, s2) = 8, dist(s1,
s3) = 12, dist(s2,s3) = 12, then minscale1,2 = 6, maxscale1,2 =
10, minscale1,3 = 10, maxscale1,3 = 14, minscale2,3 = 10, and

maxscale2,3 = 14. So MaxMin = 10 and MinMax = 10, so f = 10

would work as a scale factor and, in this example, it is the only such

possibility.

Variation of Running Example Showing Elimination of False Pos-
itives: By contrast, if we are still looking for the same equilateral

triangle and ϵ = 2 and we have dist(s1,s2) = 6, dist(s2,s3) = 10,

dist(s3, s1) = 14, then in steps i through v, s1, s2, s3 would corre-

spond to p1, p2, p3 when using a scalebasic value of 10. But step vi

would yieldminscale1,2 = 4,maxscale1,2 = 8,minscale2,3 = 8,

maxscale2,3 = 12, minscale1,3 = 12, and maxscale1,3 = 16. So

MaxMin = 12 and MinMax = 8, thus MaxMin ≤ MinMax fails to

hold. Therefore, the post-processing step would determine that s1,

s2, s3 do not match the pattern.

We are now ready to formalize our guarantees. The first lemma

shows that any matching solution will be found in the first five

steps of the algorithm. Lemma 2 will show that the post-processing

step keeps only the valid solutions.

Lemma 4.1 (no false negatives). : Suppose thatp1 andp2 are the
most distant of the pattern points and dist(p1,p2) = 1. Suppose further
there is some matching sequence of stars s1, s2, s3, ..., sk corresponding
to a pattern p1, p2, ..., pk based on some scale factor f and additive
error tolerance ϵ . Then s1, s2, s3, ..., sk will be found to correspond to
p1, p2, ..., pk using a scale factor of scalebasic = dist(s1,s2)/dist(p1,p2)
using steps i to v above.

Proof. (a) The scale factor f must allow s1 and s2 to match p1
and p2. Because dist(s1,s2)/dist(p1,p2) = scalebasic, the construction

of f requires that (f × dist(p1,p2))−ϵ ≤ dist(s1,s2) = (scalebasic ×
dist(p1,p2)) ≤ (f × dist(p1,p2)) + ϵ . Because dist(p1,p2) = 1 by con-

struction, this implies that f must be constrained in step iii of the

algorithm as follows: scalebasic − ϵ ≤ f ≤ scalebasic+ϵ . The first
term is fmin and the third term is fmax of the isotropic f condi-
tion. Therefore f lies between the fmin and fmax computed in

step ii.

(b) Consider any distance dist(si , sj). Because si and sj match pi
and pj by assumption for scale factor f , (f × dist(pi , pj) - ϵ ≤ dist(si ,
sj) ≤ (f × dist(pi , pj)) + ϵ . Because f falls between fmin and fmax
by (a), dist(si ,sj) will fall within the isotropic acceptable length
computed in step (iii). Because this holds for all i, j, the stars s1, s2,
... sk will be found to match p1, ..., pk in steps i through v. QED □

Lemma 4.2 (No false positives). Post-processing step vi as de-
scribed in the paragraph above correctly determines whether S corre-
sponds to P based on a ϵ tolerance.

Proof. By construction, the minscale and maxscale values are

the minimum and maximum possible scale factors for each pair

i, j. Any single scale factor f that lies between the minimum and

maximum possible scale factors for all i,j will work provided it

conforms to the isotropic f condition. If there is no such scale

factor, then none can work. QED. □

Theorem 4.3 (Isotropic ConstellationQuery Theorem). The
isotropic constellation algorithm finds all matches of any arbitrary
pattern for a given error tolerance ϵ .

Proof. Lemma 1 tells us that any sequence of stars that matches

the pattern based on some scale factor f will be found by steps (i)

through (v). Lemma 2 tells us that any sequence of stars found by (i)

through (v) and verified by step (vi) will be correct for the specified

error tolerance ϵ . QED. □

4.1.3 Scale-dependent Error Tolerance for Isotropic Queries. For
some applications, it would be more natural for the error toler-

ance ϵ to increase monotonically with the scale factor. For example,

the error bound ϵ might increase linearly with the scale factor

(e.g., e × scale for e < 1). In such a case, steps (i) through (v)

would set the ϵ to be e × f for the maximum value of f which

is scalebasic+ϵ . So, steps (i) through (v) would set the ϵ to be

e×(scalebasic+ϵ)= (e×scalebasic)+(e×ϵ). Rearranging terms, we

get ϵ = e × scalebasic/(1 − e). For example, if ϵ = 0.1 × scale and
scalebasic = 10, then for purposes of steps (i) through (vi) set ϵ to

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy F. Porto et al.

be 0.1 × 10/0.9 = 1.11111..., so twice ϵ is 2.2222.... The goal again
is to avoid false negatives, even when we don’t know what f could

be exactly.

For an example in which ϵ is not constant: suppose e = 0.2 and we
are looking for an equilateral triangle and dist(s1, s2) = 8, dist(s1, s3)
= 12, dist(s2,s3) = 12. Thenminscale1,2 = 8/1.2 = 6.7,maxscale1,2 =
10, minscale1,3 = 10, maxscale1,3 = 15, minscale2,3 = 10, and

maxscale2,3 = 15. (To see how these calculations work, consider the

computation ofminscale1,2. We know thatminscale1,2×(1+e) = 8,

so minscale1,2 = 6 2/3. Similarly, maxscale2,3 × (1 − e) = 12, so

maxscale2,3 = 12/0.8 = 15.) Thus, MaxMin = 10 and MinMax = 10

and s1, s2, s3 would match.

4.2 Non-isotropic Constellation Queries
Recall again that pure constellation queries find collections of stars

that match a pattern, allowing rotation and translation. Isotropic

constellation queries find collections of stars that match a pattern,

allowing rotation, translation, and linear (isotropic) scaling. Non-

isotropic queries find collection of stars that match a pattern, allow-

ing rotation, translation, and non-linear (skewed) scaling. Formally,

general non-isotropic constellation queries allow s1, ... , sk to match

a pattern p1, ..., pk if there is some scale factor f and some set of

scale factor "stretching" modifiersmi, j > 1 such that dist(si , sj) is
within (f × dist(pi , pj)) - ϵ and (f ×mi, j × dist(pi , pj)) + ϵ . Thus
mi, j is the maximum proportional “stretch” to the scale factor for

the connection between i and j. For example, the distance between

A and B could be 1.1 × f .
In contrast to the isotropic case, the scale factor for different

pairs of pattern points may differ. That is, the isotropic case is a

special case in which allmi, j equal 1. The challenge, again, is to

find a sufficient discrete set that will mimic trying the infinity of

possible scale factors and values of stretch (e.g., between 1 and

mi, j), and to do so efficiently.

0.0060 0.0065 0.0070 0.0075 0.0080 0.0085 0.0090
+5.069e1

0.147

0.148

0.149

0.150

0.151

0.152
Scale 144.864649832

2
4
1
3

(a)

0.000038 0.000040 0.000042 0.000044 0.000046 0.000048 0.000050
+7.20745e1

−0.000080

−0.000075

−0.000070

−0.000065

−0.000060

−0.000055

−1.2168 Scale 0.727666309401
2
4
1
3

(b)

Figure 4: Four points matching an Einstein cross query
based on an isotropic formulation at scale 144.86 (a) and a
non-isotropic solution with deformation (b)

Running Example (non-Isotropic Case): Suppose the additive error
ϵ = 0.2. Suppose that the pattern to search for forms a square but

the sides and diagonals can individually extend to a 10% more than

the scale factor (i.e. for all i, j,mi, j = 1.1). Then stars at locations

(0,0), (0,11.2), (10,10) and (11.01,0) would meet the conditions.

For a second example, let’s say the pattern forms a rectangle

with the sides in a two-to-one ratio so that the longer sides can

extend 10% (mi, j = 1.1) but the shorter sides and diagonals can

extend 30% (mi, j = 1.3). Again, the additive error is ϵ = 0.2. If we

take a base side of (0,0) to (0,20), then the other base side could be

from (10,0) to (10,21.5). The result is not even a rectangle. In this

case, the longest side of the pattern is set to 1, so scalebasic is 20.

However there could be different values of f , which could be less

than or greater than scalebasic. For example, f could be as large as

20.2 or f could be as small as 18 (because (1 × 18 × 1.1)+0.2= 20. If

f = 20.2, then the short sides of the pattern could correspond to

star distances as great as length (0.5×20.2×1.3)+0.2= 13.33 or as

short as (0.5×18)−0.2 = 8.8.

Here are the general formulas. These directly generalize the

isotropic case (for whichmi, j = 1). Again, start by choosing two

stars s1 and s2 and set scalebasic to dist(s1, s2)/dist(p1, p2). Assume

again without loss of generality that dist(p1,p2) = 1.

non-isotropic f condition: f lies between a minimum value

fmin = (scalebasic − ϵ)/m1,2 and a maximum value fmax =

scalebasic+ϵ .
non-isotropic acceptable lengths: The acceptable length for

some other side i, j lies between (fmin×dist(pi,pj)) −ϵ and

(fmax×mi, j×dist(pi,pj))+ϵ .

4.2.1 Non-Isotropic ConstellationQuery Algorithm. Again, we
use a six-steps algorithm, given an additive error bound ϵ along

with stretch factorsmi, j .

i) Take as the base pair pi and pj if dist(pi ,pj)) is the maximum

over all i, j pairs. Without loss of generality, set i to 1 and j to 2 for

consistency with the isotropic approach above. Set dist(p1, p2) to 1.

Compute fmin and fmax based on the non-isotropic f condition.
ii) For every pair of stars that satisfy some constraintsC , call them

s1 and s2. Set a scale factor scalebasic to be dist(s1,s2)/dist(p1,p2).
This is exactly as in the isotropic case.

iii) For a candidate star s to correspond to pattern point pj (for
j , from 1 or 2), dist(s1, s) and dist(s2, s) should conform to non-
isotropic acceptable lengths concerning dist(p1, pj) and dist(p2,
pj). Such stars make up bucket Bj .

iv) (as for isotropic case) Bucket B1 consists of just s1 and bucket
B2 consists of just s2. All other buckets may consist of zero or more

stars based on each pattern point pj as calculated in step iii.

v) (as for isotropic case) Perform a Bucket Spatial join as in the

pure constellation query algorithm.

vi) Post-processing: Any sequence of matching stars has to be

validated concerning an error bound of ϵ and the stretch factors

mi, j . That means there has to be some f such that for all sides i, j,

(f × dist(pi ,pj)) −ϵ ≤ dist(si , sj) ≤ (f ×mi, j× dist(pi ,pj)) +ϵ , as
we discuss in the next subsection. So the intention is the same as

for the isotropic case, but the calculation changes because of the

stretch factors.

4.2.2 Theory.

Lemma 4.4 (No false negatives). : Suppose thatp1 andp2 are the
most distant of the pattern points and dist(p1,p2) = 1. Suppose further
there is some matching sequence of stars s1, s2, s3, ..., sk corresponding
to a pattern p1, p2, ..., pk based on some scale factor f , stretch factors
mi, j for i, j between 1 and k inclusive, and additive error tolerance

Point Pattern Search in Big Data SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

ϵ . Then s1, s2, s3, ..., sk will be found to correspond to p1, p2, ..., pk
with a scale factor scalebasic = dist(s1,s2)/dist(p1,p2) using steps i to v
above.

Proof. (a) The scale factor f must allow s1 and s2 to match p1
and p2. Because dist(s1,s2)/dist(p1,p2) = scalebasic , this constrains f
to satisfy (f × dist(p1,p2)) - ϵ ≤ dist(s1,s2)= (scalebasic× dist(p1,p2))
≤ (f × dist(p1,p2)×m1,2) + ϵ . Because dist(p1,p2) = 1 by construction,
this implies that (scalebasic−ϵ)/m1,2 ≤ f ≤ scalebasic +ϵ . The first
term is fmin and the third term is fmax of the non-isotropic f
condition. Therefore f lies within the limits of the fmin and fmax
computed in step i.

(b) Consider any distance dist(si , sj). Because si and sj match pi and
pj by assumption for scale factor f , (f × dist(pi , pj)) −ϵ ≤ dist(si , sj)
≤ (f ×mi, j × dist(pi , pj)) +ϵ . As f falls between fmin and fmax by

(a), dist(si ,sj) will fall within thenon-isotropic acceptable length
computed in step (iii). Because this holds for all i, j, the stars s1, s2,
s3, ..., sk will be found. QED □

4.2.3 Post-processing in the non-isotropic case. Inspired from

the post-processing step vi in the isotropic case, for each side i, j,

we find the minimum possible scale factor for each i,j and then the

maximum possible scale factor. Here is the minimum possible scale

factor for pair i, j, дi, j (min) = minд{(д×mi, j× dist(pi , pj)) +ϵ ≥
dist(si ,sj) }. So, дi, j (min) = (dist(si ,sj) −ϵ)/ (mi, j× dist(pi , pj)). Intu-
itively, the minimum possible scale factor is the one that stretches

pi to pj as much as possible and uses the additive ϵ error bound

to make dist(pi ,pj) reach dist(si ,sj). Conversely (but without the

stretch factor), дi, j (max) =maxд{(д× dist(pi , pj)) −ϵ ≤ dist(si , sj)}.
So дi, j (max) = (dist(si , sj) + ϵ) / dist(pi , pj).

Proceeding as for the isotropic case, let the maximum for all i, j of

theдi, j (min) be denotedMaxMin and theminimum of theдi, j (max)
be denoted MinMax. If MaxMin ≤ MinMax, then any value v in the

range betweenMaxMin andMinMax will be a satisfying scale factor

provided it satisfies the non-isotropic f condition, i.e., provided
it lies between (scalebasic − ϵ)/m1,2 and scalebasic+ϵ . Otherwise
there is no satisfying scale factor.

Applying Non-Isotropic Algorithm to Running Example: The pat-
tern forms a rectangle with the sides in a two-to-one ratio. The

longer sides can extend 10% (mi, j = 1.1) but the shorter sides and

diagonals can extend 30% (mi, j = 1.3). Again, the additive error

is ϵ = 0.2. Now consider stars s1, s2, s3, and s4 with these posi-

tions: s1: (0,0), s2: (0,20), s3: (10,0), s4: (10,21.5). Let scalebasic be
20. By the non-isotropic f condition, fmin = (20 − 0.2)/1.1 to

fmax =20+0.2. Ignoring the diagonals for simplicity,m1,2 = 1.1,

д1,2(max)= 20.2/1= 20.2, д1,2(min)= 19.8/(1 × 1.1)= 18.

m1,3 = 1.3, so д1,3(max)= 20.2. д1,3(min)= 19.8/(1 × 1.3)= 15.23.

m2,4 = 1.3, so д2,4(max)= 20.2. д2,4(min)= 15.23

m3,4 = 1.1, so д3,4(max)= 20.2. д3,4(min)= 18.

So MinMax is 20.2 and MaxMin is 18. Because fmax = 20.2 and

fmin = 18, the scale factor could be any value between 18 and 20.2

inclusive. For example, if f is 18, then for dist(p3,p4) to correspond

to dist(s3,s4), we must use the stretch factor: dist(s3, s4) = 11.5.

dist(p3,p4) = 0.5. Using the stretch factor of 1.3, (0.5×18×1.3)+0.2=
11.9, so the stretch factor is more than enough to compensate for

the small scale factor f = 18.

Lemma 4.5 (No false positives). Post-processing step vi as de-
scribed in this subsection above correctly determines whether S corre-
sponds to P based on an ϵ additive error and stretch factors.

Proof. Similar to the isotropic case

□

Theorem 4.6 (Non-Isotropic ConstellationQuery Theorem).

The non-isotropic constellation algorithm finds all matches of any
arbitrary pattern for a given error tolerance ϵ and stretch factorsmi, j
for all i, j in the pattern.

Proof. Lemma 3 tells us that for all scale factors f any sequence

of stars that matches the pattern based on f will be found by steps

(i) through (v). Lemma 4 tells us that any sequence of stars found

by (i) through (v) and verified by step (vi) will be correct for the

specified error tolerance ϵ and stretch factorsmi, j . QED. □

4.2.4 Scale-dependent Error Tolerance. As observed for the isotropic
case, it is sometimes more natural for an application that the error

tolerance ϵ increases monotonically with the scale factor. As before,

suppose that the error bound ϵ increases linearly with the scale

factor (e.g., e × scale for e < 1). Because the maximum scale factor

based on the non-isotropic f condition is fmax , steps (i) through

(v) would set the ϵ to be e × fmax=e×(scalebasic+ϵ)
= (e×scalebasic)+(e×ϵ). So ϵ = e × scalebasic/(1−e), just as in the

isotropic case.

4.2.5 Time Complexity of Our Algorithms. Assuming we have

all pairwise stars indexed by their distance, then given a starting

star, we can form the buckets in time proportional to the number k
of points in the pattern query times the number of points at those

distances +/- the additive error. So if there are a fraction д of the

S stars that are at that distance within the error bound, then the

time is k × д × S . And the time to do the join, while in the worst

case can be (д × S)(k−1) is in practice roughly proportional to д × S .

Thus, the time is proportional to O(S × (д × S)(k−1)) in the worst

case and O(S × k × д × S) in our experiments.

For isotropic queries, for each star, we must choose all possible

neighbors and then the query takes about the same amount of

time as in the pure case. So, O(S2 × (д × S)k) in the worst case and

O(S2 × k × д × S) practically.
For the non-isotropic queries, the joins will encounter many

more pairs, so, the time complexity will be closest to the worst case,

i.e. O(S2 × (д × S)k).

5 EXPERIMENTAL EVALUATION
This section first presents the experimental setup. Next, it assesses

the different components of our implementation for point pattern

search, to evaluate the scalability and feasibility of our algorithms.

5.1 Set Up
5.1.1 Dataset Configuration. The experiments focus on the Ein-

stein cross point pattern and are based on an astronomy catalog

dataset obtained from the Sloan Digital Sky Survey (SDSS), as well

as synthetic datasets. The SDSS catalog, published as part of the

data release DR14, was downloaded from the project website link

(http : //skyserver .sdss .orд/Cas Jobs/).

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy F. Porto et al.

We downloaded a projection of the dataset including attributes

(objID, ra,dec,u,д, r , i, z, erru , errд , errr , erri , errz). The extracted
dataset has a size of 189 GB containing around 1.3 billion sky objects.

The query to obtain this dataset was this one:

Select objID, ra, dec, u, g, r, i, z,err_u, err_g,err_r,err_i,

err_z

From PhotoObjAll into MyTable

From the downloaded dataset, some subsets were extracted to

produce datasets of different sizes. Additionally, to simulate very

dense regions of the sky, we built synthetic datasets with 1000,

5000, 10000, 15000, and 20000 stars. The synthetic dataset includes

millions of scaled solutions in a very dense region. Each solution

matches a base pattern using a scale factor chosen uniformly within

an interval s = [1.00000001, 1.0000009].

5.1.2 Calibration. We calibrated point pattern search techniques

using the SDSS dataset described above. The procedure aimed at

finding the Einstein Cross in the astronomy catalog, using the pro-

posed techniques for point pattern search. The techniques suc-

ceeded in spotting the structures we had seeded among billions of

candidates.

5.1.3 Computing Environment. The point pattern search pro-

cessing is implemented as an Apache Spark dataflow running on

a shared nothing cluster. The Petrus.lncc.br cluster is composed

of 10 DELL PE R530 servers running CENTOS v. 7.2, kernel ver-

sion 3.10.0327.13.1.el7.x86_64. Each cluster node includes two Intel
Xeon E5-2630 V3 2.4GHz processors, with twelve cores each, 96

GB of RAM, 20MB cache and two terabytes of hard disk. We are

running Hadoop/HDFS v2.7.3 [18], Spark v2.2, and Python v2.6.6.

Spark was configured with number of executors varying from 16

to 128 executors each running with 5GB of RAM and one core. The

driver module was configured with 80GB of RAM.

The first experiment considers a subset of the SDSS catalog with

20 million sky objects, obtained randomly from Query I results.

The second dataset considers dense synthetic data, as described

above. The datasets were ingested in HDFS sharded into partitions

as described in 3.1. In order to evaluate the effect of maximum scale

values, We loaded three replicas of the 20 million sky objects dataset.

The replicas include the same primary partitions extended with

neighbors at most: 5, 10 and 15 arcsecs from the primary partition

borders, respectively.

The point pattern search dataflow is depicted in Figure 5. The

first transformation BT applies a MapPartition to the input catalog

dataset to build the quadtree. The result is consumed by a Map
function running PC. It implements all query steps, up to, and

including, the k-1 spatial join. The output dataframe contains for

each star the set of filled buckets. Next, the tuples with filled buckets

are input to another Map function BJ that implements a query

execution plan comprising the Spatial Bucket join and the final

post-processing filter.

5.2 General Algorithm Evaluation
In this first experiment, we use the 20 million sky objects dataset

and evaluate the three search algorithms: pure, isotropic and non-

isotropic. Figure 6 depicts the number of retrieved solutions when

Figure 5: Constellation Query Dataflow

we vary the parameters: size of neighboring partition {5, 10, 15}
and additive error {0.1, 0.2, 0.3, 0.4} and stretch factors for non-

isotropic between 1 and 1.3. As expected, the flexibility introduced

by isotropic and non-isotropic queries considerably increases the

number of matches.

5.3 Increasing the Query Size
The next experiment tests the effect of increasing the query size

from 4 to 7 elements, as depicted in Figure 7. We compare the

number of solutions obtained by the three algorithmswhen running

with a dataset of 20 million stars. The angular span is 15 arcsecs

and the additive error is 0.4. All measurements are the average of

10 runs.

The increase in the query size is obtained by randomly adding

stars to the query along the circumference of a circle corresponding

to an Einstein cross. As we can observe, the addition of stars in-

creases the constraints to be applied to form shapes. For 6 elements,

pure finds only 1 solution while isotropic matches with 87 shapes.

Finally, at size 7, distance constraints lead to zero pure solutions

and 13 isotropic. Conversely, non-isotropic algorithm presents a

different behavior. As we can see, the number of solutions increases

with query size, growing up to two million solutions for query

size 7. At higher query sizes the time difference among the three

algorithms grows too.

Finally, we investigated the behavior of constellation queries

with query sizes 15 and 200, respectively. We generated two new

point queries by randomly selecting points within the circumfer-

ence of a circle corresponding to an Einstein cross. For 15 and 200

query elements, Spark runs out of memory, when executing with

ϵ > 0.2, due to the increasing number of solution candidates. In

order to maintain the number of Spark executors and the amount

of allocated memory, as the ones used for running queries from 4 to

7 elements, we reduced the additive factor to ϵ = 0.1. Under this ad-

ditive factor, no solution is found for either pure and isotropic, but

the queries run to their end. The elapsed time for both executions,

considering an average of 10 runs each, were: for 15 query elements

- pure: 157.59 s, isotropic: 549.69 s, and for 200 query elements -

pure: 164.85 s, isotropic: 935.26 s. We observe that the behavior is

very similar to smaller query sizes. The predominant cost appears

when testing each new star object for matching with anchors. In

the case of isotropic this test is applied twice, once for each anchor

sky object.

Point Pattern Search in Big Data SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

Figure 6: Number of matches for different query types, different error bounds, and different angular spans across the sky.
The number of matching solutions increases exponentially with the error bound, increases with the span of the sky (but how
much depends on the query type) and is of course consistently larger for non-isotropic queries than isotropic queries and for
isotropic queries than for pure ones. Stretch factors for non-isotropic are allowed to range from 1 to 1.3.

Figure 7: Number of solutions and elapsed time (in sec-
onds) on 128 executers for pure, isotropic, and non-
isotropic queries for different numbers of query points.
Non-isotropic stretch factors may range from 1 to 1.3.

5.4 Scalability of Pure Constellation as a
function of dataset density

We investigated Pure scale-up adopting the set of dense datasets (see

section 5.1.1) with error = 4.4x10−6. The configuration produced

solutions of size: 0, 730, 8570, 9880, and 43520. The run with the

1000 star dataset produced zero solutions, which shows the effect of

different error bounds especially for Pure. Apart from the runs with

the 15,000 stars dataset, the time increased monotonically with the

number of solutions. That is, the filtering away of non-solutions

cost little time. Figure 8 shows the results, where time corresponds

to the elapsed-time in seconds of the parallel execution.

5.5 Scalability as a function of Additive error
Figure 9 shows the effect of increasing the additive error in the num-

ber of solutions produced by the isotropic algorithm. We consider

the additive error as a fraction of the scale, ϵ = e∗scalebasic
1−e and

run the experiments with neighborhood extensions of 15 arcsecs.

Each point reflects the average of 10 runs.

Large additive errors vastly increase the number of solutions.

Indeed, when the lower bound for isotropic acceptable length be-

comes negative, all distances not greater than the upper bound

are accepted, even tiny distances become candidate matches. The

number of solutions remains relatively modest however because

few candidate solutions pass the post-processing validation step

(vi).

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy F. Porto et al.

Figure 8: Pure Constellation Scale-up as a function of the
density of solutions: time (in seconds) is closely related to
the number of solutions. This implies that filtering away
non-solutions costs little for pure constellation queries.

Figure 9: Number of Solutions vsAdditive Error for isotropic
constellation queries. Again, we see an exponential relation-
ship.

The following results, depicted in Figure10, considers additive

errors of 0.4, 0.8 and 1.6. The execution time is broken down by

the execution cost of dataflow functions, as illustrated in Figure

5. In the plot, bars show the average of the elapsed-time among

eight working nodes. The dataflow function bars are presented in

sequence: BT (build time of the quadtree), PC (build the buckets)

and BJ (spatial bucket join), the post processing cost is embedded

in BJ.

The experiment leads to two observations: First, the cost of

building the quadtree is significant, but less than the cost to form

the buckets. Second, the cost of running the spatial bucket join is

negligible, at least when the selectivity of the distance constraints

causes the sizes of the buckets to be small. We expect such high

selectivity for any situation in which the errors are small. Thus, the

choice of the spatial join algorithm to be applied has little impact

on the overall execution time. The last filtering step that applies

global constraints also costs little.

So in scenarios like this, most time will be spent building buckets.

The time complexity is O(k · H · N · S), where k is the number of

query points; H is the number of leaf nodes (4 ∗ ∗treeheiдht); N is

the maximum number of stars in a leaf node so H ·N is the number

of candidate anchors; S is the number of neighbors which must be

tested to determine which go into each bucket.

Figure 10: Scalability of Algorithms vs Additive Error: the
blue bar is the time to build the quadtree (roughly the same
for all), the orange line is the time to fill the buckets of can-
didates with respect to an anchor star (or pair of stars in the
case of isotropic and non-isotropic queries), the (mostly in-
visible) green bar shows the time to perform the bucket join.
Non-isotropic stretch factors may range from 1 to 1.3.

5.6 Scalability as a function of the number of
allocated nodes

Figure 11 shows the behavior of the algorithms when the number

of allocated nodes increases from 16 to 128 nodes. The 20 million

stars dataset was used and we depict the average of 10 runs. The

non-isotropic algorithm shares a single deformation matrix with

stretching factorsmi, j = {m1,2 = 1.2,m1,4 = 1.1,m2,3 = 1.3} and 1
otherwise. The performance of the Pure algorithm improves linearly

from 16 to 64 nodes, but flattens out at 128 nodes. The behavior of

isotropic and non-isotropic is similar, as expected, because most of

the time is spent filling in buckets. These results show that isotropic

and non-isotropic may produce more solutions than Pure with only

a small increase in time.

5.7 Comparison to Point Set Registration
Because the local point set registration algorithms, such as ICP

[3] and RPM [5], take advantage of the fact that two images being

matched tend to have points that are geometrically close, one would

expect them to be faster than our constellation queries algorithms.

Surprisingly, that is not the case as Figure 12 shows. In this experi-

ment, algorithms ICP and RPM cannot run with even 250 thousand

stars, we used datasets of size: 100, 900, 8100 and 87500 stars. We

Point Pattern Search in Big Data SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

Figure 11: Scalability of Algorithms: the blue bar represents
the time for the pure algorithm, the orange bar is the time
for the isotropic, very close to non-isotropic, in gray.

run Pure, Isotropic and Non-Isotropic algorithms, as well as ICP

and RPM in single node mode. As Figure 12 shows, constellation

algorithms are always faster than local point set registration. With

a dataset of 87500 stars, constellation algorithms are approximately

nine times faster than ICP and RPM.

Figure 12: constellation queries (and even isotropic and non-
isotropic constellation queries) are faster than ICP and than
RPM on the experiments described in the text.

6 RELATEDWORK
Finding collections of objects having some metric relationship of

interest to one another has many applications. The problem has

different names depending on the discipline, including Object Iden-
tification [19], Graph Queries [22], Point Set Registration [12, 20]

and, in general, Pattern Recognition [4].

The main motivation of point set registration comes from image

processing in which a scan digitizes the same object smoothly

moving around the object, leading to sets of points slightly displaced

in two or three dimensions. The goal of point set registration is to

align the points of different images together. The result of a point

set registration process is a single image with the various input

images put together. Each image is expected to have some noisy

data due to problems in scan capture and may also capture only

part of the data. Nevertheless, every input image has approximately

the same set of points.

The main local approach to Point Set Registration is the Iterative

Closest Point algorithm [3, 20]. The algorithm finds for each point

in one image the closest point in the target image. The results may

miss the correct alignment if the displacement between the points

is larger compared with the average distance among points.

By contrast, for constellation queries, the absolute locations of

pattern points are not important. Only pairwise distances are im-

portant. So the techniques used by algorithms like Iterative closest

Point do not apply, because they depend on the absolute locations

of pattern points. On the hand, global Point Set Registration algo-

rithms such as 4PCS [1, 13] do alignment without regard to the

absolute locations of pattern points and look at collections of 4

points in the target database. So this means that if the target has D
points, then the time would be approximatelyD4

. Moreover, though

the 4PCS algorithm performs isotropic-style queries, 4PCS requires

a query pattern to be a sizeable fraction of the database (as stated

on page 7 of the [13]). We are interested in small patterns matching

to large databases.

Pattern recognition research focuses on identifying patterns and

regularities in data [4]. Graphs are commonly used in pattern recog-

nition due to their flexibility in representing structural geometric

and relational descriptions for concepts, such as pixels, predicates,

and objects [6, 8]. In this way, problems are commonly posed as a

graph query problem, such as subgraph search, shortest-path query,

reachability verification, and pattern match.

In a subgraph query, a query is a connected set of nodes and

edges (which may or may not be labeled). A match is a (usually

non-induced) subgraph of a large graph that is isomorphic to the

query. While the literature in that field is vast [[21],[22], [7]], the

problem is fundamentally different from ours, since there is no

notion of geometrical distance (so data structures like quadtrees

are useless) and certainly no distance notion of scale or stretching.

Nevertheless, our queries and graph motifs often tend to be most

interesting when they consist of a small number of points.

Another area of intense work related to constellation query

resolution is spatial joins. In [11], alternatives for spatial joins are

discussed according to the availability of indexes prior to query

evaluation. The seeded tree join [9] uses an existing R-tree index to

build a second one on the join relation. In the case in which no index

exists (our scenario) the spatial hash-join algorithm [10] hashes

one of the relations into a pre-determined number of buckets and

probes it with the other relation, as is done in a relational hash-

join. This setting is similar to the implementation of bucket-join

in our algorithms. The candidate stars in bucket-join are mapped

to buckets corresponding to the distance classes from the anchor

and then joined together to apply the global distance constraints.

However, as has been shown in section 5.5, the cost of running

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy F. Porto et al.

bucket join is negligible compared to the costs of BT (building the

quadtree) and PC (filling the buckets). So, the particular spatial join

algorithm has little impact.

Other relevant work is querying spatial structures (SS)[15]. That

work tries to give information about the relative placement of

objects (e.g. object A is within object B or object C is to the right

of object D). Their problem is more difficult in one sense because

their objects have dimensionality. Combining dimensionality with

the isotropic and non-isotropic constellation queries is a promising

area for future work.

7 CONCLUSION
In this paper, we introduce General constellation queries, which
are geometrical queries against a large point-set. We illustrate the

application of Constellation Queries in astronomy. The objective of

a constellation query is to find sequences of dataset elements that

form a spatial structure geometrically similar to the one given by

the query pattern.

The main novelty of our work is the extension of pure constella-

tion queries (in which a solution must match the query up to an

additive error) to isotropic and non-isotropic queries which allow an

uncountably infinite number of scale factors and (for non-isotropic)

an uncountably infinite number of stretch factors. Our discrete

algorithm provably finds all sequences in the dataset at every scale

that matches any of these constellation queries within an error

tolerance.

In order to reduce the potentialnk comparisons,we use a quadtree

to filter out distant neighbors. The quadtree data structure is very

helpful in two or three dimensions, but would not work well with

ten dimensions or more. In that case, we would use a near neighbor

data structure, such as [2], which would give, for each data point

x, the other data points y1, y2, yk that are reasonably close to x

(to be of interest in any query response) and their distances. Then

each data point x could be a candidate anchor.

Our parallel experiments on a subset of the SDSS dataset show

that the filtering techniques based on quadtrees are enormously

beneficial. Moreover, the algorithms scale roughly linearly with the

number of processing cores.

To the best of our knowledge, this is the first work to investi-

gate spatial queries with free scaling factors (isotropic) and spatial

queries with free scaling and stretch factors (non-isotropic). There

are numerous opportunities for future work, especially in optimiza-

tion for higher dimensions and similar queries on geometric objects

with non-zero dimensionality.

ACKNOWLEDGMENTS
This research is partially funded by EUH2020 Program andMCTI/RNP-

Brazil(HPC4e Project - grant agreement number 689772),CNPq (PQ

310109/2015-9),CAPES, INRIA(SciDISC associated team) and the

Computational Biology Institute (www.ibc-montpellier.fr), INRIA

international chair, U.S. National Science Foundation MCB-1158273,

IOS-1139362 and MCB-1412232. This support is greatly appreciated.

REFERENCES
[1] Dror Aiger, Niloy J. Mitra, and Daniel Cohen-Or. 2008. 4pointss Congruent Sets

for Robust Pairwise Surface Registration. ACM Transactions on Graphics 27, 3,
Article 85 (Aug. 2008), 10 pages. DOI:http://dx.doi.org/10.1145/1360612.1360684

[2] Kristin P. Bennett, Usama Fayyad, and Dan Geiger. 1999. Density-based Indexing

for Approximate Nearest-neighbor Queries. In Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’99). ACM, New York, NY, USA, 233–243. DOI:http://dx.doi.org/10.1145/312129.
312236

[3] Paul J. Besl and Neil D. McKay. 1992. A Method for Registration of 3-D Shapes.

IEEE Transactions on Pattern Analysis and Machine Intelligence. 14, 2 (Feb. 1992),
239–256. DOI:http://dx.doi.org/10.1109/34.121791

[4] Christopher Bishop. 2006. Pattern Recognition and Machine Learning. Springer-
Verlag New York, NY, USA.

[5] Haili Chui and Anand Rangarajan. 2003. A New Point Matching Algorithm for

Non-rigid Registration. Comput. Vis. Image Underst. 89, 2-3 (Feb. 2003), 114–141.
DOI:http://dx.doi.org/10.1016/S1077-3142(03)00009-2

[6] D. Conte, P. Foggia, C. Sansone, and M. Vento. 2004. THIRTY YEARS OF GRAPH

MATCHING IN PATTERN RECOGNITION. International Journal of Pattern
Recognition and Artificial Intelligence 18, 3 (May 2004). DOI:http://dx.doi.org/
https://doi.org/10.1142/S0218001404003228

[7] Rosalba Giugno and Dennis Shasha. 2002. GraphGrep: A fast and universal method
for querying graphs (2 ed.). Vol. 16. 112–115.

[8] J.M. Jolion. 2001. GraphMatching:What AreWeReally TalkingAbout?. In 3rd Int’l
Association in Pattern Recognition - Tc15 Workshop on Graph based Representations.
Ischia, Italy.

[9] Ming-Ling Lo and Chinya V. Ravishankar. 1994. Spatial Joins Using Seeded Trees.

SIGMOD Rec. 23, 2 (May 1994), 209–220. DOI:http://dx.doi.org/10.1145/191843.
191881

[10] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-joins. In Proceed-
ings of the 1996 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’96). ACM, New York, NY, USA, 247–258. DOI:http://dx.doi.org/10.
1145/233269.233337

[11] Nikos Mamoulis and Dimitris Papadias. 1999. Integration of Spatial Join Algo-

rithms for Processing Multiple Inputs. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’99). ACM, New York,

NY, USA, 1–12. DOI:http://dx.doi.org/10.1145/304182.304183
[12] Alexander Marinov and Nadezhda Zlateva. 2010. ICP Algorithm for Alignment

of Stars from Astronomical Photographic Images. In Proceedings of the 11th
International Conference on Computer Systems and Technologies and Workshop
for PhD Students in Computing on International Conference on Computer Systems
and Technologies (CompSysTech ’10). ACM, New York, NY, USA, 485–489. DOI:
http://dx.doi.org/10.1145/1839379.1839466

[13] Nicolas Mellado, Dror Aiger, and Niloy J. Mitra. 2014. Super 4PCS Fast Global

Pointcloud Registration via Smart Indexing. Computer Graphics Forum 33, 5 (Aug.

2014), 205–215. DOI:http://dx.doi.org/10.1111/cgf.12446
[14] M. Muralikrishna and David J. DeWitt. 1988. Equi-depth Multidimensional

Histograms. In Proceedings of the 1988 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’88). ACM, New York, NY, USA, 28–36. DOI:
http://dx.doi.org/10.1145/50202.50205

[15] Dimitris Papadias, Nikos Mamoulis, and Vasilis Delis. 1998. Algorithms for

Querying by Spatial Structure. In Proceedings of the 24rd International Conference
on Very Large Data Bases (VLDB ’98). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 546–557. http://dl.acm.org/citation.cfm?id=645924.671163

[16] Fábio Porto, Amir Khatibi, João R. Nobre, Eduardo S. Ogasawara, Patrick Val-

duriez, and Dennis E. Shasha. 2017. Constellation Queries over Big Data. CoRR
abs/1703.02638 (2017). http://arxiv.org/abs/1703.02638

[17] Hanan Samet. 1990. The Design and Analysis of Spatial Data Structures. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[18] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.

The Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST) (MSST ’10). IEEE Computer

Society, Washington, DC, USA, 1–10. DOI:http://dx.doi.org/10.1109/MSST.2010.

5496972

[19] Parag Singla and Pedro Domingos. 2005. Object Identification with Attribute-
Mediated Dependences. Springer Berlin Heidelberg, Berlin, Heidelberg, 297–308.

DOI:http://dx.doi.org/10.1007/11564126_31
[20] W. Zhou W. Sun and M. Yang. 2011. Medical Image Registration Using Thin-Plate

Spline for Automatically Detecting and Matching of Point Sets. In Proceedings
of the 5th International Conference on Bioinformatics and Biomedical Engineering.
1–4. DOI:http://dx.doi.org/doi:10.1109/icbbe.2011.5780355

[21] Lei Zou, Lei Chen, and M. Tamer Özsu. 2009. Distance-join: Pattern Match Query

in a Large Graph Database. Proc. VLDB Endow. 2, 1 (Aug. 2009), 886–897. DOI:
http://dx.doi.org/10.14778/1687627.1687727

[22] Lei Zou, Lei Chen, M. Tamer Özsu, and Dongyan Zhao. 2012. Answering Pattern

Match Queries in Large Graph Databases via Graph Embedding. The VLDB Jour-
nal 21, 1 (Feb. 2012), 97–120. DOI:http://dx.doi.org/10.1007/s00778-011-0238-6

http://dx.doi.org/10.1145/1360612.1360684
http://dx.doi.org/10.1145/312129.312236
http://dx.doi.org/10.1145/312129.312236
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1016/S1077-3142(03)00009-2
http://dx.doi.org/https://doi.org/10.1142/S0218001404003228
http://dx.doi.org/https://doi.org/10.1142/S0218001404003228
http://dx.doi.org/10.1145/191843.191881
http://dx.doi.org/10.1145/191843.191881
http://dx.doi.org/10.1145/233269.233337
http://dx.doi.org/10.1145/233269.233337
http://dx.doi.org/10.1145/304182.304183
http://dx.doi.org/10.1145/1839379.1839466
http://dx.doi.org/10.1111/cgf.12446
http://dx.doi.org/10.1145/50202.50205
http://dl.acm.org/citation.cfm?id=645924.671163
http://arxiv.org/abs/1703.02638
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1007/11564126_31
http://dx.doi.org/doi: 10.1109/icbbe.2011.5780355
http://dx.doi.org/10.14778/1687627.1687727
http://dx.doi.org/10.1007/s00778-011-0238-6

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Pure Constellation Queries
	3.1 Data Partitioning
	3.2 Indexing Data Spaces
	3.3 Filtering Step
	3.4 K-1 Spatial Join
	3.5 Composition algorithms
	3.6 Algorithm for Pure Constellation Queries

	4 General Constellation Queries
	4.1 Isotropic Constellation Queries
	4.2 Non-isotropic Constellation Queries

	5 Experimental Evaluation
	5.1 Set Up
	5.2 General Algorithm Evaluation
	5.3 Increasing the Query Size
	5.4 Scalability of Pure Constellation as a function of dataset density
	5.5 Scalability as a function of Additive error
	5.6 Scalability as a function of the number of allocated nodes
	5.7 Comparison to Point Set Registration

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

