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Contact Observer for Humanoid Robot Pepper based on Tracking Joint

Position Discrepancies

Anastasia Bolotnikova1,2, Sébastien Courtois1, Abderrahmane Kheddar2

Abstract— In order to enable efficient control of a human-
humanoid in physical contact settings, a real-time solution for
a contact observer is required. We propose a novel approach
for proprioceptive sensor based contact sensing suitable for
affordable personal robots with no force/torque or electric
current sensing. We combine robot model knowledge and the
output of acceleration resolved quadratic programming whole-
body controller to make a prediction of expected position
tracking error for computing our proposed contact observer
signal. We demonstrate the efficiency of our approach in the
experiments of contact detection and estimation of collision
direction and intensity on a real humanoid robot Pepper
platform controlled by a task-space multi-objective quadratic
programming controller.

I. INTRODUCTION

The aim of our work is to enable real-time contact sensing

for Pepper robots for use in the robot control for physical

Human-Robot Interaction (pHRI). The use of force/torque

sensors is not available on current Pepper platforms. Thus the

contact sensing shall be addressed by using only the sensors

which are available on Pepper, mainly joint encoders.

Pepper robot (Fig. 1), produced by Soft Bank Robotics,

is often presented in public, and people, especially children,

express great interest to interact with it. So far, meaningful

physical interaction was limited to only few tactile sensors.

Often, however, people excitedly touch various robot links,

while robot can express no reaction as it remains “unaware”

of these contacts. Enabling robust whole-body contact ob-

server for Pepper can potentially bring the pHRI experience

to a whole new level with meaningful robot reaction to

various external contacts and ability to interact with the

environment through taking contacts and applying forces,

not to mention that this functionality can serve as a safety

reflex when human touch can damage robot structure or vice

versa [1].

The topic of contact sensing is particularly challenging

for low-cost personal robots, such as Pepper, where the

embedded sensors are limited and the design mechanics and

kinematics do not obey high precision requirements. We de-

scribe an approach which aims to overcome those limitations

and enable whole-body contact sensing for Pepper.

We review the progress made in the proprioceptive sensor

based contact sensing in recent years and outline why ex-

isting approaches could not be adapted for Pepper platform

(Sec. II). We present our proposed methodology (Sec. III,

Sec. IV). We demonstrate the performance of the proposed
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Fig. 1: Our target platform: Pepper humanoid robot that is

widely used in costumer service and research spheres.

approach (Sec. V) and conclude the paper with discussion

on current limitations and future work (Sec. VI).

Our main contributions are the following:

1) We derive a formula for expected tracking error com-

putation for a DC motor controlled with PD scheme;

2) We describe the process of non-linear system identifi-

cation for expected tracking error prediction based on

the knowledge of desired trajectory and robot model;

3) With the ability to predict which part of the position

tracking error is related to the normal collision-free

motion, we propose a novel contact observer signal,

which incorporates direction and intensity information

of the collision event;

4) We perform experiments with a Pepper platform and

demonstrate high sensitivity of our proposed contact

observer and good performance of contact detection

and identification of collision direction and intensity.

II. BACKGROUND

Several methods have been proposed for proprioceptive

sensor based contact sensing. The overview of various

techniques, namely the direct estimation of the external

torque, energy, velocity and momentum observers, is well

documented in the survey paper on robot collisions [2],

where the collision event pipeline is also introduced. In our



work, we focus on three main phases of the collision event

pipeline: (i) detection– did collision occur?, (ii) isolation–

where on the robot collision occurred?, (iii) identification–

what is the direction and intensity of the collision?

Among all methods, presented in the survey, the best

performing one proved to be the momentum observer [3],

as it can effectively address all three main phases of the

collision event pipeline. This method has been extended for

the application on floating base (humanoid) systems in [4].

The momentum observer has been also augmented to in-

clude common non-linear effects, namely large backlash and

friction, commonly encountered on low-cost platforms [5];

updated momentum observer was implemented and tested

on the Romeo robot arm, which is also produced by Soft

Bank Robotics. Another interesting work have addressed

reconstruction of the interaction forces in static conditions;

it was implemented and tested on a small humanoid robot

from Soft Bank Robotics NAO [6].

Initially, the momentum observer was introduced for a

single contact isolation, however, it was also used as a base

for the multi-contact isolation method in [7]. The momentum

observer can be used more efficiently in combination with

force sensor measurements, when a force/torque sensor is

installed either at the robot base for fixed platforms [8] or

when force sensors are present on some of the many robot

links, as was done for humanoid Atlas in [9]. Such extensions

of the momentum observer, however, are not applicable to

low-cost robots due to the lack of force sensing devices on

the platform, mainly because of their cost and the logistics

they require.

There are several reasons, why the classical momentum

observer (that we investigated and tried) cannot be efficiently

applied to platforms like Pepper robot:

1) Motor-side friction is significant and will appear as an

external torque in the residual vector unless friction

compensation is appropriately implemented;

2) Significant motor-link backlash and flexibility in some

joints violates the assumption that motor and joint

angles coincide and consequently torque from the

motor is not always well transmitted to the link-side.

3) Motor torque, τm, which is usually estimated from

electric current and current to torque constants, cannot

(for now) be exploited from Pepper due to current

measurements being absolute and down-sampled; if

this issue could be resolved in the future, it can be

an adding to our presented method.

We could use the method developed in [5] to overcome

friction and backlash; yet it requires having two encoders per

joint. As for now, we do not have access to Pepper motor-

side encoders to measure and account for the backlash.

Given the aforementioned constraints, we address the

whole-body contact observer for Pepper by means of mon-

itoring the difference between measured position tracking

error and predicted expected position tracking error (i.e.

without external torques during free or static motions)

given known robot’s model and “intentions” (desired set-

point tasks such as given postures). In our work Pepper is

controlled by acceleration resolved quadratic programming

controller (QP) [10], [11], which we use to compute desired

acceleration (and subsequently velocity and position by nu-

merical integration) and joint torque for a given motion task.

We use those quantities to make a prediction of the expected

tracking error value.

In the next section we present the detailed developments

of our approach for expected tracking error prediction and

contact observer signal computation.

III. PROPOSED CONTACT OBSERVER METHOD

We are challenged to use only position tracking error to

extract the collision event information: intensity, direction

and link. However, we assume the condition of having

a compliant (low PD gains with or without feedforward

terms) semi-reversible or totally reversible actuators. This

assumption holds in case of the Pepper platform, which was

designed to be safe (low gains) and semi-reversible, hence

inherently compliant.

In static settings, when the tracking error value does not

vary significantly and remains small, the contact monitoring

based on tracking error is trivial –collision changes the

tracking static error and reveals the intensity (i.e. stronger

collision causes larger deviation of the static error), direction

(positive or negative deviation) and link (last joint in the

chain with tracking error exceeding the given threshold)

information, assuming the contact direction is such that

it causes joint displacement (which doesn’t happen if the

direction of the contact force is normal to the joint’s axis).

When the robot moves, the problem becomes more com-

plex –the tracking error is not constant as in the static case;

its dynamics (i.e. the increase or decrease of the tracking

error) is not always caused by collision. Indeed, it is due to

the fact that because of the dynamics (inertia, Coriolis...) and

the posture configuration (w.r.t gravity) each joint might not

yet reach desired steady-state position. In this case we need

to be able to distinguish when tracking error means collision

and when it simply means free joint motion dynamics.

In order to define a tracking error based contact observer

signal, we eliminate from the tracking error the part that

refers to normal/expected joint motion and leave only the part

of the tracking error which is caused by a collision. In order

to achieve that, we identify the relationship between our

intention in terms of desired trajectory and expected tracking

error. In the following one degree of freedom toy example,

we show the rational ground that drives our reasoning. Con-

sider a DC motor regulated by a proportional-derivative (PD)

controller, with gains Kp and Kd respectively. Subtracting

joint position sensor measurements q from desired joint

position target qd gives the tracking error value ǫ = qd − q.

We use ǫ as a feedback in the PD controller to compute

desired voltage input u (Eq. 1).

u = Kpǫ+Kdǫ̇ (1)

The electric equation of a DC motor is given as Eq. 2



u− e = L
di

dt
+Ri (2)

where e is the back-electromotive force that is proportional to

the motor speed ω with proportionality constant Ke (Eq. 3).

e = Keω (3)

The motor torque is proportional to the electrical current

i with proportionality constant Kt (Eq. 4).

τm = Kti (4)

The dynamic equation of the motor is given as Eq. 5

τm = Jmω̇ + µω + τl (5)

where Jm is the motor inertia, µ is the motor friction constant

and τl is the load torque that includes motor-link friction and

backlash effects (Eq. 6)

τl = M(q)q̈ + c(q, q̇) + τf + τB − τext (6)

here M is the load inertia and c combines Coriolis, cen-

trifugal and gravity forces. Following the friction modeling

principles, used for the Romeo arm in [5], τf depends on

the motor-link backlash and is expressed as Eq. 7

τf =







Kφvφ̇+Kφssign(φ̇)+
Kqv q̇ +Kqssign(q̇) |φ| < α

Kθv θ̇ +Kθssign(θ̇) otherwise

(7)

where θ is the motor angle, φ = q − θ is the difference

between the joint and the motor angles, α is the size of the

motor-link backlash gap and K{x}v,K{x}s are viscous and

static friction coefficients respectively.

When |φ| < α the motor is moving inside the backlash

gap, hence, no torque is transfered between the motor and

the load in this case (i.e. τl = 0). Otherwise, the motor is

in contact with one of the borders of the backlash gap and

the load is moving together with the motor. The τB term in

Eq. 6 is a spring-damper regularization term to model the

effect due to the motor-link backlash interaction (Eq. 8)

τB =







−M(q)q̈ − c(q, q̇)− τf + τext |φ| < α

Kφp(φ+ α) +Kφdφ̇ φ ≥ α

Kφp(φ− α) +Kφdφ̇ φ ≤ −α

(8)

Here, the inside backlash equation (i.e. |φ| < α case) simply

nulls the load torque as seen from the actuator; Kφp and Kφd

are the stiffness and damping coefficients. Note that both τf
and τB can be thought of as ξ(q, q̇, θ, θ̇, α) for simplicity.

And finally, τext in the Eq. 6 is any other external torque,

especially that caused by a collision on the link.

Substituting (3) and (4) into (2) gives Eq. 9.

u = Keω +R
τm

Kt

(9)

We neglect L di
dt

term due to its relative insignificance

compared to e and Ri.

Finally, substituting (1) and (5) into (9) gives the analytical

relation between tracking error ǫ and the external torque

applied on the load τext (Eq 10).

Kpǫ+Kdǫ̇ =
R

Kt

Jmω̇ +

(
R

Kt

µ+Ke

)

ω+

+
R

Kt

(

M(q)q̈ + c(q, q̇) + τf + τB − τext

) (10)

Same relation can be derived for other types of control

schemes (PID, PI, etc.) in analogous form.

In the contact observer context, this relation can be

exploited in the following ways. First, it shows that by

measuring q, q̇, q̈, ω, ω̇, ǫ and ǫ̇ and knowing robot model

(M, c), motor properties (R,Kt,Ke, µ, Jm) and controller

gains (Kp,Kd), as well as all other constants present in

Eq. 10, we can directly compute τext without necessity to

measure motor torque or electric current.

Secondly, assuming the motion of the load free of external

collisions, i.e. τext = 0 we can use Eq. 10 in order to compute

expected (under free motion assumption) tracking error ǫexp

from the value of desired position, speed and acceleration of

the load qd, q̇d, q̈d (Eq. 11).

ǫexp =
RJmN

KtKp

q̈d +

(
R

Kt

µ+Ke

)
N

Kp

q̇d+

+
R

KtKp

(

M(qd)q̈d + c(qd, q̇d)

︸ ︷︷ ︸

desired load torque τld

+τf + τB

)

−
Kd

Kp

ǫ̇exp

(11)

where N is the gear reduction ratio (ω = Nq̇). Yet, in the

presence of significant backlash, it is more accurate to model

ω as a function of q̇ that also includes the motor-link backlash

effect (ω = ξ(q̇, φ, α)).
Finally, Eq. 10 tells us that tracking error has direct

relation to the external torque and thus can be potentially

used to reconstruct external collision forces.

In our work we cannot directly evaluate Eq. 11, because

we do not know precisely R,Kt,Ke, Jm, µ and we cannot

compute ǫ̇exp before computing ǫexp. Additionally, we do not

have the access to the motor side encoder to measure θ, ω and

ω̇, which would allow us to handle the backlash appropriately

and compute τf and τB terms.

We, thus, choose to identify a non-linear model to approx-

imate Eq. 11 using a set of available desired motion related

variables, namely q̇d, q̈d and τld. We select a binary-tree

prediction model [12]. The non-smooth activation function

of a binary-tree nonlinearity estimator is suitable in our par-

ticular case, because it is capable of modeling sudden abrupt

changes in the tracking error signal, unlike other nonlinearity

estimators with smooth activation function, such ass sigmoid

or wavelet networks [13], which we also experimented with.

The final form of the ǫ̃exp expression is Eq. 12

ǫ̃exp(t) = binary tree(q̇d, q̈d, τld) (12)



With the identified model that is capable to predict ex-

pected tracking error for every robot joint with sufficient

accuracy, we can compute the part of tracking error that

is related only to the collision. We do that by subtracting

predicted tracking error value from the measured tracking

error to compute our contact observer signal r:

r = ǫ− ǫexp (13)

In the following section we describe how model iden-

tification process is performed and what is the resulting

performance of expected tracking error prediction.

IV. MODEL IDENTIFICATION FOR EXPECTED TRACKING

ERROR PREDICTION

In this section we describe the process of model identifi-

cation for the expected tracking error prediction (Eq. 12).

Consider the left shoulder roll joint (LSRoll) for this exam-

ple. In order to identify a model for expected tracking error

prediction for LSRoll, we record the data free of external

collisions while controlling Pepper via the QP controller with

a single posture task in the objective function that generates

a sequence of various motions including moving between the

joint bound limits with randomly selected small or big offsets

and moving the joint to various random setpoints. In the

middle of each data acquisition process the configuration of a

previous joint (LSPitch) and a next joint (LERoll) in the chain

change to new randomly selected setpoints and the main

joint, LSRoll, repeats the motion sequence again. With such

setup our intention is to identify the model which is “aware”

of the change in the configuration of other joints. Note that

this only becomes possible due to the desired load torque,

τld, being one of the inputs to the nonlinearity estimator as it

incorporates the robot model knowledge. The joint stiffness

value is set to 100% for all joints in our experiments.

For the estimation dataset, we record 7 different sequences

of LSRoll joint motion with various QP posture task stiffness

values of the QP posture task. Posture task stiffness varies

from 2 to 5 in estimation dataset recordings. This data

is used to identify the parameters of a binary tree and

to evaluate accuracy of tracking error reconstruction on

estimation dataset. Average resulting accuracy of tracking

error prediction over 7 data sequence recordings used in the

estimation process is 77.29%.

Now that the satisfactory performance on the estimation

dataset is achieved, we evaluate performance of this model

on “unseen” test data. We execute the same QP controller but

with new randomly selected offset and setpoint parameters

and increase significantly the stiffness of the QP posture task,

setting it to 9, in order to trigger motion with higher speed

(and thus larger tracking error). Total accuracy of tracking

error prediction on test data set is 81.11%. The plot of a

segment of the joints trajectories from this experiment (test

dataset) and error reconstruction plot are shown in Fig. 2.

From results in Fig. 2 it is evident that the identified pre-

diction model generalizes well to unseen data and accurately

predicts the value of the position tracking error. We see that
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Fig. 2: Evaluation of the identified binary tree model for the

expected tracking error prediction on test data: joint trajecto-

ries (top); expected tracking error prediction for LSRoll joint

(bottom). Overall tracking error prediction accuracy: 81.11%.

the model is robust to changes of the QP task stiffness and

changes of the configuration of other joints in the chain.

For the best performance, model identification has to be

performed for every motor separately and possibly repeat-

edly, as the motors and the gear system wear out with

time. However, we noticed that left body side joint’s model

can perform equally well for the right side, as the same

motor/load types are used and they wear out approximately

equally. Even more so, we observed that the same motor

types can “share” a model. Pepper has 17 joints and uses

5 different types of motors in total. Thus, in general, it is

sufficient to perform the model identification only 5 times.

In the next section we show how our system performs

when applied to the data sequence with external collisions.

V. EXPERIMENTAL RESULTS

We now show that our proposed contact observer signal

r is suitable for the contact detection and identification of

contact direction and intensity.

We apply a median filter over 11 latest samples of r to

reduce noise and eliminate occasional spikes in the signal.

We set a fixed threshold δ = 2.5◦ for the contact detection.

Whenever |r| > δ we consider that a collision/contact oc-

curred. The threshold δ can also be interpreted as an external

torque sensitivity threshold, meaning that any external force,

which results in such a τext at the joint that causes the

displacement beyond δ, can be detected. We show that using

our proposed method, even light collisions (> 2.5◦) can be

detected. The sign and magnitude of r reveal the direction

and collision intensity information respectively.

We use same QP controller to generate sequence of left

arm joints motion with new randomly selected parameters for

offsets and setpoints. We set QP posture task stiffness to 8.

During the execution of the motion several external collisions

are triggered by touching the robot’s left arm. The plot in

Fig. 3a shows a ∼20 second segment of the results from

this experiment. We repeat a similar experiment for the right
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Fig. 3: Model evaluation: joint trajectories (top); expected tracking error prediction (middle); contact observer signal r

(bottom). Dashed blue lines show the start of the contacts. Dashed red lines indicate the threshold for contact detection.

arm elbow roll joint RERoll with posture task stiffness set

to 12. A segment of RERoll experiment results is presented

in Fig. 3b. The extended presentation of these results can be

seen in the video accompanying this paper.

The results indicate, yet again, that our proposed method

is capable of making precise prediction of expected tracking

error and, thus, produce a contact observer signal r which

remains below threshold δ when there is no collision, i.e.

when the joint moves freely. When collision occurs (indi-

cated in the plots by dashed vertical blue lines), r exceeds

the fixed threshold. Moreover, the direction and the intensity

information about the collision event is correctly represented

via the sign and magnitude of r.

The middle plot of the Fig. 4 demonstrates the segment of

experiment where the binary tree model trained using record-

ings of LSRoll joint’s data is applied to predict expected

tracking error for the right shoulder roll joint (RSRoll). This

result confirms that models identified on left side body joints

generalize well for the right side body joints, eliminating the

necessity to train separate models for every robot joint.

The Tab. I reports the total amount of false positive #FP

(r > δ without contact), false negative #FN (r ≤ δ with

contact) and true positive #TP (r > δ with contact) contact

detections across three experiments.

Experiment name #FP #FN #TP

LSRoll experiment 2 2 18
RERoll experiment 0 3 19
RSRoll (with LSRoll model) 0 3 18
Total: 2 8 55

TABLE I: Number of false positive, false negative and true

positive contact detections across three experiments

Note that usually after strong external collision, when joint

quickly returns to its desired position, r exceeds the threshold

for a brief amount of time due to the impact. Such cases of

exceeding the threshold are not considered as false positives

in Tab. I. We also note that most of the false negative cases

reported in Tab. I occurred due to the large flexibility of

the hip-roll joint, which enables the upper body of Pepper

to move when an arm is pushed/pulled. This reduces the

amount of the position tracking error in the arm joints and

can lead to a false negative contact detection. Of course, this

issue would be resolved when the whole body (including the

floating wheeled part) is considered.
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Fig. 4: The model identified using LSRoll joint sample data

applied to the test data of RSRoll joint. The models of the

left body side generalize well for the right body side joints.

VI. CONCLUSION AND FUTURE WORK

We have derived a simplified expression for computing the

expected value of the position tracking error of a DC motor

controlled with PD scheme given the knowledge of desired

joint trajectory and desired load torque. This expression

revealed that, under some conditions of compliance (low PD

gains with feedforward terms and/or reversibility) the ex-

pected tracking error prediction does not require knowledge

of neither the motor current nor the motor torque.

We described the process of non-linear model identifi-

cation and presented the results of expected tracking error

prediction, which show good accuracy and generalization

properties of the identified models. We demonstrated how

prediction of expected tracking error can be used for comput-

ing the contact observer signal, which incorporates intensity

and direction information of the collision event.

In its current form, our proposed approach still exhibits

some false positive contacts detections. In our next develop-

ment stages, we intend to reduce the amount of false positive

detections by making the thresholding process more robust

by using, for instance, some type of adaptive thresholding

technique as a second step after contact observer signal

computation.

In continuation of this work we will adapt the proposed

method to the case of complex and arbitrary whole-body

motions including the floating base (i.e. considering the robot

with all its degrees of freedom). In doing so, we will also

determine if any specific handling of hip roll and hand joints

flexibility and friction of brushless DC motors in the Pepper’s

leg is required and can be implemented.

We will also investigate thoroughly the relation between

our contact observer signal r and the value of the external

torque τext. We intend to approach it by comparing, first

in static and later also in dynamic conditions, the values

of estimated τext (computed either from the difference in

electric current measurements or estimated on the test-

bench that includes motor torque sensors) with the values

of contact observer signal r. Once this is done, it would

become possible to reconstruct the force which is causing

the collision from r without ever measuring or estimating

motor torque or the motor electric current.

And finally, our ultimate goal is to develop and test

our proposed approach for its integration in the feedback

signal of an adaptive control for pHRI in motion assistance

scenarios and active compliance to touch.
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survey on detection, isolation, and identification,” IEEE Transactions

on Robotics, vol. 33, no. 6, pp. 1292–1312, 2017.
[3] A. D. Luca and R. Mattone, “Sensorless robot collision detection and

hybrid force/motion control,” in IEEE International Conference on

Robotics and Automation (ICRA), pp. 999–1004, 2005.
[4] F. Flacco, A. Paolillo, and A. Kheddar, “Residual-based contacts esti-

mation for humanoid robots,” in IEEE-RAS International Conference

on Humanoid Robots (Humanoids), pp. 409–415, 2016.
[5] F. Flacco and A. Kheddar, “Contact detection and physical interaction

for low cost personal robots,” in IEEE International Conference on

Robot and Human Interactive Communication (RO-MAN), 2017.
[6] T. Mattioli and M. Vendittelli, “Interaction force reconstruction for

humanoid robots,” IEEE Robotics and Automation Letters, vol. 2,
no. 1, pp. 282–289, 2017.

[7] L. Manuelli and R. Tedrake, “Localizing external contact using propri-
oceptive sensors: The contact particle filter,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 5062–5069,
2016.

[8] G. Buondonno and A. De Luca, “Combining real and virtual sensors
for measuring interaction forces and moments acting on a robot,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 794–800, 2016.
[9] J. Vorndamme, M. Schappler, and S. Haddadin, “Collision detection,

isolation and identification for humanoids,” in IEEE International

Conference on Robotics and Automation (ICRA), pp. 4754–4761,
2017.

[10] K. Bouyarmane and A. Kheddar, “Using a multi-objective controller
to synthesize simulated humanoid robot motion with changing contact
configurations,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 4414–4419, 2011.
[11] K. Bouyarmane, J. Vaillant, K. Chappellet, and A. Kheddar, “Multi-

robot and task-space force control with quadratic programming,” IEEE

Transactions on Robotics, ”submitted”.
[12] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-

cation and regression trees. Chapman and Hall/CRC, 1984.
[13] Q. Zhang and A. Benveniste, “Wavelet networks,” IEEE transactions

on Neural Networks, vol. 3, no. 6, pp. 889–898, 1992.


