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Dynamic Modeling and Identification of an Heterogeneously Actuated
Underwater Manipulator Arm

François Leborne1,2, Vincent Creuze1, Ahmed Chemori1 and Lorenzo Brignone2

Abstract— This paper deals with the dynamic modeling and
identification of an electrically driven underwater robot ma-
nipulator. The proposed study includes the dynamic modeling
of the actuators of the arm as well as the identification of
the parameters of the model. The proposed method deals with
the specific case of heterogeneously actuated arms, namely
arms with actuators behaving differently for each joint, being
considered at the kinematic level. Indeed, we show how to
estimate the arms parameters when some of their revolute joints
are directly actuated by geared motors, while the others are
actuated by linear actuators. A minimum set of identifiable
parameters is determined, and adequate excitation trajectories
are generated and used in the identification procedure. Real-
time experimental validation on the manipulator arms of
Ifremer’s HROV (Hybrid Remotely Operated Vehicle) Ariane
underwater vehicle demonstrates that the proposed method
improves the estimation of the dynamic model.

I. INTRODUCTION

Manipulation tasks are required by several underwater
applications, such as scientific research, oil and gas industry,
or rescue. As a result, the manipulation of objects by means
of an underwater vehicle has been addressed for several
years, but until today most of the tasks are still performed
by human operators remotely controlling the manipulator
arms of the vehicle. The automation of a part of underwater
manipulation tasks could greatly simplify the work of ROV
pilots by allowing them to focus only on the mission’s
specific tasks requiring their expertise.

Autonomous underwater manipulation is a relatively new
research topic, addressed by a few projects during the last
two decades. The first project aiming at providing underwater
dexterous manipulation capabilities was AMADEUS [1], [2].
In this project, two hydraulic manipulators were simulta-
neously controlled for manipulation tasks at depth up to
500 meters below sea surface thanks to model-based hybrid
position/force controllers. The problem of controlling an
UVMS (Underwater Vehicle-Manipulator System) has also
been addressed in [3], where the controller also included the
vehicle’s dynamics. Other UVMS are described in [4], but all
of them only feature joints whose motion in linearly related
to the motion of the motors, which is usually expressed by
the well-known τ = Bu. In fact, in all these works, the
dynamic behavior of the actuation system has either been
neglected, or been shortly addressed in the case of hydraulic
actuators. However, the modeling of electric actuators has
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been addressed by [5] and [6], where electric gear motors
directly actuate the joints. These models involve dynamic
parameters that need to be identified. In [7], to excite
and identify the model’s dynamic parameters, a method
to generate specific trajectories is introduced. To estimate
the values of the dynamic parameters, the recorded torque,
position, velocity and acceleration are processed using the
least mean square method, or other optimization methods as
shown in [8]. Only a few parameters can actually be esti-
mated, because of linear dependencies in the set of dynamic
parameters [9]. This minimal set of linearly independent
dynamic parameters can be determined analytically for the
classical model of a manipulator [10]. However, when the
dynamics of unusual actuators is considered, the minimal
set of identifiable parameters is yet to be determined.

In this paper, we propose a new method to model and iden-
tify the dynamic parameters of an underwater manipulator.
With respect to previous work, the first contribution consists
in the inclusion of the actuator’s dynamics, considering two
different types of joints actuation. In fact, in our model, the
revolute joints can either be directly actuated by a gear motor,
or actuated by an electric linear actuator (Fig. 2). Then, we
generate adequate identification trajectories to estimate our
model’s parameters. The paper also presents experimental
results obtained with the manipulator arms of Ifremer’s1

HROV Ariane. In section II, we describe the vehicle and its
manipulators, and we derive their dynamic model, including
the heterogeneous actuation. In section III, we propose a way
to group together subsets of dynamic parameters, in order to
obtain a minimum set of identifiable parameters. Finally, the
whole method is experimentally validated in section IV.

II. MODELING OF ARIANE’S MANIPULATOR ARMS

A. HROV Ariane and its manipulator arms

The system considered for this work is Ifremer’s HROV
Ariane and its two electric manipulator arms. Ariane is an
hybrid AUV/ROV system designed to operate up to 2500
meters deep. It measures 2.7 m in length, 1.2 m in width,
2.1 m in height and weighs a total of 1800 kg in its
most complete configuration. As an hybrid system, it is
designed to operate either as an ROV (Remotely Operated
Vehicle) for remotely controlled underwater operations, or as
an AUV (Autonomous Underwater Vehicle) for autonomous
survey missions. The intervention tasks typically encountered
for scientific use include collecting biological or geological
samples. These tasks are performed by two manipulator arms

1Ifremer: French Research Institute for Exploitation of the Sea



and exploit bespoke coring tools for sampling the seabed
sediments, or biological live species such as gorgonian and
corals.

Ariane’s manipulator arms (Fig. 1) are manufactured by
ECA Group and feature custom electronics and software de-
veloped by Ifremer. They both exclusively integrate revolute
joints (four and six degrees of freedom, respectively) and a
gripper. These electric manipulator arms are heterogeneously

Fig. 1. Manipulator arms of Ariane: the 6-DOF (left) and 4-DOF (right).

actuated, since, depending on the joint, the motor is coupled
with mechanical drive components implementing different
actuation architectures:

• a gear motor directly actuating the joint, largely de-
scribed and modeled in literature (see [5] for example)

• a gear motor coupled to a ball-screw–lever chain (i.e.
an electric linear actuator)

To the authors knowledge, the later architecture, as presented
in Fig. 2 with the notations introduced in table I, is specific
to underwater manipulators and has not been studied from a
dynamic point of view yet.

It is also worth noting that because of the low speed
of each joint, the hydrodynamic effects can be neglected,
and the non linearity of the actuator’s behavior only is non
negligible and therefore addressed here. This assumption is
valid in our case, since we use low-speed manipulator arms,
but may be wrong for faster underwater manipulators. It also
allows us to identify the model in air.

Fig. 2. Simplified drawing of an electric linear actuator (i.e. gear motor–
ball-screw–lever) actuating a revolute joint. Most of the joints of Ariane’s
manipulator arms are actuated by this mechanism.

B. Modeling of the electric actuators

The purpose of this work is to derive the dynamic model
of the manipulators, considering the input current of each
motor as the input of the system and each joint coordinate

TABLE I
NOTATIONS USED IN THIS WORK

Variable Description Unit

l1, l2 lengths between the axis of the joint and each
end of the linear actuator

m

qp length of the cylinder m

qj joint coordinate rad

α angle between the direction of FBS and the link
it is applied to

rad

FBS force exerted by the cylinder on L2 N

as the output. In other words, we aim to improve the classical
model of a manipulator as described in [11] by considering
the actuators dynamics.

Our approach is based on two steps. First, we derive the
classical model of a manipulator, in the following form:

M(q) q̈ +N(q, q̇) = τ (1)

where q is the vector of generalized joint coordinates of the
system, M(q) is the inertia and masses matrix, N(q, q̇) is
a stack vector that includes the non-inertial forces (Coriolis
and friction) and the gravity and buoyancy term, and τ is the
stack vector of the torques applied to the joints of the system.
This part has been widely covered in literature, so we focus
on the second step, consisting in completing the classical
dynamic model with the dynamics of the actuators. In the
case of Ariane’s manipulators, we distinguish two kinds of
actuators, which both have a different dynamic model. These
models are derived as explained in the rest of this section.

In the case of a directly actuated joint (through a gear
motor), the torque applied to the joint is directly the torque
τm generated by the gear motor. As far as the modeling of
such system is concerned, this is well-known and described
in [5] for example and is expressed as follows:

τm = kT i− r2
(
Jm q̈m + fvm q̇m + fsm sign(q̇m)

)
(2)

where i [A] is the input current, kT [Nm/A] is the torque
constant of the motor, r is the gearbox ratio, q̇m [rad/s] is the
angular velocity of the motor, q̈m is the angular acceleration
of the motor, and Jm, fvm and fsm are the moment of
inertia, viscous friction and dry friction coefficients of the
gear motor, respectively.

In the case of a revolute joint actuated by a linear actuator,
the rotation of the gear motor is not linearly transformed into
the rotation of the joint. In order to model this transforma-
tion, we take apart the whole actuator into three subsystems:
the electric gear motor, the ball-screw, and the connection
between the tip of the actuator and arm’s link. Then, our
proposed process follows three steps:

• first, we write the kinematic equation of the subsystem
• then, we consider the inertia forces
• finally, we add the friction forces, modeled using both

dry friction and viscous friction models
Since the modeling of the gear motor has already been

covered (see (2)), we only describe the modeling of the



ball-screw and the so-called lever, which converts the linear
displacement into a rotational displacement.

1) Dynamic modeling of the ball-screw: FBS, the force
applied by the linear actuator to the link of the manipulator,
is expressed as:

FBS =
2π

p
τm − IBS q̈p − fsBS sign(q̇p)− fvBS q̇p (3)

The ball-screw features a pitch p and converts the torque
τm produced by the gear motor into a linear force with
a conversion factor 2π

p . We note IBS the inertia of the
translating parts, fsBS their dry friction coefficient and fvBS

their viscous friction coefficient, q̇p the linear velocity of the
screw, and q̈p its linear acceleration.

We remark that the ball-screw system features components
in linear and angular motion. These are characterized by dif-
fering inertia and friction models resulting into two differing
viscous friction coefficients and two differing dry friction
coefficients. However, the motion of the rotating parts is the
same as the motion of the gear motor, so we can merge
the dynamic parameters of the rotating parts of the ball-
screw with the ones of the gear motor. This explains why
the rotational motion does not explicitly appear in (3).

2) Mechanic modeling of the lever: The lever converts
the force FBS of the ball-screw into a torque τl applied to
the joint with a conversion factor non-linearly dependent on
the joint coordinate q:

τl = l2 sin (α)FBS (4)

In this equation, we use a secondary angle, α as depicted
on the Fig. 2, to simplify the expression of the conversion
factor of the lever. It is straightforward that the value of the
conversion factor is l2 sinα, with l2 the length between the
axis of the joint and the end of the linear actuator acting on
the arm. There are no inertia forces nor frictions to take into
consideration here, since they are already accounted in the
classical model of the manipulator.

3) Dynamic modeling of the whole actuator: By merging
(2), (3) and (4), we can finally write the model of the full
actuator in the following form:

τl = kL(qm) i−mL
eq(qm, q̈m)− fLeq(qm, q̇m) (5)

with these notations:

kL(qm) =
2π

p
kT l2 sin (α)

mL
eq(qm, q̈m) = l2 (

2π

p
r2 Jm + p IBS) sin (α) q̈m

fLeq(qm, q̇m) = l2 (
2π

p
r2 fvm + p fvp) sin (α) q̇m

+ l2 (
2π

p
r2 fsm + p fsp) sin (α) sign(q̇m)

(6)

where the superscript L refers to a joint actuated by a linear
actuator.

C. Dynamic model of the manipulator arm including actua-
tors dynamics

The model of the manipulator arm, considering the torque
on each joint as the input of the system, is well-known and
recalled in (1). In order to model the manipulator and its
actuators dynamics, the next step is to replace τ with the
dynamic model of the actuators producing each generalized
torque of the system. If joint j is a directly actuated joint,
then τj = τm (from (2)), else if joint j is actuated by a linear
actuator, then τj = τl (from (5)).

To ensure consistency of the model, we express, for each
joint, the qm coordinate (related to the shaft of each motor)
as a function of the corresponding generalized coordinate q,
which is the joint coordinate used by the notation proposed
by Khalil and Kleinfinger in [12]:

q̇m = k1(q) q̇

q̈m = k1(q) q̈ + k2(q, q̇)
(7)

Then, we use this expression to write the model of each
actuator using the generalized coordinates. Equation (7) also
shows that the models of the actuators are linear in q̈, so it
is possible to rewrite τ from (1) in the following form:

τ =K(q) i−Mactuators(q) q̈ −Nactuators(q, q̇) (8)

where K(q) is a diagonal matrix, whose diagonal elements
are:

Kj,j(q) =

{
kjT if joint j is direct
2π
pj k

j
T l

j
2 if joint j is levered

(9)

As a result, the classical model of a manipulator arm is
rewritten to consider the input current of each motor as the
input of the system:

K(q) i =M?(q) q̈ +N?(q, q̇) (10)

by defining M? and N? using M and N from (1):

M?(q) =M(q) +Mactuators(q)

N?(q, q̇) =N(q, q̇) +Nactuators(q, q̇)
(11)

In (10) and for the rest of this article, the ? superscript
indicates the objects taking into account the dynamics of
the actuators.

D. Manipulator and actuators model identification

It is well-known ([13], [10]) that the dynamic iden-
tification model of a manipulator arm is expressed by
Φ (q, q̇, q̈) θ = τ , where θ is the stack vector of the
dynamic parameters of the model to be identified, and Φ is
the associated regressor. In order to derive this model for
the manipulator arm including its actuators’ dynamics, we
replace τ by its expression given in (8):

Φ (q, q̇, q̈) θ +Mactuators(q) q̈ +Nactuators(q, q̇) =K(q) i
(12)

From (2) and (5), it can be seen that the actuators’ model is
linear in its dynamic parameters, so there exists a regressor



Φactuators and a vector of dynamic parameters θactuators such
that (12) can be rewritten:

Φ (q, q̇, q̈) θ + Φactuators (q, q̇, q̈) θactuators =K(q) i (13)

This means that we can define the regressor Φ? and the stack
vector θ? of the unknown dynamic parameters of the model
as:

Φ? =K−1(q) [Φ,Φactuators]

θ? =
[
θT ,θTactuators

]T (14)

so that the dynamic identification model of the manipulator
arm, including its actuators’ dynamics, becomes:

Φ? (q, q̇, q̈) θ? = i (15)

in which i is the stack vector of the current inputs of the
system. We remark that K(q) is invertible by construction,
as shown in (9).

III. ESTIMATION OF THE BASE DYNAMIC PARAMETERS
OF THE MODEL

The previously derived model features a number a parame-
ters whose value has to be determined in order for the model
to represent the real system. Not all of these parameters
can be estimated; only the so-called base parameters, which
are the minimum set of parameters needed to compute the
dynamic model [9], can be estimated. In this work, we use
the OpenSymoro software tool to obtain the base parameters
of the classical model of a manipulator arm, without the
actuators dynamics. Then, we determine the set of base
parameters of the actuators model. Finally, we group both
sets of parameters to obtain the complete set of base dynamic
parameters of the full model.

A. Base parameters related to the actuators directly driving
the joint

In (2), it can be easily shown that the set (Jm, fvm , fsm)
is minimal, since there is no linear relation between q̈m(t),
q̇m(t), and sign(q̇m(t)). Therefore there are no dynamic
parameters to merge in the model of the actuators directly
driving the joints.

B. Base parameters related to lever configured actuators

Generally speaking, it is possible to generate a reference
trajectory q(t) such that there is no linear relation between
q̈(t), q̇(t), and sign(q̇(t)), so inertia, fluid friction coefficient
and viscous friction coefficient don’t have to be grouped
together. However, an affine relation exists between qm(t)
and qp(t), expressed as qm(t) = p qp(t) − qpmin , p being
the pitch of the ball-screw. This leads to a linear relation
between q̈m(t) and q̈p(t), q̇m(t) and q̇p(t), and sign(q̇m(t))
and sign(q̇p(t)). This is why in (5), q̈m(t) is factorized, which
means that the inertias of the gear motor and the ball-screw
cannot be decoupled and therefore have to be merged into a
single base parameter Jactuator, with the following expression:

Jactuator = l2 (
2π

p
r2 Jm + p IBS) (16)

Similarly, we define the base parameters fsactuator and fvactuator

as:

fsactuator = l2 (
2π

p
r2 fsm + p fsp)

fvactuator = l2 (
2π

p
r2 fvm + p fvp)

(17)

C. Simplification of the torque expression

It can be seen in (2) and (5) that for each type of
actuator, the torque applied to the joint is proportional to the
input current i (directly actuated joint) or to sin (α) i (lever
actuated joint). The involved proportionality coefficients can
be merged with the dynamic base parameters, due to the fact
that the dynamic model is linear in these coefficients. This
avoids the need of a precise knowledge of each joint’s kT ,
l2 and p parameters, even though the last two are required
for the derivation of the kinematic model.

D. Base parameters of the whole system

Finally, each actuator type has a set of three dynamic
base parameters: an inertia, a viscous friction coefficient,
and a dry friction coefficient. Then, the base parameters of
the whole system are the union of the base parameters of
each actuator, and of the base parameters retrieved from the
classical manipulator arm’s model.

E. Estimation of the parameters

We define the vector θ? by stacking the dynamic base
parameters, and it verifies Φ? (q, q̇, q̈) θ? = i, as presented
in section II-D. In order to improve the quality of the
estimation, we record the state of the manipulator arm as
it follows an excitation reference trajectory and use this data
to create the augmented system F (q, q̇, q̈) θ? = b, where

F =


Φ?
(
q (0) , q̇ (0) , q̈ (0)

)
...

Φ?
(
q (N) , q̇ (N) , q̈ (N)

)


b =
[
i (0) · · · i (N)

]T
(18)

The excitation reference trajectory
(
qr(t), q̇r(t), q̈r(t)

)
is

computed offline, with the aim of minimizing the condition
number of the observation matrix F (qr(t), q̇r(t), q̈r(t)). The
reader can find more details about the estimation of dynamic
parameters in [14] and about the computation of an excitation
trajectory in [7].

IV. EXPERIMENTAL VALIDATION

The augmented model of the manipulator including the
dynamics of the actuators, as well as the estimation process
of the dynamic parameters, have been validated using the
4-DOF manipulator arm of Ifremer’s HROV Ariane. The
Khalil-Kleinfinger parameters [12] and the lengths related
to each lever actuated joint of this manipulator arm are
presented in table II.

Although the considered manipulator arm has four degrees
of freedom, only three will be considered in this work,



TABLE II
GEOMETRIC PARAMETERS OF THE 4-DOF MANIPULATOR ARM

Joint d [m] r [m] α [rad] l1 [m] l2 [m]

1 0 0 0 0.323 0.058

2 0.116 0 π
2

0.073 0.537

3 0.443 0 0 0.489 0.054

4 −0.1 0.436 −π
2

- -

because the joint 4, which rotates the gripper, is not equipped
with a position sensor, so its joint coordinate is not accurately
known during the experiments. This joint remains blocked
during the whole experiment.

A. Derivation of the identification model of the manipulator

We derive the dynamic identification model (DIM) of the
arm using OpenSymoro, and we complete it with the DIM
of the actuators, derived using the symbolic toolbox of
MATLAB R©. The result of this process is the DIM Φ? of the
arm and its actuators, as described in (14).

B. Computation and tracking of the reference excitation
trajectory

The reference excitation trajectory is computed using the
method described in [7]. The number of degrees of freedom
n of the arm is 3, the number of harmonics N for each
trajectory is set to 5, since this offers a viable compromise
between computation time and the complexity of the trajec-
tory. The optimization constraints are defined for each joint,
as presented in table III. Because of the non-linearity of the
transformation of the rotation of the motors in the rotation of
the joints, we choose to generate the reference trajectory in
motors space. This means that the generated trajectory q(t)
represents a number of motors steps (i.e. signal from the hall
effect sensor used for electronic commutation) counted from
a zero position. For the same reason, the constraints, which
correspond to physical limitations of the motors, are not
given in radians, rad/s, and rad/s2 but in increments, inc/s,
and inc/s2, respectively. However, for ease of understanding,
we also give the equivalent of the motors constraints in the
joints space in table III.

TABLE III
CONSTRAINTS OF THE OPTIMIZATION PROBLEM

Unit Joint 1 Joint 2 Joint 3

qm [inc] [0; 20850] [0; 6810] [0; 26750]

q̇m,max [inc/s] 2000 600 2000

q̈m,max [inc/s2] 20000 6000 20000

q [o] [−90; 32] [7; 94] [110; 244]

q̇max [o/s] 28 9 25

The optimization of the trajectory is done using
MATLAB R© Toolbox constr, and the interior-point
method [15]. Because of the existence of many local minima,
the solver is initialized several times with random values,
until it converges to a solution for which the condition of

the observation matrix is less than an arbitrary threshold.
Once an excitation trajectory is obtained, it is set as a
reference trajectory to be tracked by the real system. One
of the resulting reference trajectories is shown in Fig.3. The
sampling frequency is 10Hz, so the duration of a period is
80 seconds.

Fig. 3. A reference excitation trajectory for the three controlled joints, that
satisfies the constraints given in table III

To track the reference trajectory, each generalized coordi-
nate of the manipulator arm is controlled by three PI (Propor-
tional Integral) controllers. In fact, a PI current regulator, a PI
velocity regulator and a PI position regulator are cascaded.
The current regulation and the velocity tracking are realized
by built-in PI controllers of ELMO Whistle R© motor drivers.
The reference position tracking is done by a custom ROS
node and during the tracking of the reference trajectory, we
record the position of the motors and their input currents in
a ROS bag. All the data is provided and timestamped by the
motor drivers, which avoids any real-time issues.

C. Identification of the dynamic parameters

The data recorded during the tracking of the excitation
trajectory is exported to MATLAB R© to create the augmented
observation matrix F and the augmented inputs vector b, as
presented in (18). The estimated vector θ̂? of the dynamic
parameters is obtained by solving F (q, q̇, q̈) θ? = b with
the method of least-squares:

θ̂? = F+ (q, q̇, q̈) b (19)

F+ being the Moore-Penrose pseudo-inverse of F .

D. Validation of the model and its estimated parameters

To validate the estimated parameters, we use them to
estimate the input currents b̂ related to the tracking of a
validation trajectory:

b̂ = F (q, q̇, q̈) θ̂? (20)

Then, we compare b̂ to the actual input currents b, recorded
while the real system is tracking the validation trajectory.

The recorded position is first filtered in order to remove
noise, using a third order Butterworth filter with a normalized
cutoff frequency of 0.1. However, the recorded current is not
filtered, since its filtering would affect to observability of the
effect of the dry friction.



The estimated input currents obtained in this experiment
are presented and compared to the real input currents in
Fig. 4. In order to quantitatively compare the two models,

Fig. 4. Estimated input currents. The real current (solid gray line) is
compared to the estimated input current, without (blue dashed line) and
with (red solid line) actuators’ dynamics.

the root mean square error (RMSE) of the estimated inputs
for each joint is computed:

RMSE(b̂) =
√
E((b̂− b)2) (21)

The value of the RMSE in each case is given in table IV.

TABLE IV
ROOT MEAN SQUARE ERROR OF THE ESTIMATION

Joint 1 Joint 2 Joint 3

without actuators dynamics [A] 0.129 0.154 0.152

with actuators dynamics [A] 0.117 0.128 0.122

improvement
[
%
]

9.80 16.8 19.9

E. Discussion
Fig. 4 and table IV show that the consideration of the

actuators’ dynamics brings an improvement to the model.
However, this improvement is not as good as we could expect
from the simulation. Two particular features of our hardware
implementation may explain this:

• the measure of the current given by the motor drivers is
noisy, but most importantly, the built-in current regula-
tors are unable to provide a stable current. The measured
motion of the arm does not reflect this permanently
oscillating current as it is filtered out by the mechanics
of the manipulator;

• unmodeled flexibility and backlash affect the observ-
ability of the arm behavior over very short periods of
time.

Consequently it is not possible to perfectly map the measured
current to the actual behavior of the arm.

We also observe a difference between the RMSE of joint
1 on one hand, and the one of joints 2 and 3 on the other
hand. This is due to joint 1’s rotation axis being vertical,
while joints 2 and 3’s axes are horizontal, and thus both
have to compensate for gravity effects, which results in a
greater static error.

V. CONCLUSION AND FUTURE WORK

In this article, we have described an original method
to model heterogeneously actuated underwater manipulator
arms, with an emphasis on the properties of an electric
linear actuator. The base dynamic parameters of this model
have been determined and used to obtain the dynamic
identification model of this type of actuators, which has
been subsequently used to improve the dynamic model of a
manipulator arm. The proposed model and the estimation of
its parameters has been validated through experiments, using
the 4-DOF electric manipulator arm fitted to Ifremer’s HROV
Ariane. Future work will exploit the obtained model to ac-
curately simulate and control the arm in manipulation tasks,
aiming to obtain better reliability and increased automation
of scientific sampling tasks (biological and sediment).
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