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Abstract
A superstring of a set of words P = {s1, . . . , sp} is a string that contains each word of P
as substring. Given P , the well known Shortest Linear Superstring problem (SLS), asks for a
shortest superstring of P . In a variant of SLS, called Multi-SLS, each word si comes with an
integer m(i), its multiplicity, that sets a constraint on its number of occurrences, and the goal is
to find a shortest superstring that contains at least m(i) occurrences of si. Multi-SLS generalizes
SLS and is obviously as hard to solve, but it has been studied only in special cases (with words
of length 2 or with a fixed number of words). The approximability of Multi-SLS in the general
case remains open. Here, we study the approximability of Multi-SLS and that of the companion
problem Multi-SCCS, which asks for a shortest cyclic cover instead of shortest superstring. First,
we investigate the approximation of a greedy algorithm for maximizing the compression offered
by a superstring or by a cyclic cover: the approximation ratio is 1/2 for Multi-SLS and 1 for
Multi-SCCS. Then, we exhibit a linear time approximation algorithm, Concat-Greedy, and show
it achieves a ratio of 4 regarding the superstring length. This demonstrates that for both measures
Multi-SLS belongs to the class of APX problems.
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1 Introduction

Given a set of p words P := {s1, s2, . . . , sp} over a finite alphabet Σ, a superstring of P is a
string containing each si for 1 ≤ i ≤ p as a substring. The Shortest Linear Superstring
(SLS) problem is an optimization problem that asks for a superstring of P of minimal length.
It is also known as the Shortet Common Superstring problem, which does not convey the fact
that the output superstring is a linear rather than cyclic word. SLS has been studied in depth
for its applications in data compression, where a superstring is an alternative representation
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21:2 Superstrings with multiplicities

of P , and in bioinformatics [11]. SLS is known to be hard to solve (NP-hard provided
the input words are of length at least three) and to approximate (MAX-SNP-hard), and
these difficulties remain even if one considers instances over a binary alphabet [10, 3, 17].
In bioinformatics, SLS models the initial step of genome assembly in a shotgun sequencing
approach [1], whose input is a large and redundant set of "reads". This first step consists in
merging overlapping words to obtain partial substrings of the target genome. These output
strings are called contigs. In practice, one never obtains a single superstring covering the
genome, but a large set of contigs. A major difficulty that is inherent to biology comes from
the presence of repeated regions in genomes. When assembled, the distinct copies of a repeat
tend to collapse into a single occurrence, and the corresponding contig then exhibits a higher
density of merged words [1]. By comparing the local density of a contig to the expected
density, one can estimate the underlying number of copies for a repeat. The assembly process
can then be rerun using these multiplicities, that is for each word, the number of times it
must appear in the superstring. To take into account the issue of repeated regions in SLS,
Crochemore et al. have proposed a variant of SLS called Multi-SLS1: the input consists
in P with a function m giving the multiplicity of each word of P , and the output multi
superstring must contain at least m(si) occurrences of si, for any 1 ≤ i ≤ p [8]. They present
two polynomial time algorithms to solve two special cases of Multi-SLS: First, the case
where the number of input words is constant, and second the case where each input word
has length 2. The latter generalizes SLS for words of length 2, which can also be solved in
polynomial time [10].

Contributions To our knowledge, the approximability of Multi-SLS in the general case
(i.e., with an unbounded number of words of length ≥ 2) is wide open. As for SLS, two
measures can be considered: the superstring length or its compression – the superstring
length minus the sum of the lengths of all required occurrences of words of P . In general, for
an optimization problem P, we denote by Pcomp the related problem that maximizes the
compression measure.

I Example 1. Consider the instance (P,m) with P := {aab, abaa, baba} with multiplicities
m(aab) = 2, m(abaa) = 1, and m(baba) = 2. Then w := aabaabababa is a multi superstring
of (P,m), it has length 11 and achieves of compression of 9 symbols. Similarly, the string
y := aabaababaababababa, which results from concatenating the required words, also is a
multi superstring of (P,m) of length 18 and thus yields a compression of 0.

In Section 3, we study the greedy algorithm for Multi-SLScomp and show it has a
compression ratio of 1/2 in Theorem 9. In Section 5, we propose for Multi-SLS the first
polynomial time approximation algorithm, called Concat-Greedy, and prove in Theorem 15
that it admits an approximation ratio of 4 for the superstring length measure. Hence, we
demonstrate:

I Theorem 2. Both Multi-SLS and Multi-SLScomp belong to the class APX.

In fact, the ratio of 4 follows from a stronger bound on the length of a solution of
Concat-Greedy (see Proposition 14 p. 12). Note that the same ratio of 4 was proven
for the classical SLS problem by [3] in 1994, using the Concat-Cycles algorithm. To achieve
this bound, Concat-Greedy must solve a related problem called Multi-SCCS, where the

1 According to the notation of [8], this variant was termed MULTI-SCS.
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solution is a set of cyclic strings that collectively contain all the required occurrences of
words of P . Such a set is called a cyclic cover of strings, or cyclic cover for short. First, we
show in Section 3 that a greedy algorithm solves exactly Multi-SCCS, and then exhibit in
Section 4 a graph based algorithm for it and bound its time complexity, which yields:

I Theorem 3. The Multi-Greedy algorithm (Algo. 2) solves the Multi-SCCS problem in a
time that is linear in the size of its output.

2 Preliminaries

Here, we introduce basic notions on strings, permutations, superstrings and formally define
the two problems Multi-SLS and Multi-SCCS. Then, we derive a logical, but important
fact: all multi superstrings (resp. multi cyclic cover) we need to consider are induced by
permutations. For any finite set U , |U | denotes its cardinality.

About strings Let u, v be two linear strings. We denote by |u| the length of u, and by uv
their concatenation. Given a linear string u, we obtain the circular string 〈u〉 by linking the
last letter of the linear string u to its first letter. The length of the circular string 〈u〉 is the
length of the linear string u. Given a set of linear or circular strings P , we call the norm of
P , denoted by ||P ||, i.e. the sum of the lengths of the strings of P .

Let x := x1 . . . xn and y := y1 . . . ym be two linear strings (where for any 1 ≤ j ≤ m,
yj is the jth letter of y). We denote by Occ(y, x) the set of the occurences of y in x,
i.e., the set of positions i between 1 and n − m + 1 such that xi . . . xi+m−1 = y1 . . . ym.
Whenever Occ(y, x) is not empty, y is said to be a substring of x. We extend the notion of
substring to circular strings by extending the set of occurences: we denote by Occ(y, 〈x〉)
the set Occ(y, x∞) ∩ {1, . . . , |x|} (where x∞ = xx . . .). A prefix y (respectively a suffix) of
a linear string x is a substring beginning (respectively ending) x, i.e., 1 ∈ Occ(y, x) (resp.
|x| − |y|+ 1 ∈ Occ(y, x)). Furthermore, we say that y is a proper substring of x if |y| < |x|
(Definitions of a proper prefix/suffix are similar). Let M be a set of linear or circular strings;
we denote by Occ(x,M) the set of all occurences of x in all strings of M .

Problem definitions Throughout the article, let P := {s1, . . . , sp} be a set of linear strings
P and a function m from P to N∗ giving the multiplicity of each string. We assume that
P is factor-free, i.e., si is not a substring of sj for any i, j in {1, . . . , p}. The pair (P,m) is
the input of the problems Multi-SLS and Multi-SCCS. A superstring of P is a word w such
that for any 1 ≤ i ≤ p, |Occ(si, w)| ≥ 1.

Let us define formally the two minimization problems Multi-SLS and Multi-SCCS:
both seek to minimize their output length. Note that Definition 4 is equivalent to that
MULTI-SCS(k) from [8].

I Definition 4 (Multi Shortest Linear Superstring (Multi-SLS)). Let P := {s1, . . . , sp} be a
set of strings and m a function from P to N∗. It seeks a linear string w of minimal length
and such that for all si ∈ P , |Occ(si, w)| ≥ m(si).

I Definition 5 (Multi Shortest Cyclic Cover of Strings (Multi-SCCS)). Let P := {s1, . . . , sp}
be a set of strings and m a function from P to N∗. It seeks a set C of circular strings of
minimal norm and such that for all si ∈ P , |Occ(si, C)| ≥ m(si).

In any solution of Multi-SLS or of Multi-SCCS, each string s of P must occur at least
m(s) times. Let us define P̃ to be the set containing m(s) copies of each word s of P ; to

CPM 2018
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aab, 1 aab, 2 aab, 3 abaa, 1 abaa, 2 ababb, 1 abba, 1 abba, 2 abba, 3

aab abaa ababb abba

3 2 1 3

P̃

P

m

Figure 1 Example of P̃ for the instance (P,m) of Example 6. Due to space constraints, for a
pair of P̃ we may write aab,2 or 2 .

distinguish its copies we denote any element of P̃ by a pair (s, i) for 1 ≤ i ≤ m(s) – see
Example 6 and Figure 1. Formally, i.e.

P̃ =
⋃
s∈P

(
∪m(s)
i=1 {(s, i)}

)
.

For an element (s, i) of P̃ , we denote by word((s, i)) the word s of P , i.e., word((s, i)) = s.
Note that for some instances – when words of P do not overlap each other – an optimal

solution for Multi-SLS is the concatenation of all strings in P̃ , and has length ||P̃ || :=∑p
i=1 m(si) |si|. This observation remains valid for Multi-SCCS. Any algorithm solving

Multi-SLS or Multi-SCCS has its complexity bounded by the length of its output, i.e., by
||P̃ ||, which we consider to be linear in the input size. In [8], the authors seek to find a
compressed representation of the output; we dwell on this question on page 11.

I Example 6 (see Figure 1). This same instance (P,m) is used as running example throughout
the paper. Let P = {aab, abaa, ababb, abba} be a set of strings and m be the function from
P to N∗ such that m(aab) = 3, m(abaa) = 2, m(ababb) = 1 and m(abba) = 3. We have that

P̃ = {(aab, 1), (abb, 2), (abb, 3), (abaa, 1), (abaa, 2), (ababb, 1), (abba, 1), (abba, 2), (abba, 3)}.

About permutations Given a permutation σ of a set E, a successor y of an element x of E
by σ, is an element of E such that y = σk(x) where σ1(x) = σ(x) and σk(x) = σk−1(σ(x)).
We denote by Part(E, σ) the partition {E1, . . . , Ep} of E where each element of E and its
successors are in the same subset Ei. A permutation is said circular if all the elements
of E are successors of any element of E, i.e. Part(E, σ) = {E}. Moreover, we denote by
Decomp(E, σ) the decomposition into circular permutations of the permutation σ, i.e., the set
of pairs (Ei, σi) where Ei ∈ Part(E, σ) and where σi is the restriction of σ to the elements
of Ei.

About linear and circular superstrings Given two linear strings u and v, an overlap from
u over v is a linear string that is a proper suffix of u and a proper prefix of v. We denote
by ov(u, v) the longest overlap from u to v (also termed maximal overlap). Overlaps
are not symmetrical. The prefix from u to v, denoted by pr(u, v) is the string satisfying
u = pr(u, v)ov(u, v). The merge from u to v is the linear string pr(u, v)v if u 6= v, and the
circular string 〈pr(u, u)〉 otherwise. Given a set of strings P , we denote by Ov(P ) the set of
all the maximal overlaps between any two strings of P .

Let P = {s1, . . . , sp} be a set of linear strings. We denote by Linear(s1, . . . , sp) (resp.
by Circular(s1, . . . , sp)) the linear (resp. circular) string defined by the merge of s1, . . . , sp
in this order:

Linear(s1, . . . , sp) := pr(s1, s2)pr(s2, s3) . . . pr(sp−1, sp)sp
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and

Circular(s1, . . . , sp) := 〈pr(s1, s2)pr(s2, s3) . . . pr(sp−1, sp)pr(sp, s1)〉.

I Remark. The starting point of the merge does not impact Circular(). Formally, for all
j ∈ {1, . . . , p}, Circular(s1, . . . , sp) = Circular(sj , . . . , sp, s1, . . . , sj−1).

About multi superstrings and multi cyclic covers induced by a permutation The number
of possible superstrings or cyclic covers of P̃ is infinite, which makes the search space for
Multi-SLS / Multi-SCCS unpractical. Hence, a crucial issue is whether we can restrict this
search space. For this sake, we introduce the notion of multi superstring/cyclic cover induced
by a permutation.

Let τ be a permutation of P̃ . If τ is a circular permutation (meaning that all its elements
are successors of each other), we can define the multi superstring induced by τ and by an
element s̃ of P̃ as follows:

Lin(P̃ , τ, s̃) = Linear(next_word(s̃, 1), . . . , next_word(s̃, |P̃ |))

where next_word(s̃, k) = word(τk(s̃)). Here, the term Linear() of this equation is the merge
of the words of P̃ in the order given by τ and ending with the chosen element s̃ (indeed,
next_word(s̃, |P̃ |) = word(s̃)).

In general, τ is not circular. It can be decomposed in several circular permutations (see
Fig. 2a); we denote its decomposition by Decomp(P̃ , τ). We define, CC(P̃ , τ), the multi cyclic
cover of strings induced by τ as follows:

CC(P̃ , τ) =
⋃

(P̃i,σi)∈Decomp(P̃ ,τ)

{Circular(next_word(s̃, 1), . . . , next_word(s̃, |P̃i|))}

where s̃ is any element of P̃i and next_word(s̃, k) = word(σki (s̃)). CC(P̃ , τ) is a set of cyclic
strings, each obtained by merging the words in the order given by a sub-permutation σi.

I Example 7. Let σ1 and σ2 be the permutations of P̃ of Figure 2a and Figure 2b. Consider
the pair (abba, 3) in P̃ (node 3 in figures 2a and b); its direct successor with σ1 is itself, i.e.,
σ1((abba, 3)) = (abba, 3), and with σ2, it is the node 1 in Figure 2b, i.e., σ2((abba, 3)) =
(ababb, 1).

Some thoughts lead to the observation that any optimal multi superstring or multi cyclic
cover is necessarily induced by a permutation on P̃ . This yields this proposition, which
indeed restricts the search spaces of both problems. Due to space constraints, the proofs of
some results (marked with a ?) are not included here; some proofs are given in the appendix.
I Proposition 8 (?). Let (P,m) be an instance of Multi-SLS and of Multi-SCCS. Let wopt
be an optimal solution of Multi-SLS and let Copt be an optimal solution of Multi-SCCS.
Then, there exist
1. a permutation τ of P̃ such that Copt = CC(P̃ , τ).
2. a circular permutation ϕ of P̃ and an element s̃ of P̃ such that wopt = Lin(P̃ , ϕ, s̃).

3 Approximation

Here, let us define the greedy algorithms for Multi-SLS and Multi-SCCS problems and
exhibit their approximation ratios for the measure of compression.

CPM 2018
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1 2 3 1 2 1 1 2 3

1 2 2 1 2 1 1 3 3

(a) Permutation σ1 of P̃

1 2 3 1 2 1 1 2 3

1 2 2 2 3 1 1 3 1

(b) Permutation σ2 of P̃

a
b

a
a

b

a

a

a b

b
a

b

a b

b

b
b

a

aab, 1 aab, 2

aab, 3

abaa, 1 abaa, 2

ababb, 1 abba, 1 abba, 2

abba, 3

(c) Cyclic cover induced by σ1

a
b

abb
a

a

b
a
a
b

a a b
b
a
b

b

ababb, 1abba, 1

aab, 1

abaa, 1

aab, 2

abba, 2abaa, 2
aab, 3

abba, 3

(d) Cyclic cover induced by σ2

Figure 2 Running example: two possible permutations of P̃ (Fig. a & b), and the cyclic covers
induced by these permutations (Fig. c and d). Permutation σ1 in (a) is decomposed in 5 circular
permutations (five colors in a) and induces 5 cyclic strings (c), while permutation σ2 cannot be
decomposed and induces a single cyclic string (d). In (c, d) input words are drawn as arrows around
the cyclic strings, and the dashed part represents the overlap with the successor.

Greedy algorithms By Proposition 8, we have that each optimal solution of Multi-SCCS
can be induced by a permutation on P̃ . We can generalize the greedy algorithm for SCCS [5]
to Multi-SCCS.

The basic principle of the greedy algorithm for SLS or SCCS is 1/ to merge a pair of
strings at each step until all merge possibilities have been exhausted, and 2/ to consider pairs
of strings to be merged in order of decreasing overlap length, and 3/ to break ties randomly.
It is greedy because it chooses merge operations that yield the best compression first, and
never backtracks on these choices. In fact, the greedy algorithm determines a total ordering
on the merge operations (it is the greedy algorithm of a precise subset system – see [6] for
details). In stringology, the greedy algorithm is usually presented as in Algorithm 1: the
initial set of words (set Q in Algorithm 1) is iteratively modified at each iteration of the
main loop: a pair of strings is chosen, those strings removed from the set, and the string
resulting from the merge is (re-)inserted in the set. The two formulations of the algorithm
are equivalent [6], basically because the new string offers the same overlaps with remaining
words as the strings that were merged.

Of course the algorithm differs between the linear and cyclic cases. For SLS or Multi-SLS,
the loop merges pairs of words until getting a single linear string, which is the final result. For
SCCS or Multi-SCCS, the result is a set of cyclic strings, which is iteratively built (solution
set S). A merge of two linear string results in a linear string, but the merge of a single string
that self-overlaps yields a cyclic string. A cyclic string has no overlap and cannot be merged.
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Algorithm 1: The greedy algorithm for Multi-SCCS.
1 Input: a pair (P,m); Output: S: a cyclic cover of strings covering P̃ ;
2 S := ∅; // the solution set in construction
3 Q := P̃ ;
4 newIndex := |Q|;
5 while |Q| > 0 do
6 (u, i) and (v, j) two elements of Q such that u and v have the longest overlap;

// u can be equal to v and i equal to j
7 w is the merge of u and v;
8 Q := Q \ {(u, i), (v, j)};
9 if u = v and i = j ( i.e., w is a cyclic string) then S := S ∪ {w};

10 else Q := Q ∪ {(w,newIndex++)};
11 return S

Hence, each cyclic string is directly inserted into the solution set (set S, line 9), while a
linear string is re-inserted in the set of strings remaining to be merged (set Q, line 10). This
explains why the loop condition is |Q| > 0 (line 5).
I Remark. Algorithm 1 is equivalent to iteratively merging the two elements u and v of P̃
having the longest overlap, provided that u is not merged on its right2 more than m(u) times
and v is not merged on its left more than m(v) times. The word that results from the merge
is inserted back into Q when it is linear, and inserted in the solution set S if it is cyclic. As
elements of Q are pairs, we number each inserted word with a variable newIndex that is
incremented on line 9.

We can also generalize the greedy algorithm for Multi-SCCS to Multi-SLS. To do so, we
just need to change in Algorithm 1, the while condition "|Q| > 0" by "|Q| > 1" and, on line 6
"and i equal to j" by "but i cannot be equal to j".

Measure of compression For the both problems Multi-SLS and Multi-SCCS, we want
to minimize the length of the multi superstring or the norm of the multi cyclic cover of
strings. If instead, we want to maximize the compression, that is the difference between
the norm of P̃ and the output size, we call the corresponding problems Multi-SLScomp and
Multi-SCCScomp.

As the size of the input is constant, all optimal solutions of Multi-SCCS are also optimal
solutions of Multi-SCCScomp, and vice versa. The set of optimal solutions of Multi-SLS is
also equal to the set of optimal solutions of Multi-SLScomp. By Proposition 8, as we can
restrict to solutions induced by a permutation of P̃ , the compression can be seen as the sum
of the lengths of the overlaps between two successive strings in the permutation. Indeed, for
a permutation τ of P̃ ,

||P̃ || − |CC(P̃ , τ)| =
∑

(P̃i,σi)∈Decomp(P̃ ,τ)

( |P̃i|∑
j=1
|ov(next_word(s̃, j), next_word(s̃, j + 1))|

)
where s̃ ∈ P̃i and next_word(s̃, k) = word(σki (s̃)). Similarly, we get that Multi-SLScomp

2 Merged on its right (resp. left) means using an overlap of its suffix (resp. prefix).

CPM 2018



21:8 Superstrings with multiplicities

maximizes the sum of the lengths of the successive overlaps in a multi superstring induced
by a permutation.

Approximation for compression We can see the greedy algorithm for SLS (and SLScomp)
as the greedy algorithm for finding a maximum weighted Hamiltonian path (Maximum
Asymmetric Travelling Salesman Problem – Max-ATSP) in the overlap graph [15]. The overlap
graph is a complete digraph labelled on the arcs, where each input word is a node, and
where the length of the maximal overlap between two words is a weight on the corresponding
arc [3]. Theorem 9 generalizes the half compression of greedy algorithm for SLS from [15] to
Multi-SLS (full proof in the Appendix).

I Theorem 9. The greedy algorithm for Multi-SLScomp has a 1
2 approximation ratio.

Proof. (See details in Appendix.) In [6], we show that one can prove the approximation ratio
of the greedy algorithm for SLScomp by combining the Monge inequality [14] with subset sys-
tems that simulate the greedy algorithm for Max-ATSP in graphs [13]. By building the overlap
graph for P̃ (see Figure 4a), we can use the same subset system on the maximal overlaps of
P̃ and obtain the same approximation ratio for the greedy algorithm of Multi-SLScomp as
for that of SLScomp. J

With the same arguments, we can show that the approximation ratio of the greedy
algorithm for Multi-SCCScomp equals that of the greedy algorithm for SCCScomp, which is
1 [6]. This yields Theorem 10.

I Theorem 10. For both problems Multi-SCCScomp and Multi-SCCS, the greedy algorithm
(Algorithm 1) yields an optimal solution.

By Proposition 8 and by the fact that greedy solutions for Multi-SCCS are optimal, we
can represent each greedy solution by a permutation of P̃ . For any instance (P,m), let
GreedyPerm(P̃ ) denote the set of permutations of P̃ corresponding to greedy solutions for
Multi-SCCS.

4 Linear construction of Multi-SCCS

In this section, we show how to compute a greedy solution for Multi-SCCS in linear time
in the norm of the set of strings of the input and in the norm of an optimal solution of
Multi-SCCS. To achieve this, we adapt the superstring graph [5] in order to model greedy
solutions for Multi-SCCS. Now, assume that one stores m(w), the multiplicity of a string w,
in constant space (O(1) bits); hence the input, (P,m), has size O(||P ||).

Red-Blue graphs To begin with, we define the Red-Blue graphs, which are intermediate
digraphs needed to define the multi superstring graph – see Figure 3 (or Figure 6 in appendix).
Let τ be a permutation for P̃ and s̃ an element of P̃ . We define, RB-Graph(τ, s̃) := (V,R,B),
the Red-Blue graph of s̃ for the permutation τ as

V = {word(s̃), word(τ(s̃))} ∪ {y ∈ Ov(P ) : |y| ≥ |ov(word(s̃), word(τ(s̃)))| , and
(y suffix of word(s̃) or y prefix of word(τ(s̃)))},

R = {(u, v) ∈ V × V | v is the longest proper suffix of u in V },
B = {(u, v) ∈ V × V | u is the longest proper prefix of v in V }.

By the properties of prefixes/suffixes, Red-Blue graphs are path graphs, which we illustrate
in Figure 3 (running example and permutation σ1 from Fig. 2a). Note that a Red-Blue graph
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aab, 1 abaa, 1 aab ab abaa

aab, 2 abaa, 2 aab ab abaa

aab, 3 abba, 2 aab ab abb abba

abaa, 1 aab, 1 abaa aa aab

abaa, 2 aab, 2 abaa aa aab

ababb, 1 abba, 1 ababb abb abba

abba, 2 aab, 3 abba a aa aab

abba, 3 abba, 3 abba a ab abb abba

abba, 1 ababb, 1 abba a ab ababb

(s, i) σ1((s, i)) RB-graph(σ1, (s, i))

Figure 3 Running example: set of all the Red-Blue graphs of (s, i) ∈ P̃ for the permutation σ1

(see Figure 2a). A dashed arc (in red) links a string to its longest proper suffix, while a plain arc (in
blue) links a longest proper prefix of a string to this string.

of s̃ depends on Ov(P ): it may contain a suffix/prefix that is an overlap of another pair of
words (∈ {(word(s̃), word(τ(s̃))) | s̃ ∈ P̃}). In Figure 3, it happens on the graph for the pair
aab to abba since abb is not their maximal overlap.
Let u and v be in P ∪ Ov(P ). By the definition of Red-Blue graphs, the arc linking u to v
occurs only once in a given Red-Blue graph, i.e., |{(u, v)} ∩ (R ∪B)| ∈ {0, 1} (see Lemma 16
in Appendix). We define NbOcc(τ, (u, v)) as the number of occurrences of the arc (u, v) in all
Red-Blue graphs for all s̃ in P̃ . Thus, we get:

NbOcc(τ, (u, v)) :=
∑
s̃ ∈ P̃

(V,R,B) = RB-Graph(τ,̃s)

|{(u, v)} ∩ (R ∪B)|.

Furthermore, we define PrefixArc(P ) (resp. SuffixArc(P )), as the set of arcs (u, v) (resp.
(v, u)) of (P ∪ Ov(P ))2 such that u is the longest prefix (resp. suffix) of v in P ∪ Ov(P ).

For a permutation τ of P̃ that corresponds to a greedy solution for Multi-SCCS, we can
count the NbOcc(τ, (u, v)) for all (u, v) ∈ PrefixArc(P ) ∪ SuffixArc(P ). For the sake of
simplicity, we extend the function m to elements of Ov(P ) and set: m(w) = 0 for any w in
Ov(P ).

I Proposition 11. Let be τ ∈ GreedyPerm(P̃ ) and (u, v) ∈ PrefixArc(P ) ∪ SuffixArc(P ).
We have that

NbOcc(τ, (u, v)) =
{

Max(m(v),−a(v)) if |u| ≤ |v|
Max(m(u), a(u)) if |u| > |v|

where a(w) =
∑

(w′,w)∈SuffixArc(P )

NbOcc(τ, (w′, w))−
∑

(w,w′)∈PrefixArc(P )

NbOcc(τ, (w,w′)).

Multi superstring graph Let τ be a permutation of P̃ . We define Gp(τ) := (V,R,B, l) as
the graph labelled on its arcs, which results from the merge of all Red-Blue graphs for all
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ababb, 1

abba, 1
abba, 2

abba, 3

abaa, 1

abaa, 2
aab, 1

aab, 2

aab, 3

(a) Overlap graph of P̃ (without weights)

ababb aab

abba abaa

abb

aa

ab

a

1

2
3

3

2

1

2

3

1

2

3

(b) Multi superstring graph of (P,m)

Figure 4 Running example: overlap graph of P̃ and multi superstring graph of (P,m).

elements of P̃ and for permutation τ . Formally:

V = Ov(P ) \ U
R = {(u, v) ∈ SuffixArc(P ) | NbOcc(τ, (u, v)) 6= 0}
B = {(u, v) ∈ PrefixArc(P ) | NbOcc(τ, (u, v)) 6= 0}
l : (u, v) 7→ NbOcc(τ, (u, v))

where U = {v ∈ Ov(P ) | v is not an extremity of an arc of R ∪B}.
By Proposition 11, we have that for a permutation τ of GreedyPerm(P̃ ) and (u, v) ∈

PrefixArc(P )∪SuffixArc(P ), the number of occurrences of the arc (u, v), i.e. NbOcc(τ, (u, v)),
is independent of the permutation τ . From this observation and arguments from [6], we
deduce Proposition 12.
I Proposition 12 (?). Let τ1, τ2 be two permutations of GreedyPerm(P̃ ). Then, Gp(τ1) =
Gp(τ2).

By Proposition 12, all permutations inducing a greedy solution for an instance of
Multi-SCCS yield the same graph, which we call the multi superstring graph and denote by
SG(P,m) (see Figure 4b).

Using data structures like the (generalised) suffix tree to determine Ov(P ) [16], and with
Proposition 11, we can build the multi superstring graph of (P,m) recursively and we obtain
the following proposition.
I Proposition 13 (?). The multi superstring graph can be built in linear time and space in
||P ||.

Linear construction By Proposition 11, we know that for SG(P,m) = (V,R,B, l) the multi
superstring graph of (P,m) the following equality holds:

∀v ∈ V,
∑

(v,u)∈R

l((v, u))−
∑

(u,v)∈B

l((u, v)) =
∑

(u,v)∈R

l((u, v))−
∑

(v,u)∈B

l((v, u)).

Hence, it follows that the multi superstring graph, in which the label of an arc is seen as a
multi-arc, is Eulerian on each of its connected components. In Figure 4b, the arc from abba

to a labelled by 3 means the Eulerian cycle must traverse this arc exactly thrice. Conversely,
we can show that every set of cycles covering the multi superstring graph corresponds to a
greedy solution for Multi-SCCS. As finding an Eulerian cycle cover of SG(P,m) takes a time
linear in ||P ||, we deduce Theorem 3 (p. 3).
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Algorithm 2: The Multi-Greedy algorithm for Multi-SCCS

1 Input: a pair (P,m). Output: W a greedy solution for Multi-SCCS;
2 build SG(P,m) the multi superstring graph of (P,m);
3 compute an Eulerian multi-cycle c = (c1, . . . , cn) of GP ;
4 for j ∈ [1, n] do
5 traverse cj : list the words of P whose node is in cj and insert the cyclic string of

the concatenation of the corresponding prefixes in W ;
6 return W

Compressed output representation At the beginning of this section, we have assumed
that for each word of P , we can store the multiplicity in constant space. To improve the
complexity, in this paragraph we assume that we can store the multiplicity of each string in
O(||P ||) bits. In [8], the authors present a compact representation of a solution for Multi-SLS
with strings of length 2. They show that this compact representation has a size in O(||P ||2)
and can be computed in O(||P ||2) time.

We can apply their technique to the multi superstring graph defined for Multi-SCCS.
First, build the multi superstring graph of (P,m), and then using the algorithm EulerianCycle
from [8] on SG(P,m), compute a compact representation of a multi cyclic cover of size O(||P ||2)
in O(||P ||2) time. Now, as any connected component of SG(P,m) can be represented just by
a permutation and its first element, one gets a compact representation of size O(||P || × |P |),
therefore improving on [8].

5 Approximation algorithm for Multi-SLS

Now, we propose an approximation algorithm for Multi-SLS and derive its approximation
ratio with respect to the multi superstring length. By Theorem 9, we know that the greedy
algorithm for Multi-SLScomp has an approximation ratio of 1/2, and thus it belongs to APX.
Here, we extend the Concat-Cycles algorithm from [3] and we show that this new algorithm,
called Concat-Greedy, has an approximation ratio of 4 for Multi-SLS. The idea is to build
an Eulerian multi-cycle of the multi superstring graph of (P,m), to break each cycle and
merge its words to create linear strings, and to concatenate all these linear strings in an
arbitrary order. Figure 5 displays an example of linearization.

To define formally the linearization of a cyclic cover of strings induced by permutation τ
of P̃ , we denote LinCC(P̃ , τ, (w1, . . . , wp)) the following linearization

LinCC(P̃ , τ, (w1, . . . , wp)) = Lin(P̃1, σ1, w1) . . . Lin(P̃p, σp, wp)

where Decomp(P̃ , τ) = {(P̃1, σ1), . . . , (P̃p, σp)} and (w1, . . . , wp) ∈ P̃1 × . . .× P̃p.

a a b a a a b a a b a a b b a a b a b b a a b b a b b a

1 1 2 2 3 2 1 1 3

Figure 5 Running example: linearization LinCC(P̃ , σ1,W ) of a cyclic cover of strings induced
by permutation σ1 (see Figure 2a) for W :=

(
abaa,1 , aab,2 , abba,2 , abba,1 , abba,3

)
.

Now, let us define the algorithm Concat-Greedy by Algorithm 3.
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Algorithm 3: The algorithm Concat-Greedy for Multi-SLS

1 Input: a pair (P,m). Output: a linear solution for Multi-SLS;
2 build SG(P,m) the multi superstring graph of (P,m);
3 compute an Eulerian multi-cycle of GP and take τ the permutation in

GreedyPerm(P̃ ) corresponding to this multi-cycle;
4 take a tuple W of E1 × . . .× Ep where Part(P̃ , τ) = {E1, . . . , Ep};
5 return LinCC(P̃ , τ,W )

Adapting the proof by Blum et al. of the approximation ratio of Concat-Cycles
from [3], one gets the following bound on the length of a multi superstring computed
by Concat-Greedy.
I Proposition 14 (?). Let wCG be a solution of Algorithm 3, wOPT (Multi-SLS) be an optimal
solution of Multi-SLS, and wOPT (SLS) be an optimal solution of SLS. We have:

|wCG| ≤ |wOPT (Multi-SLS)| + 3 × |wOPT (SLS)|.

As an optimal solution of Multi-SLS is longer than or equal to an optimal solution of SLS,
one gets the following approximation ratio for Concat-Greedy, which is not tight.

I Theorem 15. The approximation ratio of Algorithm Concat-Greedy for Multi-SLS is 4.

I Remark. As we have made for Multi-SCCS, we can compute a compact representation
of Multi-SLS of size O(||P || × |P |) in time O(||P ||2). Indeed, we linearize the compact
representation of Multi-SCCS using Concat-Greedy to get a compact representation for
Multi-SLS.

6 Conclusion

Here, we provide the first study of Multi-SLS in the general case, that is without restriction
on the number of words, nor on the word length. Multi-SLS can be approximated for both
the superstring length measure and for the compression measure. Finally, both Multi-SLS
and Multi-SLScomp admit a constant approximation ratio, and thus belong to the class
of APX problems. Proposition 14 shows that the difference in length between a multi-
superstring returned by Concat-Greedy and an optimal multi-superstring is bounded by a
term proportional to the length of an optimal superstring for SLS, on which the multiplicities
have no impact. In practice, Concat-Greedy may produce solutions way below this bound. A
future line of research is to implement this algorithm and evaluate its ratio experimentally, an
approach of great interest for superstring problems. Indeed, for the classical SLS problem, a
simple greedy like algorithm seems to yield superstrings very close to the optimum, achieving a
ratio that is orders of magnitude smaller than the theoretical bound [4]. Indeed, experimental
tests allow to compare approximation algorithms and may help pinpointing hard instances.
Of course, the theoretical ratio of the greedy algorithm, and the best possible approximation
ratio remain open questions for Multi-SLS.

Our main result regarding Multi-SCCS is its solvability in linear time. The Multi-Greedy
algorithm paves the way to the design of new approximation algorithms for Multi-SLS, as
was done for the classical SLS problem. Let us stress that even if our algorithm builds the
multi superstring graph for (P,m), the multiplicities do not impact the numbers of nodes
or of arcs, but only the weights on the arcs. As shown in Figure 4b, it is crucial that these
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numbers are independent of the multiplicities. Another issue is to understand what influences
the number of cycles in a solution of Multi-SCCS; minimizing it may improve the output of
Concat-Greedy, which "looses" some symbols each time it breaks a cycle.

Regarding future work, numerous variants of SLS (with reversals, with DNA strings [12, 9])
or restrictions of SLS (e.g. to strings of the same length [7]) can also be investigated with
multiplicities. The question of updating a shortest superstring when the instance changes
is challenging [2]. Here, a change of multiplicity can be considered as an alteration of the
instance.
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A Details on the proofs for Theorems 9 and 10

This section summarizes the main lines of the proofs for Theorems 9 and 10 – formal proofs
are left for a full version of this article. The proof of Theorem 9 (resp. Theorem 10) follows
that of Theorem 3 (resp. Theorem 4) in [6]. We refer the reader to [13] for details on subset
systems and the notion of extendibility.

Both proofs rely on a subset system to analyze the greedy algorithm for solving Max-ATSP
in general graphs, and on the proof of its approximation ratio on Overlap Graphs. The goal
of Max-ATSP is to find a maximum weighted Hamiltonian path in a digraph G = (V,A). The
subset system enforces three conditions on the arcs incorporated in a greedy solution:
1. any two arcs must start from distinct nodes
2. any two arcs must end in distinct nodes (i.e., the symmetrical of the first condition)
3. there exist no cycle of length smaller than the cardinality of V .
These conditions ensure that the greedy algorithm indeed builds a Hamiltonian path. Thanks
to its 3-extendibility and to Theorem 1 from [13], one deduce that the greedy algorithm
yields a 1/3 approximation ratio for Max-ATSP, and similarly a 1/2 ratio for the Maximum
Weighted Cycle Cover problem. However, these are the ratios for general graphs. In the
case of overlap graphs, which satisfy the Monge condition [14], the proof of Theorem 3
in [6] shows by analyzing finely the greedy approximation, that the greedy algorithm yields
a 1/2 approximation ratio for Max-ATSP. Since, it is known that an approximation ratio
for Max-ATSP translates directly to an approximation ratio for Maximum Compression [11],
which is the version of Shortest Linear Superstring that seeks to maximize compression
measure, one gets a 1/2 approximation ratio for SLS. By applying this result on the overlap
graph of P̃ , one derives the 1/2 ratio for Multi-SLScomp. A similar proof ends up with an
approximation ratio of 1 for the Maximum Weighted Cycle Cover problem on overlap graph.
This yields the same ratio for Multi-SCCScomp, thereby showing that the greedy algorithm
solves this problem exactly.

B Proof of Lemma 16 and Proposition 11

I Lemma 16. Let τ be a permutation of P̃ and s̃ ∈ P̃ . Consider RB-Graph(τ, s̃) := (V,R,B)
be the Red-Blue graph of s̃, and let u and v be two strings of V . Then, the arc (u, v) occurs
only once in the Red-Blue graph, in other words

|{(u, v)} ∩ (R ∪B)| = 1.

Proof of Lemma 16. We face two alternatives: any arc belongs either to B or to R. By the
definition of R, if (u, v) belongs to R, then v is the longest proper suffix of u in V . Thus,
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the length of u is strictly larger than that of v. By the definition of B, if (u, v) ∈ R, then u
is the longest proper prefix of v in V . Thus, |u| < |v|. Hence, any arc of R ∪B is either in
R or in B, i.e., R ∩B = ∅. By the unicity of the longest proper prefix/suffix, (u, v) cannot
appear more than once in R nor in B, which concludes the proof. J

Proof of Proposition 11. By definition,

NbOcc(τ, (u, v)) :=
∑
s̃ ∈ P̃

(V,R,B)=RB-Graph(τ,̃s)

|{(u, v)} ∩ (R ∪B)|.

By Lemma 16, NbOcc(τ, (u, v)) is the number of times the arc (u, v) occurs in all Red-Blue
graphs of all the elements of P̃ .

To simplify the proof, we consider four alternative cases.
The case where u is an element of P . As P is factor-free, (u, v) is an arc of a

Red-Blue graph (V,R,B), and (u, v) is an element of R (since |u| > |v|). Moreover, a(u) = 0
because the set {(w′, w) ∈ SuffixArc(P )} ∪ {(w,w′) ∈ PrefixArc(P )} is empty. And thus,

NbOcc(τ, (u, v)) = |{u | ∃k ∈ N, (u, k) ∈ P̃}|
= m(u)
= Max(m(u), a(u)).

The case where v is an element of P . As P is factor-free, we get that (u, v) is an
element of B since |u| < |v|, and that a(v) = 0. Hence,

NbOcc(τ, (u, v)) = |{v | ∃k ∈ N, (v, k) ∈ P̃}|
= m(v)
= Max(m(v),−a(v)).

The case where u /∈ P , v /∈ P and |u| < |v|. As |u| < |v|, the arc (u, v) is an element
of B. As u /∈ P and v /∈ P , m(u) = m(v) = 0.

NbOcc(τ, (u, v)) = |{s̃ ∈ P̃ | (u, v) is an arc of RB-Graph(τ, s̃)}|
= |{s̃ ∈ P̃ | ov(word(s̃), word(τ(s̃))) is a prefix of u}|
= |{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| ≤ |u|}|.

As τ is a permutation of GreedyPerm(P̃), and assuming that the set

{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| ≤ |u|}

is not empty (otherwise, we would have NbOcc(τ, (u, v)) = 0), we deduce that

NbOcc(τ, (u, v)) = |{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃))}|
−|{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| = |v|}|
−|{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| > |v|}|

=
∑

(v,w)∈PrefixArc(P )
(
|{s̃ ∈ P̃ | u and w are prefixes of word(τ(s̃))}|

−|{s̃ ∈ P̃ | u and w are prefixes of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| ≥ |w|}|
)

−|{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| = |v|}|
=

∑
(v,w)∈PrefixArc(P ) NbOcc(τ, (v, w))−

∑
(w′,v)∈SuffixArc(P ) NbOcc(τ, (w′v)).

Hence,

NbOcc(τ, (u, v)) = Max(m(v),−a(v)).

The case where u /∈ P , v /∈ P and |u| > |v| is similar to the previous case, where
u /∈ P , v /∈ P and |u| < |v|.
All cases have been considered and this concludes the proof. J
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C Example: set of all Red-Blue graphs

aab, 1 abaa, 1 aab ab abaa

aab, 2 abaa, 2 aab ab abaa

aab, 3 abba, 2 aab ab abb abba

abaa, 1 aab, 2 abaa aa aab

abaa, 2 aab, 3 abaa aa aab

ababb, 1 abba, 1 ababb abb abba

abba, 1 aab, 1 abba a aa aab

abba, 2 abba, 3 abba a ab abb abba

abba, 3 ababb, 1 abba a ab ababb

(s, i) σ2((s, i)) RB-graph(σ2, (s, i))

Figure 6 Running example: set of all the Red-Blue graphs of (s, i) ∈ P̃ for the permutation σ2

(see Figure 2b).
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