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Exact Lookup Tables for the Evaluation of
Trigonometric and Hyperbolic Functions

Hugues de Lassus Saint-Geniès, David Defour, and Guillaume Revy

Abstract—Elementary mathematical functions are pervasively used in many applications such as electronic calculators, computer
simulations, or critical embedded systems. Their evaluation is always an approximation, which usually makes use of mathematical
properties, precomputed tabulated values, and polynomial approximations. Each step generally combines error of approximation and
error of evaluation on finite-precision arithmetic. When they are used, tabulated values generally embed rounding error inherent to the
transcendence of elementary functions. In this article, we propose a general method to use error-free values that is worthy when two
or more terms have to be tabulated in each table row. For the trigonometric and hyperbolic functions, we show that Pythagorean triples
can lead to such tables in little time and memory usage. When targeting correct rounding in double precision for the same functions,
we also show that this method saves memory and floating-point operations by up to 29% and 42%, respectively.

Index Terms—Elementary function approximation, table-based range reduction, exact lookup tables, computer arithmetic.

F

1 INTRODUCTION

THE representation formats and the behavior of binary
floating-point arithmetics available on general-purpose

processors are defined by the IEEE 754-2008 standard [1].
For basic arithmetic operations such as +, −, ×, ÷, √ ,
or fma, this standard requires the system to return the
correct rounding of the exact result, according to one of
four rounding-direction attributes (to nearest ties to even,
toward −∞, toward +∞, and toward 0): this property
guarantees the quality of the result. However, due to the
Table Maker’s Dilemma (TMD) [2] and the difficulties in de-
veloping accurate and efficient evaluation schemes, correct
rounding is only recommended for elementary functions
defined in the IEEE 754-2008 standard.

The algorithms developed for the evaluation of elemen-
tary functions, such as the logarithm, the exponential, or
the trigonometric and hyperbolic functions, can be classified
into at least two categories. The first category concerns
algorithms based on small and custom operators combined
with tabulated values that target small accuracies, typically
less than 30 bits [3], [4], [5]. The second category concerns
algorithms that usually target single or double precision
(24 or 53 bits of precision) with an implementation on
general processors that relies on the available hardware
units [6], [7].

Implementations of those functions that target correct
rounding are usually divided into two or more phases [8].
A quick phase is first performed: it is based on a fast approx-
imation which provides a few more bits than the targeted
format, which makes correct rounding possible most of the
time at a reasonable cost. When correct rounding is not
possible, a much slower accurate phase is executed. The quick
phase uses operations with a precision slightly greater than
the targeted precision, while the accurate phase is based
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on a much larger precision. For example, in the correctly
rounded library CR-Libm, the quick phase for the sine and
cosine functions in double precision targets 66 bits while
the accurate phase corresponds to 200 bits [6, § 9]. And
then in order to guarantee that an implementation actually
computes correctly rounded results, a proof of correctness
has to be built. This proof is based on the mandatory
number of bits required to ensure correct rounding, which
is linked with the search for the worst cases for the TMD [9].

The design of such correctly rounded implementations
is a real challenge, as it requires to control and limit every
source of numerical error [10]. Indeed these implementa-
tions involve various steps, including range reduction, poly-
nomial evaluation, and reconstruction. And at each of these
steps, errors may occur. Since those errors accumulate and
propagate up to the final result, any solution or algorithm
that reduces them will have an impact on the simplicity
of the proof of correctness and the performance of the
implementation.

1.1 Evaluation of Elementary Functions
In this article, we deal with the implementation of trigono-
metric and hyperbolic functions. In order to better under-
stand the challenges that have to be faced when designing
such elementary function implementation, let us detail the
function evaluation process with a focus on methods based
on table lookups for trigonometric and hyperbolic sine and
cosine. For this purpose, let y be a machine-representable
floating-point number, taken as the input to the considered
functions. The internal design of these implementations is
based on the following four-step process:

1) A first range reduction, based on mathematical prop-
erties, narrows the domain of the function to a
smaller one. For the trigonometric functions, prop-
erties of periodicity and symmetry lead to evaluat-
ing fq ∈ {± sin,± cos} at input

|x| = |y − q · π/2| ∈ [0, π/4],
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where q ∈ Z and the choice of fq depends on the
function to evaluate, q mod 4, and sign(x) [8]. For
the hyperbolic functions, let

|x| = |y − q · ln(2)| ∈ [0, ln(2)/2] ,

with q ∈ Z. Addition formulas can then be used
together with the analytic expressions for the hyper-
bolic functions involving the exponential, which, for
the sine, gives:

sinh(y) =
(
2q−1 − 2−q−1

)
· cosh|x|

±
(
2q−1 + 2−q−1

)
· sinh|x|.

2) A second range reduction, based on tabulated values,
further reduces the range on which polynomial
evaluations are to be performed. The argument x
is split into two parts, xh and x`, such that:

x = xh + x` with |x`| ≤ 2−p−1. (1)

The term xh is the p-bit value of the form

xh = i · 2−p with i = bx · 2pe , (2)

and where i ∈ N. The integer i is used to ad-
dress a table of n =

⌊
κ · 2p−1

⌉
+ 1 rows, with κ ∈

{π/2, ln(2)}. This table holds precomputed values
of either trigonometric or hyperbolic sines and
cosines of xh, which we indifferently name Sh
and Ch.

3) Meanwhile, polynomial approximations to the trigono-
metric or hyperbolic sine and cosine on the interval
[−2p−1, 2−p−1], denoted by PS and PC , are evalu-
ated at input x`.

4) Finally, a reconstruction step allows to compute the fi-
nal result using the precomputed values retrieved at
step 2 and the computed values from step 3. For the
trigonometric sine, if we assume that q = 0 mod 4
and sign(x) = 1 so that fq = sin, one has to perform
the following reconstruction:

sin(y) = Sh · PC(x`) + Ch · PS(x`),

while the reconstruction for the hyperbolic sine is:

sinh(y) =
(
2q−1 − 2−q−1

)
·

(Ch · PC (x`) + Sh · PS (x`))
±
(
2q−1 + 2−q−1

)
·

(Sh · PC (x`) + Ch · PS (x`)) .

Satisfactory solutions already exist to address the first range
reduction [11], [12], [13], the generation and evaluation of
accurate and efficient polynomial evaluation schemes [14],
[15], [16], and the reconstruction step. The interested reader
can find more details in [8].

In this article, we address the second range reduction
based on tabulated values for the trigonometric and hyper-
bolic sine and cosine. At this step, each tabulated value em-
beds a rounding error. Our objective is to remove the error
on these values, and consequently to concentrate the error
due to range reduction in the reduced argument used in
the polynomial evaluation. Precisely the proposed method
relies on finding precomputed values with remarkable prop-
erties that simplify and accelerate the evaluation of these

functions. These properties are threefold. First, each pair of
values holds the exact images of a reference argument under
the functions, that is, without any rounding error. For this
purpose, we require these values to be rational numbers.
Second, each numerator and denominator of these rational
values should be exactly representable in a representation
format available in hardware, that is, as an integer or a
floating-point number. Third, all rational values must share
the same denominator. This enables us to shift the division
by this denominator into the polynomial coefficients. These
three properties lead to tabulated values that are exact and
representable on single machine words. For the trigono-
metric and hyperbolic functions, Pythagorean triples give
rational numbers that fulfill these three properties.

1.2 Overview of this Article
In this article, we extend a previous work on the trigonomet-
ric functions sin and cos presented in [17] to the hyperbolic
functions sinh and cosh, and we show that our concept
is general enough to be applied to other functions. More
precisely, the contributions of this article are the following:

1) A general method that eliminates rounding errors
from tabulated values;

2) And a formally justified algorithm to apply this
method to trigonometric and hyperbolic functions.

This article is organized as follows: Section 2 gives some
background on existing solutions for the second range re-
duction step. Section 3 details the properties of the proposed
tables and demonstrates how it is possible to remove two
sources of error involved during this step. Section 4 presents
our approach to build exact lookup tables for trigonometric
and hyperbolic functions using Pythagorean triples. Then,
Section 5 presents some experimental results, which show
that we can precompute exact lookup tables up to 10 in-
dexing bits reasonably fast with the help of suitable heuris-
tics. Some comparison results with classical approaches are
given in Section 6, which show that our method can lower
the table sizes and the number of floating-point operations
performed during the reconstruction. Finally, an example
with a toy table is also presented in Section 7, before a
conclusion in Section 8.

2 TABLE-LOOKUP RANGE REDUCTIONS

While sometimes the second range reduction uses fast but
inaccurate hardware approximations, in practice it is often
implemented using table lookups.1 This section presents
three solutions that address this step with the sine function
to illustrate them. Those methods are general and apply
directly to the trigonometric cosine and the hyperbolic func-
tions as well.

2.1 Tang’s Tables
Tang proposed a general method to implement elementary
functions that relies on hardware-tabulated values [18].
Given the reduced argument x as in Equation (1), Tang’s
method uses the upper part xh to retrieve two tabulated

1. For instance, see the GNU libm in glibc 2.25.
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values Sh and Ch that are good approximations of sin(xh)
and cos(xh), respectively, rounded to the destination for-
mat. If an implementation targets correct-rounding, then
those approximations are generally stored as floating-point
expansions [19]. In practice, an expansion of size n consists
in representing a given number as the unevaluated sum
of n floating-point numbers so that the rounding error be
reduced compared to a regular floating-point number. If we
denote by ◦i(x) the rounded value of a real number x to the
nearest floating-point number of precision i, and by a real
number ε−i the rounding error such that |ε−i| ≤ 2−i, then,
for the trigonometric functions, we have:

Sh = ◦53j(sin(xh)) = sin(xh) · (1 + ε−53j)

and Ch = ◦53j(cos(xh)) = cos(xh) · (1 + ε−53j),

where j is the number of non-overlapping floating-point
numbers used to represent Sh and Ch.

In parallel to the extraction of the values Sh and Ch,
the evaluation of two polynomial approximations PS(x)
and PC(x) is performed. They respectively approach the
sine and cosine functions over the interval covered by
x`, namely [−2−p−1, 2−p−1]. Finally, the result of sin(x) is
reconstructed as follows:

sin(x) ≈ Sh · PC(x`) + Ch · PS(x`).

Tang’s method is well suited for hardware implemen-
tations on modern architectures. It takes advantage of the
capability on these architectures to access tabulated values
in memory and to perform floating-point computations con-
currently. Once the argument x is split into the two parts xh
and x`, memory units can provide the two tabulated val-
ues Sh and Ch, while floating-point units evaluate the
polynomials PS and PC . As the degree of the polynomials
decreases when the table size increases, the objective is to
find parameters so that the polynomial evaluations take as
long as memory accesses, on average [20].

Tang’s tables store images of regularly spaced inputs,
rounded to the destination format. This rounding error is
problematic when seeking a correctly rounded implementa-
tion in double precision, since worst cases for trigonometric
and hyperbolic functions require more than 118 bits of
accuracy [21], [22]. A solution consists in storing values on
three double-precision floating-point numbers [6] and using
costly extended-precision operators.

2.2 Gal’s Accurate Tables

In Tang’s method, Sh and Ch are approximations of sin(xh)
and cos(xh), respectively. They are rounded according to
the format used in the table and the targeted accuracy for
the final result. To increase the accuracy of these tabulated
values, Gal suggested a method to transfer some of the
errors due to rounding over the reduced argument [23]. This
consists in introducing small corrective terms on the val-
ues xh, hereafter denoted by corr. For each input entry xh
of the table, one corr term is carefully chosen to ensure that
both sin(xh + corr) and cos(xh + corr) are “very close” to

floating-point machine numbers. In [24], Gal and Bachelis
were able to find corr values such that

Sh = ◦53j(sin(xh + corr))

= sin (xh + corr) · (1 + ε−10−53j)

and Ch = ◦53j(cos(xh + corr))

= cos (xh + corr) · (1 + ε−10−53j)

for each row of an 8-bit-indexed table. This corresponds to
10 extra bits of accuracy for both tabulated values of sine
and cosine compared to Tang’s tabulated values, thanks
to a small perturbation corr on the values xh. For the
trigonometric and hyperbolic functions, such corr values
are produced by a random sampling with an expected
sample size of 218 [25]. This method entails storing the
corrective terms corr along with the values Sh and Ch,
which will usually make Gal’s accurate tables larger than
Tang’s tables when targeting correct rounding. The value
sin(x) is reconstructed as follows:

sin(x) = Sh · PC(x` − corr) + Ch · PS(x` − corr),

where PC(x) and PS(x) are polynomials approximat-
ing cos(x) and sin(x), respectively, on the interval covered
by x` − corr.

Gal’s solution requires an exhaustive search in order to
find one corrective term for each entry xh, within a search
space that grows exponentially with the number of extra
bits for Sh and Ch. Stehlé and Zimmermann proposed an
improvement based on lattice reduction and worst cases
to accelerate the precomputation [25]. They were able to
increase the accuracy of Gal’s tables by 11 extra bits, which
translates to 21 extra bits compared to Tang’s tables.

2.3 Brisebarre et al.’s (M, p, k)-Friendly Points

In 2012, Brisebarre, Ercegovac, and Muller proposed a new
method for trigonometric sine and cosine evaluation with
a few table lookups and additions in hardware [26], [27].
Their approach consists in tabulating four values a, b, z,
and x̂, defined as:

z = 1/
√
a2 + b2 and x̂ ≈ arctan(b/a),

where a and b are small particular integers. The reconstruc-
tion then corresponds to:

sin(x) =
(
b · cos(x− x̂) + a · sin(x− x̂)

)
· z.

The values (a, b, z, x̂) are chosen amongst specific points
with integer coordinates (a, b) called (M,p, k)-friendly
points. These points are recoded using the canonical recoding,
which minimizes the number of non-zero digits in table
entries [28]. More precisely, a and bmust be positive integers
lower than M , so that the number z = 1/

√
a2 + b2 has less

than k non-zero bits in the first p bits of its canonical recoding.
These requirements make hardware multiplications by a,
b, and z much more acceptable, since they are equivalent
to just a few additions. Compared to other hardware eval-
uation schemes, this solution reduces by 50% the area on
FPGAs for 24-bit accuracy. Overall, this is a suitable method
for competitive low and medium-precision hardware ap-
proximations.
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2.4 Exact Lookup Table for Trigonometric Functions

Gal’s accurate tables presented in Section 2.2 consist in find-
ing almost regularly spaced inputs for which the images by
the functions to approximate are close to machine numbers.
This virtually increases the accuracy of the stored values
by a few extra bits, slightly reducing the error bounds in
the reconstruction step. However, there are still errors in the
reduced argument as well as in tabulated approximations.

In 2015, we proposed a method to tabulate error-free
values for the sine and cosine functions [17]. It is an im-
provement over Gal’s tables as tabulated approximations
for the sine and cosine are stored exactly, so that extended
precision computations involving these values shall be less
expensive. This can be noticed through the accurate phase
costs presented in the article. In an exact lookup table
the corrective terms are inexact, but they are added to
the reduced argument, which is already inexact. As this
addition can be performed with arbitrary precision, the
presented method concentrates the error in a single term
besides freeing tabulated values from rounding error. This
reduces the memory footprint of the table when targeting
high precision, compared to Tang’s and Gal’s tables, which
need to store asymptotically twice as many bits.

It is similar to the (M,p, k)-friendly points method, as it
relies on integer values like a and b in Section 2.3. It differs
from it though, since the equivalent of 1/z is made exactly
representable as an integer. This allows for a reconstruction
step like Gal’s, at the difference that it involves two exact
terms out of four. This improvement was made possible by
using the interesting structure of Pythagorean triples [29].

3 DESIGN OF AN EXACT LOOKUP TABLE

In this article, the proposed improvement is based on the
following observation: After the first range reduction, the
reduced number x is assumed to be an irrational number.
Therefore, it has to be rounded to some finite precision,
which means that after the second range reduction, only x`
contains a rounding error. Gal’s method adds an exact cor-
rective term corr to x` that allows to increase the accuracy
of transcendental tabulated values. Instead, we suggest not
to worry about inexact corrective terms, as long as they make
tabulated values exactly representable. This way, the error is
solely concentrated in the reduced argument x`− corr used
during the polynomial evaluations.

Now, let us characterize these exactly representable val-
ues and then explain how the evaluation scheme can benefit
of this property. For this purpose, let f and g be the func-
tions to approximate, κ ∈ {π/2, ln(2)} the additive constant
for the first range reduction, and y an input floating-point
number. As seen in the introduction, the reduced argu-
ment x obtained after the first range reduction is such that

x = |y − q · κ| with q ∈ Z, 0 ≤ x ≤ κ/2.

As y is rational, q is an integer, and κ is irrational, then
unless q = 0, x must be irrational, and it has to be rounded
to a floating-point number x̂, with a precision j greater than
the targeted format such that: x̂ = x · (1 + ε−j). We should
mention that x̂ is generally represented as a floating-point
expansion of size 2 or more to reach an accuracy of at least

j bits. As seen in Equation (1), the second range reduction
splits x̂ into two parts, xh and x`, such that

x̂ = xh + x` and |x`| ≤ 2−p−1.

As shown in Equation (2), the value xh is then used to
compute an address i in the table T made of n rows. This
table T holds exact precomputed values of k · f(xh + corri)
and k · g(xh + corri), where k is an integer scale factor
that makes both tabulated values integers, and corri is
an irrational corrective term, precomputed for each table
entry i, such that |corri| ≤ 2−p−1. To build such values, we
assume the following properties:

1) The functions f and g are right invertible on the
domain [0, (n − 1/2) · 2−p]. This allows corrective
terms to be determined.

2) Corrective terms are such that |corri| ≤ 2−p−1.
3) For each table entry i, the values f(xh + corri) and

g(xh + corri) are rational numbers with the same
denominator, that is:

f(xh + corri) =
ηi
ki

and g(xh + corri) =
γi
ki

with ηi, γi ∈ Z and ki ∈ Z∗.
4) Let k = lcm(k0, . . . , kn−1), i.e. the least common

multiple (LCM) of the denominators ki. Let Fi =
k · f(xh + corri) and Gi = k · g(xh + corri). It
is clear that the values Fi = k · ηi/ki and Gi =
k · γi/ki are integers, but we will also assume that
they are representable as one floating-point machine
number each, e.g. they fit on 53 bits if using the
binary64/double precision format.

With numbers satisfying those properties, the reconstruction
step corresponds to

f(x) = Gi · Pf/k(x` − corri) + Fi · Pg/k(x` − corri)

for some i in {0, . . . , n− 1}, where

• Pf/k(x) and Pg/k(x) are polynomial approximations
of the functions f(x)/k and g(x)/k, respectively, on
the interval

[−2−p−1 −max
i

(corri), 2
−p−1 −min

i
(corri)].

• and Fi, Gi, and ◦j(corri) are gathered from T .
The integers Fi and Gi are stored without error as
one floating-point number each. The third tabulated
value ◦j(corri) is an approximation of the corrective
term corri such that:

xh + corri ∈ f−1
(
Fi
k

)
∪ g−1

(
Gi
k

)
rounded to the targeted precision j.

As can be seen, the new reduced argument x` − corri
covers a wider range than just x`. In the worst case, this
interval can have its length doubled, making the polynomial
approximations potentially more expensive. Actually, those
polynomials approximate functions that usually do not vari-
ate much on such reduced intervals, so that their degree
need rarely be increased to achieve the same precision as
for an interval that may be up to twice as narrow. This was
tested with some of our tables with Sollya’s guessdegree
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function [30]. In unfortunate cases for which the degree
should be increased, rarely more than one additional mono-
mial will be required, which barely adds two floating-point
operations (one addition and one multiplication). Further-
more, such additional operations can often benefit from
instruction parallelism in the evaluation scheme.

Also note that instead of considering polynomial ap-
proximations of f(x) and g(x) directly, we propose to
incorporate a division by k into the polynomial coeffi-
cients. Therefore, we consider approximations Pf/k(x) and
Pg/k(x) of f(x)/k and g(x)/k, respectively, which avoid the
prohibitive cost of the division and the associated rounding
error.

4 EXACT LOOKUP TABLES FOR TRIGONOMETRIC
AND HYPERBOLIC FUNCTIONS

The proposed lookup table for the second range reduction
brings several benefits over existing solutions. However,
building such a table of error-free values is not trivial, since
the integers Fi, Gi, and k are not always straightforward,
especially for transcendental functions. For the trigonomet-
ric and hyperbolic functions, we rely on some useful results
on Pythagorean triples. These objects are briefly described in
the first part of this section. Then, we present a method to
efficiently build exact lookup tables for the trigonometric
and hyperbolic functions.

4.1 Pythagorean Triples
Pythagorean triples are a set of mathematical objects from
Euclidean geometry which have been known and stud-
ied since ancient Babylonia [31, ch. 6]. There exist several
definitions of Pythagorean triples that usually differ on
authorized values. We choose the following one:

Definition 1. A triple of non-negative integers (a, b, c) 6= ~0 is a
Pythagorean triple if and only if a2 + b2 = c2.

A Pythagorean triple (a, b, c) for which a, b, and c are
coprime is called a primitive Pythagorean triple (PPT). In the
following, we will refer to the set of PPTs as PPT. Recall that
we are looking for several rational numbers which hold exact
values for the trigonometric and hyperbolic functions. Yet
a PPT and its multiples share the same rational values a/b,
b/c, . . . For example, the well known PPT (3, 4, 5) and all its
multiples can be associated to the ratio a/b = 3/4. Therefore
we can restrict our search to primitive Pythagorean triples
only, and apply a scale factor afterwards if needed.

According to the fundamental trigonometric and hyper-
bolic identities, we have

∀x ∈ R,

{
cos(x)2 + sin(x)2 = 1

cosh(x)2 − sinh(x)2 = 1.
(3)

It follows from Definition 1 and Equation (3) that all
Pythagorean triples can be mapped to rational values of
trigonometric or hyperbolic sine and cosine. Indeed, let
(a, b, c) be a Pythagorean triple. Without loss of generality,
we can assume that b 6= 0. Then we have:

a2 + b2 = c2 ⇐⇒
(a
c

)2
+

(
b

c

)2

= 1

⇐⇒
(c
b

)2
−
(a
b

)2
= 1.

0

1000

2000

3000

4000

0 1000 2000 3000 4000

a

b

θ = π/4
ϕ = ln(2)/2

Radius 212

Fig. 1. Primitive Pythagorean triples with a hypotenuse c < 212.

Hence, for each Pythagorean triple (a, b, c), assuming b 6= 0,

∃θ ∈ [0, π/2[ , cos(θ) =
b

c
and sin(θ) =

a

c

∃ϕ ∈ R≥0, cosh(ϕ) =
c

b
and sinh(ϕ) =

a

b
.

The consequences of these properties are twofold: Firstly
a PPT and its multiples share the same angles θ and ϕ.
Secondly any Pythagorean triple can be mapped to the sides
of a right triangle (possibly degenerated into a segment), the
hypotenuse of which is the third item c of the triple. Hence,
in the following, the word “hypotenuse” is used to refer to
the third item of a Pythagorean triple, while the word “legs”
is used to refer to its first and second items.

4.2 Building Subsets of Primitive Pythagorean Triples
The set of primitive Pythagorean triples PPT is unbounded.
Figure 1 represents the subset of all PPTs with a hy-
potenuse c < 212. It shows that PPTs rapidly cover a wide
range of angles over [0, π/2] as c increases. But, as our exact
lookup tables need one triple per row, one may ask if there
will always be at least one PPT that matches each row, no
matter how narrow the entry interval of a row can be.

Actually, a result due to P. Shiu states that the set
of trigonometric angles covered by Pythagorean triples is
dense in [0, π/4]. This is formalized by Theorem 1.

Theorem 1 (Shiu 1983 [32]). ∀θ ∈ [0, π/4],∀δ > 0, there exists
a primitive Pythagorean triple with a corresponding trigonometric
angle θ′, such that

|θ − θ′| < δ.

Proof. (From [32].) Let (a, b, c) ∈ PPT. It is well-known that,
assuming that a is even, (a, b, c) can be rewritten (2mn,m2−
n2,m2+n2) wherem,n are coprime integers satisfyingm >
n > 0. It follows that

tan(θ′) =
m2 − n2

2mn
=

1

2

(m
n
− n

m

)
.

Let us write t = tan(θ′) and r = m/n so that we have
r2 − 2tr − 1 = 0 and hence

r = t+
√
t2 + 1 = tan(θ′) + sec(θ′).
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Note that we do not have r = t−
√
t2 + 1 because r > 0.

It is now easy to prove the theorem. Let 0 ≤ θ ≤ π/4 and
u = tan(θ) + sec(θ). One can choose a sequence of rational
numbers r0, r1, r2, . . . converging to u, where

rk =
mk

nk
, k = 0, 1, 2, . . .

such that mk and nk are positive and coprime. Let x =
2mknk, y = m2

k − n2k, z = m2
k + n2k with corresponding

angle θk. The angles θ0, θ1, θ2, . . . tend to θ, therefore the
θk’s can approximate θ arbitrarily closely, as required.

By symmetry of the Pythagorean triples (a, b, c) and
(b, a, c), the density of the aforementioned set can be ex-
tended to the interval [0, π/2]. A corollary is the density of
the set of hyperbolic angles covered by Pythagorean triples
in R+. This is stated by Corollary 1 below.

Corollary 1. ∀ϕ ∈ R+,∀δ > 0, there exists a primitive
Pythagorean triple with an associated hyperbolic angle ϕ′, such
that

|ϕ− ϕ′| < δ.

Proof. By analogy, replace tan(ϕ′) by sinh(ϕ′), and sec(ϕ′)
by cosh(ϕ′) in Shiu’s proof of Theorem 1. We have

sinh(ϕ′) =
m2 − n2

2mn
=

1

2

(m
n
− n

m

)
.

Let us write s = sinh(ϕ′) and r = m/n so that we have
r2 − 2sr − 1 = 0 and hence

r = s+
√
s2 + 1 = sinh(ϕ′) + cosh(ϕ′).

Let ϕ ≥ 0 and u = sinh(ϕ) + cosh(ϕ). One can choose a
sequence of rational numbers r0, r1, r2, . . . converging to u,
where

rk =
mk

nk
, k = 0, 1, 2, . . .

such that mk and nk are positive and coprime. Let x =
2mknk, y = m2

k − n2k, z = m2
k + n2k with corresponding

hyperbolic angle ϕk. It follows that the hyperbolic angles
ϕ0, ϕ1, ϕ2, . . . tend to ϕ and that the ϕk’s can approximate ϕ
arbitrarily closely, as required.

Although we are now certain that there will always be
an infinite number of PPTs for each row of our tables, these
theorems do not give any bounds on the size of the PPTs. In
practice, we will see that the PPT sizes allow us to build
tables in double precision indexed by usual numbers of
indexing bits (up to 13 or so). Also, we still have to find
an easy means to generate PPTs efficiently. In this article, we
make use of the Barning-Hall tree [33], [34], which exhibits a
ternary structure that links any PPT to three different PPTs.
From any PPT represented as a column vector, the Barning-
Hall tree allows to compute three new PPTs by multiplying
the former with the matrices1 −2 2

2 −1 2
2 −2 3

 ,
−1 2 2
−2 1 2
−2 2 3

 , and

1 2 2
2 1 2
2 2 3

 . (4)

It has been proven that all PPTs can be generated from the
root (3, 4, 5) with increasing hypotenuse lengths [35]. For

every generated PPT (a, b, c), we also consider its symmetric
PPT (b, a, c), because it may be interesting for three reasons:

1) For the trigonometric functions,

a) If arcsin(b/c) > π/4, one has immediately
arcsin(a/c) < π/4, which falls into the range
of the exact lookup table.

b) Whenever arcsin(b/c) ≈ π/4, one also has
arcsin(a/c) ≈ π/4, and both triples may ei-
ther fall into two different subintervals of the
exact lookup table, which can help reduce
the value k (since they share a common hy-
potenuse), or fall into the same subinterval,
which can help find a better corrective term.

2) For the hyperbolic functions, since the reduced ar-
gument x lies in [0, ln(2)/2], interesting PPTs must
satisfy a/b ∈ sinh([0, (n + 1/2) · 2−p]) ⊃ [0,

√
2/4].

Therefore, if a ≥ 4b/
√
2, only the symmetric PPT

(b, a, c) falls into the range of the lookup table.

Hence the first step of PPT generation using the Barning-
Hall tree is the following: multiplying the matrices in
Equation (4) by the root (3, 4, 5) taken as a column vector,
one gets the three new PPTs (5, 12, 13), (15, 8, 17), and
(21, 20, 29), and their symmetric counterparts (12, 5, 13),
(8, 15, 17), and (20, 21, 29). In the following, note that we
always consider the “degenerated” PPT (0, 1, 1), because it
gives us an exact corrective term for the first table entry,
without making the LCM k grow.

4.3 Selection of Primitive Pythagorean Triples
For each row i of the table indexed by bxh · 2pe, we want to
select exactly one PPT (a, b, c) with a corresponding value
θ = arcsin(a/c) or ϕ = asinh(a/b) such that:

|xh − θ| < 2−p−1 for trigonometric functions, or

|xh − ϕ| < 2−p−1 for hyperbolic functions.

The existence of such values θ and ϕ is a consequence of
Theorem 1 and its Corollary 1.

In the following, we define our corrective terms, which we
denote by corr, as:

corr = θ − xh for trigonometric functions, or
corr = ϕ− xh for hyperbolic functions.

Once one PPT has been selected for each row i, a naive
solution would consist in storing exactly each ai, bi, ci in
the lookup table T , plus an approximation of corr on as
many bits as necessary. Instead, as presented in Section 3,
we suggest to store two integers Ch and Sh of the form

C
(i)
h =

bi
ci
· k and S

(i)
h =

ai
ci
· k (5)

for the trigonometric functions, or

C
(i)
h =

ci
bi
· k and S

(i)
h =

ai
bi
· k (6)

for the hyperbolic functions, where k ∈ N∗ is the same for all
table entries. In this article, in order to reduce the memory
footprint of the table T , we look for small table entries Ch
and Sh. This entails looking for a value k that is rather small,
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which can be simplified as a search for a small value in a set
of least common multiples.

It was shown in [17] that a straightforward approach,
consisting in computing the set of all possible LCMs, was
quickly out of reach with current technology, as soon as
tables had more than a few rows.

To reduce the computational time, the solution proposed
in [17] consists in looking for an LCM directly amongst
generated values. We call this solution “exhaustive search”
in the sequel of this article, as it always gives the smallest
LCM. This claim may be counter-intuitive since one may
ask why the smallest LCM would necessarily appear as the
denominator side of some PPT. To prove it, we start by
proving that for any table, there is a set of PPTs that fills
it, for which the denominator sides (either hypotenuses or
bigger legs) have the least LCM possible:

Lemma 1. If k ∈ N∗ is the least element in the set of possible
LCMs for a table of n rows, then there is a set of primitive
Pythagorean triples {Ti = (ai, bi, ci)}i∈{0,...,n−1}, with Ti be-
longing to row i, such that:

lcm(c0, . . . , cn−1) = k for the trigonometric functions, and
lcm(b0, . . . , bn−1) = k for the hyperbolic functions.

Proof. By construction. For readability, and without loss of
generality, we will only consider the LCM for the trigono-
metric functions. The set of possible LCMs for a table T of
n rows is non-empty as a consequence of Theorem 1. Thus,
by the Well-Ordering Principle, we know that k exists.

Now, let
{
T ′0, . . . , T

′
n−1

}
be a set of primitive or non-

primitive Pythagorean triples that fill the table T and such
that lcm(c′0, . . . , c

′
n−1) = k. If there exists i ∈ {0, . . . , n− 1}

such that T ′i is non primitive, then there exists an integer
α > 1 and Ti ∈ PPT such that T ′i = α · Ti. Thus, we have

k = lcm(c′0, . . . , α · ci, . . . , c′n−1).

Hence α divides k. Since k is the least element of the set of
possible LCMs, k/α < k cannot be a valid LCM. Therefore
the prime factors of α must be shared with other c′j . Hence,
it is possible to write

k = lcm(c′0, . . . , ci, . . . , c
′
n−1).

As mentioned in Section 4.1, Ti and T ′i share the same angles
θ and ϕ, and consequently they belong to the same subdivi-
sion of the table T . By repeating this process c′i by c′i as long
as necessary, one can construct a set of primitive Pythagorean
triples {Ti}i∈{0,...,n−1} such that k = lcm(c0, . . . , cn−1),
which concludes the proof.

Second, let us recall two important results about primi-
tive Pythagorean triples.

Theorem 2. Let n be a positive integer. First n is the hypotenuse
of a primitive Pythagorean triple if and only if all of its prime
factors are of the form 4k + 1. Second, when n > 2, n is a leg of
a primitive Pythagorean triple if and only if n 6≡ 2 mod 4.

Proof. For the first result, a proof is given by Sierpiński
in [36, ch. XI.3]. A more recent one can be found in [37]. For
the second result, different proofs are given in [36, ch. II.3],
and [38, p. 116]

Now, for the trigonometric functions, we formulate The-
orem 3, which states that the smallest LCM k is the hy-
pothenuse of a PPT.

Theorem 3. If k ∈ N∗ is the least element of the set of possible
LCMs for a table of n rows for trigonometric functions, then k is
the hypotenuse of a primitive Pythagorean triple.

Proof. Lemma 1 tells us that each Ti can be made primitive.
Thus, by Theorem 2, we have

∀i ∈ {0, . . . , n− 1} , ∃ {βp,i}p∈Pπ ∈ NPπ , ci =
∏
p∈Pπ

pβp,i

where Pπ is the set of Pythagorean primes, i.e. the set of
prime numbers congruent to 1 modulo 4. By construction,
we have

k = lcm(c0, . . . , cn−1) =
∏
p∈Pπ

pmaxi(βp,i),

which means that k is a product of Pythagorean primes. By
Theorem 2, k is the hypotenuse of at least one primitive
Pythagorean triple, which concludes the proof.

Finally, for the case of hyperbolic functions, Theorem 4
shows that the smallest LCM k is a leg of a PPT.

Theorem 4. If k ∈ N∗ is the least element of the set of possible
LCMs for a table of n rows for hyperbolic functions, then k is a
leg of a primitive Pythagorean triple.

Proof. By Theorem 2, we only need to prove that k 6≡ 2
mod 4.

Using Lemma 1, we know that each Ti = (ai, bi, ci)
can be made primitive. Thus, using the aforementioned
equivalence, we have

∀i ∈ {0, . . . , n− 1} , bi 6≡ 2 mod 4. (7)

Hence, either every bi is odd, or there exists i ∈
{0, . . . , n− 1} such that bi is even. In the first case, the
LCM k of all bi’s is obviously odd too. In the latter case,
bi is even implies that it is a multiple of 4 as a consequence
of Equation (7), which entails that k is also a multiple of 4.
Therefore, by construction,

k = lcm(b0, . . . , bn−1) 6≡ 2 mod 4,

which concludes the proof.

Theorems 3 and 4 justify why we call our search amongst
generated hypotenuses or legs “exhaustive”, because by
searching exhaustively amongst increasing PPT hypotenuses
or legs, the smallest LCM will be found eventually.

5 IMPLEMENTATION AND NUMERIC RESULTS

In this section, we present how we implemented the pro-
posed method to generate exact lookup tables that have
been described in Section 4. We have designed two solutions
to look for a small common multiple k. The first solution is
based on an exhaustive search and allows us to build tables
indexed by up to 7 bits in a reasonable amount of time. The
second solution uses a heuristic approach, which reduces
memory consumption during the execution and the search
time, allowing us to build tables indexed by 10 bits much
faster than the exhaustive search.
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TABLE 1
Exhaustive Search Results for sin and cos.

p k n time (s) PPTs Hypotenuses

3 425 9 � 1 87 33
4 5525 13 � 1 1405 428
5 160,225 18 0.2 42,329 11,765
6 1,698,385 21 7 335,345 87,633
7 6,569,225 23 31 1,347,954 335,645
8 > 227 > 27 > 6700 > 21,407,993 > 4,976,110

5.1 Exhaustive Search

This subsection first describes the design of our exhaustive
algorithm, then discusses the different choices that we have
when several PPTs are available inside one table row for
the found LCM. Finally, numeric results are presented for
various precisions p along with two toy exact lookup tables
for the trigonometric and hyperbolic functions.

5.1.1 Algorithm

As seen in Section 4.3, we restrain our search to the set of
generated hypotenuses c or to the set of generated legs b, for
the trigonometric and hyperbolic functions, respectively. In
other words, we require that the LCM k be the hypotenuse
or a leg of one of the generated PPTs. Moreover, for the
hyperbolic functions, one has sinh(ln(2)/2) < 1, so that the
search can safely be limited to the set of bigger legs only.

To perform such an exhaustive search, we designed a
C++ program that takes as input the number p of bits
used to index the table T and tries to generate an exact
lookup table. To achieve this, the algorithm looks for the
smallest integer k, amongst the generated values, that is a
multiple of at least one PPT hypotenuse or leg per entry.
By Theorems 3 and 4, this search is guaranteed to find the
smallest LCM. The algorithm is the following: Start with
a maximum denominator size (in bits) of n = 4 and then
follow these four steps:

1) Generate all PPTs (a, b, c) such that c ≤ 2n or
c ≤ 2n/ cos ((N − 1/2) · 2−p), where N is the num-
ber of table entries, for the trigonometric and hy-
perbolic functions, respectively. The latter inequality
guarantees that every interesting leg for the search
step will be generated. It is during this step that the
Barning-Hall matrices from Equation (4) are used.

2) Store only the PPTs that belong to a table entry, i.e.
the potentially interesting ones.

3) Search for the LCM k among the PPT hypotenuses c
or legs b that lie in [2n−1, 2n], for the trigonometric
or the hyperbolic functions, respectively.

4) If such a k is found, build values (Sh, Ch, ◦j(corri))
for every row using Equation (5) or (6) and return
an exact lookup table. Otherwise, set n← n+1 and
go back to step 1.

Sometimes, several primitive Pythagorean triples are
possible for a same table row. Then the selection of only one
of them depends on which goal we want to achieve. In this
article, we made the choice of selecting the one for which
arcsin(a/c) or asinh(a/b) is the closest to xh, as this shifts
the bits of the corrective term to the right compared to the

TABLE 2
Exhaustive Search Results for sinh and cosh.

p k n time (s) PPTs Bigger legs

3 144 8 � 1 23 12
4 840 10 � 1 86 43
5 10,080 14 � 1 1202 610
6 171,360 18 9 18,674 9312
7 1,081,080 21 328 147,748 72,476
8 > 224 > 24 > 60,000 > 1,188,585 > 574,800

reduced argument x`. This virtually increases the precision
of the “corrected” reduced argument, by having null bits in
front of the mantissa of the corrective term.

But we see at least three alternatives to this solution.
First, we could try to minimize the value maxi(corri) −
minj(corrj). This could be interesting to store smaller cor-
rective terms δi = corri − minj(corrj), and incorporate
minj(corrj) into the polynomial approximations. But min-
imizing such a value might be much more expensive as its
time complexity is

∏n−1
i=0 mi, where mi is the number of

possible triples for entry i. Second, we could choose the
PPT for which the corrective term has as many identical
bits (0’s or 1’s) as possible after its least significant bits.
If there are enough, the precision of the corrective term
is also virtually extended, which could allow for smaller
tables. Finally, we could relax the constraints on the ki’s to
allow greater values of their LCM k, so that the corrective
terms may have even lower magnitudes or be even closer
to machine numbers. This can be done in different fashions,
but we will only describe one to explain the idea to the
reader. Let us assume that we want a 10-bit-indexed table T .
What we do is generate a 10 + m-bit-indexed table T ′

instead: T ′ has roughly 2m times as many rows as the table
that we want. Now let us make sets of about 2m contiguous
rows in this table. A subsequent step selects among each
set of rows which of the available corrective terms is the
best fit for the table T , and merges the rows into a single
one for T . This technique could increase the precision of
each corrective term at the cost of greater PPTs. As long as
the exact stored values are still machine-representable, then
this method stays interesting for software implementations.
However, for hardware implementations, this might be less
interesting since it involves more storage bits than a regular
table.

5.1.2 Numeric Results
Tables 1 and 2 show the results obtained for the trigono-
metric and hyperbolic functions, respectively. Timings were
measured on a server with an Intel R© Xeon R© E5-2650 v2
@ 2.6 GHz processor (16 physical cores) with 125 GB of
RAM running on GNU/Linux. For the number p of bits
that is targeted, the tables describe the value k that was
found, followed by the number n of bits used to represent k
(that is, n = dlog2 (k)e), the time (in seconds) taken by
our program, and the numbers of PPTs and denominators
considered during the LCM search.

As can be seen, it was possible to find k and to build
tables indexed by up to p = 7 bits in a reasonable amount
of time. However, it is clear that the number of dynamic
memory allocations, which are mainly used to store the
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TABLE 3
A trigonometric exact lookup table computed for p = 4.

Index Sh Ch corr

0 0 5525 +0x0.0000000000000p+0
1 235 5520 -0x1.46e9e7603049fp-6
2 612 5491 -0x1.cad996fe25a24p-7
3 1036 5427 +0x1.27ac440de0a8cp-10
4 1360 5355 -0x1.522b2a9e8491dp-10
5 1547 5304 -0x1.d6513b89c7237p-6
6 2044 5133 +0x1.038b12ae4eba1p-8
7 2340 5005 -0x1.53f734851f48bp-13
8 2600 4875 -0x1.49140da6fe454p-7
9 2880 4715 -0x1.d02973d03a1f6p-7

10 3315 4420 +0x1.2f1f464d3dc25p-6
11 3500 4275 -0x1.7caa112f287aep-10
12 3720 4085 -0x1.735972faced77p-7
13 3952 3861 -0x1.fa6ed9240ab1ap-7

TABLE 4
A hyperbolic exact lookup table computed for p = 5.

Index Sh Ch corr

0 0 10,080 +0x0.0000000000000p+0
1 284 10,084 -0x1.93963974f0cb6p-9
2 651 10,101 +0x1.0b316b3c740d1p-9
3 1064 10,136 +0x1.7c74108520aebp-7
4 1190 10,150 -0x1.d8f891d50d1a1p-8
5 1560 10,200 -0x1.13297ef8b55bbp-9
6 1848 10,248 -0x1.535fdc36d3139p-8
7 2222 10,322 -0x1.fe04ef1053a97p-15
8 2560 10,400 +0x1.5891c9eaef76ap-10
9 2940 10,500 +0x1.a58844d36e49ep-8

10 3237 10,587 +0x1.b77a5031ebc86p-9
11 3456 10,656 -0x1.dcf49bb32dc17p-8

triples and the denominators, grows exponentially with p.
Consequently, it was not possible to find k for p ≥ 8 with
our hardware configuration.

Table 3 describes an exact lookup table for the trigono-
metric functions when p = 4, where k = 5525 and
the absolute value of the corrective term is at most
0x1.d6513b89c7237p-6, that is, ≈ 0.0287 for input in-
dex i = 5. Table 4 presents an exact lookup table for
the hyperbolic functions when p = 5, where k = 10,080
and the absolute value of the corrective term is at most
0x1.7c74108520aebp-7, that is,≈ 0.0116 for input index
i = 3. Figures 2 and 3 give a visual representation of those
tables in the Euclidean plane, depicting the stored triples by
dots and the limits of each entry interval by dashed lines.

5.2 Heuristic Search
To build tables indexed by a larger number of bits, a more
efficient solution must be found. In order to drastically
reduce the search space, we have developed two heuris-
tics, one for the trigonometric functions and one for the
hyperbolic functions. These heuristics try to characterize the
denominator sides (hypotenuses or bigger legs) to either
keep or reject PPTs during the generation step.

For this purpose, let us observe the decomposition in
prime factors of each k found using the exhaustive search.
Such decompositions are given in Tables 5 and 6 for both
the trigonometric and the hyperbolic tables. These factoriza-
tions show that every k in the table is a composite number

0

5525

0 5525
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b

Exact points
Row boundaries

θ = π/4

Fig. 2. Visual representation of the trigonometric exact lookup table from
Table 3 in the Euclidean plane.
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0 10080
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Row boundaries

ϕ = ln(2)/2

Fig. 3. Visual representation of the hyperbolic exact lookup table from
Table 4 in the Euclidean plane.

TABLE 5
Prime Factorization of Found Common Multiples for sin and cos.

k Prime factorization

425 52 · 17
5525 52 · 13 · 17

160,225 52 · 13 · 17 · 29
1,698,385 5 · 13 · 17 · 29 · 53
6,569,225 52 · 13 · 17 · 29 · 41

TABLE 6
Prime Factorization of Found Common Multiples for sinh and cosh.

k Prime factorization

144 24 · 32
840 23 · 3 · 5 · 7

10,080 25 · 32 · 5 · 7
180,180 22 · 32 · 5 · 7 · 11 · 13

1,081,080 23 · 33 · 5 · 7 · 11 · 13

divisible by relatively small primes. Furthermore, for the
trigonometric functions, all those small primes are of the
form 4n+ 1, as per Theorem 2.
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TABLE 7
Heuristic Search Results for sin and cos.

p k n time (s) PPTs Hypotenuses

3 425 9 � 1 42 8
4 5525 13 � 1 211 17
5 160,225 18 � 1 996 40
6 1,698,385 21 0.1 2172 66
7 6,569,225 23 0.4 3453 69
8 314,201,225 29 9.5 10,468 100
9 12,882,250,225 34 294 20,312 109
10 279,827,610,985 39 9393 33,057 110

TABLE 8
Heuristic Search Results for sinh and cosh.

p k n time (s) PPTs Bigger legs

3 144 8 � 1 23 12
4 840 10 � 1 65 24
5 10,080 14 � 1 247 79
6 180,180 18 � 1 917 193
7 1,081,080 21 0.3 1743 248
8 17,907,120 25 3.2 3909 388
9 147,026,880 28 23 5802 400
10 2,793,510,720 32 350 9012 502

Therefore, each heuristic that we propose follows a sim-
ple rule: for the trigonometric functions, only store primitive
Pythagorean triples with a hypotenuse of the form:

c =
∏
p∈Pπ

prp with


rp ∈ N∗ if p = 5

rp ∈ {0, 1} if 13 ≤ p ≤ 73

rp = 0 if p > 73

, (8)

where Pπ is the set of Pythagorean primes:

Pπ = {5, 13, 17, 29, 37, 41, 53, 61, 73, . . . } .

For the hyperbolic functions, the heuristic only stores prim-
itive Pythagorean triples with a bigger leg of the form:

b =
∏

p∈P≤23

prp with

{
rp ∈ N∗ if p < 5

rp ∈ {0, 1} if 5 ≤ p ≤ 23
, (9)

where P≤23 is the set of primes lower than or equal to 23:

P≤23 = {2, 3, 5, 7, 11, 13, 17, 19, 23} .

Results, timings, and numbers of considered triples and
potential LCMs (hypotenuses or legs) for this heuristic
are given in Tables 7 and 8 for the trigonometric and
the hyperbolic functions, respectively. As can be seen, this
algorithm considers a number of potential LCMs several
orders of magnitude lower than the exhaustive search so-
lution. This reduces drastically the memory usage and exe-
cution times. For instance, for the trigonometric functions,
when p = 7, only 3453 triples are stored, compared to the
1,347,954 triples for the exhaustive algorithm. In this first
case, the execution time was reduced from 31 seconds to
0.4 seconds. And for the hyperbolic functions, when p = 7,
only 1743 triples are stored, while there were 147,748 when
using the exhaustive algorithm. In this second case, the exe-
cution time was reduced from 328 seconds to 0.3 seconds.

With this heuristic, the bottleneck is no longer the
memory but the selection of PPTs during their generation.

TABLE 9
Costs of Addition and Multiplication of Expansions.

Operation Floating-point operations

Without FMA With FMA

E2 = E1 + E2 11
E2 = E2 + E2 12
E3 = E1 + E3 16
E3 = E3 + E3 27

E2 = E1 × E2 20 6
E2 = E2 × E2 26 11
E3 = E1 × E3 47 19
E3 = E3 × E3 107 43

Indeed, this selection is carried out on the elements of an
exponentially-growing set. And checking if a given integer
satisfies either Equation (8) or Equation (9) requires check-
ing if it is multiple of certain prime numbers, which is a
rather expensive test involving integer division.

6 COMPARISONS WITH OTHER METHODS

We have presented a range reduction for the trigonometric
and hyperbolic functions based on exact lookup tables and a
method to efficiently build such tables. In order to compare
this solution with the other solutions presented in Sec-
tion 2, we consider a two-phase evaluation scheme for the
trigonometric and hyperbolic functions that targets correct
rounding for the rounding to nearest in double precision.
The quick and the accurate phases target a relative error less
than 2−66 and 2−150, respectively [9], [39]. We choose p = 10
which corresponds to 805 rows in the trigonometric table
and 356 rows in the hyperbolic table.

In order to ease comparisons, we consider only the num-
ber of memory accesses required by the second range reduc-
tion and the number of floating-point operations (FLOPs)
involved in the reconstruction step, and table sizes. We will
consider that expansion algorithms are used whenever high
accuracy is required as it is the case in the correctly rounded
library CR-Libm [6]. Let us recall that an expansion of size n
consists of an unevaluated sum of n floating-point numbers
that represents a given number with a larger precision than
what is available in hardware [19]. We will take Table 9
extracted from [6, § 2.3], [40], and [41, § 3.2] as the reference
costs for those algorithms. The notation En stands for an
expansion of size n in double precision, so that, with this
notation, E1 represents a regular binary64/double precision
floating-point number.

6.1 Costs for the Trigonometric Functions

6.1.1 Tang’s Solution

In order to reach an accuracy of 66 bits, Tang’s solution
requires access to tabulated values Sh and Ch that are stored
as expansions of size 2. These values need to be multiplied
by the two results of the polynomial evaluations, which can
be considered stored as expansion of size 2 as well. The total
cost of the quick phase becomes: 4 double-precision memory
accesses, 2 multiplications E2×E2, and 1 addition E2+E2,
that is, 34 FLOPs (64 without FMA).
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TABLE 10
Computation and Memory Access Costs for Three Table-Based Range Reductions for Trigonometric and Hyperbolic Functions. The number of

memory accesses and the number of floating-point operations (without FMA in parentheses) are reported.

Solution
Memory Accesses Floating-point Operations (without FMA)

Bytes per Row
Quick Accurate Trigonometric Hyperbolic

Quick Accurate Quick Accurate

Tang 4 6 34 (64) 113 (241) 102 (192) 339 (723) 48
Gal 3 7 35 (63) 129 (257) 93 (179) 355 (739) 56

Proposed 4 5 36 (64) 92 (148) 94 (180) 270 (510) 40

In case the quick phase failed to return correct round-
ing, the accurate phase is launched. This requires access
to 2 extra tabulated values to represent Sh and Ch as
expansions of size 3. Those values need to be multiplied
by the two results of the polynomial evaluations, which can
be considered stored as expansion of size 3 as well. The
total cost of the accurate phase becomes: 2 extra memory
accesses, 2 multiplications E3×E3, and 1 addition E3+E3.
This corresponds to 6 memory accesses, 113 FLOPs (241
without FMA), and a 38,640 byte table.

6.1.2 Gal’s Solution
Using Gal’s method, the corrective terms allow around
63 bits of accuracy, and Stehlé and Zimmermann’s im-
provement allows to reach 74 bits. By considering Stehlé’s
approach, only one double-precision number is required
for Sh, Ch and the corrective term, which fits on about
20 bits, to reach an accuracy of 66 bits. Again, Sh and Ch
need to be multiplied by the two results of the polynomial
evaluations, which can be considered stored as expansions
of size 2. Thus the quick phase requires 2 + 1 double-
precision memory accesses, 1 addition E2 = E1+E2 for the
corrective term, 2 multiplications E1 × E2, and 1 addition
E2+E2. The cost of the quick phase with this table becomes
3 memory accesses and 35 FLOPs (63 without FMA).

To reach the 150-bit accuracy required by the accurate
phase, it is necessary to get 2 extra floating-point numbers
for Sh and Ch, which are not exact. The corrective term
is then incorporated in the final result using an addition
E3 = E1 + E3. The remaining operations need to be done
using size-3 expansions. The total cost for the accurate phase
becomes: 4 extra memory accesses, 2 multiplications E3 ×
E3, 1 addition E1 + E3, and 1 addition E3 + E3, that is,
7 memory accesses, 129 FLOPs (257 without FMA), and a
45,080-byte table.

6.1.3 Exact Lookup Tables Solution
With our solution, as shown in Table 7, at most 39 bits are
required to store Sh and Ch, that is, only one floating-point
number per entry. Our corrective terms are inexact, so that
the cost of the quick phase is the same as Gal’s approach in
Section 6.1.2, except that the addition for the corrective term
is an addition E2 = E2 + E2, which accounts for 1 extra
FLOP and 1 extra memory access. Hence, the quick phase
for the exact lookup table solution is 36 FLOPs (64 without
FMA), which is as much as Tang’s solution.

However, for the accurate phase, values Sh and Ch that
were accessed during the quick phase are exact, and do
not require any extra memory access. The corrective term

is stored as an expansion of size 3 and it requires 1 extra
memory access to reach the 150 bits of accuracy. The addi-
tion for the corrective term is performed using an addition
with expansions of size 3. Multiplications correspond to
E3 = E1 × E3 as the results of the polynomial evaluations
can be considered as expansions of size 3. The final addition
is done using an E3 = E3 + E3 operation. That is, the total
cost of this step becomes 5 memory accesses and 92 FLOPs
(148 without FMA), for a 32,200 byte table.

6.1.4 Comparison Results

Table 10 synthesizes the estimated costs for those three
range reduction algorithms based on tabulated values. This
table reports the number of memory accesses and FLOPs
for the quick and accurate phases, together with the size in
bytes of each row of the precomputed table.

First, it can be seen that the proposed table-based range
reduction requires less memory per table row than the other
solutions. Tang’s method requires 48 bytes per row, Gal’s
method 56 bytes and our exact lookup table 40 bytes. This
is an improvement in memory usage of ≈ 17% and ≈ 29%
over Tang’s and Gal’s methods, respectively.

Second, regarding the number of operations, our solu-
tion requires two more FLOPs than Tang’s solution for the
quick phase (none without FMA), and one more FLOP than
Gal’s solution. This represents an overhead of ≈ 6% (0%
without FMA) and ≈ 2%, respectively. This small downside
comes with two advantages: First, as two out of the four
terms in the reconstruction are exact, error bounds will be
easier to determine. Second, the accurate phase is much
faster. Indeed, for this phase, there is an improvement in
favor of our approach of ≈ 19% (39% without FMA) and
≈ 29% (42% without FMA) over Tang and Gal, respectively.

Third, the solution we propose reduces the number of
memory accesses during the accurate phase. For this phase,
the number of accesses is reduced from 7 to 5 compared to
Gal’s approach, This is an improvement of ≈ 29%, which
translates to ≈ 17% compared to Tang’s solution.

6.2 Costs for the Hyperbolic Functions

The costs for memory accesses and table sizes for the
hyperbolic functions are the same as the ones for the
trigonometric functions. Indeed, although the exact lookup
tables are smaller for the hyperbolic functions because
ln(2)/2 ≈ 0.347 is lower than π/4 ≈ 0.785, they both
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contain as many words per row. We recall the reconstruction
step for the hyperbolic functions:

sinh(y) =
(
2n−1 − 2−n−1

)
·

(Ch · PC (x`) + Sh · PS (x`))
±
(
2n−1 + 2−n−1

)
·

(Sh · PC (x`) + Ch · PS (x`)) .

(10)

Note that if we do not count the computations of the
terms

(
2n−1 ± 2−n−1

)
, there are 6 multiplications, and 3 ad-

ditions. Indeed these terms can be neglected in the cost
computations as they are easy to generate using shifts and
adds in integer arithmetics.

6.2.1 Tang’s and Gal’s Solutions
On the first hand, let us consider Tang’s solution: Overall,
the table requires 17,088 bytes. For the quick phase, we must
use E2 expansions for 6 multiplications and 3 additions, as
we have seen in Equation (10). These extended-precisions
operations account for 102 FLOPs (192 without FMA). Dur-
ing the accurate phase, all computations are done using E3

expansions, which require a total of 339 FLOPs (723 without
FMA).

On the other hand, using Gal’s method, the table takes
19,936 bytes and one addition E2 = E1+E2 for x`−corr is
added to the cost computations. The quick phase accounts
now for 4 multiplications E1×E2 between tabulated values
and polynomial results, 2 multiplications E2 × E2 for the
remaining terms, 1 addition E2 = E1 + E2, and 3 addi-
tions E2 = E2 + E2. Hence, the cost of the quick phase
with this table is 93 FLOPs (179 without FMA). For the
accurate phase, all operations need to be done using size-
3 expansions, except for the addition of the corrective term
E3 = E1+E3. The total cost for the accurate phase becomes:
355 floating-point operations (739 without FMA).

6.2.2 Exact Lookup Tables Solution
Again, as for the trigonometric functions, the cost of the
quick phase is the same as Gal’s approach plus one extra
memory access and one extra FLOP for the addition of
the inexact corrective term, which is 94 FLOPs (180 with-
out FMA). However, the table is smaller as it takes only
14,240 bytes.

For the accurate phase, as it was the case for the trigono-
metric functions, values Sh and Ch are exact and do not
require any extra memory access. Only the corrective term is
stored as an expansion of size 3 and requires 1 extra memory
accesses in order to reach an accuracy of 150 bits. Hence, the
accurate phase corresponds to 4 multiplications E1 × E3,
2 multiplications E3 × E3, and 4 additions E3 + E3. The
total cost of this step is thus 270 floating-point operations
(510 without FMA).

6.2.3 Comparison Results
As in Section 6.1.4, we compare the three methods using
synthesized results from Table 10.

Regarding memory usage, we have quantitatively the
same benefits as for the trigonometric functions.

Regarding the number of floating-point operations, our
solution has the same small overhead of one FLOP for the
quick phase compared to Gal’s solution, but it requires 8%

TABLE 11
Tang’s table for p = 4 with 16-bit precision

Index Sh Ch

0 0x0.0000p+0 0x1.0000p+0
1 0x1.ffaap-5 0x1.ff00p-1
2 0x1.feaap-4 0x1.fc02p-1
3 0x1.7dc2p-3 0x1.f706p-1
4 0x1.faaep-3 0x1.f016p-1
5 0x1.3ad2p-2 0x1.e734p-1
6 0x1.7710p-2 0x1.dc6cp-1
7 0x1.b1d8p-2 0x1.cfc6p-1
8 0x1.eaeep-2 0x1.c152p-1
9 0x1.110ep-1 0x1.b11ep-1

10 0x1.2b92p-1 0x1.9f36p-1
11 0x1.44ecp-1 0x1.8bb2p-1
12 0x1.5d00p-1 0x1.76a0p-1
13 0x1.73b8p-1 0x1.6018p-1

(6% without FMA) less FLOPs than Tang’s solution. For
the accurate phase, there is an improvement in favor of
our approach of ≈ 20% (29% without FMA) and ≈ 24%
(31% without FMA) over Tang and Gal, respectively. This is
mainly due to the huge cost of multiplications E3 ×E3 that
our method avoids in 4 out of 6 multiplications.

7 EXAMPLE ON THE TRIGONOMETRIC SINE

We propose to illustrate the use of the proposed error-
free tabulated values compared to Tang’s solution, which is
probably the most pervasive, using Table 3 and Table 11. We
consider the evaluation of the sine function for the input
value y = 10 when targeting 8 bits of accuracy. When
necessary, storage precision and intermediate computations
will be done on 16 bits of precision in order to emulate 8-
bit expansions of size 2, like what is commonly used for
the quick phase. For clarity, bit fields will be represented in
radix 2 (suffix “2”).

First, the reduced argument x is computed on 16 bits:

q = b10 · 2/πe = 6

x = 10− q · π/2
= 1.001001101000012 · 2−1 · (1 + ε−16)

≈ 0.575225830078125.

As explained earlier, x is essentially inexact and has
to be rounded (it is rounded to 16 bits in this case). By
construction, x belongs to the interval [−π/4, π/4], but in
practice, properties of symmetry are used so that it finally
lies in [0, π/4]. We have q = 6, which entails q ≡ 2
mod 4. This means that an additional rotation by π radians
was made during the first range reduction, so that the sign
changed and we now have sin(10) = − sin(x).

Now let us compute xh and x`, such that x = xh + x`
with xh = i · 2−4, i ∈ [0, 13] and |x`| ≤ 2−5. This leads to

xh = 9 · 2−4 and
x` = x− xh

= 1.101000012 · 2−7 · (1 + ε−16).

For row index i = 9, Table 11 gives us

Sh = 1.0001000100001112 · 2−1 · (1 + ε−16)

Ch = 1.1011000100011112 · 2−1 · (1 + ε−16),
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while Table 3 gives us

Sh = 2880

Ch = 4715

corr = −1.1101000000101012 · 2−7 · (1 + ε−16)

with k = 5525 as mentioned in Section 5.1.2.
Now is when the different table-based methods diverge.

They will be analyzed separately.

Tang’s Table Lookup Method. Using Tang’s table, the
evaluation of two polynomial approximations to sin(x) and
cos(x) is performed with an output precision of 12 bits at
input x` = 1.101000012 · 2−7:

sin(x`) ≈ 1.101000012 · 2−7 · (1 + ε−12)

cos(x`) ≈ 1.02 · (1 + ε−12).
(11)

The final result is then computed on 8 bits using tabu-
lated values Sh and Ch with the results from Equation (11):

sin(10) = − sin(x)

≈ −Sh · 1.02 − Ch · 1.101000012 · 2−7

≈ −1.00010112 · 2−1 · (1 + ε−8)

≈ −0.54296875.

Exact Table Lookup Method. With the proposed solution,
the evaluation of polynomial approximations to sin(x)/k
and cos(x)/k are performed with an output precision of
12 bits at input x` − corr ≈ 1.101110001001012 · 2−6:

sin(x` − corr)/k ≈ 1.010001101012 · 2−18

cos(x` − corr)/k ≈ 1.0111101112 · 2−13.
(12)

Finally, the result is reconstructed as follows, using the
error-free tabulated values Sh and Ch from Table 3 and the
approximations from Equation (12):

sin(10) = − sin(x)

= −Sh · cos(x` − corr)/k − Ch · sin(x` − corr)/k
≈ −1.00010112 · 2−1

≈ −0.54296875.

Comparison Between Both Methods. One can see that for
the exact lookup table method, the error is quickly concen-
trated into the reduced argument x`, then into x` − corr
and finally into the polynomial approximations. The main
advantage of this method relies on the fact that Sh and Ch
embed no rounding error at all, which allows for an easier,
faster, and more elegant reconstruction step.

8 CONCLUSIONS AND PERSPECTIVES

In this article, we have presented a new approach to address
table-based range reductions in the evaluation process of
elementary functions. We have shown that this method al-
lows for simpler and faster evaluation of these functions. For
the trigonometric and hyperbolic functions, we have made
use of Pythagorean triples to build exact lookup tables,
which concentrate the error into the polynomial evaluations.
Compared to other solutions, exact lookup tables eliminate
the rounding error on certain tabulated values, and transfer
this error to the remaining reduced argument. We have

focused on those functions, as they both benefit from the
use of Pythagorean triples. However, the concept remains
valid for other functions, provided that exact values can
be found for the tables. Compared to the state of the art,
we have shown that it was possible to reduce the table
sizes, the number of memory accesses and the number
of floating-point operations involved in the reconstruction
process by up to 29%, 29% and 42%, respectively, when
targeting correct rounding in double precision. This benefit
would be even higher for larger targeted accuracies since
the tabulated values are exactly stored and do not depend
on the targeted accuracy.

As future work, it would be interesting to further char-
acterize potential small LCMs in order to speed up the table
precomputation process. The objective is to compute the
interesting triples directly, possibly using one of Fässler’s
algorithms [42], instead of generating huge sets of triples
and then selecting the relevant ones. Finally, in the proposed
algorithms we focused on looking for the smallest possible
LCM so that tabulated values would be stored on the mini-
mal number of bits. This property is essential for hardware
implementations where each bit is important, but not for
software implementations. In that case, it could be interest-
ing to look for tabulated values that fit in a given format (e.g.
53 bits for double-precision floating-point numbers) but that
would also increase the precision or reduce the magnitude
of the corrective terms. This could save some extra memory
accesses and associated floating-point operations.
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