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Abstract
Background: Rapid advancements in biomedical research have acceler-

ated the number of relevant electronic documents published online, ranging
from scholarly articles to news, blogs, and user-generated social media con-
tent. Nevertheless, the vast amount of this information is poorly organized,
making it difficult to navigate. Emerging technologies such as ontologies and
knowledge bases (KBs) could help organize and track the information associ-
ated with biomedical research developments. A major challenge in the auto-
matic construction of ontologies and KBs is the identification of words with
its respective sense(s) from a free-text corpus. Word-sense induction (WSI)
is a task to automatically induce the different senses of a target word in the
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different contexts. In the last two decades, there have been several efforts on
WSI. However, few methods are effective in biomedicine and life sciences.

Methods: We developed a framework for biomedical entity sense induction
using a mixture of natural language processing, supervised, and unsupervised
learning methods with promising results. It is composed of three main steps:
1) a polysemy detection method to determine if a biomedical entity has many
possible meanings; 2) a clustering quality index-based approach to predict the
number of senses for the biomedical entity; and 3) a method to induce the
concept(s) (i.e., senses) of the biomedical entity in a given context.

Results: To evaluate our framework, we used the well-known MSH WSD
polysemic dataset that contains 203 annotated ambiguous biomedical entities,
where each entity is linked to 2 to 5 concepts. Our polysemy detection method
obtained an F-measure of 98%. Second, our approach for predicting the num-
ber of senses achieved an F-measure of 93%. Finally, we induced the concepts
of the biomedical entities based on a clustering algorithm and then extracted
the keywords of reach cluster to represent the concept.

Conclusions: We have developed a framework for biomedical entity sense
induction with promising results. Our study results can benefit a number of
downstream applications, for example, help to resolve concept ambiguities
when building Semantic Web KBs from biomedical text.

Keywords Word sense induction · Polysemy detection · Biomedicine ·
BioNLP · Clustering · Classification · Number of cluster prediction

1 Introduction

The World Wide Web is by far the most extensive information system avail-
able worldwide on the Internet, whose content has been growing exponentially
every day with inputs from a large number of Internet users. Much of the
information on the web is textual and contains rich information related to a
wide range of domains. In particular, recent advances in biomedical research
have accelerated the rate of health information being published on the web,
ranging from scholar articles and news to blogs and user-generated social me-
dia content. The increasing capability and sophistication of biomedical tools
and instruments have also contributed to the build-up of large volumes of
biomedical data (e.g., the use of electronic health records for storing patient
information).

Ontologies and knowledge bases (KBs) can help organize and track the
information associated with biomedical research developments. Last few years
have witnessed significant research efforts in automating ontology enrichment
and KB construction leveraging the vast amount of electronic free-text data on
the web. Nevertheless, one of the major challenges associated with automating
KB and ontology constructions is the identification of words or phrases (en-
tities) with their respectively sense(s), which has received attention only very
recently [44,23,29].
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Word-sense induction (WSI) is a task to automatically induce the different
senses of a target word in a piece of text. The output of WSI is a sense inventory
(a set of senses for the target word). Most existing WSI approaches are based
on unsupervised learning algorithms with senses represented as clusters of
tokens (e.g., words or phrases). There have been very few studies that use
WSI in the context of information retrieval [74,58].

In general, existing WSI approaches only consider sense induction for indi-
vidual words, such as verbs, nouns, and adjectives [2,53]. However, biomedical
entities (or biomedical terms) are often composed of more than one word. In-
deed, more than 80% of biomedical entities are composed of two or more words
in the Unified Medical Language System (UMLS) metathesaurus1.

Another issue with existing WSI methods is that they do not first check
whether a target word is polysemic (i.e., ambiguous) or not. Thus, a significant
amount of computing time is wasted on identifying the different senses for
non-polysemic words. Reducing the runtime for WSI algorithms is crucial for
real-world applications. A subsequent challenge is to determine the number
of senses (i.e., the number of clusters) of an entity. Further, for a new entity
(i.e., entities that do not exist in existing reference KBs or ontologies), there
is no a priori knowledge about the candidate entities, which makes it more
challenging to determine the exact number of clusters. Thus, the clustering
algorithms for WSI often suffer from poor performance [25].

To address these challenges associated with applying WSI in biomedicine,
we propose a novel framework for biomedical entity sense induction. Our
framework is composed of three main steps: 1) a polysemy detection method
to determine if a biomedical entity is ambiguous; 2) a clustering quality index-
based approach to predict the number of senses for a biomedical entity; and
3) a method to induce the concept(s) (i.e., senses) of a biomedical entity.

The primary contributions of our work in comparison to our previous stud-
ies in [50,52], are detailed below:

– We conducted a series of new evaluation experiments of our polysemy de-
tection method (i.e., a supervised learning method based on 23 novel fea-
tures we proposed in [50]) following the best practice in machine learning,
which achieved an F-measure of 98%. We compared our polysemy detec-
tion approach with other similar methods (i.e., word classification tasks),
which we adapted for the polysemy detection task.

– We presented in detail how we used a set of new clustering quality in-
dexes and associated objective functions to predict the number of senses.
Our method obtained an F-measure of 93%. We compared our method
with 8 state-of-the-art clustering quality indexes that have been widely
used for finding the number of clusters of a dataset. We also explored the
23 features [50] we used in polysemy detection for predicting the number
of senses, which achieved an F-measure of 91%. Through these compre-

1 UMLS is a large biomedical thesaurus that is organized by concept or meaning, and links
similar names for the same concept from nearly 200 different ontologies and terminologies
http://www.nlm.nih.gov/research/umls

http://www.nlm.nih.gov/research/umls
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hensive evaluation experiments, our clustering quality index-based method
outperformed all other benchmark methods significantly.

– We presented our methods based on clustering and keyword extractions
for concept induction to complete the proposed biomedical entity sense
induction framework. We evaluated the concept induction methods against
the gold-standard definitions of the senses in UMLS. Our concept induction
method performed reasonably well in our evaluations.

We used a gold-standard dataset based on 203 ambiguous biomedical enti-
ties extracted from MEDLINE article abstracts, where each entity is annotated
with one or more MeSH concepts2 [37] and linked to the abstracts from which
it was extracted. We have also experimented with a wide range of well-known
supervised and unsupervised learning algorithms for the three steps in our
framework.

The rest of the paper is organized as follows. Section 2 discusses existing
work related to WSI and its applications in the biomedical domain. We detail
our biomedical entity sense induction framework in Section 3. We present and
discuss our evaluation results in Section 4. We conclude the work and discuss
future directions in Section 5.

2 Related work

2.1 Word-sense induction

WSI is one of the natural language processing (NLP) tasks that aims to auto-
matically identify the different senses (i.e., meanings) of a word in a piece of
text. WSI is closely related to word-sense disambiguation (WSD), which is the
task of determining the correct sense of a word in a context [57]. Unsupervised
WSD methods are considered as WSI techniques aimed at discovering senses
automatically based on unlabeled corpora [57]. The output of a WSI algorithm
is a set of senses (i.e., a sense inventory) for each target entity from the text
corpora without any other knowledge resources (e.g., existing terminology ser-
vices). WSI methods are mostly based on clustering algorithms, where each
cluster represents a distinct sense of the word. Thus, a major problem of WSI
is to determine the number of clusters (i.e., senses) within a given context,
which is usually taken as a prior in most clustering algorithms.

Existing WSI approaches can be categorized in four types [57,83]: 1) context
clustering, whose main idea is that the distributional profile of words in a
corpus implicitly expresses their semantics [69,79,14,66,73,74,64,65,80,34,6,
7], SenseClusters3 [68]; 2) word clustering, which seeks to cluster words that
are semantically similar and each cluster represents a specific sense [48,63,19,
80,67,60,46]; 3) co-occurrence graphs, where the semantics of a word can be
deduced by building and analyzing a word co-occurrence graph [58,85,81,82,1,

2 https://wsd.nlm.nih.gov/collaboration.shtml
3 http://www.d.umn.edu/~tpederse/senseclusters.html

https://wsd.nlm.nih.gov/collaboration.shtml
http://www.d.umn.edu/~tpederse/senseclusters.html
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26,3,38,42,39]; and 4) probabilistic clustering, which can discover latent topic
structures from the contexts of the words without involving feature engineering
[15,12,88,78,45,20,77,83].

Despite the number of WSI studies mentioned above, very few methods
have been developed specially for the biomedical domain. In [61], a network
of word co-occurrences was defined to induce both word senses and word con-
texts. Another work [27] presented an efficient graph-based algorithm to cluster
words into groups for WSI. A comparison between graph-based approaches and
topic modeling approaches was conducted to evaluate the state-of-the-art WSI
methods in the clinical domain [18]. Another study has also been proposed to
find semantic ambiguities [72] using agglomerative clustering methods on the
context vectors of a particular target word in biomedical texts.

2.2 Polysemy detection

Polysemy detection seeks to detect whether an entity has more than one mean-
ing (i.e., polysemic, true or false) based on the context of the entity. Term am-
biguity detection is a task related to polysemy detection, as proposed in [10]:
given a term and a corresponding topic domain, determining whether the term
uniquely references a member of that topic domain. In [41], the authors pro-
posed a rank-based distance measure to explore the vector-spatial properties
of the ambiguous entity and to decide if a German preposition is polysemous
or not. Polysemy detection is also related to other well-studied NLP topics
such as named-entity disambiguation and WSD. However, named-entity dis-
ambiguation and WSD both assume that the number of senses for a target
word is given. This assumption is inappropriate for enriching KBs, ontologies,
and terminologies because the number of senses of a new candidate entity is
not known.

In general, polysemy detection approaches (as well as WSI methods) dis-
cussed above characterize the text data into a vector of features, e.g., using
the most well-known “bag-of-words” language model, and then use a learning
algorithm (either supervised or unsupervised) to capture the polysemousness
and the senses of a word.

2.3 Sense number prediction

In WSI, the number of senses (clusters) for ambiguous words is normally
treated as an a priori knowledge; and most popular clustering methods require
the number of clusters to be defined as an input parameter. Nevertheless, in
clustering analysis, a major problem is to determine the most appropriate
number of clusters, which can significantly affect the clustering results, often
leading to poor performance [25]. Hence, learning the appropriate numbers of
senses for ambiguous words is crucial for WSI tasks [56]. Klapaftis et al. [39]
used the Hierarchical Dirichlet Processes [78] to predict the number of senses
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of a target word. More recently, Lau et al. [45] combined Hierarchical Dirichlet
Processes with a non-parametric Bayesian method for the same purpose. Niu
et al. [60] applied a cluster validation method to estimate the number of senses,
where the number of clusters ranged from kmin = 2, to kmax = 5. However,
all these approaches produced larger numbers of word senses (up to 89) on the
gold standard SEMEVAL-2010 WSI dataset [45].

Several other strategies for estimating the optimal number of clusters have
also been proposed [40,89,47,8,87]. In 1985, Milligan et al. conducted a very
extensive comparative evaluation of 30 methods [55] for determining the num-
ber of clusters. In a more recent study [9], it was shown that Calinski and
Harabasz’s index was the most effective measure for determining the most ap-
propriate number of clusters, followed by the Duda and Hart’s method [35].
There is also a R package named NbClust which was developed for calculating
a number of these measures to determinine the number of clusters discussed
in [55].

Although many algorithms have been suggested to tackle the problem of de-
termining the number of clusters, there does not appear to be a single method
proven to be the most reliable, possibly due to the high complexity in real-
world datasets. Thus, task-specific method for determining the number of clus-
ters is always preferred.

3 A new framework for biomedical entity sense induction

Our framework is composed of three steps tackling two specific problems in
automating the biomedical entity sense induction task, as depicted in Figure 1.

Fig. 1: The proposed framework for biomedical entity sense induction.

1. Polysemy detection is modeled as a binary classification task (i.e., true,
whether a biomedical entity is associated with more than one sense; or
false, otherwise in the specific context expressed in the source text). It is
an important step as it narrows down the targets and reduces the number
of options the downstream steps have to explore.
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2. Number of senses prediction is to predict the number of concepts (k)
associated with a biomedical entity, which is based on a set of clustering
quality measures; and

3. Concept induction is to induce the concepts of a biomedical entity ac-
cording to its context, based on the extracted keywords of the clusters.

Our dataset contained 203 ambiguous biomedical entities extracted from
MEDLINE4 abstracts as a part of the word sense disambiguation (WSD) test
collections published by the National Library of Medicine [37]. Each biomedi-
cal entity in the dataset was annotated with one or more MeSH concepts and
linked to the abstracts from which it was extracted. To construct the classifi-
cation models for polysemy detection, we manually curated a dataset of 203
non-ambiguous biomedical entities as negative samples. The curation process
of this dataset is described in the results section.

In the following sections, we will describe each step of the framework in
detail.

3.1 Polysemy detection

In [50], we presented a set of statistical measures as features to characterize
a piece of text. These features were extracted either directly from the text
(i.e., direct features, e.g., the number of UMLS terms in the text) or from an
undirected graph induced from the text based on co-occurrences (i.e., graph-
based features, e.g., the unweighted degree of the target entity). A total of 23
features was proposed. A detailed description of these 23 features is presented
in the supplemental material. We also used two terminology resources: UMLS
(i.e., biomedical) and AGROVOC (i.e., agronomic)5 to derive these features.
These two dictionaries have a certain degree of overlapping concepts, which
can be considered as polysemic entities that belong to both biomedical and
agricultural domains. For instance, the entity “cold” can represent either a
disease (i.e., the common cold) or the feeling of no warmth in UMLS, as well
as the temperature of the weather in AGROVOC. Thus, we hypothesized that
new entities (that did not appear in these two dictionaries) that co-occurred
with existing polysemic entities were more likely to be polysemic as well.

Based on these 23 features, we then experimented with a wide range of
learning algorithms to determine whether an entity is polysemic.

3.2 Number of senses prediction

One of the most essential problems in WSI is to determine the number of senses
k. Many algorithms have been proposed to identify k, but none was tailored for

4 MEDLINE is a bibliographic database of life sciences and biomedical information.
5 AGROVOC is a multilingual controlled vocabulary covering all areas of interest to the

Food and Agriculture Organization of the United Nations: http://aims.fao.org/agrovoc

http://aims.fao.org/agrovoc
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biomedical text [57,59,54,17]. Further, one limitation of these approaches is
that they tend to predict a high number of senses, possibly due to the nature of
the text they were targeting. In contrast, in the biomedical domain, according
to UMLS version 2015 AA, polysemic terms were linked to only 2 to 5 senses.
Thus, as we aim to identify possible senses for a new biomedical candidate
term, we will limit the number of senses between 2 and 5, which was also used
in [60].

Table 1 shows the descriptive statistics of polysemic entities in UMLS ver-
sion 2015 AA for English, French, and Spanish. The English version of UMLS
contained about 9, 919, 000 distinct entities, 65, 546 of which were polysemic
(i.e., ∼0.66%, roughly one out of every 200 UMLS entities was polysemic). Sim-
ilarly, Table 2 shows the descriptive statistics of polysemic entities in MeSH6

(Medical Subject Headings). The number of polysemic entities in the English
version of MeSH was 179, which was ∼0.02% (i.e., roughly one out of every
5000 MeSH entities was polysemic). In short, there are more non-polysemic
(monosemous) than polysemic entities in the biomedical domain for the three
languages: English, French, and Spanish.

Table 1: Polysemic entities in UMLS.

# of Senses English French Spanish
2 54 257 1 292 10 906
3 7 770 36 414
4 1 842 1 56

5+ 1 677 1 18

Table 2: Polysemic entities in MeSH.

# of Senses English French Spanish
2 178 11 0
3 1 0 0
4 0 0 0

5+ 0 0 0

To determine the number of senses, we executed a number of different
clustering algorithms varying k (i.e., the number of clusters) from 2 to 5,
then evaluated the quality indexes of the resulting clusters, and picked a k
with the best clustering quality index7. We used the CLUTO8 application –
a flexible software program for clustering and analyzing the characteristics
of the clusters, to conduct our experiments. We experimented with 5 different

6 MeSH is the NLM controlled vocabulary used for indexing articles in PubMed
7 This approach was an expansion of our previous study published as a poster in EDBT

2016 [52]
8 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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clustering algorithms (i.e., rb, rbr, direct, agglo, graph,) of three different types:
partitional, agglomerative, and graph-partitioning.

Two common types of quality indexes [30], external and internal, are of-
ten used to evaluate the quality of the clustering results. External indexes
use pre-labelled datasets with known cluster configurations; while, internal in-
dexes are used to evaluate the goodness of a cluster configuration without any
prior knowledge of the clusters. In this project, we proposed 5 new internal
clustering quality indexes, as shown in Table 4, built upon the intra-cluster
similarity (i.e., internal similarities, ISIM, of the objects within a cluster) and
inter-cluster similarity (i.e., external similarities, ESIM, between clusters) mea-
sures offered by CLUTO. To find the optimal number of clusters, we also need
an objective function to rank the quality of a clustering solution based on
a quality measure [13]. We can obtain the optimal clustering results by op-
timizing (i.e. maximize/minimize) the objective function, which gives us an
idea as to whether the obtained clusters are homogeneous. CLUTO has a set
of built-in objective functions, as shown in Table 3. Nevertheless, each qual-
ity measure and each objective function have both strengths and weaknesses.
Thus, we took an ensembing approach and examined the combinations of the
different quality measures and objective functions.

Table 3: Objective functions for finding the number of clusters (k) in CLUTO.

I1 = maximize

k∑
i=1

1

ni

 ∑
v,u∈Si

sim(v, u)



I2 = maximize

k∑
i=1

√ ∑
v,u∈Si

sim(v, u)

E1 = minimize

k∑
i=1

ni

∑
v∈Si,u∈S sim(v, u)√∑

v,u∈Si
sim(v, u)

H1 = maximize
I1

E1

I2 = maximize
I2

E1

* Where k is the number of clusters, S is the total number of objects to
be clustered, Si are the set of objects assigned to the ith cluster, ni is
the number of objects in the ith cluster, v and u represent two objects,
and sim(v, u) is the similarity between the two objects v and u.

Note that when optimizing the objective functions, we aim to maximize
the internal similarity (ISIM ), and minimize the external similarity (ESIM ).
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Table 4: New internal indexes for choosing the best k.

1) Average ISIM: represented as ak,OF , is the average of the ISIM value of each cluster of a
clustering solution with the number of clusters = k.

ak,OF =

∑k
i=1 ISIMi

k

then we choose the maximal value of the ISIM average of all clusters:

max(ak,OF ) = max(a2,OF , a3,OF , a4,OF , a5,OF )

2) Average ESIM: represented as bk,OF , is the average of the ESIM value of each cluster of
a clustering solution with the number of clusters = k.

bk,OF =

∑k
i=1 ESIMi

k

then
min(bk,OF ) = min(b2,OF , b3,OF , b4,OF , b5,OF )

3) Average of the difference between ISIM and ESIM: represented as ck,OF , is the
average of the difference between ISIM and ESIM multiplied by the number of objects in such
clusters | Si |.

ck,OF =
1

k

k∑
i=1

| Si | ×(ISIMi − ESIMi)

then we choose the maximal value as the clustering solution should have a high difference between
ISIM and ESIM, showing that each cluster is compact and the clusters are well separated.

max(ck,OF ) = max(c2,OF , c3,OF , c4,OF , c5,OF )

4) Division between the ISIM sum and ESIM sum: represented as ek,OF , is the division
between the sum of ISIM multiplied by the number of objects in each cluster | Si |, and the sum
of ESIM multiplied by the number of objects in each cluster.

ek,OF =

∑k
i=1 | Si | ×ISIMi∑k
i=1 | Si | ×ESIMi

then, we choose the maximal average value, because the clustering solution should have a high
quotient between ISIM and ESIM, showing that each cluster is compacter and the clusters are
well separated.

max(ek,OF ) = max(e2,OF , e3,OF , e4,OF , e5,OF )

5) Global objective function divided by the logarithm: represented as fk,OF , is the
division between the value of the objective function (OF ) and the logarithm of k to the base of
10.

fk,OF =
OF

log10(k)

then, we choose the maximal value. In general, the value of the objective function is higher when
the number of clusters is high, so we address this drawback via taking the logarithm of the
number of clusters.

max(fk,OF ) = max(f2,OF , f3,OF , f4,OF , f5,OF )

* Notation: | Si | is the number of objects assigned to the ith cluster, OF = I1, I2, E1, H1, H2 is
the objective function used by the clustering algorithm.
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3.3 Concept induction

Following best practice for concept induction, we used the rb clustering algo-
rithm that proved to perform well for text data, and used the predicted number
of senses “k” from the previous step. Then we extracted the most relevant key-
words of each cluster to represent the concept of the cluster. If a candidate
entity was non-polysemic, then k = 1. Therefore, we did not need to apply
a clustering algorithm, and directly extracted the most relevant keywords to
represent the concept.

4 Results and discussion

We first discuss our datasets and then the results of our experiments for the
proposed biomedical entity sense induction framework in this section. Each
step of the framework was evaluated independently to show its effectiveness.

4.1 Datasets

4.1.1 Polysemic datatset

We extracted 203 ambiguous entities in English from the MSH WSD9 [37]
dataset, which contained 106 ambiguous abbreviations, 88 ambiguous terms,
and 9 entities that were combinations of both ambiguous abbreviations and
terms. Each ambiguous entity was linked to on average 180 titles/abstracts
obtained from MEDLINE. The MSH WSD dataset was a well-known bench-
mark dataset in biomedical word sense disambiguation literature [36,71,62,
84].

Table 5 shows a few example entities in the dataset and their respective
numbers of senses.

Table 5: Details of the polysemic dataset.

Term Number of Senses
Ca 4
Cold 3
Cortical 3
Yellow Fever 2
. . . . . .

9 https://wsd.nlm.nih.gov/collaboration.shtml

https://wsd.nlm.nih.gov/collaboration.shtml
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4.1.2 Non-polysemic dataset

We needed negative samples (i.e., non-ambiguous biomedical entities) to build
the classifiers for polysemic detection. Therefore, we constructed a non-polysemic
dataset using the MEDLINE MeSH terms in two steps: (i) selecting non-
polysemic terms from MeSH, and (ii) extracting a set of titles and abstracts
containing those terms from MEDLINE. We made this annotated dataset pub-
licly available online at http://simbig.org/NotPolysemicCorpus.zip.

Table 6 summarizes our polysemic and non-polysemic datasets.

Table 6: Summary of the polysemic and non-polysemic datasets.

Description
Number of Entities 406
Number of Ambiguous Entities 203
Number of Non-ambiguous Entities 203
Number of Tokens of the Context of Ambiguous Entities 7,597,337
Number of Tokens of the Context of Non-ambiguous Entities 8,294,378
Mean number of Tokens for each Ambiguous Entity 37,425
Mean number of Tokens for each Non-ambiguous Entity 40,859

4.2 Experiments for polysemy detection

We proposed 23 novel features and conducted a preliminary analysis with these
features for detecting polysemic biomedical entities in our previous work [50].
In this paper, we conducted a comprehensive evaluation and in-depth analysis
of these 23 novel features. Following best practices in machine learning, we
split the dataset into a training set (70%) and a test set (30%). The training
set was used to build the model, while the remaining 30% of the dataset
was a hold-out test set. Both types of biomedical terms, i.e., polysemic and
non-polysemic terms, are important in the biomedical entity sense induction
framework, since we seek to build/enrich dictionaries with new polysemic and
non-polysemic biomedical entities. Therefore, it was important to evaluate the
performance of our model over each class (polysemic as P and non-polysemic
as NP). We reported the classification performance in terms of F-measure
(F) for each class, on the hold-out test set, as well as the average of the
two F-measure values. We experimented with a set of well-known supervised
algorithms, implemented in the Weka10 software with the default parameters
for each algorithm.

Table 7 shows our experiment results. The Naive Bayes (NB) obtained
the best results, with an average F-measure of 98.4%. Excluding ZeroR and
OneR, the average F-measures of the other classifiers were between 94.25%

10 http://www.cs.waikato.ac.nz/ml/weka/

http://simbig.org/NotPolysemicCorpus.zip
http://www.cs.waikato.ac.nz/ml/weka/
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(i.e., MCC) and 98.4% (i.e., NB). These results show that our novel features
performed well in the polysemy detection task.

Table 7: Evaluating classifiers with both direct and graph-based features.

FP FNP FAverage

Zero Rule (ZeroR) 66.7 % 00.0 % 33.35 %
One Rule (OneR) 85.2 % 85.2 % 85.20 %
Naive Bayes (NB) 98.4 % 98.4 % 98.40 %
AdaBoost (AB) 96.0 % 95.8 % 95.90 %

Decision Tree (DT) 97.6 % 97.5 % 97.55 %
Support Vector Machine (SVM) 97.5 % 97.6 % 97.55 %

Meta Bagging (MB) 98.4 % 98.3 % 98.35 %
k-nearest neighbors (k-NN), k = 1 98.3 % 98.4 % 98.35 %

Multilayer Perceptron (NN) 95.8 % 96.0 % 95.90 %
MultiClassClassifier Logistic (MCC) 94.3 % 94.2 % 94.25 %

* Where FP is the F-measure of the polysemic class and FNP the F-
measure of non-polysemic class.

4.2.1 Discussion

To the best of our knowledge, no previous studies has focused on polysemy
detection (i.e., as a binary classification task) to determine whether a biomed-
ical term is polysemic or not. However, a few studies have also used machine
learning methods to classify words or phrases. For instance, in [4], Al-Mubaid
et al. built a binary classification model to classify ambiguous entities into two
semantic categories: genes or proteins. In a follow up study, the authors used
similar methods for biomedical word-sense disambiguation [5]. In both stud-
ies, the authors built support vector machines (SVMs) and used neighborhood
context words of the target word as features. In addition, they used a number
feature selection methods such as chi-square (χ2) [4], mutual information (MI)
[5], and M2 [5]. Since these studies were framed as word classification tasks
similar to our polysemy detection task, we adapted their methods to evaluate
our polysemy detection approach.

We used the same processes presented in [4,5] for building the polysemy
detection classifier. From the labeled training examples of the target biomedi-
cal entity, we built the feature vectors using their neighborhood context words.
The top 20, 30, 50, 100, and 200 context words were selected using the feature
selection methods: χ2, MI, and M2. We then built SVMs11 with the selected
features. In our experiments, the best results were obtained with the top 200
context words. Table 8 summarizes the performance results of these SVMs
in terms of their F-measures. The χ2 feature selection method obtained the
best results, with an average F-measure of 52.8% between polysemic and non-
polysemic samples. These results show that using neighboring words as fea-

11 The SVM algorithm uses a polynomial kernel.
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tures with SVMs are suboptimal in classifying biomedical terms as polysemic
or not.

Table 8: Results of using neighborhood context words as features with support vector
machines for polysemy detection.

FP FNP FAverage

χ2 40.1 % 65.5 % 52.80 %
MI 01.7 % 66.0 % 33.85 %
M2 35.6 % 64.7 % 50.15 %

* Where FP is the F-measure of the pol-
ysemic class and FNP the F-measure of
non-polysemic class.

As shown in Figure 2, our method achieved better performance than the
baseline studies.
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Fig. 2: Comparing our method with the baseline studies.

4.3 Predicting the number of senses

We evaluated our approach to induce the possible number of senses of an entity.
Note that we only need to consider the entities that have been classified as
polysemic. Thus, we only used the polysemic dataset.

Our evaluation experiments were conducted in three-fold: 1) applied clus-
tering algorithms over the bag-of-words representation and evaluated the pro-
posed new internal quality indexes of the clusters; 2) applied clustering algo-
rithms over a graph representation of the titles/abstracts associated with each
entity and evaluated the proposed new internal quality indexes of the clusters;
and 3) evaluated the direct and graph-based features we used for polysemy
detection above (see Section 3.1) with supervised algorithms to predict the
number of senses.
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For clustering tasks, we used five well-known clustering algorithms imple-
mented in the CLUTO software, including rb, rbr, direct, agglo, graph.

4.3.1 Bag-of-words representation

We used the cosine similarity measure for our clustering experiments with
the BoW representation. We tested various sizes of the feature vectors, and
determined that the best results were obtained with 3, 000 BoW features. The
BoW features were extracted with the BioTex application12 [49,51].

Table 9 illustrates the process for determining the number of clusters (num-
ber of possible senses) for the entity “yellow fever” according to ak,I2 and ck,I2,
where k is the number of clusters, a and c are two quality indexes, I2 is the
objective function, and the clustering algorithm is Partitional. In our dataset,
“yellow fever” was linked to 2 senses (“virus” and “vaccine”). Therefore, the
correct number of clusters is 2. As shown in Table 9, we varied the number
of clusters from 2 to 5, applied the clustering algorithm, and computed the
quality indexes.

As shown in Table 9, according to the quality index c, the optimal number
of clusters is k = 2; while according to the quality index a, the optimal number
of clusters is k = 5.

Table 9: Choosing k according to ak,I2 and ck,I2 values.

Algorithm: Partitional (rb)
k Cluster ID | Si | ISIM ESIM ak,I2 ck,I2

2
Cluster-1 110 0.058 0.025

0.053
Cluster-2 73 0.048 0.025

2.655

3
Cluster-1 43 0.087 0.029

0.070 2.374Cluster-2 67 0.074 0.030
Cluster-3 73 0.048 0.025

4

Cluster-1 16 0.118 0.008

0.085 2.299
Cluster-2 43 0.087 0.029
Cluster-3 67 0.074 0.030
Cluster-4 57 0.063 0.028

5

Cluster-1 16 0.118 0.008

2.191
Cluster-2 26 0.105 0.025
Cluster-3 43 0.087 0.029
Cluster-4 31 0.086 0.032
Cluster-5 67 0.074 0.030

0.094

max(ak,I2) k = 5
max(ck,I2) k = 2

* k is the number of clusters, | Si | is the number of entities in the
cluster i, ISIM is the intra-cluster similarity, ESIM is the inter-cluster
similarity, a and c are two quality indexes, and I2 is the objective
function.

12 BioTex is an application we previously built to automatically extract biomedical terms
from free text: http://tubo.lirmm.fr/biotex/

http://tubo.lirmm.fr/biotex/
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Note that we considered 5 different objective functions for 5 different clus-
tering algorithms with 5 different quality indexes, for each entity in our dataset.
Table 10 summarizes the results for “yellow fever” considering two objective
functions I1 and I2.

Table 10: Predicting the number of senses (k) for “yellow fever”, with bag-of-words repre-
sentation (The true number of senses is 2).

Internal Indexes rb rbr direct agglo graph
max(ak,I1) 5 5 4 5 2
min(bk,I1) 3 3 3 2 2
max(ck,I1) 3 3 2 2 2
max(ek,I1) 5 5 5 5 2
max(fk,I1) 2 2 2 2 2
max(ak,I2) 5 5 5 5 5
min(bk,I2) 4 4 4 2 2
max(ck,I2) 2 2 2 2 2
max(ek,I2) 5 5 5 5 5
max(fk,I2) 2 2 2 2 2

* ∀k = {2, 3, 4, 5}; rb, rbr, direct, and agglo are the clustering
algorithms; a, b, c, e, and f are the quality indexes.

To evaluate the performance of the combinations of different quality in-
dexes, clustering algorithms and objective functions, we carried out the exper-
iment for all of our 203 ambiguous entities. Table 11 summarizes the F-measure
for determining the number of clusters on the entire dataset, while considering
two objective functions I1 and I2. Overall, Table 11 shows that max(fk,OF )
gave the best results for all of the clustering algorithms with the objective
function I2.

Table 11: F-measures for predicting the number of senses with the 203 ambiguous entities
using the bag-of-words representation.

Internal Indexes rb rbr direct agglo graph
max(ak,I1) 6.40 % 5.42 % 6.90 % 1.97 % 91.63 %
min(bk,I1) 36.45 % 38.92 % 34.98 % 92.12 % 93.10 %
max(ck,I1) 32.02 % 30.54 % 31.53 % 42.86 % 93.10 %
max(ek,I1) 0.99 % 1.48 % 1.48 % 8.87 % 93.10 %
max(fk,I1) 92.12 % 92.12 % 93.10 % 93.10 % 92.61 %
max(ak,I2) 0.99 % 0.99 % 0.49 % 1.97 % 91.63 %
min(bk,I2) 81.77 % 84.73 % 86.21 % 92.12 % 93.10 %
max(ck,I2) 88.67 % 87.68 % 91.63 % 42.86 % 93.10 %
max(ek,I2) 3.45 % 2.96 % 4.93 % 8.87 % 93.10 %
max(fk,I2) 93.10 % 93.10 % 93.10 % 93.10 % 93.10 %

* ∀k = {2, 3, 4, 5}; rb, rbr, direct, and agglo are the clustering algorithms; a, b, c,
e, and f are the quality indexes.
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4.3.2 Graph representation

Similar to the evaluation of bag-of-words representations, we evaluated the
graph representations with the combinations of 5 objective functions, 5 clus-
tering algorithms, and 5 quality indexes.

Graph construction: For each biomedical entity of interest, we built an
undirected weighted graph (see Figure 3), where the vertices were biomedical
entities, and the edges denoted co-occurrence relationships (i.e., thus undi-
rected) between the biomedical entities. The weight of an edge represented
the degree of association between two biomedical entities. Each entity graph
contained the entity of interest and the top 1, 000 most important entities that
co-occurred with the entity of interest. The co-occurring entities and their im-
portance values were extracted with BioTex from the set of abstracts (At)
that contain the entity of interest (t). We used the Dice coefficient (D), a
measure to compute the degree of co-occurrence between two entities x and y
in a set of texts (i.e., titles and abstracts) in the graph.

Fig. 3: An example of an entity graph, where t is the entity of interest.

In Figure 3, vertex vt represents the entity of interest t, vertex vi (i =
1..n) represents an entity i that co-occurred with t, the weight of the edge
between vt and vi is the dice coefficient D(vt, vi) between entity t and i (i.e.,
weight(vt, vi) = D(vt, vi)).

Table 12 summarizes the results for the entity “yellow fever” with two
objective functions I1 and I2. In our dataset, the number of clusters (concepts)
of the term “yellow fever” is 2. We observed that max(fk,I1) and max(fk,I1)
predicted the correct number of senses in general.

Similar to evaluating the bag-of-words representations, we conducted this
experiment for all of our 203 ambiguous entities. Table 13 shows the F-measure
results for the prediction of the number of clusters. As shown, max(fk,OF )
gives the best F-measure results for all the clustering algorithms for both
objective functions.

4.3.3 Prediction with both the direct and graph-based features

Similar to our approach for polysemy detection (see Section 3.1), we used both
the direct and graph-based features to form a multiclass supervised classifi-
cation task to predict the number of senses (i.e., 4 classes: 2, 3, 4, 5). The
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Table 12: Predicting the number of senses (k) for “yellow fever”, with graph representation
(The true number of senses is 2).

Internal Indexes rb rbr direct agglo graph
max(ak,I1) 2 2 2 5 2
min(bk,I1) 2 2 2 2 2
max(ck,I1) 2 2 2 5 2
max(ek,I1) 5 5 5 5 2
max(fk,I1) 2 2 2 2 2
max(ak,I2) 5 5 4 5 2
min(bk,I2) 2 2 2 2 2
max(ck,I2) 2 2 2 5 2
max(ek,I2) 5 5 5 5 2
max(fk,I2) 2 2 2 2 2

* ∀k = {2, 3, 4, 5}; rb, rbr, direct, and agglo are the clustering
algorithms; a, b, c, e, and f are the quality indexes.

Table 13: F-measures for predicting the number of senses with the 203 ambiguous entities
using the graph representation.

Internal Indexes rb rbr direct agglo graph
max(ak,I1) 1.97 % 1.97 % 1.48 % 1.48 % 9.36 %
min(bk,I1) 77.83 % 77.83 % 75.86 % 93.10 % 64.04 %
max(ck,I1) 76.35 % 74.88 % 76.85 % 85.22 % 64.53 %
min(ck,I1) 8.37 % 7.88 % 7.39 % 0.49 % 21.67 %
max(ek,I1) 3.94 % 4.43 % 4.93 % 47.78 % 3.94 %
max(fk,I1) 93.10 % 93.10 % 93.10 % 93.10 % 93.10 %
max(ak,I2) 0.49 % 0.99 % 0.49 % 1.48 % 2.96 %
min(bk,I2) 82.27 % 82.76 % 86.21 % 93.10 % 80.3 %
max(ck,I2) 91.13 % 91.13 % 90.15 % 85.22 % 87.19 %
min(ck,I2) 0.99 % 0.99 % 0.99 % 0.49 % 1.48 %
max(ek,I2) 4.43 % 3.94 % 3.94 % 47.78 % 2.46 %
max(fk,I2) 93.10 % 93.10 % 93.10 % 93.10 % 93.10 %

* ∀k = {2, 3, 4, 5}; rb, rbr, direct, and agglo are the clustering algorithms; a, b, c,
e, and f are the quality indexes.

results are provided in terms of Accuracy (A), Precision (P), Recall (R), and
F-Measure (F).

Table 14 summarizes the results on a hold-out independent test dataset.
The MultiClassClassifier Logistic (MCC) obtained the best results, with an
F-measure of 91.2%, followed by Meta Bagging (MB) with an F-measure of
90.9%. These results show that these features are useful for predicting the
number of clusters.

4.3.4 Discussion

The bag-of-words and graph representations obtained similar F-measure values
in predicting the number of senses. In both cases, the best F-measure is 93.1%.
As shown in Tables 11 and 13, the best F-measure results are given by the fk
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Table 14: Number of senses prediction using both direct and graph-based features.

Faverage

Naive Bayes (NB) 76.9 %
AdaBoost (AB) 89.3 %

Tree Decision (TD) 89.0 %
Support Vector Machine (SVM) 89.8 %

Meta Bagging (MB) 90.9 %
k-nearest neighbors (k-NN), k = 1 88.6 %

Multilayer Perceptron (NN) 89.0 %
MultiClassClassifier Logistic (MCC) 91.2 %

index. The fk index is the division between the value of the objective function
and the logarithm of k.

When using supervised learning algorithms based on the direct and graph-
based feature representations, MultiClassClassifier Logistic (MCC) and Meta
Bagging (MB) were two of the best models. MB is a kind of ensemble learning
algorithm that generates multiple versions of a predictor to build an aggre-
gated predictor. MCC is also a meta-classifier that handles multi-class datasets
with multiple binary classifiers. In short, the direct and graph-based features
are effective in both determining the polysemy of candidate terms as well as
predicting the associated number of senses (or concepts), which makes it easier
to adopt in real-world implementations.

Most existing WSI studies were in the general domain (e.g., Duluth-WSI [65],
UoY [42], NMFlib [80], NB [20], RPCL [33]) and have used the SemEval-2010
WSI shared task dataset [53] to test their approaches. The SemEval-2010
dataset contains 100 target words: 50 nouns and 50 verbs. A common step
between the SemEval-2010 WSI task (task 14) [53] and our framework is the
number of sense prediction. The dataset used in SemEval-2010 differs signif-
icantly from ours as: (1) it contains both single-word nouns and single-word
verbs as target words, while ours contains single- and multi-word entities which
are composed mainly of nouns and adjectives; (2) the target words are asso-
ciated with a higher number of senses (2 ≤ k ≤ 14), while ours are between
2 and 5; and (3) texts supplied for each target word were extracted from dif-
ferent websites using Yahoo Search API, and directly from additional sources
including Wall Street Journal, CNN, ABC and others; while our texts were
extracted from PubMed. Nevertheless, we evaluated our number of sense pre-
diction method over the SemEval-2010 dataset, which resulted in F-measures
of 13.5% and 43% when predicting the number of senses for nouns and verbs,
respectively. These poor results are mainly caused by the fact that our feature
representations (i.e., the bag-of-words and graph-based representations) were
based on knowledge from the biomedical domain (i.e., UMLS). In our feature
representations, we used the LIDF-measure, which were derived based on the
linguistic patterns of biomedical entities in UMLS. These results suggest that
in these NLP tasks, using features tailored to the specific domain of the study
will improve model performances significantly.
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Moreover, a particular challenge related to WSI in the biomedical domain
in comparison to the general domain is the different types of lexical ambi-
guity that exist and the unique characteristics of biomedical documents. In
addition to ambiguous terms (words or phrases), abbreviations occur more
frequently within biomedical documents [76] and they can have more than
one possible expansion [76]. Moreover, the names of genes also contain lexical
ambiguities, especially when standardized naming conventions are not always
followed. More than one thousand gene terms overlap with generic English
meanings [75,86]. Another challenge associated with the biomedical domain is
the growing adoption of Electronic Health Record (EHR) and clinical docu-
ments that are manually created under a time constrain in which healthcare
professionals often use shortened biomedical entity forms that are frequently
ambiguous [11]. In addition, to the best of our knowledge, there is no biomedi-
cal WSI studies focusing on predicting the number of senses. Therefore, a direct
baseline measure was not available. Nevertheless, as mentioned previously, the
number of senses (clusters) was predicted by evaluating the clustering quality.

Thus, we used our dataset to our proposed internal clustering quality in-
dexes with the indexes implemented in the R package NbClust including CH
[16] (proved to be the most effective in [9]), DB [24], Duda [28] (proved to be
the second most effective in [35]), KL [43], Pseudot2 [28], Sdbw [31], Sdindex
[32], and Silhouette [70].

Another strong point of NbClust is that it allows to range the number of
clusters between kmin = 2, to kmax = 5, as proposed in our method. Table
15 shows the results in terms of F-measure average of eight state-of-the-art
indexes to predict the number of senses of polysemic biomedical terms. The CH
index reached the highest performance with an F-measure of 69.9% followed
by the Duda and Pseudot2 index with an F-measure of 64%, which proved the
assertions done in [9,35].

Table 15: Results of predicting the number of senses using eight state-of-the-art clustering
quality indexes.

Faverage

CH 69.9 %
DB 21.2 %

Duda 64.0 %
KL 40.9 %

Pseudot2 64.0 %
Sdbw 47.8 %

Sdindex 55.7 %
Silhouette 55.7 %

As shown in Figure 4, where the y-axis is the average F-measure (F),
our proposed clustering quality index (fx) outperformed other methods in-
cluding our own feature-based method in predicting the number of senses on
our dataset. Even though our feature-based method performed slightly worse
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than our clustering quality index-based method, it outperformed all other
state-of-the-art clustering quality indexes. One possible reason is that our in-
dex and novel features were built using domain dictionaries such as UMLS,
AGROVOC, which might provide more representative characteristics of our
dataset.
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Fig. 4: Results of the comparison between three state-of-the-art indexes and our methods.

4.4 Concept induction

In this section we evaluate our method to induce the possible concept(s) of an
entity. We considered both the polysemic and non-polysemic entities. The most
difficult challenge is to identify the distinct senses of the entities that have been
classified as polysemic. We evaluated the results of inducing the concept(s) of
biomedical entities applying clustering algorithms over the bag-of-words repre-
sentation. The number of senses predicted in the section above was used as an
input of the clustering algorithms. For clustering tasks, we used the rb cluster-
ing algorithm, which gave the best results according to the CLUTO software.
We used two objective functions: I1 and I2 (see Section 3.2), which are recom-
mended in CLUTO. We then extracted the top ranked (5,10, and 20) keywords
for each generated cluster with the tf-idf, okapi-bm25, and LIDF-value mea-
sures. Finally, we compared the keywords with the definitions of each entity
in UMLS, and measured the overlapping of the keywords over the definition.
The definitions of each entity were extracted from UMLS based on the CUIs
provided in both datasets. Since for an entity, there are multiple UMLS defini-
tions and clusters, there are also different combinations to match these UMLS
definitions to clusters. For instance, “yellow fever” has two definitions and two
clusters, there are two different combinations for its evaluation: “definition1-
cluster1—definition2-cluster2” or “definition1-cluster2—definition2-cluster1”.
In our evaluation, we automatically took the combination which maximized
the overlapping rate between the keywords in clusters and the words in defini-
tions. Table 16 summarizes the results of the overlapping of the keywords over
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the definitions. The tf-idf obtained the best results, with an average overlap-
ping rate of 42%.

Table 16: The average overlapping rates (KW@5, 10, 20) of extracted keywords over UMLS
entity definitions.

KW@5 KW@10 KW@20
I1 and LIDF-value 0.352 0.311 0.270

I1 and okapi 0.380 0.326 0.259
I1 and tf-idf 0.404 0.326 0.276

I2 and LIDF-value 0.349 0.311 0.278
I2 and okapi 0.399 0.324 0.270
I2 and tf-idf 0.420 0.355 0.280

4.4.1 Discussion

The overlapping rates showed in Table 16 give meaningful information as a
performance metric to evaluate concept induction results. However, overlap-
ping rates do not give the full picture, as many entity definitions in UMLS do
not contain the exact keywords, but contain words that have similar semantics
to the extracted keywords.

Table 17: Samples of keywords extracted per cluster for the entity “yellow fever”.

CUI Definition Keywords

C0043395

An acute infectious disease primarily
of the tropics, caused by a virus and
transmitted to man by mosquitoes of
the genera Aedes and Haemagogus.
The severe form is characterized by

fever, HEMOLYTIC JAUNDICE, and
renal damage.

outbreak
virus
news

outbreak news
dengue
disease

epidemic
mosquito

fever
fever virus

C0301508

Vaccine used to prevent YELLOW
FEVER. It consists of a live
attenuated 17D strain of the
YELLOW FEVER VIRUS.

virus
vaccination

vaccine
disease

encephalitis
fever vaccination

yellow fever vaccination
17d vaccine

response
fever vaccine

Table 17 shows an example of keywords extracted per cluster for the en-
tity “yellow fever”, where we can see that every cluster contains keywords
strongly related to the concepts of the entity “yellow fever” (i.e., “vaccine”
and “virus”).
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We also performed a manual evaluation of the induced concepts to validate
if the extracted keywords conveyed the right semantics of each biomedical en-
tity (i.e., the reference definitions are concepts extracted from UMLS). The
evaluation was conducted on the polysemic dataset for 174 entities. 73.33%
of the induced concepts can adequately represent their UMLS definitions. We
also reviewed the remaining 26.67% entities whose induced concepts were con-
sidered of low quality to represent their UMLS definitions. We made several
observations of these low-quality clusters (induced concepts). First, in our
framework, we extracted multiple clusters for each polysemic entity, where each
cluster was supposed to represent a distinct sense. Often in these low-quality
induced concepts, we observed that only part of the clusters could convey the
UMLS definitions of the corresponding biomedical entity, while other clusters
did not. However, the clusters that did not correspond to any UMLS definitions
themselves were still cohesive internally. One possibility is that these clusters
might represent new meanings (i.e., senses) of the biomedical entity that were
not captured in UMLS. Second, some of the UMLS definitions associated with
a single entity were semantically close. Table 18 illustrates an example of the
automatically detected low-quality results induced for the entity “HIV”, where
the two distinct concepts (i.e., C0019693 and C0019682) defined in the UMLS
for “HIV” have very similar meanings. Third, the keywords we extracted were
single words (rather than phrases), which might not be able to convey the
semantic information of the definition. Fourth, our evaluation can also have
been affected by the quality of the terminologies in the UMLS. UMLS merged
hundreds of different terminology resources, and it contains many different
types of errors, including semantic [21,90] and lexical errors [90], and numer-
ous redundancy[22]. For instance, a quality assurance study of UMLS in 2009
found errors in 81% of the concepts studied [90].

5 Conclusions

In this paper, we present a framework for biomedical entity sense induction
with three steps: 1) to predict whether a biomedical term is polysemic, 2)
to induce the number of senses for a biomedical entity, and 3) to induce the
concepts (senses) through ranked keyword extraction. The first two steps are
novel, which existing WSI frameworks have often neglected.

Through extensive evaluations, we have shown that the novel features al-
lowed a more effective polysemy classification task. We also presented a novel
approach to predict the number of senses (clusters) for candidate biomedical
entities. Our contribution is the internal clustering quality indexes, which are
then used to predict the number of senses. We also experimented with the
same direct and graph-based features used for polysemy detection to predict
the number of senses, which have also shown promising results. Using the pre-
dicted number of senses as a priori, the clustering task for concept induction
is then straightforward. From the clusters, we can easily extract keywords to
represent the different senses (concepts) of the biomedical entity.
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Table 18: Keywords extracted of the induced concepts for the entity “HIV”.

CUI Definition Keywords

C0019693

Includes the spectrum of human
immunodeficiency virus infections

that range from asymptomatic
seropositivity, thru AIDS-related

complex (ARC), to acquired
immunodeficiency syndrome (AIDS).

virus
peptide

replication
vaccine
activity
infection
antibody

immunodeficiency

host
fusion

C0019682

Human immunodeficiency virus. A
non-taxonomic and historical term

referring to any of two species,
specifically HIV-1 and/or HIV-2.

Prior to 1986, this was called human
T-lymphotropic virus type

III/lymphadenopathy-associated virus
(HTLV-III/LAV). From 1986-1990, it

was an official species called HIV.
Since 1991, HIV was no longer

considered an official species name;
the two species were designated

HIV-1 and HIV-2.

treatment
prevention

testing
transmission

research
infection

study
youth
risk

group

As future work, different strategies could be considered to improve the
proposed framework, such as introducing more features using other dictionaries
like WordNet and BabelNet.
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