Jaehyun Lee 
email: jaehyun.lee@glasgow.ac.uk
  
Salim Berrada 
  
Fikru Adamu-Lema 
  
Nicole Nagy 
  
Vihar P Georgiev 
  
Toufik Sadi 
  
Jie Liang 
  
Raphael Ramos 
  
Hamilton Carrillo-Nunez 
  
Dipankar Kalita 
  
Katharina Lilienthal 
  
Marcus Wislicenus 
  
Reeturaj Pandey 
  
Bingan Chen 
  
Kenneth B K Teo 
  
Goncalo Goncalves 
  
Hanako Okuno 
  
Benjamin Uhlig 
  
Aida Todri-Sanial 
  
Jean Dijon 
  
Fellow, IEEE Asen Asenov 
  
A Todri 
  
G Goncalves Are With Nanoinstruments 
  
  
  
  
  
  
  
  
Understanding Electromigration in Cu-CNT Composite Interconnects: A Multiscale Electro-Thermal Simulation Study

Keywords: Cu-CNT composites, Interconnect, Electromigration, Self-heating, Electro-thermal coupling, DFT, Multi-scale simulation

In this paper, we report a hierarchical simulation study on the electromigration problem in Cu-CNT composite interconnects. Our work is based on the investigation of the activation energy and self-heating temperature using a multiscale electro-thermal simulation framework. We first investigate the electrical and thermal properties of Cu-CNT composites including contact resistances using the Density Functional Theory and Reactive Force Field approaches, respectively. The corresponding results are employed in macroscopic electro-thermal simulations taking into account the self-heating phenomenon. Our simulations show that although Cu atoms have similar activation energies in both bulk Cu and Cu-CNT composites, Cu-CNT composite interconnects are more resistant to electromigration thanks to the large Lorenz number of the CNTs. Moreover, we found that a large and homogenous conductivity along the transport direction in interconnects is one of the most important design rules to minimize the electromigration.

I. INTRODUCTION

D UAL damascene process technology with proper barrier metals such as TaN has been successfully used to fabricate Cu interconnects for the past 20 years [START_REF] Edelstein | Full Copper Wiring in a Sub-0.25 pm CMOS ULSI Technology[END_REF]- [START_REF] Hayashi | Dependence of copper interconnect electromigration phenomenon on barrier metal materials[END_REF]. However, aggressive scaling of dimensions of microchips results in an increase of the resistance in Cu interconnects due to the grain boundary (GBS) and the surface roughness scatterings (SRS) [4]- [START_REF] Rossnagel | Alteration of Cu conductivity in the size effect regime[END_REF]. Increased resistance of the interconnect causes increased interconnect delay [START_REF] Kapur | Technology and reliability constrained future copper interconnects. II. Performance implications[END_REF]. Moreover, many types of reliability issues arise during both manufacturing process, such as defects and voids [START_REF] Hussein | Materials' impact on interconnect process technology and reliability[END_REF], and the operation of the device, such as electromigration (EM) [START_REF] Besser | Optimizing the electromigration performance of copper interconnects[END_REF]- [START_REF] Chen | Optimization of the nanotwin-induced zigzag surface of copper by electromigration[END_REF]. It is also well-known that the power consumption increases when scaling down the interconnect [START_REF] Li | Global Interconnect Width and Spacing Optimization for Latency, Bandwidth and Power Dissipation[END_REF]. Nowadays, these issues must be considered carefully, since the overall performance and reliability of chips are dominated by interconnects [14], [START_REF] Havemann | High-performance interconnects: an integration overview[END_REF].

For more than a decade, carbon-based interconnects have attracted attention as a potential future interconnect technology to overcome some of these problems -GBS, SRS, and electromigration [START_REF] Milowska | Breaking the electrical barrier between copper and carbon nanotubes[END_REF]- [START_REF] Todri-Sanial | A Survey of Carbon Nanotube Interconnects for Energy Efficient Integrated Circuits[END_REF]. Indeed, carbon nanotubes (CNTs) and graphene show high ampacity (maximum current-carryingcapacity) and thermal conductivity thanks to their strong C-C bonding [START_REF] Hone | Thermal conductivity of single-walled carbon nanotubes[END_REF]- [START_REF] Balandin | Superior Thermal Conductivity of Single-Layer Graphene[END_REF]. Ampacity is one of the key figures used to quantify EM. In particular, to prevent capacitance build-up by the barrier metal, Li et al. used single-or bi-layer graphene as the Cu diffusion barrier in Cu interconnects and successfully demonstrated their smaller resistivity and longer EM lifetime [START_REF] Li | BEOL Compatible Graphene/Cu with Improved Electromigration Lifetime for Future Interconnects[END_REF].

More promising results were shown by Subramaniam et al. in 2013 with CNTs [START_REF] Subramaniam | One hundred fold increase in current carrying capacity in a carbon nanotubecopper composite[END_REF]. They reported that Cu-CNT composite interconnects without the diffusion barrier can have not only a similar conductivity to Cu interconnects but also a 100 times better ampacity than Cu interconnects. However, an in-depth analysis of the migration reduction of Cu atoms in Cu-CNT composite interconnects is still lacking.

In this paper, we present a multi-scale electro-thermal simulation study to understand the electromigration phenomenon in Cu-CNT composite interconnects. In general, EM in interconnects can be characterized by the Time-To-Fail figure (T T F ), whose expression is given by Black's equation [START_REF] Balck | Electromigration-A Brief Survey and Some Recent Results[END_REF]:

T T F = A * J -r e Ea/(k B T ) (1) 
where A * is an empirical constant, J is the current density, r is a positive dimensionless exponent, k B is the Boltzmann constant, E a is the activation energy, and T is the temperature of the interconnect. According to Eq. 1, there are two ways to obtain a larger current density while maintaining the same T T F . The first option is to increase the activation energy.

To do this, the diffusion barrier with appropriate properties is adopted in the standard Cu interconnect [START_REF] Hayashi | Dependence of copper interconnect electromigration phenomenon on barrier metal materials[END_REF]. The second way is to decrease T , which can be achieved by suppressing the self-heating effects. Unfortunately, decreasing T is difficult because the self-heating temperature T is caused by high J or high applied voltage (V ) during the chip operation.

For this reason, we implemented heat diffusion equation [START_REF] Pop | Electro-thermal transport in metallic single-wall carbon nanotubes for interconnect applications[END_REF] in our simulation framework to capture the self-heating effects. Finally, from all simulation results, we provide design guidelines to optimize the performance of Cu-CNT composite interconnects. This paper is organized as follow. Section II shows the first principle simulation results of the activation energy and the contact resistance between Cu and CNT. In Section III, we examine the self-heating temperature of Cu and Cu-CNT composite interconnects using the first principle calculation results. In Section IV, we provide the optimal design guidelines for Cu-CNT composite interconnects. Finally, conclusions are drawn in Section V.

II. FIRST PRINCIPLE SIMULATION

We investigated the electrical and thermal properties of Cu-CNT composite interconnects using the Density Functional Theory (DFT) and the Reactive Force Field (ReaxFF) methods, respectively [START_REF] Brandbyge | Density-functional method for noneqilibrium electron transport[END_REF]- [START_REF] Nielson | Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes[END_REF]. Both methods are implemented in the Atomistix Tool Kit (ATK) from QuantumWise [START_REF]Atomistix ToolKit version[END_REF]. The atomistic structures are optimized until the maximum force of each atom becomes less than 10 -2 eV/ Å for electrical (DFT) and 10 -4 eV/ Å for thermal (ReaxFF) analysis, respectively. For the DFT calculations, we use the Generalized Gradient Approximation (GGA) as the exchange-correlation functional, as proposed by Perdew, Burke, and Ernzerhof [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF]. The normconserving pseudopotentials generated with the Fritz-Haber Institute pseudopotential code are used with the double-ζ singly-polarized pseudoatomic orbital basis set. The tolerance of the self-consistent field loop calculation is set 10 -4 .

Fig. 1 illustrates examples of optimized atomistic structures of Cu-CNT(4,4) and Cu-CNT(6,0) composites. The lattice orientation of a Cu part is selected to reduce the lattice mismatch with CNT along the transport direction. We assume that CNT is not strained by Cu in this study. The lattice parameters of bulk Cu, zigzag CNT(6,0), and armchair CNT (4,4) in DFT-GGA calculations are 3.670, 4.280, 2.474 Å, respectively. In addition, we placed Cu atoms to prevent the CNT from being distorted severely.

A. Acitvation energy

The activation energy E a in Eq. 1, which is the energy required for a thermo-dynamic reaction to occur, is an important parameter to describe the EM phenomenon. In general, the structure with low value of the activation energy is vulnerable to the EM. In 2013, measurements of T T F by Subramaniam et al. [START_REF] Subramaniam | One hundred fold increase in current carrying capacity in a carbon nanotubecopper composite[END_REF] showed that Cu-CNT composite interconnects exhibit much better EM properties than their Cu counterpart. They attributed this outperformance to the enhancement of Cu's activation energy thanks to the presence of C atoms. Nevertheless, considering the weak van der Waals interaction at the interface between Cu and CNT, it is difficult to see how the presence of the CNT could enhance the activation energy of Cu atoms at its interface. Moreover, in a Cu-CNT composite, there is not only a Cu-CNT interface but also a Cu surface, which is the most vulnerable part to the EM in a Cu interconnect as shown in Fig. 2. Consequently, a further theoretical investigation of this phenomenon is needed.

Since the Cu surface in a Cu-CNT composite interconnect is the same as that in a Cu interconnect, we focused on investigating the activation energy at the interface between Cu and CNT. To do this, we constructed a large unit cell by repeating the primitive unit cell 5 times in the transport direction for a Cu-CNT composite interconnect. For bulk Cu, 4 × 4 × 4 face-centered cubic unit cells are created. Moreover, we used the basis set superposition error (BSSE) correction which is usually caused by linear combination of atomic orbital basis (LCAO).

Fig. 3a) shows the three pathways (see read arrows) of the selected Cu atom -marked in yellow -in the Cu-CNT composite structure. This Cu atom is the closest to C atoms; the Cu-C distance (2.178 Å) at the interface in the Cu-CNT composite is shorter than Cu-Cu distance (2.595 Å) in bulk Cu. Fig. 3b) illustrates the potential profile, which is calculated by the total energy difference obtained from Fig. 3. a) Three pathways where the selected Cu atom (marked in yellow) moves. b) Calculated potential profiles seen by a Cu atom in bulk Cu and a Cu-CNT composite using the DFT-GGA method. For bulk Cu, we calculated the activation energies at the surface and lattice, respectively. The activation energy for each case is the barrier height for the corresponding curves.

DFT-GGA calculations. The potential barriers in this figure indicate the activation energies for Cu atom migration. In the same manner, we calculated the activation energies using the DFT-GGA-D3 approach to correct van der Waals interactions by Grimme D3 [START_REF] Grimme | A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[END_REF]. In addition, we estimated the activation energies from the DFT-GGA simulations after removing CNT from a Cu-CNT composite structure. All corresponding results are summarized in Table I.

From all simulation results, it was found that the calculated activation energies at the Cu-CNT interface are not large compared to the activation energies at the surface in bulk Cu (0.567 eV). Moreover, we note again that the surface of a Cu-CNT composite interconnect is still vulnerable to EM like a Cu interconnect. It can, therefore, be concluded that CNT does not contribute significantly to increasing the activation energies of Cu atoms in a Cu-CNT composite interconnect. This is why we need to consider the other parameter in Eq. 1: the temperature. tact resistances (R c ), unlike other metal-metal junctions [START_REF] Lee | Atoms-to-Circuits Simulation Investigation of CNT Interconnects for Next Generation CMOS Technology[END_REF], [START_REF] Avouris | Carbon-based electronics[END_REF]. Therefore, accurate self-heating simulation of Cu-CNT composite interconnects requires a good understanding of the electrical and thermal contact resistances between Cu and CNTs.

B. Contact resistance

In this study, we used the Non-Equilibrium Green's Function (NEGF) method assuming ballistic transport to calculate the electrical and thermal contact resistances of Cu-CNT junctions. For the sake of computational efficiency, end and side contract resistances are considered separately. The atomistic structures used in this study are shown in Fig. 5. The left end of the CNT in Fig. 5b) is passivated with hydrogen atoms. We used a k-point sampling of 1 × 1 × 90.

The end contact resistance R end c can be extracted from NEGF simulations. Indeed, since the number of conducting channel of bulk Cu near the Fermi-level is much larger than that of single-walled CNT (SWCNT), the total resistance R end total of the structure shown in Fig. 5a) reads:

R end total = R CN T + R end c , (2) 
where R CN T is the ballistic resistance of CNT that we calculated separately. From Eq. 2, we can calculate R end c . The total resistance of the side contact R side total (see Fig. 5b)) can be expressed as [START_REF] Franklin | Length scaling of carbon nanotube transistors[END_REF]:

R side total = R CN T + R int c + R side c (3) = R CN T + R int c + ρ side c πD CN T L c , (4) 
where

R int c
is the resistance at the interfaces between Cu and Cu-CNT composite and between Cu-CNT composite and CNT, and ρ side c , D CN T , and L c are respectively the resistivity of the side contact, the diameter of the CNT, and the overlap length between CNT and Cu as shown in Fig. 5b). R side total 's with different L c should be calculated to extract ρ side c . The thermal contact resistances have been computed from Eqs. 2 and 4 using the ReaxFF method instead of the DFT approach [START_REF] Nielson | Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes[END_REF]. The calculated electrical (σ) and thermal (κ) conductivities of the end and side contacts for the CNT (4,4) are summarized in Table II with corresponding experimental results from literature [START_REF] Franklin | Length scaling of carbon nanotube transistors[END_REF]- [START_REF] Baratunde | Increased real contact in thermal interfaces: A carbon nanotube/foil material[END_REF]. The calculated results are larger than the experimental results because we considered ideal structures in this simulation study. However, it is noteworthy that such discrepancies do not affect the device simulation results significantly, as discussed later and demonstrated in Fig. 9a). Resistance values obtained for CNTs with other diameters are of the same order of magnitude. Because of the small interaction at the CNT surface, electrical and thermal conductivities at the end contact part are larger than those at the side contact part.

III. MACRSCOPIC SIMULATION

To understand why a Cu-CNT composite interconnect is much more resistant to EM than a Cu interconnect, the self-heating temperature caused by Joule heating should be calculated. The methodology used to perform a self-heating simulation is described in the flowchart shown in Fig. 6. Based on the finite volume discretization scheme, the heat diffusion and current continuity equations are solved self-consistently [START_REF] Pop | Electro-thermal transport in metallic single-wall carbon nanotubes for interconnect applications[END_REF]. The current continuity and heat diffusion equations in steady state are given by:

∇ • J = ∇ • (σ∇ϕ) = 0, (5) ∇ • (κ∇T ) = -q, ( 6 
)
where ϕ is the potential. The heat source q can be written as:

q = J • E, (7) 
where E is electric field. The electrical conductivity of the CNT (σ CN T ) was calculated using the first principle simulations with the mean free path approximation [START_REF] Lee | Atoms-to-Circuits Simulation Investigation of CNT Interconnects for Next Generation CMOS Technology[END_REF], [START_REF] Naeemi | Compact Physical Models for Multiwall Carbon-Nanotube Interconnects[END_REF]. The conductivity including phonon scattering effects is obtained by introducing the electron mean free path λ:

σ CN T = G bal L CN T A 1 + L CN T λ -1 , (8) 
where G bal is the ballistic conductance, and L CN T and A are the length and cross-sectional area of the CNT, respectively. In addition, λ of CNT can be given by Matthiessen's Rule [START_REF] Pop | Electro-thermal transport in metallic single-wall carbon nanotubes for interconnect applications[END_REF], [START_REF] Mohsin | Characterization of MWCNT VLSI Interconnect with Self-heating Induced Scatterings[END_REF], [START_REF] Pop | Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates[END_REF]:

λ = 1 λ ac + 1 λ f ld op,ems + 1 λ abs op,ems + 1 λ op,abs -1 , (9) 
where λ ac , λ f ld op,ems , λ abs op,ems , and λ op,abs are the electron mean free paths from acoustic phonon, optical phonon emission after electrons gained energy from the electric field, optical phonon emission after absorption, and optical phonon absorption, respectively. These parameters can be calculated as following [START_REF] Mohsin | Characterization of MWCNT VLSI Interconnect with Self-heating Induced Scatterings[END_REF], [START_REF] Pop | Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates[END_REF]: N OP (T ) = {1/exp((hω op )/(k B T ))}-1 is the average optical phonons number defined by the Bose-Einstein distribution, and hω op is the optical phonon energy. We set hω op to 0.18 eV in this study [START_REF] Pop | Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates[END_REF]. The mean free path of CNTs is thus a function of T , L CN T , D CN T , and V . Using the linear approximation for resistivity, the electrical conductivity of Cu (σ Cu ) is given by:

λ ac =
σ Cu (T ) = σ 0 1 + α(T -T 0 ) (10) 
where T 0 is a fixed reference temperature, 293 K, α = 0.003862 K -1 is the temperature coefficient of resistivity and σ 0 is the conductivity at T 0 . σ 0 for Cu will be discussed in the next subsection. We compute the thermal conductivity κ for both Cu and CNT using Wiedemann-Franzs law [START_REF] Jonson | Mott's formula for the thermopower and the Wiedemann-Franz law[END_REF]:

κ = σ LT, ( 11 
)
where L is the Lorenz number. The values we used for L in this study are 2.23×10 -8 WΩK -2 for Cu [START_REF] Kittel | Introduction to Solid State Physics[END_REF] and 4.0×10 -6 WΩK -2 for CNT [START_REF] Hone | Thermal conductivity of single-walled carbon nanotubes[END_REF]. L of the CNT is about 180 times larger than that of Cu, meaning that the thermal condcutivity κ of the CNT is mostly dominated by phonons (as opposed to Cu where κ is dominated by electrons). In this study, we did not consider heat dissipation through the environment of the interconnects and the calculated T may thus be overestimated. However, this is a global effect affecting all the interconnects considered here and therefore, our study ensures a good comparison between them.

A. Scattering effects in nanoscale Cu interconnect

Fig. 7 shows experimental and theoretical dependence of Cu resistivity ρ Cu on the width of the interconnect W Cu when its height (H Cu ) is 90 nm. As expected, the resistivity increases as W Cu decreases due to SRS and GBS effects. To describe these effects, we used the empirical model introduced by Rossnagel et al. [START_REF] Rossnagel | Alteration of Cu conductivity in the size effect regime[END_REF]:

ρ Cu ρ 0 = 1 + 0.375(1 -p)Sλ W Cu + 1.5 R 1-R λ g , ( 12 
)
where ρ 0 is the bulk Cu resistivity, p is the surface scattering parameter, S is the roughness factor, R is the grain boundary III. scattering parameter, and g is the average value of grains size. From our experimental data, we successfully extracted the values of the parameters assuming that g is equal to W Cu and the mean free path λ is 40 nm. The parameters are summarized in Table III.

B. Self-heating effects in Cu and Cu-CNT composite interconnects

We calculated ∆ T as the difference between the maximum self-heating temperature in the device and the temperature of the heat sink (T sink = 300 K). The conductivity and ∆ T resulting from Joule heating with respect to the applied voltage to the Cu and Cu-CNT composite interconnects are depicted in Fig. 8. It shows that self-heating temperature increases more rapidly with the applied bias in the Cu interconnect compared to the Cu-CNT composite interconnect. We also found that the conductivity of both interconnects is slightly degraded at higher operating temperatures. This behavior results from an increased phonon scattering at higher T . It is important to note that an increase in T and a decrease in σ of interconnects exacerbate the EM. Indeed, the reduction in σ requires a larger electric field to deliver the same current density, which in turn causes the temperature rise in the interconnects; i.e. there is a negative feedback between the self-heating effect and EM. From this point of view, it is clear that Cu-CNT composite interconnects can be stronger against EM than Cu interconnects thanks to its lower self-heating temperature and significantly larger thermal conductivity of CNT.

C. Variablity simulations of Cu-CNT composite interconnect

To gain a deeper insight into self-heating effects in Cu-CNT composite interconnects, we performed variability simulations of σ and ∆ T in terms of the electrical and thermal contact resistances, L CN T , and the Cu ratio. The results are shown in Fig. 9. We found that there is very weak dependence on the electrical and thermal contact resistances. Since the electrical and thermal conductivities at both end and side contacts -calculated by DFT and ReaxFF, respectively -are much smaller than the electrical and thermal conductivities of Cu and CNT, their influence appears to be negligible as shown in Fig. 9a).

The dependence on L CN T is shown in Fig. 9b). As L CN T decreases, σ decreases and ∆ T increases. It is well-known that σ CN T decreases as L CN T decreases due to its large λ [START_REF] Lee | Atoms-to-Circuits Simulation Investigation of CNT Interconnects for Next Generation CMOS Technology[END_REF], [START_REF] Naeemi | Compact Physical Models for Multiwall Carbon-Nanotube Interconnects[END_REF]. Moreover, as L CN T deceases, the electric field increases. This is the cause of the increase in the selfheating temperature. We also found that Cu-CNT composite interconnects are more beneficial than Cu interconnects when their length becomes shorter. This is because the ∆ T of 0.1 µm length Cu-CNT composite interconnect (∆ T = 248 K, see Fig. 9b)) is smaller than that of 10 µm length Cu interconnects (∆ T = 364 K, see Fig. 8)), when V = 0.5 V.

Fig. 9c) shows the self-heating simulation results of σ and ∆ T when D CN T is fixed and H Cu and W Cu are varied from 3 to 5.5 nm. As the Cu ratio increases, both σ and ∆ T decrease. For σ, it is consistent with the general expectations because as Cu becomes increasingly dominant, σ of a Cu-CNT composite interconnect becomes closer to that of a Cu interconnect. However, the calculated ∆ T shows an unexpected behavior. It is highlighted that although a Cu interconnect is suffering more from the self-heating effects as shown in Fig. 8,∆ T decreases when the Cu ratio becomes large. This behaviour is explained by the build-up of an electric field difference at the interface between the Cu contact and the Cu-CNT composite (see Fig. 4). Fig. 10 depicts the electric field and temperature along the transport direction. Two important conclusions can be drawn from this figure. Firstly, the temperature rise in both interconnects occurs in the Cu contact part. Secondly, when the Cu ratio is higher, the electric field at the Cu contact part is smaller because σ of Cu-CNT composite is similar to that of Cu. Therefore, to decrease the self-heating temperature in interconnects, it is very important to ensure a small variation of the electrical conductivity along the transport direction. This will prevent the build-up of a large electric field at the regions where σ is small.

Only ideal CNTs were considered so far. Since measured conductivities in CNTs are usually lower than the ideal values, we also investigated the self-heating effect when the mean free path λ of CNTs is degraded. The dependence of σ and ∆ T on degraded λ is shown in Fig. 11, where λ ideal is given by Eq. 9. As the ratio of change of λ decreases, both σ and ∆ T decrease. The reason behind the decrease of ∆ T despite the poor CNT characteristics is related to the smaller difference of conductivity σ between the Cu contact and the degraded Cu-CNT composite. However, ∆ T increases again at a certain point because the CNT conductivity becomes too different (smaller) from the Cu conductivity. We also found that ∆ T with H Cu = W Cu = 6 nm starts to increase at a larger λ/λ idea ratio because of the small contribution from CNTs.

IV. DESIGN GUIDELINES FOR CU-CNT COMPOSITE

INTERCONNECTS

All simulation results suggest that a Cu-CNT composite interconnect without the barrier metal is highly resistant to EM thanks to the reduced self-heating, and not due to increased activation energy. We propose the Lorenz number L as a new parameter to assess the self-heating and electromigration. The dependence of L on various parameters is shown in Fig. 12. The linear relationship between L and T in Cu-CNT composite interconnects is consistent with experimental results [START_REF] Subramaniam | One hundred fold increase in current carrying capacity in a carbon nanotubecopper composite[END_REF]. The correlation of Figs. 12a) andb) with all previous simulation results shows that ∆ T is always higher for the interconnect with the lower L. For example, as L CN T decreases, ∆ T increases (see Fig. 9b)). L follows an inverse trend as it decreases when decreasing the CNT length (Fig. 12b)). Furthermore, ∆ T decreases for L CN T = 10 µm when the Cu ratio or W (H) Cu increases (see Fig. 9c). We observe that the Lorenz number also increases in this case (Fig. 12a)).

To see clearly the relationship between σ, ∆ T , and L, we investigated the self-heating effect with and without the GBS and the SRS effects while artificially varying L in the Cu interconnect as shown in Fig. 13. Although σ is degraded significantly due to scatterings, ∆ T does not depends on σ. We note that ∆ T is inversely proportional to L. We thus rewrite Eq. 1 that will serve as a model to design Cu-CNT composite interconnects:

T T F = A * {J(σ)} -n e Ea k B (T sink +C/ L(σ,κ)) , [START_REF] Li | Global Interconnect Width and Spacing Optimization for Latency, Bandwidth and Power Dissipation[END_REF] where C is a constant related to the structural information including the homogeneous conductivity. Taking all the above results together, we can provide three important rules applicable to the design Cu-CNT composite interconnects that show good self-heating properties and are EM resistant. Firstly, interconnects should have a large electrical conductivity. To achieve this, CNTs without defects are desirable in long interconnects. Secondly, interconnects must also possess a high Lorenz number to evacuate the heat more efficiently. Thus, the Cu ratio must be carefully chosen, especially when CNTs are defective. Finally, it is very important that Cu-CNT composite interconnects have a homogenous conductivity to avoid large electric fields in the regions where σ is discontinuous. Therefore, L Cu c (as illustrated in Fig. 4) should be minimized.

V. CONCLUSION

In this work, by comparing experimental data with multiscale electro-thermal simulations results, we have provided an explanation why Cu-CNT composite interconnects outperform Cu interconnects in terms of electromigration. Our results show that the electromigration is governed by the self-heating related temparature raise, rather than the activation energy of Cu-CNT composites. Also, we have conducted a systematic study which shows that a good Cu-CNT composite interconnect should be designed by co-optimizing the electrical conductivity, the Lorenz number, and the homogenous conductivity. Based on the results obtained from our study, some important modeling and design guidelines have been suggested as follows: large electrical conductivity, large Lorenz number, and homogeneous electrical conductivity to design efficient highly reliable Cu-CNT composite interconnects for aggressively scaled chips. These guidelines could be generalized to other interconnect materials.
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 1 Fig. 1. Atomistic structures of a) Cu-CNT(4,4) and b) Cu-CNT(6,0) composites. The blue and brown spheres are Cu and C atoms, respectively.
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 2 Fig. 2. The schematic diagram of a Cu-CNT composite interconnect [19].

Fig. 4

 4 Fig. 4 shows the schematic diagram of the Cu-CNT composite interconnect used in this study for the macroscopic simulations. As it can be seen from this figure, there are two kinds of contact resistances in the Cu-CNT composite interconnect; end (R end c ) and side contact resistances (R side c). Due to the low density-of-states (DOS) of CNTs near the Fermi-level, metal-metallic CNT junctions have large con-

Fig. 4 .

 4 Fig. 4. The schematic diagram of Cu-CNT composite interconnects for a macroscopic electro-thermal simulation. CNT is perfectly surrounded by Cu, and left and right contacts are assumed to be perfect reservoir and heat sink. In the default structure in this study, L CN T , L Cu c , D CN T , H Cu , and W Cu are 10 µm, 20 nm, 1 nm, 3 nm, and 3 nm, respectively.

Fig. 5 .

 5 Fig. 5. Atomistic structures to calculate a) the end contact and b) the side contact resistances. Dangling bonds of CNT in the side contact is passivated by hydrogen atoms.

Fig. 6 .

 6 Fig. 6. Flow chart for the electro-thermal steady-state simulation.
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 7 Fig. 7. Experimental and theoretical Cu resistivities versus W Cu when H Cu = 90 nm. The corresponding parameters are summarized in TableIII.

Fig. 8 .Fig. 9 .

 89 Fig. 8. Calculated conductivity and self-heating temperature difference ∆ T of Cu and Cu-CNT composite interconnects with different applied voltage. L CN T , L Cu c , D CN T , H Cu , and W Cu are 10 µm, 20 nm, 1 nm, 3 nm, and 3 nm, respectively. The length of Cu interconnect (L Cu ) of 10 µm is the same as L CN T .

Fig. 10 .

 10 Fig. 10. Calculated electric field and temperature as a function of position along the transport direction near the left contact when Cu ratios are 0.37 and 0.77, respectively at V = 0.5 V. L CN T = 10 µm, L Cu c = 20 nm, and D CN T = 1 nm.

Fig. 11 .

 11 Fig. 11. Calculated conductivity and self-heating temperature difference ∆ T as the mean free path of CNTs is degraded. All non-displayed structure parameters are default values; L CN T = 10 µm, L Cu c = 20 nm, D CN T = 1 nm, H Cu = 3 nm, and W Cu = 3 nm.

Fig. 12 .

 12 Fig. 12. Simulation study of dependence of the Lorenz number on a) the temperature and b) CNT length. All non-displayed structure parameters are default values; L CN T = 10 µm, L Cu c = 20 nm, D CN T = 1 nm, H Cu = 3 nm, and W Cu = 3 nm.

Fig. 13 .

 13 Fig. 13. Calculated conductivity and self-heating temperature difference ∆ T with artificially changed Lorenz number in Cu interconnects with and without grain boundary and surface roughness scattering effects. The interconnect length, width, and height are 10 µm, 50 nm, and 90 nm, respectively. The applied voltage is 0.2 V.

TABLE I SUMMARY

 I OF ACTIVATION ENERGIES AT THE CU-CNT INTERFACE IN THE CU-CNT COMPOSITE INTERCONNECT USING THE DFT-GGA AND THE DFT-GGA-D3 APPROACHES. ACTIVATION ENERGIES OF THE CU ATOM WITHOUT CNT ARE ALSO CALCULATED. FOR REFERENCE, WE GOT ACTIVATION ENERGIES OF 1.090 AND 0.567 EV AT THE LATTICE AND THE SURFACE IN BULK CU, RESPECTIVELY FROM DFT-GGA CALCULATIONS. THE NUMBERS IN PARENTHESES ARE THE DIFFERENCE BETWEEN THE ACTIVATION ENERGY AT THE CU-CNT INTERFACE AND THE ACTIVATION ENERGY AT THE SURFACE IN BULK CU.

				Activation energy (eV) at the Cu-CNT interface		
			DFT-GGA calcualtion		DFT-GGA-D3 calculation
			With CNT	Without CNT		With CNT
		Red arrow direction Black arrow direction	Red arrow direction Black arrow direction	Red arrow direction Black arrow direction
	the 1st pathway	0.374 (-0.193)	0.712 (0.145)	0.205 (-0.362)	0.763 (0.196)	0.320 (-0.247)	0.697 (0.130)
	the 2nd pathway	0.545 (-0.022)	0.370 (-0.197)	0.577 (0.010)	0.471 (-0.096)	0.513 (-0.054)	0.315 (-0.252)
	the 3rd pathway	0.211 (-0.356)	0.710 (0.143)	0.092 (-0.475)	0.666 (0.099)	0.168 (-0.399)	0.718 (0.151)

TABLE III PARAMETERS

 III FOR GRAIN BOUNDARY AND SURFACE ROUGHNESS SCATTERING WHEN THE INTERCONNECT HEIGHT H Cu IS 90 NM.

	parameters	values
	ρ 0	30.42 Ω nm
	p	0.816
	S	3.762
	R	0.253
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