D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh et al., Full Copper Wiring in a Sub-0.25 pm CMOS ULSI Technology, IEDM Tech. Dig, p.650496, 1997.

S. Lakshminarayanan, J. Steigerwald, D. T. Price, M. Bourgeois, T. P. Chow et al., Contact and via structures with copper interconnects fabricated using dual Damascene technology, IEEE Electron Device Letters, vol.15, issue.8, pp.307-309, 1994.
DOI : 10.1109/55.296225

M. I. Hayashi, S. Nakano, and T. Wada, Dependence of copper interconnect electromigration phenomenon on barrier metal materials, Microelectronics Reliability, vol.43, issue.9-11, pp.1545-1550, 2003.
DOI : 10.1016/S0026-2714(03)00273-7

W. Steinhgl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller, Journal of Applied Physics, vol.15, issue.2, 2005.
DOI : 10.1007/s11664-001-0038-7

A. Pyzyna, H. Tsai, M. Lofaro, L. Gignac, H. Miyazoe et al., 2017 IEEE International Interconnect Technology Conference (IITC), 2017.
DOI : 10.1109/IITC-AMC.2017.7968982

S. M. Rossnagel and T. S. Kuan, Alteration of Cu conductivity in the size effect regime, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.1, p.240247, 2004.
DOI : 10.1116/1.1642639

P. Kapur, G. Chandra, J. P. Mcvittie, and K. C. Saraswat, Technology and reliability constrained future copper interconnects. II. Performance implications, IEEE Transactions on Electron Devices, vol.49, issue.4, pp.598-604, 2002.
DOI : 10.1109/16.992868

M. A. Hussein and J. He, Materials' Impact on Interconnect Process Technology and Reliability, IEEE Transactions on Semiconductor Manufacturing, vol.18, issue.1, pp.69-85841832, 2004.
DOI : 10.1109/TSM.2004.841832

P. Besser, A. Marathe, L. Zhao, M. Herrick, C. Capasso et al., Optimizing the electromigration performance of copper interconnects, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), pp.119-122904272, 2000.
DOI : 10.1109/IEDM.2000.904272

J. R. Lloyd and J. J. Clement, Electromigration in copper conductors, Thin Solid Films, vol.262, issue.1-2, pp.135-1410040, 1995.
DOI : 10.1016/0040-6090(94)05806-7

J. Tao, N. W. Cheung, and C. Hu, Electromigration characteristics of copper interconnects, IEEE Electron Device Letters, vol.14, issue.5, pp.249-251, 1993.
DOI : 10.1109/55.215183

. Tu, Optimization of the nanotwin-induced zigzag surface of copper by electromigration, Nanoscale, vol.8, pp.2584-2594, 2016.

X. Li, J. Mao, H. Huang, and Y. Liu, Global Interconnect Width and Spacing Optimization for Latency, Bandwidth and Power Dissipation, IEEE Transactions on Electron Devices, vol.52, issue.10, pp.2272-2279, 2005.
DOI : 10.1109/TED.2005.856795

, Available: https://irds.ieee.org/reports, IEEE International Roadmap for Devices and Systems report, 2017.

R. H. Havemann and J. A. Hutchby, High-performance interconnects: an integration overview, Proc. IEEE, pp.586-601, 2001.
DOI : 10.1109/5.929646

K. Z. Milowska, M. Ghorbani-asl, M. Burda, L. Wolanicka, N. Ati et al., Breaking the electrical barrier between copper and carbon nanotubes, Nanoscale, vol.27, issue.514, pp.8458-8468, 1039.
DOI : 10.1002/jcc.20495

O. Hjortstam, P. Isberg, S. Soderholm, and H. Dai, Can we achieve ultra-low resistivity in carbon nanotube-based metal composites?, Applied Physics A, vol.395, issue.8, pp.11751179-11751189, 2004.
DOI : 10.1038/27632

G. Xu, J. Zhao, S. Li, X. Zhang, Z. Yong et al., Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers, Nanoscale, vol.509, issue.10, pp.4215-4225, 1039.
DOI : 10.1016/j.jallcom.2010.12.170

C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D. N. Futaba et al., One hundred fold increase in current carrying capacity in a carbon nanotube???copper composite, Nature Communications, vol.33, issue.1, pp.2202-2212, 1038.
DOI : 10.1063/1.3147183

J. Lee, J. Liang, S. M. Amoroso, T. Sadi, L. Wang et al., Atoms-to-circuits simulation investigation of CNT interconnects for next generation CMOS technology, 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp.153-156
DOI : 10.23919/SISPAD.2017.8085287

URL : https://hal.archives-ouvertes.fr/lirmm-01795803

A. Naeemi and J. D. , Compact physical models for multiwall carbon-nanotube interconnects, IEEE Electron Device Letters, vol.27, issue.5, pp.338-340, 2006.
DOI : 10.1109/LED.2006.873765

A. Todri-sanial, R. Ramos, H. Okuno, J. Dijon, A. Dhavamani et al., A Survey of Carbon Nanotube Interconnects for Energy Efficient Integrated Circuits, IEEE Circuits and Systems Magazine, vol.17, issue.2, pp.47-62, 2017.
DOI : 10.1109/MCAS.2017.2689538

URL : https://hal.archives-ouvertes.fr/lirmm-01795757

J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Thermal conductivity of single-walled carbon nanotubes, Physical Review B, vol.54, issue.4, p.2514, 1999.
DOI : 10.1016/0022-3697(93)90296-4

S. Berber, Y. Kwon, and D. Tomnek, Unusually High Thermal Conductivity of Carbon Nanotubes, Physical Review Letters, vol.28, issue.20, pp.4613-46164613, 2000.
DOI : 10.1051/jphys:019670028011-12095100

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, vol.8, issue.3, pp.902-907
DOI : 10.1021/nl0731872

L. Li, Z. Zhu, T. Wang, J. A. Currivan-incorvia, A. Yoon et al., BEOL compatible graphene/Cu with improved electromigration lifetime for future interconnects, 2016 IEEE International Electron Devices Meeting (IEDM), pp.240-243, 2016.
DOI : 10.1109/IEDM.2016.7838383

J. R. Balck, Electromigration???A brief survey and some recent results, IEEE Transactions on Electron Devices, vol.16, issue.4, pp.338-347, 1969.
DOI : 10.1109/T-ED.1969.16754

E. Pop, D. Mann, J. Reifenberg, K. Goodson, and H. Dai, Electro-thermal transport in metallic single-wall carbon nanotubes for interconnect applications, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., p.1609321, 2005.
DOI : 10.1109/IEDM.2005.1609321

M. Brandbyge, J. Mozos, P. Ordejn, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Physical Review B, vol.81, issue.16, p.165401, 2002.
DOI : 10.1103/PhysRevLett.81.1437

URL : http://orbit.dtu.dk/files/4883894/Mads.pdf

J. M. Soler, E. Artacho, J. D. Gale, A. Garca, J. Junquera et al., The SIESTA method for ab initio order-N materials simulation, J. Phys. Condens. Matter, vol.141411, issue.11, pp.2745-2755, 2002.

M. Griebel, S. Knapek, and G. Zumbusch, Numerical Simulation in Molecular Dynamics, 2007.

M. Griebel and J. Hamaekers, Molecular dynamics simulations of the elastic moduli of polymercarbon nanotube composites, Comput.Methods in Appl, Mech.Eng, vol.193, pp.17-20, 2004.

K. D. Nielson, A. C. Van-duin, J. Oxgaard, W. Deng, and W. A. Goddard, Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes, The Journal of Physical Chemistry A, vol.109, issue.3, pp.493-499, 1021.
DOI : 10.1021/jp046244d

A. S. Available, Atomistix ToolKit version 2016 QuantumWise, 2017.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.80, issue.18, p.3865, 1996.
DOI : 10.1063/1.446965

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics, vol.16, issue.15, p.154104, 2010.
DOI : 10.1039/b803508c

P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nat. Nanotech, vol.2, p.605615300, 2007.

A. D. Franklin and Z. Chen, Length scaling of carbon nanotube transistors, Nature Nanotechnology, vol.96, issue.6, pp.858-862, 2010.
DOI : 10.1103/PhysRevLett.96.076802

J. Tang, Q. Cao, D. B. Farmer, G. Tulevski, and S. Han, Carbon nanotube complementary logic with low-temperature processed end-bonded metal contacts, 2016 IEEE International Electron Devices Meeting (IEDM)
DOI : 10.1109/IEDM.2016.7838350

Q. Cao, S. Han, J. Tersoff, A. D. Franklin, Y. Zhu et al., End-bonded contacts for carbon nanotube transistors with low, size-independent resistance, Science, vol.13, issue.4, pp.68-72, 2015.
DOI : 10.1063/1.555723

J. Yang, Y. Yang, S. W. Waltermire, T. Gutu, A. A. Zinn et al., Measurement of the Intrinsic Thermal Conductivity of a Multiwalled Carbon Nanotube and Its Contact Thermal Resistance with the Substrate, Small, vol.18, issue.16, pp.2334-2340, 2011.
DOI : 10.1116/1.1319690

A. Baratunde, X. Cola, T. S. Xu, and . Fisher, Increased real contact in thermal interfaces: A carbon nanotube/foil material, Appl. Phys. Lett, vol.901, pp.93513-93523, 2007.

K. M. Mohsin, A. Srivastava, A. K. Sharma, and C. Mayberry, Characterization of MWCNT VLSI Interconnect with Self-Heating Induced Scatterings, 2014 IEEE Computer Society Annual Symposium on VLSI, 2014.
DOI : 10.1109/ISVLSI.2014.31

E. Pop, D. A. Mann, K. E. Goodson, and H. Dai, Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates, Journal of Applied Physics, vol.101, issue.9, p.93710, 2007.
DOI : 10.1103/PhysRevLett.92.075502

M. Jonson and G. D. Mahan, Mott's formula for the thermopower and the Wiedemann-Franz law, Physical Review B, vol.41, issue.10, pp.4223-4229, 1980.
DOI : 10.1103/PhysRevLett.41.990

C. Kittel, Introduction to Solid State Physics, 2005.