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Abstract. Big spatial data can be produced by observation or numerical sim-
ulation programs and correspond to points that represent a 3D soil cube area.
However, errors in signal processing and modeling create some uncertainty,
and thus a lack of accuracy in identifying geological or seismic phenomenons.
To analyze uncertainty, the main solution is to compute a Probability Density
Function (PDF) of each point in the spatial cube area, which can be very time
consuming. In this paper, we analyze the problem and discuss the use of Spark
to efficiently compute PDFs.

1. Introduction

Big spatial data is now routinely produced and used in scientific areas such as geological
or seismic interpretation [Campisano et al. 2016]. The spatial data are produced by obser-
vation, using sensors [Chen et al. 2014], or numerical simulation [Cressie 2015]. These
spatial data allow identifying some phenomenon over a spatial reference. For instance,
the spatial reference may be a three dimensional soil cube area and the phenomenon a
seismic fault, represented as quantities of interest (QOIs) of sampled points (or points
for short) in the cube space. The cube area is composed of multiple horizontal slices,
each slice having multiple lines and each line having multiple points. A single simulation
produces a spatial data set whose points represent a 3D soil cube area.

However, errors in signal processing and modeling create some uncertainty, and
thus a lack of accuracy when identifying phenomenons. In order to understand uncer-
tainty, several simulation runs with different input parameters are usually conducted, thus
generating multiple spatial data sets that can be very big, e.g. hundreds of GB or TB.
Within multiple spatial data sets, each point in the cube area is associated to a set of
different observation values in the spatial data sets. The observation values are those
observed by sensors, or generated from simulation, at a specific point of the spatial area.

Uncertainty quantification of spatial data is of much importance for geological
or seismic scientists [Trajcevski 2011]. It is the process of quantifying the uncertainty
error of each point in the spatial cube space, which requires computing a Probability
Density Function (PDF) of each point [Kathryn et al. 2015]. The PDF is composed of
the distribution type (e.g. normal, exponential) and necessary statistical parameters (e.g.
the mean and standard deviation values for normal and rate for exponential). However,
calculating the PDF at each point can be time consuming, e.g. several days or months to
process 2.4 TB data for an area of 10km (distance) * 10km (depth) * Skm (width).
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Figure 1. The distribution of a point.

In this paper, we take advantage of Spark [Zaharia et al. 2010], a popular in-
memory big data processing framework for computer clusters, to efficiently compute
PDFs in parallel. In the paper, we detail the problem, i.e. how to efficiently compute
PDFs, and propose an architecture using Spark to compute PDFs.

2. Problem Definition

Figure 1 shows that the set of observation values at a point may have four distribution
types, i.e. uniform (a), normal (b), exponential (c), and log-normal (d). The horizontal
axis represents the values (V) and the vertical axis represents the frequency (F). The green
bars represent the frequency of the observation values in value intervals and the red outline
represents the calculated PDF. During the calculation of the PDF at a point, there may be
some error between the distribution of the observation values and the calculated PDE. We
denote this error by PDF error (or error for short in the rest of the paper). In order to
precisely fit a PDF based on observation values, we need to reduce this error. Once we
have the PDF of a point, we can calculate the QOI value that has the highest possibility,
with which we can quantify the uncertainty each spatial data set.

Let DS be a set of spatial data sets, dj, be a spatial data set in DS and N be the
number of points in a region. Each point p, ,, where x and y are spatial dimensions in
the slice, has a set of values V' = {vy, vs, ..., v, } while vy is the value corresponding to
the point p, , in d;, € DS. Based on these notations, we define Equations 1 - 4, which
are based on the formulas in [Dixon and Massey 1968]. The mean (u,,) and standard
deviation (o) values of a point can be calculated according to Equations 1 and 2, re-
spectively. The error e, , ; between the PDF [ and the set of observation values V' can
be calculated according to Equation 3, which compares the probability of the values in
different intervals in V' and the probability computed according to the PDF. The intervals
are obtained by evenly splitting the space between the maximum value and the minimum
value in V. man is the minimum value in V', max is the maximum value in V' and L
represents the number of all considered intervals, which can be configured. F'regq; rep-
resents the number of values in V' that are in the kth interval. The integral of PDF(x)
computes the probability according to the PDF in the kth interval. Equation 3 is inspired
by the Kolmogorov-Smirnov Test [Lopes 2011], which tests whether a PDF is adequate
for a data set. In addition, we assume that the probability of the values outside the space
between the maximum value and the minimum value is negligible for this equation. Then,
the average error F of Slice i can be calculated according to Equation 4.
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Figure 2. Architecture for Computing PDFs.

- ¢M o

n—1

wk

N ; —min)xE
F?"@q min+(maz—min)
Cay,i = Z | N ‘ —/ PDF(z)dx | 3)

~

min+(max—min)* %

sz,yeslicei 6%2/:1'

N

E= “)
We can now express the problem as follows: given a set of spatial data sets DS
corresponding to the same spatial cube area C' = {slicey, slices, ..., slice; }, how to ef-
ficiently calculate the mean, standard deviation values and the PDF F' at each point in
slice; € C' with a small average error E not higher than a predefined average error ¢.

3. Architecture

The architecture (see Figure 2) has four layers, i.e. infrastructure, basic process to com-
pute PDFs, memory management and methods to compute PDFs. In the infrastructure
layer, the big spatial data is stored in NFS [Sandberg et al. 1985]. Spark and HDFS
[Shvachko et al. 2010] are deployed over the nodes of the computer cluster. The inter-
mediate and the output data are stored in HDFS.

The basic processing of PDFs consists of data loading, from NFS to Spark RDDs,
followed by PDF computation using Spark. The data loading process treats the data cor-
responding to a slice and pre-processes it in parallel, i.e. calculates statistical parameters
of observation values of each point. Then, the PDF computation groups the data and
calculates the PDFs and errors of all the points in a slice in parallel.

In order to efficiently compute PDFs, we use two memory management tech-
niques: data caching and window size adjustment. We use data caching to reduce disk
accesses with the Spark C'ache operation and a memory-based file system [Snyder 1990].
We test the Scala program on a small workload with different window sizes to find an
optimal window size, which is used for the PDF computation of all the points in the slice.

We use two methods to compute PDFs efficiently, i.e. data grouping and ML
prediction. The data grouping method groups the points with exactly the same mean and



standard deviation values into a group, using the aggregation operation in Spark. Then,
one point is selected for each group to compute the PDFs. The ML prediction method is
based on a decision tree to predict the distribution type to compute PDFs for each point.

4. Experimental Evaluation

To validate our solution, we implement the two methods in a Spark cluster and performed
extensive experiments using three big spatial data sets of from 235 GB to 2.4 TB, gener-
ated based on the seismic benchmark of the HPC4e project [HPC4E ]. The experimental
results show that our solution is efficient and scales up very well compared with Base-
line, i.e. brute-force method without using data grouping and ML prediction. Grouping
outperforms Baseline by up to 92% (more than 10 times) without introducing extra error.
ML can be up to 91% (more than 9 times) better than Baseline with very slight acceptable
extra error (up to 0.017). The combination of Grouping and ML can be up to 97% (more
than 33 times) better than Baseline with an acceptable extra error (up to 0.017).
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