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Abstract. Data-intensive science requires the integration of two fairly different 
paradigms: high-performance computing (HPC) and data-intensive scalable 
computing (DISC), as exemplified by frameworks such as Hadoop and Spark. 
In this context, the SciDISC project addresses the grand challenge of scientific 
data analysis using DISC, by developing architectures and methods to 
combine simulation and data analysis. SciDISC is an ongoing project between 
Inria, several research institutions in Rio de Janeiro and NYU. This paper 
introduces the motivations and objectives of the project, and reports on the 
first results achieved so far. 

1. Introduction 
Modern science such as astronomy, biology, computational engineering and 
environmental science must deal with overwhelming amounts of data (e.g. coming from 
sensors and scientific instruments, or produced by simulation). Increasingly, scientific 
breakthroughs will be powered by advanced computing capabilities that help 
researchers manipulate and explore these massive datasets [Hey 2009]. 



 

 Such data-intensive science [Critchlow 2013] requires the integration of two 
fairly different paradigms: high-performance computing (HPC) and data-intensive 
scalable computing (DISC). HPC is compute-centric and focuses on high-performance 
of simulation applications, typically using powerful, yet expensive, supercomputers. 
DISC [Bryant 2011], on the other hand, is data-centric and focuses on fault-tolerance 
and scalability of web and cloud applications using cost-effective clusters of commodity 
hardware. Examples of DISC systems include big data processing frameworks such as 
Hadoop or Apache Spark or NoSQL systems (see [Bondiombouy 2016], which includes 
a survey of DISC systems). To harness parallel processing, HPC uses a low-level 
programming model (such as MPI or OpenMP) while DISC relies on powerful data 
processing operators (Map, Reduce, Filter, etc.). Data storage is also quite different: 
supercomputers typically rely on a shared disk infrastructure and data must be loaded in 
compute nodes before processing while DISC systems rely on a shared-nothing cluster 
(of disk-based nodes) and data partitioning. 
 Spurred by the growing need to analyze big scientific data, the convergence 
between HPC and DISC has been a recent topic of interest [Coutinho 2014, Valduriez 
2015]. However, simply porting the Hadoop stack on a supercomputer [Fox 2016] is not 
cost-effective, and does not solve the scalability and fault-tolerance issues addressed by 
DISC. On the other hand, DISC systems have not been designed for scientific 
applications, which have different requirements in terms of data analysis and 
visualization. 
 This international project between Inria (France), several research institutions in 
Rio de Janeiro (Brazil) and NYU (USA), addresses the grand challenge of scientific 
data analysis using DISC (SciDISC), by developing architectures and methods to 
combine simulation and data analysis. We can distinguish between three main 
approaches depending on where analysis is done [Oldfield 2014]: post-processing, in-
situ and in-transit. Post-processing analysis performs analysis after simulation, e.g. by 
loosely coupling a supercomputer and a SciDISC cluster (possibly in the cloud). This 
approach is the simplest but is restricted to batch analysis. In-situ analysis runs on the 
same compute resources as the simulation, e.g. a supercomputer, thus making it easy to 
perform interactive analysis. In-transit analysis offloads analysis to a separate partition 
of compute resources, e.g. using a single cluster with both compute nodes and data 
nodes that communicate through a high-speed network. Although less intrusive than in-
situ, this approach requires careful synchronization of simulation and analysis. 
 In the SciDISC project, we study different architectures for SciDISC and their 
trade-offs. We address the following main steps of the data-intensive science process: 
(1) data preparation, including raw data ingestion (e.g. from sensors) and data cleaning, 
transformation and integration; (2) data processing and simulation execution; (3) 
exploratory data analysis and visualization; (4) data mining, knowledge discovery and 
recommendation. Note that these steps are not necessarily sequential, for instance, steps 
2 and 3 need to be interleaved to perform real time analysis. 
 The expected results of SciDISC are: new data analysis methods for SciDISC 
systems; the integration of these methods as software libraries in popular DISC systems, 
such as Apache Spark; and extensive validation on real scientific applications, by 
working with our scientific partners such as INRA and IRD in France and Petrobras, the 



 

National Research Institute (INCT) on e-medicine (MACC) and the e-astronomy 
laboratory LIneA in Brazil. 
 In the rest of this paper, we report on our first results. Section 2 discusses a 
generic SciDISC architecture that serves as a basis for developing new distributed and 
parallel techniques to deal with scientific data analysis. Section 3 deals with interactive 
analysis of simulation data and visualization. Section 4 addresses data mining of 
scientific data. Section 5 deals with the use of machine learning for recommendation in 
SciDISC. Section 6 concludes and gives our future research directions. 

2. SciDISC Architecture 
The first part of the project has been devoted to the definition of a SciDISC architecture 
that serves as a basis for developing new distributed and parallel techniques to deal with 
scientific data. We consider a generic architecture that features a high-performance 
computer (e.g. to perform data processing and simulation) with shared-disk and a 
shared-nothing cluster to perform data analysis. The high-performance computer can be 
a supercomputer (e.g. LNCC Santos Dumont supercomputer) or a large cluster of 
compute nodes (e.g. Grid5000), which yields different cost-performance trade-offs to be 
studied. Figure 1 illustrates an infrastructure of in-transit data analysis of simulation 
data, where simulation and computation of predictions are performed at a 
supercomputer while the analysis of results to evaluate the simulation quality and 
interpret the simulated phenomenon is done at a cluster.  
 This architecture allows us to design generic techniques for data transfer, 
partitioning and replication, as a basis for parallel data analysis and fault-tolerance in 
DISC [Liroz-Gistau 2013, Silva 2017, Souza 2017a, 2017b]. Additionally, envisioning 
an almost real-time data transfer between the HPC system and the analytics platform, an 
orchestrated and tuned set of components must be devised [Matheus 2018]. Security 
concerns, for instance, may restrict the exposure of simulation results through a single 
HPC entry node, which rapidly turns into a bottleneck at the HPC side. 
 

 
 

Figure 1. Infrastructure of in-transit data analysis of simulation data 



 

3. From Simulation to Interactive Analysis and Visualization 
In complex simulations, users must track quantities of interest (residuals, errors 
estimates, etc.) to control as much execution as possible. However, this tracking is 
typically done only after the simulation ends. We are designing techniques to extract, 
index and relate strategic simulation data for online queries while simulation is running.  
 We consider coupling these techniques with largely adopted libraries such as 
libMesh (for numerical solvers) and ParaView (for visualization), so that queries on 
quantities of interest are enhanced by visualization and provenance data. Interactive data 
analysis support is planned for post-simulation and runtime as in-situ and in-transit, 
taking advantage of memory access at runtime.  
 In [Silva 2017], we propose a solution (architecture and algorithms) to combine 
the advantages of a dataflow-aware SWMS and the raw data file analysis techniques to 
allow for queries on raw data file elements that are related but reside in separate files. 
Armful (https://hpcdb.github.io/armful/) is the name of the architecture and its main 
components are a raw data extractor, a provenance gatherer and a query processing 
interface, which are all dataflow aware. In [Silva 2017], we instantiate Armful with the 
Chiron SWMS [Ogasawara 2011]. In [Silva 2018], we remove the SWMS and 
instantiate Armful as DfAnalyzer, a library of components to support online in-situ and 
in-transit data analysis. DfAnalyzer components are plugged directly in the simulation 
code of highly optimized parallel applications with negligible overhead. With support of 
sophisticated online data analysis, scientists get a detailed view of the execution, 
providing insights to determine when and how to tune parameters [Souza 2017a, 
Camata 2018, Silva 2018]. In [Souza 2017b] we evaluate a parameter sweep workflow 
also in the Oil and Gas domain, this time using Spark to understand its scalability when 
having to execute legacy black-box code with a DISC system. The source code of the 
dataflow implementation for Spark is available on github (github.com/hpcdb/RFA-
Spark).  
 We started investigating the combination of in-transit analysis and visualization, 
with the development of SAVIME (Scientific Analysis and Visualization In-Memory). 
The system adopts a multi-dimensional data model TARS (Typed Array Schema) 
[Lustosa 2017] that enables the representation of simulation output data, the topology 
mesh and simulation metadata. Data produced by the simulation in the HPC is ingested 
without any transformation as blocks of a Typed Array (TAR) in real-time into 
SAVIME, running in a Big Data cluster system. The communication between the two 
systems is implemented using an extended RDMA protocol that bridges the HPC 
computing nodes memory with a cluster receiver fatnode memory. SAVIME offers a set 
of high-level operators that manipulate in-memory multi-dimensional arrays, split into 
blocks. Query results can be streamlined into Paraview for visualization in the cluster, 
saving the HPC system from this extra load.    
 Finally, we have devised techniques to efficiently assess the uncertainty in 
simulation’s output. Our approach uses probabilistic distribution functions (PDF) to fit 
the output of a parameter sweep study and replaces data by the best fitting PDF at each 
point. Next, we may answer uncertainty quantification queries on spatio-time regions of 
the simulation output using the PDFs instead of the replaced data. The PDF computing 
strategy has been implemented using different approaches in Apache Spark [Liu 2018].   



 

4. Data Mining of Scientific Data 
 The current data deluge produced in scientific applications has fostered the 
development of new knowledge discovery techniques. In this context, an interesting 
problem raises when the studied phenomenon can be modeled as spatial-time series. 
The investigation of spatial-time series may shed light on patterns (motifs) [Mueen 
2014] and can be used in predicting future series behavior [Dhar 2013]. In this context, 
we focus on the design of new algorithms to harvest large datasets of space-time series 
looking patterns that are relevant for the scientific domain studied (seismic, astronomy, 
and sensor data sources). Such datasets can even appear distributed on different sites 
[Allard 2015]. This work capitalizes on our previous results in data transformations 
[Ogasawara 2010] and sequence mining [Campisano 2016]. 
 In [Campisano 2017], we tackle the problem of finding tight space-time 
sequences, i.e., find within the same process: frequent sequences constrained in space 
and time that may not be frequent in the entire dataset, and the time interval and space 
range where these sequences are frequent. The discovery of such patterns along with 
their constraints may lead to extract valuable knowledge that can remain hidden using 
traditional methods since their support is extremely low over the entire dataset. 
 We introduce a new spatiotemporal Sequence Miner (STSM) algorithm to 
discover tight space-time sequences. We evaluate STSM using a seismic use case and 
illustrate its ability to detect frequent sequences constrained in space and time. When 
compared with general spatial-time sequence mining algorithms, STSM allows for new 
insights by detecting maximal space-time areas where each pattern is frequent.  
Additionally, in [Cruz 2017], we started studying sensor data sources using spatial-
temporal aggregations from trajectories of the buses of Rio de Janeiro. As a preliminary 
work on this subject, we established a baseline for anomaly identification in urban 
mobility, which may be useful for developing new approaches that help better discover 
patterns and understand urban mobility systems. 

5. Machine Learning and Recommendation  
Scientists commonly explore several input data files and parameter values in different 
executions of scientific workflows. These workflows can execute for days in DISC 
environments and they are costly both in terms of execution time and financial cost [Liu 
2016, 2017, Pineda-Morales 2016]. It is fundamental that input data files and parameter 
values chosen for a specific workflow execution do not produce undesired results. In 
addition, depending on how parameters are set, the workflow execution may present a 
better performance. Today, scientists spend much time choosing appropriate parameter 
values and data files based on their experience, but this is an error-prone task since 
many of these parameters are not independent of each other, i.e., if one parameter is 
modified, it may imply on changing the value of many other parameters of the 
workflow. It is worth noticing that this parameter space opens room for parameter fine 
tuning and consequently improvements both in performance and quality of results. 
However, due to the (very) large parameter space, this parameter recommendation is an 
open problem. Our proposal is to use provenance data captured during previous 
workflow executions to recommend data files and parameters values for future 
executions. We use Machine Learning algorithms (ML) [Raedt 2008] to predict which 
data files and parameters are more suitable for an execution.  



 

 We have developed a series of predictive models [Silva Jr 2018] in order to 
identify which combinations of data files and parameters values produce results with 
more quality and in less time. We use as input datasets provenance traces from SciPhy 
(bioinformatics) and Montage (astronomy) workflows (workflows that we have access 
to specialists that can inform how to measure quality of results). This way, we are able 
to suggest “ideal” parameter values and data files for scientists that will produce results 
with more quality and/or less time. These predictive models are based on traditional ML 
algorithms such as Classification Trees, Support Vector Machines (SVM), One Class 
SVM and Inductive Logic Programming (ILP). Each predictive model presents different 
precision and accuracy, and it may be required to choose the best one before 
recommending parameter values and data files to use. Thus, we plan to use user 
feedback to fine-tune the recommendation [Servajean 2015], i.e., we have a 2-level 
recommendation scenario. First, we have to recommend which predictive model to use 
and then run this model with new data to finally recommend the parameter values and 
data files for workflow executions. This combination of ML and feedback is novel when 
compared with existing approaches [Ferro 2011, Huang 2013]. 

6. Conclusion 
The SciDISC project addresses the grand challenge of scientific data analysis using 
DISC, by developing architectures and methods to combine simulation and data 
analysis. In this paper, we introduced the motivations and objectives of the project, and 
reported on the first results achieved so far in terms of generic architecture, interactive 
analysis of simulation data and visualization, data mining of scientific data, and 
machine learning and recommendation. 
 The first results are quite encouraging and lead to exiting future work. Based on 
in-situ data extraction and analysis, we plan to improve our dataflow monitoring, 
debugging and extend our support for adaptation at runtime like parameter fine-tuning 
and data reduction. We will also continue the development of the SAVIME system. The 
aim is to compute almost in real-time simulation output analysis and ready to be 
consumed visualization output. Regarding post-processing of simulation data, we will 
continue to study Spark, one of the most popular DISC systems, and explore it as a 
platform for efficiently computing probability distribution functions on numerical 
simulation output during a parameter sweep exploration. We will pursue our work on 
data mining of spatial-time series in two main areas: compare motif identification 
techniques with sequence mining techniques and explore spatial-temporal aggregation 
techniques of sensor data to enable spatiotemporal pattern mining. Regarding ML and 
recommendation, we have developed a series of predictive models to suggest parameter 
values and data files for workflow executions. Since these models present different 
accuracy and precision, it may be difficult to choose a specific model to predict 
parameters and data files. Thus, we propose to develop a recommendation system that 
will allow for users to choose the best predictive model based on opinions of colleagues 
and other users, and on the performance of such predictive models on previous 
recommendations. This recommendation process is being implemented within the 
SciManager system (www.scimanager.ic.uff.br). 
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