Vítor Silva
email: silva@cos.ufrj.br

Daniel De Oliveira
email: danielcmo@ic.uff.br

Patrick Valduriez
email: patrick.valduriez@inria.fr

Marta Mattoso

DfAnalyzer: Runtime Dataflow Analysis of Scientific Applications using Provenance

We present DfAnalyzer, a tool that enables monitoring, debugging, steering, and analysis of dataflows while being generated by scientific applications. It works by capturing strategic domain data, registering provenance and execution data to enable queries at runtime. DfAnalyzer provides lightweight dataflow monitoring components to be invoked by high performance applications. It can be plugged in scripts, or Spark applications, in the same way users already plug visualization library components. During this demo, we will show how DfAnalyzer captures the dataflow, provenance, as well as how it provides runtime data analyses of applications. We will also encourage attendees to use DfAnalyzer for their own applications.

INTRODUCTION

Scientific applications typically involve the execution of complex computational models and, consequently, the generation of a huge volume of heterogeneous data. These data are commonly stored in several workspaces as raw data files, which often follow a de facto standard format established by the application domain, e.g., HDF5 and FITS. However, despite the big data volume, spread in thousands of files, typically only a small subset of the data is relevant and used for analysis [START_REF] Olma | Slalom: Coasting Through Raw Data via Adaptive Partitioning and Indexing[END_REF].

These complex scientific applications are long lasting even when executing in parallel with high performance computing (HPC). They often require fine tuning of the parameters or changing functions due to their exploratory nature [START_REF] Silva | In Situ Data Steering on Sedimentation Simulation with Provenance Data[END_REF]. Supporting data monitoring and analysis at runtime allows for anticipating the evolution of results, avoiding waiting for the whole execution to finish or aborting the execution to adjust it and resubmit. Visualization tools like Paraview, VisIt are present in most scientific applications, particularly in HPC to help on data analysis and monitoring [START_REF] Ayachit | Performance Analysis, Design Considerations, and Applications of Extreme-scale in Situ Infrastructures[END_REF]. Computational scientists (our target users) include visualization library calls in their simulation script codes to share data with visualization tools to generate images and videos to be analyzed at runtime. Despite being mandatory, these tools have very limited query support and no provenance data, limiting the scope of data analysis support at runtime.

There are several open issues in data analysis in long lasting parallel executions, like supporting the identification of data regions of interest and the dataflow implicit in the contents of raw data files. We present DfAnalyzer, a tool that supports runtime dataflow analysis for HPC applications. DfAnalyzer relates raw data files, exposes strategic domain data associated to these files, generates dataflow provenance and debugging data all in the same columnar database, which is managed by MonetDB. This database acts as a global view of raw data and metadata, which can be queried during a long application execution complementing visualization tools. DfAnalyzer has several monitoring and data extraction components that are invoked in the same way users already do for the visualization tools.

DfAnalyzer incurs in negligible overhead (less than 0,5% of the application elapsed time) as measured while supporting some highperformance applications [START_REF] Camata | In situ visualization and data analysis for turbidity currents simulation[END_REF][START_REF] Silva | In Situ Data Steering on Sedimentation Simulation with Provenance Data[END_REF]. DfAnalyzer components are efficient because they extract domain data as it is being generated, often from memory avoiding opening and accessing raw data files. The resulting database is also very small as compared to the raw data itself. At the same time, it allows for complex query submissions.

These extracted strategic domain data (e.g. quantities of interest) are often scalar data associated to large graphs or raw datasets as a result of a complex computation, like the volume of a region, velocity of fluids or a probability measure. In DfAnalyzer, all raw data is kept in files with their original format, but the strategic data representing these files are extracted, along a reference to its source file, and the dataflow. As a result, DfAnalyzer provides a rich set of data to help tracking the evolution or the top values of the main results of the application, and directly pointing to the associated raw data file. Otherwise it would require a tool to parse all raw data files to find and extract them.

In situ raw data query engines like Slalom [START_REF] Olma | Slalom: Coasting Through Raw Data via Adaptive Partitioning and Indexing[END_REF], provide for efficient scientific data analysis, with adaptive mechanisms that access raw data directly from the files avoiding data copies, loading, and indexing overheads. However, these raw data query engines require that the files are all generated before starting the query submission for the analysis. This offline approach might not identify the implicit dataflow of the data transformation. It requires a complex analysis to obtain the relationship from within contents of heterogeneous files that compose the dataflow. Also, some relevant data might be available only during the execution and will no longer be available offline. DfAnalyzer and in situ raw data query engines are complementary. DfAnalyzer can be seen as a first step data analysis for its runtime support. In addition, its generated global view database can be used by in situ raw data query engines as an index to execute queries on the strategic data and directly identify regions of interest to be further analyzed offline, without having to parse all the files. Despite being targeted for long running scientific applications [START_REF] Camata | In situ visualization and data analysis for turbidity currents simulation[END_REF][START_REF] Silva | In Situ Data Steering on Sedimentation Simulation with Provenance Data[END_REF], in this demo, we will use a simple dataflow use case with parallelism managed by Apache Spark [START_REF] Armbrust | Scaling spark in the real world: performance and usability[END_REF]. We will walk it through the process of dataflow modeling, data capture, provenance management, and analysis supported by DfAnalyzer. We will show (a) how users point to strategic data to be extracted by DfAnalyzer, (b) raw data extraction and indexing, (c) the graphical interface of DfAnalyzer to visualize dataflows, and (d) runtime raw data and dataflow analysis using the query interface.

BACKGROUND

During the execution of scientific applications, users need to analyze data consumed and produced by different programs or data transformations. In a previous work [START_REF] Ogasawara | An Algebraic Approach for Data-Centric Scientific Workflows[END_REF], our workflow system was in charge of collecting data and registering provenance, available for queries at runtime. Provenance capturing registers the flow of data transformations with data input/outputs, but the dataflow remains implicit. DfAnalyzer is an alternative that, similarly to noWorkflow [START_REF] Pimentel | noWorkflow: a tool for collecting, analyzing, and managing provenance from python scripts[END_REF] avoids having the workflow system being in charge of the execution control flow and having to wrap data transformations, which can be a problem when using HPC libraries. However, noWorkflow is specific for Python scripts and no support for raw data or HPC. DfAnalyzer is based on a dataflow representation to register the flow of datasets and data elements. In this section, we present a simple use case for predicting sales forecasts, dataflow concepts and how our dataflow-aware approach is able to analyze elements consumed and produced by data transformations.

SalesForecasts: a data science application

This demonstration paper concentrates on a simple application for predicting the sales of a clothing company based on the customers consumption patterns adapted from [START_REF] Ikeda | Panda: A System for Provenance and Data[END_REF], renamed as SalesForecasts. Company's leaders/managers aim to finalize their requests with providers to maximize profits. More specifically, these leaders/managers analyze the quantities of items to be sold, while managing the inventory. In this scenario, they often start executing the sales prediction on top-selling items, meaning using a reduced input dataset. Once the predictions meet the expected budget and inventory capacity, they can evaluate new items by adjusting the input dataset.

Figure 1 shows the SalesForecasts data transformations as tagged black edges. It starts with the transformation deduplication that reads customer records from different lists (input dataset customer_lists) and removes duplicated records (output dataset deduplicated_customers). The next data transformations, united_states and europe, filter deduplicated customers into two customers datasets. Then, two unions merge all customers from these countries in the output dataset combined_customers.

Figure 1. Data perspective view of SalesForecasts application.

Since there are deduplicated customers from specific countries, the transformation cartesian_product combines these customers with clothing items from a list with all clothing items to be analyzed by the predictive model (input dataset clothing_items), generating the dataset combined_customers_with_items. After that, its results are considered with the customer buying patterns (input dataset buying_patterns) to obtain the predictive model with two data transformations prediction, which produces the probabilities of selling clothing items (dataset probabibilites_of_selling_items). Finally, these probabilities are grouped by the clothing item identifier to calculate the expected number of items to be sold in the next season (output sales_forecasts generated by aggregation).

Several analyses depend on the entire dataflow. Considering the dataflow shown in Figure 1, leaders/managers commonly need to analyze probabilities of selling a specific clothing item with its sales forecast, and its description. When such data is stored in different datasets produced by different data transformations reconstructing this implicit dataflow from raw data files can be error prone. DfAnalyzer represents dataflows as they occur.

Dataflow Concepts

The smallest unit of interest is the data element (𝑒). A data element has values (v) for each predefined attribute (a) that represent 𝑒. The schema that represents e is a set A, where each a is represented as (name,type). A set of data elements consists of a data collection (𝑐). Then, a dataset (𝑠) is composed of a set of data collections (𝐶). A data transformation (𝑡) consumes data from one (or more) dataset(s) as input (𝑆 𝑖𝑛𝑝𝑢𝑡), and produces data in one (or more) dataset(s) as output (𝑆 𝑜𝑢𝑡𝑝𝑢𝑡). Furthermore, two data transformations can present a data dependency (𝜑) with relation to a dataset, when the data is produced by one data transformation (𝑡 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) and consumed by another (𝑡 𝑛𝑒𝑥𝑡). Based on such concepts, a dataflow (𝐷 𝐹) is defined by the composition of data transformations (𝑇), manipulating datasets (𝑆) concerning data dependencies (Φ). Figure 1 shows a dataflow view of SalesForecasts, where nodes in the graph represent datasets and edges represent data transformations. Input datasets are colored in green and output/input datasets in blue. Figure 2 shows some dataset views of SalesForecasts with the data elements that belong to each collection of the dataset. With this representation at the data element level, company's leaders are able to relate the sales forecasts (attribute quantity of dataset 𝑠 10) with specific clothing items (attribute description of dataset 𝑠 9), by correlating data elements (attribute item_id) among datasets. We plugged DfAnalyzer to the SalesForecasts application parallelized with Spark in a 1000-core computer and we observed an execution time overhead of up to 0.34% of the application elapsed time (1h:48min), which can be considered negligible.

Table 1. Dataflow definitions.

Concept

OVERVIEW OF DFANALYZER

Provenance and Raw Data Extraction

The PDE component provides a RESTful API, in which the body of HTTP requests represents the mapping between the data processing steps of an application and the dataflow concepts presented in Section 2. Figure 4 shows the modifications in the data transformation prediction of SalesForecasts using PDE for extracting provenance data. Therefore, users are able to define which computational methods in their applications correspond to a data transformation to be registered. They can also define which data elements consumed and produced by each data transformation are relevant to be registered. If raw data is stored in files, it requires the invocation of RDE and if indexing is desired the RDI the components is also invoked. Figure 4 shows a method, named as rawDataAccess, developed for SalesForecasts application using RDE and RDI to extract and index raw data from Spark Resilient Distributed Datasets (RDD) stored in files. Since extraction is at runtime, often data is still cached.

Data Loading and Dataflow Analysis

As provenance and raw data have been extracted/indexed, PDE loads such data into DfDB database, which is managed by MonetDB. DfDB follows the schema PROV-Df [START_REF] Silva | In Situ Data Steering on Sedimentation Simulation with Provenance Data[END_REF], compliant to W3C PROV. In and parallel computing environments, we deploy MonetDB and DfDB in a dedicated computational node to be responsible for loading data without jeopardizing the performance of parallel applications.

DfAnalyzer provides DfViewer and QI for online dataflow analysis. DfViewer is a Web application that accesses all dataflows from the DfDB database and generates a view of the dataflows selected by the user. QI is a RESTful service that aids users to run their SQL queries. The user provides a dataflow fragment of interest, attributes to be returned (as the SELECT SQL clause), and conditions on attribute values (as the WHERE SQL clause) so that QI automatically generates the SQL to submit the queries and show the results. In Section 4, we present a query example using QI.

DEMONSTRATION PLAN

In our demonstration session, we encourage conference attendees to experience runtime dataflow analysis using SalesForecasts application in DfAnalyzer, for example by defining raw data extraction and querying using DfViewer and QI. This demonstration application using DfAnalyzer is available at https://github.com/vssousa/dfanalyzer-spark.

Use Case. John Doe is the leader of a clothing company that wants to predict the sales to the next season based on the consumption patterns of the users. He used the SalesForecasts application, as shown in Figure 1. He initially used the original version of this application, without DfAnalyzer, i.e., only the source code in the black color in Figure 4.

The SalesForecasts output data is the sales_forecasts.rdd file, with the clothing item id and the quantity of sales for such item. However, to perform his predictive data analysis, he also needs the description of the clothing item (to understand which is the category, size, and other information about the item) and the probability of selling a specific clothing item to a customer according to a specific buying pattern. He uses this selling probability to only select clothing items that have a high probability (i.e., probability > 0.65) of being sold in accordance with a specific customer buying pattern.

In this case, he has to write programs to access and extract raw data from the CSV file clothing_items.csv (item_id and description) and the intermediate file combined_customers_with_items.rdd (item_id and probability), besides the sales data from the output file sales_forecasts.rdd (item_id and quantity). Even with the raw data extracted and, maybe, indexed, he has to correlate these raw data from different files (i.e., he has to develop a query for a dataflow analysis based on raw data extraction).

Without DfAnalyzer, John has to develop his own data analysis program for extracting and correlating raw data from different files (in different formats) and to wait until the end of the application execution for running this data analysis program. It is timeconsuming and error-prone. No let us see how to plug DfAnalyzer to SalesForecasts application and use for these analyses.

Dataflow Specification. As the first step to use DfAnalyzer, database specialists scheduled a meeting with John to know which are the strategic data and metadata for his predictive analyses, besides the analysis as aforementioned. Then, database specialists model SalesForecasts dataflow according to the main data transformations and strategic data to the company's leader. As a result, a dataflow specification was obtained with data transformations, datasets, data dependencies, and attributes to be monitored by DfAnalyzer components.

Raw and Provenance Data Extraction. Since database specialists have a dataflow specification to guide the flow of data elements generation, they help John to plug DfAnalyzer components, i.e., RDE, PDE, RDI, for extracting raw and provenance data at runtime, as well as indexing. Figure 4 shows the method rawDataAccess() introduced in the original source code of the application for raw data extraction and indexing, which is based on the invocations of RDE and RDI as shown in Figure 5. Since DfAnalyzer monitoring components are plugged in the predictive data science application, John can start the execution. Dataflow Analysis. John may run DfViewer for visualizing the dataflow specification in a dataset perspective view (Figure 1) and checking if the registered a dataflow is in accordance with the data processing steps of the application. Then, he uses this visualization for defining the source target, the destination target, the attributes to be returned by the query, and the conditions for selecting specific raw data elements from the dataflow fragment of interest. Figure 6 shows the input arguments specified to QI for generating and running the SQL-based query.

ACKNOWLEDGEMENTS

 Definition data element 𝑒 = (𝑣 1 , 𝑣 2 , … , 𝑣 𝛼) ∴ 𝑣 𝑖 𝑖𝑠 𝑎𝑛 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎 𝑖 𝑖𝑛 𝐴 ∧ 𝑎 𝑖 = (𝑛𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒) data collection 𝑐 = {𝑒 1 , 𝑒 2 , … , 𝑒 𝛽 } dataset 𝑠 ≡ 𝐶 data transformation 𝑡 = (𝑆 𝑖𝑛𝑝𝑢𝑡 , 𝑆 𝑜𝑢𝑡𝑝𝑢𝑡) data dependency 𝜑 = (𝑠, 𝑡 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 , 𝑡 𝑛𝑒𝑥𝑡) dataflow 𝐷 𝐹 = (𝑇, 𝑆, 𝛷)

Figure 2 .

 2 Figure 2. Excerpt of a data element flow in SalesForecasts.

Figure 3 .

 3 Figure 3. Architecture of DfAnalyzer.

Figure 4 .

 4 Figure 4. Prediction transformation tracked by DfAnalyzer.

public

 JavaRDD<String> prediction(String transformationTag, JavaRDD<String> combined_customers_with_items) { String inputDataset = Utils.getInputDataset(transformationTag); String outputDataset = Utils.getOutputDataset(transformationTag); // DfAnalyzer -

Figure 5 .

 5 Figure 5. Raw data extraction and indexing using DfAnalyzer.

Figure 6 .

 6 Figure 6. Predictive data analysis using the QI.

We thank Thiago Perrotta and Thaylon Guedes for their help in development. We would like to thank INRIA, CAPES, CNPq, FAPERJ, HPC4E (EU H2020 and MCTI/RNP-Brazil).