
HAL Id: lirmm-01867887
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01867887v1

Submitted on 4 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DfAnalyzer: Runtime Dataflow Analysis of Scientific
Applications using Provenance

Vítor Silva, Daniel de Oliveira, Patrick Valduriez, Marta Mattoso

To cite this version:
Vítor Silva, Daniel de Oliveira, Patrick Valduriez, Marta Mattoso. DfAnalyzer: Runtime Dataflow
Analysis of Scientific Applications using Provenance. Proceedings of the VLDB Endowment (PVLDB),
2018, 11 (12), pp.2082-2085. �10.14778/3229863.3236265�. �lirmm-01867887�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01867887v1
https://hal.archives-ouvertes.fr

DfAnalyzer: Runtime Dataflow Analysis of Scientific
Applications using Provenance

Vítor Silva
COPPE / UFRJ

Brazil

silva@cos.ufrj.br

Daniel de Oliveira
IC / UFF

Brazil

danielcmo @ic.uff.br

Patrick Valduriez
Inria and LIRMM

France

patrick.valduriez@inria.fr

Marta Mattoso
COPPE / UFRJ

Brazil

marta@cos.ufrj.br

ABSTRACT

We present DfAnalyzer, a tool that enables monitoring, debugging,

steering, and analysis of dataflows while being generated by

scientific applications. It works by capturing strategic domain data,

registering provenance and execution data to enable queries at

runtime. DfAnalyzer provides lightweight dataflow monitoring

components to be invoked by high performance applications. It can

be plugged in scripts, or Spark applications, in the same way users

already plug visualization library components. During this demo,

we will show how DfAnalyzer captures the dataflow, provenance,

as well as how it provides runtime data analyses of applications.

We will also encourage attendees to use DfAnalyzer for their own

applications.

PVLDB Reference Format:

Vítor Silva, Daniel de Oliveira, Patrick Valduriez, Marta Mattoso.

Word Template for VLDB Conferences. PVLDB, 11(5): xxxx-

2018, 2018.

DOI: https://doi.org/TBD

1. INTRODUCTION
Scientific applications typically involve the execution of complex

computational models and, consequently, the generation of a huge

volume of heterogeneous data. These data are commonly stored in

several workspaces as raw data files, which often follow a de facto

standard format established by the application domain, e.g., HDF5

and FITS. However, despite the big data volume, spread in

thousands of files, typically only a small subset of the data is

relevant and used for analysis [6].

These complex scientific applications are long lasting even when

executing in parallel with high performance computing (HPC).

They often require fine tuning of the parameters or changing

functions due to their exploratory nature [8]. Supporting data

monitoring and analysis at runtime allows for anticipating the

evolution of results, avoiding waiting for the whole execution to

finish or aborting the execution to adjust it and resubmit.

Visualization tools like Paraview, VisIt are present in most

scientific applications, particularly in HPC to help on data analysis

and monitoring [2]. Computational scientists (our target users)

include visualization library calls in their simulation script codes to

share data with visualization tools to generate images and videos to

be analyzed at runtime. Despite being mandatory, these tools have

very limited query support and no provenance data, limiting the

scope of data analysis support at runtime.

There are several open issues in data analysis in long lasting parallel

executions, like supporting the identification of data regions of

interest and the dataflow implicit in the contents of raw data files.

We present DfAnalyzer, a tool that supports runtime dataflow

analysis for HPC applications. DfAnalyzer relates raw data files,

exposes strategic domain data associated to these files, generates

dataflow provenance and debugging data all in the same columnar

database, which is managed by MonetDB. This database acts as a

global view of raw data and metadata, which can be queried during

a long application execution complementing visualization tools.

DfAnalyzer has several monitoring and data extraction components

that are invoked in the same way users already do for the

visualization tools.

DfAnalyzer incurs in negligible overhead (less than 0,5% of the

application elapsed time) as measured while supporting some high-

performance applications [3,8]. DfAnalyzer components are

efficient because they extract domain data as it is being generated,

often from memory avoiding opening and accessing raw data files.

The resulting database is also very small as compared to the raw

data itself. At the same time, it allows for complex query

submissions.

These extracted strategic domain data (e.g. quantities of interest)

are often scalar data associated to large graphs or raw datasets as a

result of a complex computation, like the volume of a region,

velocity of fluids or a probability measure. In DfAnalyzer, all raw

data is kept in files with their original format, but the strategic data

representing these files are extracted, along a reference to its source

file, and the dataflow. As a result, DfAnalyzer provides a rich set

of data to help tracking the evolution or the top values of the main

results of the application, and directly pointing to the associated raw

data file. Otherwise it would require a tool to parse all raw data files

to find and extract them.

In situ raw data query engines like Slalom [6], provide for efficient

scientific data analysis, with adaptive mechanisms that access raw

data directly from the files avoiding data copies, loading, and

indexing overheads. However, these raw data query engines require

that the files are all generated before starting the query submission

for the analysis. This offline approach might not identify the

implicit dataflow of the data transformation. It requires a complex

analysis to obtain the relationship from within contents of

heterogeneous files that compose the dataflow. Also, some relevant

data might be available only during the execution and will no longer

be available offline. DfAnalyzer and in situ raw data query engines

are complementary. DfAnalyzer can be seen as a first step data

analysis for its runtime support. In addition, its generated global

view database can be used by in situ raw data query engines as an

index to execute queries on the strategic data and directly identify

regions of interest to be further analyzed offline, without having to

parse all the files.

Despite being targeted for long running scientific applications

[3,8], in this demo, we will use a simple dataflow use case with

parallelism managed by Apache Spark [1]. We will walk it through

the process of dataflow modeling, data capture, provenance

management, and analysis supported by DfAnalyzer. We will show

(a) how users point to strategic data to be extracted by DfAnalyzer,

(b) raw data extraction and indexing, (c) the graphical interface of

DfAnalyzer to visualize dataflows, and (d) runtime raw data and

dataflow analysis using the query interface.

2. BACKGROUND
During the execution of scientific applications, users need to

analyze data consumed and produced by different programs or data

transformations. In a previous work [5], our workflow system was

in charge of collecting data and registering provenance, available

for queries at runtime. Provenance capturing registers the flow of

data transformations with data input/outputs, but the dataflow

remains implicit. DfAnalyzer is an alternative that, similarly to

noWorkflow [7] avoids having the workflow system being in

charge of the execution control flow and having to wrap data

transformations, which can be a problem when using HPC libraries.

However, noWorkflow is specific for Python scripts and no support

for raw data or HPC. DfAnalyzer is based on a dataflow

representation to register the flow of datasets and data elements. In

this section, we present a simple use case for predicting sales

forecasts, dataflow concepts and how our dataflow-aware approach

is able to analyze elements consumed and produced by data

transformations.

2.1 SalesForecasts: a data science application
This demonstration paper concentrates on a simple application for

predicting the sales of a clothing company based on the customers

consumption patterns adapted from [4], renamed as

SalesForecasts. Company’s leaders/managers aim to finalize their

requests with providers to maximize profits. More specifically,

these leaders/managers analyze the quantities of items to be sold,

while managing the inventory. In this scenario, they often start

executing the sales prediction on top-selling items, meaning using

a reduced input dataset. Once the predictions meet the expected

budget and inventory capacity, they can evaluate new items by

adjusting the input dataset.

Figure 1 shows the SalesForecasts data transformations as tagged

black edges. It starts with the transformation deduplication that

reads customer records from different lists (input dataset

customer_lists) and removes duplicated records (output dataset

deduplicated_customers). The next data transformations,

united_states and europe, filter deduplicated customers into two

customers datasets. Then, two unions merge all customers from

these countries in the output dataset combined_customers.

Figure 1. Data perspective view of SalesForecasts application.

Since there are deduplicated customers from specific countries, the

transformation cartesian_product combines these customers with

clothing items from a list with all clothing items to be analyzed by

the predictive model (input dataset clothing_items), generating the

dataset combined_customers_with_items. After that, its results are

considered with the customer buying patterns (input dataset

buying_patterns) to obtain the predictive model with two data

transformations prediction, which produces the probabilities of

selling clothing items (dataset probabibilites_of_selling_items).

Finally, these probabilities are grouped by the clothing item

identifier to calculate the expected number of items to be sold in

the next season (output sales_forecasts generated by aggregation).

Several analyses depend on the entire dataflow. Considering the

dataflow shown in Figure 1, leaders/managers commonly need to

analyze probabilities of selling a specific clothing item with its

sales forecast, and its description. When such data is stored in

different datasets produced by different data transformations

reconstructing this implicit dataflow from raw data files can be

error prone. DfAnalyzer represents dataflows as they occur.

2.2 Dataflow Concepts
The smallest unit of interest is the data element (𝑒). A data element

has values (v) for each predefined attribute (a) that represent 𝑒. The

schema that represents e is a set A, where each a is represented as

(name,type). A set of data elements consists of a data collection (𝑐).

Then, a dataset (𝑠) is composed of a set of data collections (𝐶). A

data transformation (𝑡) consumes data from one (or more)

dataset(s) as input (𝑆𝑖𝑛𝑝𝑢𝑡), and produces data in one (or more)

dataset(s) as output (𝑆𝑜𝑢𝑡𝑝𝑢𝑡). Furthermore, two data

transformations can present a data dependency (𝜑) with relation to

a dataset, when the data is produced by one data transformation

(𝑡𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) and consumed by another (𝑡𝑛𝑒𝑥𝑡). Based on such concepts,

a dataflow (𝐷𝐹) is defined by the composition of data

transformations (𝑇), manipulating datasets (𝑆) concerning data

dependencies (Φ).

Table 1. Dataflow definitions.

Concept Definition

data element

𝑒 = (𝑣1, 𝑣2, … , 𝑣𝛼) ∴

𝑣𝑖 𝑖𝑠 𝑎𝑛 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑖 𝑖𝑛 𝐴

∧ 𝑎𝑖 = (𝑛𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒)

data collection 𝑐 = {𝑒1, 𝑒2, … , 𝑒𝛽}

dataset 𝑠 ≡ 𝐶

data
transformation

𝑡 = (𝑆𝑖𝑛𝑝𝑢𝑡, 𝑆𝑜𝑢𝑡𝑝𝑢𝑡)

data
dependency

𝜑 = (𝑠, 𝑡𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑡𝑛𝑒𝑥𝑡)

dataflow 𝐷𝐹 = (𝑇, 𝑆, 𝛷)

Figure 1 shows a dataflow view of SalesForecasts, where nodes in

the graph represent datasets and edges represent data

transformations. Input datasets are colored in green and

output/input datasets in blue. Figure 2 shows some dataset views of

SalesForecasts with the data elements that belong to each collection

of the dataset. With this representation at the data element level,

company’s leaders are able to relate the sales forecasts (attribute

quantity of dataset 𝑠10) with specific clothing items (attribute

description of dataset 𝑠9), by correlating data elements (attribute

item_id) among datasets.

dataflow fragment

Figure 2. Excerpt of a data element flow in SalesForecasts.

3. OVERVIEW OF DFANALYZER
DfAnalyzer follows ARMFUL [8], a component-based reference

architecture for dataflow analysis. DfAnalyzer has six components,

shown in Figure 3 as gray rounded rectangles: (i) Provenance Data

Extractor (PDE); (ii) Raw Data Extractor (RDE); (iii) Raw Data

Indexer (RDI); (iv) Dataflow Viewer (DfViewer); (iv) Query

Interface (QI); and (vi) Database (DfDB). DfAnalyzer captures

provenance and domain-specific data (i.e., strategic data obtained

during the application execution). DfAnalyzer enables raw data

extraction from such files and content indexing by direct access to

memory or invoking third-party programs or tools. The first three

components are invoked by plugging calls on the application, while

the other two have independent interfaces for the user to submit

data analyses at runtime.

Figure 3. Architecture of DfAnalyzer.

We plugged DfAnalyzer to the SalesForecasts application

parallelized with Spark in a 1000-core computer and we observed

an execution time overhead of up to 0.34% of the application

elapsed time (1h:48min), which can be considered negligible.

3.1 Provenance and Raw Data Extraction
The PDE component provides a RESTful API, in which the body

of HTTP requests represents the mapping between the data

processing steps of an application and the dataflow concepts

presented in Section 2. Figure 4 shows the modifications in the data

transformation prediction of SalesForecasts using PDE for

extracting provenance data. Therefore, users are able to define

which computational methods in their applications correspond to a

data transformation to be registered. They can also define which

data elements consumed and produced by each data transformation

are relevant to be registered. If raw data is stored in files, it requires

the invocation of RDE and if indexing is desired the RDI the

components is also invoked. Figure 4 shows a method, named as

rawDataAccess, developed for SalesForecasts application using

RDE and RDI to extract and index raw data from Spark Resilient

Distributed Datasets (RDD) stored in files. Since extraction is at

runtime, often data is still cached.

Figure 4. Prediction transformation tracked by DfAnalyzer.

3.2 Data Loading and Dataflow Analysis
As provenance and raw data have been extracted/indexed, PDE

loads such data into DfDB database, which is managed by

MonetDB. DfDB follows the schema PROV-Df [8], compliant to

W3C PROV. In distributed and parallel computing environments,

we deploy MonetDB and DfDB in a dedicated computational node

to be responsible for loading data without jeopardizing the

performance of parallel applications.

DfAnalyzer provides DfViewer and QI for online dataflow

analysis. DfViewer is a Web application that accesses all dataflows

from the DfDB database and generates a view of the dataflows

selected by the user. QI is a RESTful service that aids users to run

their SQL queries. The user provides a dataflow fragment of

interest, attributes to be returned (as the SELECT SQL clause), and

conditions on attribute values (as the WHERE SQL clause) so that

QI automatically generates the SQL to submit the queries and show

the results. In Section 4, we present a query example using QI.

CUSTOMER_ID COUNTRY CONTINENT … ITEM_ID DESCRIPTION

1 United_States North_America … 1 t-shirt

2 France Europe … 1 t-shirt

3 Chile South_America … 2 pants

𝑠 = combined_customers_with_items

CUSTOMER_ID ITEM_ID BUYING_PATTERN_ID PROBABILITY

1 1 1 0.50

1 1 2 0.82

2 1 1 0.93

2 1 2 0.37

3 2 1 0.76

3 2 2 0.12

𝑠9 = probabilities_of_selling_items

ITEM_ID QUANTITY

1 6351

2 3799

𝑠10 = sales_forecasts aggregation or
<< data transformation >>

prediction or
<< data transformation >>

Spark
Application

Provenance Data
Extractor

raw data files

Raw Data
Extractor

Raw Data
Indexer

MonetDB Query
Interface

Dataflow
Viewer

A
p
p
l
i
c
a
t
i
o
n

C
a
p
t
u
r
e

S
t
o
r
a
g
e

A
n
a
l
y
s
i
s

captures

stores

reads

dataflow
graphs

query
results

captures
stores

Standalone
Program

Python
Script

Scientific
Libraries

public JavaRDD<String> prediction(String transformationTag,

 JavaRDD<String> combined_customers_with_items) {

 String inputDataset = Utils.getInputDataset(transformationTag);

 String outputDataset = Utils.getOutputDataset(transformationTag);

 // DfAnalyzer - PDE

 pde.task(dataflowTag, transformationTag, config.getTaskID(),

"RUNNING", outputWorkspace, config.getResource());

 pde.collection(inputDataset,

"{{" + getElements("buying_patterns") + "}}");

 pde.dependency("{cartesian_product}",

 "{" + config.getTaskID() + "}");

 pde.sendRequest();

 // Spark

 JavaRDD<Tuple2<String, String>> cartesianProduct =

 combined_customers_with_items.cartesian(buyingPatterns).

 rdd().toJavaRDD();

 …

 JavaRDD<String> probabilities_of_selling_items =

 similaritiesPair.map(new Prediction());

 // Write RDD

 prediction.saveAsTextFile(outputWorkspace + transformationTag);

 // DfAnalyzer – RDE and RDI

 rawDataAccess(transformationTag);

 // DfAnalyzer – PDE

 pde.changeTaskStatus("FINISHED");

 pde.collection(outputDataset,

 "{{" + getElement(transformationTag) + "}}");

 pde.sendRequest();

 return probabilities_of_selling_items;

}

4. DEMONSTRATION PLAN
In our demonstration session, we encourage conference attendees

to experience runtime dataflow analysis using SalesForecasts

application in DfAnalyzer, for example by defining raw data

extraction and querying using DfViewer and QI. This

demonstration application using DfAnalyzer is available at

https://github.com/vssousa/dfanalyzer-spark.

Use Case. John Doe is the leader of a clothing company that wants

to predict the sales to the next season based on the consumption

patterns of the users. He used the SalesForecasts application, as

shown in Figure 1. He initially used the original version of this

application, without DfAnalyzer, i.e., only the source code in the

black color in Figure 4.

The SalesForecasts output data is the sales_forecasts.rdd file, with

the clothing item id and the quantity of sales for such item.

However, to perform his predictive data analysis, he also needs the

description of the clothing item (to understand which is the

category, size, and other information about the item) and the

probability of selling a specific clothing item to a customer

according to a specific buying pattern. He uses this selling

probability to only select clothing items that have a high probability

(i.e., probability > 0.65) of being sold in accordance with a specific

customer buying pattern.

In this case, he has to write programs to access and extract raw data

from the CSV file clothing_items.csv (item_id and description) and

the intermediate file combined_customers_with_items.rdd (item_id

and probability), besides the sales data from the output file

sales_forecasts.rdd (item_id and quantity). Even with the raw data

extracted and, maybe, indexed, he has to correlate these raw data

from different files (i.e., he has to develop a query for a dataflow

analysis based on raw data extraction).

Without DfAnalyzer, John has to develop his own data analysis

program for extracting and correlating raw data from different files

(in different formats) and to wait until the end of the application

execution for running this data analysis program. It is time-

consuming and error-prone. No let us see how to plug DfAnalyzer

to SalesForecasts application and use for these analyses.

Dataflow Specification. As the first step to use DfAnalyzer,

database specialists scheduled a meeting with John to know which

are the strategic data and metadata for his predictive analyses,

besides the analysis as aforementioned. Then, database specialists

model SalesForecasts dataflow according to the main data

transformations and strategic data to the company’s leader. As a

result, a dataflow specification was obtained with data

transformations, datasets, data dependencies, and attributes to be

monitored by DfAnalyzer components.

Raw and Provenance Data Extraction. Since database specialists

have a dataflow specification to guide the flow of data elements

generation, they help John to plug DfAnalyzer components, i.e.,

RDE, PDE, RDI, for extracting raw and provenance data at

runtime, as well as indexing. Figure 4 shows the method

rawDataAccess() introduced in the original source code of the

application for raw data extraction and indexing, which is based on

the invocations of RDE and RDI as shown in Figure 5. Since

DfAnalyzer monitoring components are plugged in the predictive

data science application, John can start the execution.

Dataflow Analysis. John may run DfViewer for visualizing the

dataflow specification in a dataset perspective view (Figure 1) and

checking if the registered a dataflow is in accordance with the data

processing steps of the application. Then, he uses this visualization

for defining the source target, the destination target, the attributes

to be returned by the query, and the conditions for selecting specific

raw data elements from the dataflow fragment of interest. Figure 6

shows the input arguments specified to QI for generating and

running the SQL-based query.

Figure 5. Raw data extraction and indexing using DfAnalyzer.

Figure 6. Predictive data analysis using the QI.

5. ACKNOWLEDGEMENTS
We thank Thiago Perrotta and Thaylon Guedes for their help in

development. We would like to thank INRIA, CAPES, CNPq,

FAPERJ, HPC4E (EU H2020 and MCTI/RNP-Brazil).

6. REFERENCES
[1] Armbrust, M., Zaharia, M., Das, T., Davidson, A., Ghodsi, A.,

Or, A., Rosen, J., Stoica, I., Wendell, P., et al. Scaling spark

in the real world: performance and usability. PVLDB,

8(12):1840–1843, 2015.

[2] Ayachit, U., Bauer, A., Duque, E.P.N., Eisenhauer, G.,

Ferrier, N., Gu, J., Jansen, K.E., Loring, B., Lukić, Z., et al.

Performance Analysis, Design Considerations, and

Applications of Extreme-scale in Situ Infrastructures.

Supercomputing conference, 79:1–79:12, 2016.

[3] Camata, J.J., Silva, V., Valduriez, P., Mattoso, M., Coutinho,

A.L.G.A. In situ visualization and data analysis for turbidity

currents simulation. Computers & Geosciences, 2017.

[4] Ikeda, R., Widom, J. Panda: A System for Provenance and

Data. IEEE Data Engineering Bulletin, 42–49, 2010.

[5] Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P.,

Mattoso, M. An Algebraic Approach for Data-Centric

Scientific Workflows. PVLDB, 4(12):1328–1339, 2011.

[6] Olma, M., Karpathiotakis, M., Alagiannis, I., Athanassoulis,

M., Ailamaki, A. Slalom: Coasting Through Raw Data via

Adaptive Partitioning and Indexing. PVLDB, 10(10):1106–

1117, 2017.

[7] Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.

noWorkflow: a tool for collecting, analyzing, and managing

provenance from python scripts. Proceedings of the VLDB

Endowment, 10(12):1841–1844, 2017.

[8] Silva, V., Camata, J., de Oliveira, D., Coutinho, A.L.G.A.,

Valduriez, P., Mattoso, M. In Situ Data Steering on

Sedimentation Simulation with Provenance Data. Poster

session of ACM/IEEE Supercomputing conference, 2016.

[9] Silva, V., Leite, J., Camata, J., Oliveira, D., Coutinho,

A.L.G.., Valduriez, P., Mattoso, M. Raw Data Queries during

Data-intensive Parallel Workflow Execution. Future

Generation Computer Systems 75: 402-422, 2017.

//command line to run RDE with cartridge Program

./RDE PROGRAM:EXTRACT probabilities_of_selling_items

 /root/sales_forecasts probabilities_of_selling_items.rdd

 {customer_id:numeric, item_id:numeric, …, probability:numeric }

//command line to run RDI with cartridge FastBit

./RDI FASTBIT:INDEX probabilities_of_selling_items

 /root/sales_forecasts probabilities_of_selling_items

 {customer_id:numeric, item_id:numeric, …, probability:numeric }

source(clothing_items)

target(sales_forecasts)

projection(clothing_items.description; sales_forecasts.quantity)

selection(probabilities_of_selling_items.probability > 0.65)

