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ABSTRACT 

We present DfAnalyzer, a tool that enables monitoring, debugging, 

steering, and analysis of dataflows while being generated by 

scientific applications. It works by capturing strategic domain data, 

registering provenance and execution data to enable queries at 

runtime. DfAnalyzer provides lightweight dataflow monitoring 

components to be invoked by high performance applications. It can 

be plugged in scripts, or Spark applications, in the same way users 

already plug visualization library components. During this demo, 

we will show how DfAnalyzer captures the dataflow, provenance, 

as well as how it provides runtime data analyses of applications. 

We will also encourage attendees to use DfAnalyzer for their own 

applications. 
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1. INTRODUCTION 
Scientific applications typically involve the execution of complex 

computational models and, consequently, the generation of a huge 

volume of heterogeneous data. These data are commonly stored in 

several workspaces as raw data files, which often follow a de facto 

standard format established by the application domain, e.g., HDF5 

and FITS. However, despite the big data volume, spread in 

thousands of files, typically only a small subset of the data is 

relevant and used for analysis [6].  

These complex scientific applications are long lasting even when 

executing in parallel with high performance computing (HPC). 

They often require fine tuning of the parameters or changing 

functions due to their exploratory nature [8]. Supporting data 

monitoring and analysis at runtime allows for anticipating the 

evolution of results, avoiding waiting for the whole execution to 

finish or aborting the execution to adjust it and resubmit. 

Visualization tools like Paraview, VisIt are present in most 

scientific applications, particularly in HPC to help on data analysis 

and monitoring [2]. Computational scientists (our target users) 

include visualization library calls in their simulation script codes to 

share data with visualization tools to generate images and videos to 

be analyzed at runtime. Despite being mandatory, these tools have 

very limited query support and no provenance data, limiting the 

scope of data analysis support at runtime.   

There are several open issues in data analysis in long lasting parallel 

executions, like supporting the identification of data regions of 

interest and the dataflow implicit in the contents of raw data files. 

We present DfAnalyzer, a tool that supports runtime dataflow 

analysis for HPC applications. DfAnalyzer relates raw data files, 

exposes strategic domain data associated to these files, generates 

dataflow provenance and debugging data all in the same columnar 

database, which is managed by MonetDB. This database acts as a 

global view of raw data and metadata, which can be queried during 

a long application execution complementing visualization tools. 

DfAnalyzer has several monitoring and data extraction components 

that are invoked in the same way users already do for the 

visualization tools.  

DfAnalyzer incurs in negligible overhead  (less than 0,5% of the 

application elapsed time) as measured while supporting some high-

performance applications [3,8]. DfAnalyzer components are 

efficient because they extract domain data as it is being generated, 

often from memory avoiding opening and accessing raw data files. 

The resulting database is also very small as compared to the raw 

data itself. At the same time, it allows for complex query 

submissions. 

These extracted strategic domain data (e.g. quantities of interest) 

are often scalar data associated to large graphs or raw datasets as a 

result of a complex computation, like the volume of a region, 

velocity of fluids or a probability measure. In DfAnalyzer, all raw 

data is kept in files with their original format, but the strategic data 

representing these files are extracted, along a reference to its source 

file, and the dataflow. As a result, DfAnalyzer provides a rich set 

of data to help tracking the evolution or the top values of the main 

results of the application, and directly pointing to the associated raw 

data file. Otherwise it would require a tool to parse all raw data files 

to find and extract them.  

In situ raw data query engines like  Slalom [6], provide for efficient 

scientific data analysis, with adaptive mechanisms that access raw 

data directly from the files avoiding data copies, loading, and 

indexing overheads. However, these raw data query engines require 

that the files are all generated before starting the query submission 

for the analysis. This offline approach might not identify the 

implicit dataflow of the data transformation. It requires a complex 

analysis to obtain the relationship from within contents of 

heterogeneous files that compose the dataflow. Also, some relevant 

data might be available only during the execution and will no longer 

be available offline. DfAnalyzer and in situ raw data query engines 

are complementary. DfAnalyzer can be seen as a first step data 

analysis for its runtime support. In addition, its generated global 

view database can be used by in situ raw data query engines as an 

index to execute queries on the strategic data and directly identify 

regions of interest to be further analyzed offline, without having to 

parse all the files. 

Despite being targeted for long running scientific applications 

[3,8], in this demo, we will use a simple dataflow use case with 

parallelism managed by Apache Spark [1]. We will walk it through 

the process of dataflow modeling, data capture, provenance 

management, and analysis supported by DfAnalyzer. We will show 



(a) how users point to strategic data to be extracted by DfAnalyzer, 

(b) raw data extraction and indexing, (c) the graphical interface of 

DfAnalyzer to visualize dataflows, and (d) runtime raw data and 

dataflow analysis using the query interface. 

2. BACKGROUND 
During the execution of scientific applications, users need to 

analyze data consumed and produced by different programs or data 

transformations. In a previous work [5], our workflow system was 

in charge of collecting data and registering provenance, available 

for queries at runtime. Provenance capturing registers the flow of 

data transformations with data input/outputs, but the dataflow 

remains implicit. DfAnalyzer is an alternative that, similarly to 

noWorkflow [7] avoids having the workflow system being in 

charge of the execution control flow and having to wrap data 

transformations, which can be a problem when using HPC libraries. 

However, noWorkflow is specific for Python scripts and no support 

for raw data or HPC. DfAnalyzer is based on a dataflow 

representation to register the flow of datasets and data elements. In 

this section, we present a simple use case for predicting sales 

forecasts, dataflow concepts and how our dataflow-aware approach 

is able to analyze elements consumed and produced by data 

transformations. 

2.1 SalesForecasts: a data science application 
This demonstration paper concentrates on a simple application for 

predicting the sales of a clothing company based on the customers 

consumption patterns adapted from [4], renamed as 

SalesForecasts. Company’s leaders/managers aim to finalize their 

requests with providers to maximize profits. More specifically, 

these leaders/managers analyze the quantities of items to be sold, 

while managing the inventory. In this scenario, they often start 

executing the sales prediction on top-selling items, meaning using 

a reduced input dataset. Once the predictions meet the expected 

budget and inventory capacity, they can evaluate new items by 

adjusting the input dataset.  

Figure 1 shows the SalesForecasts data transformations as tagged 

black edges. It starts with the transformation deduplication that 

reads customer records from different lists (input dataset 

customer_lists) and removes duplicated records (output dataset 

deduplicated_customers). The next data transformations, 

united_states and europe, filter deduplicated customers into two 

customers datasets. Then, two unions merge all customers from 

these countries in the output dataset combined_customers.  

 

Figure 1. Data perspective view of SalesForecasts application. 

Since there are deduplicated customers from specific countries, the 

transformation cartesian_product combines these customers with 

clothing items from a list with all clothing items to be analyzed by 

the predictive model (input dataset clothing_items), generating the 

dataset combined_customers_with_items. After that, its results are 

considered with the customer buying patterns (input dataset 

buying_patterns) to obtain the predictive model with two data 

transformations prediction, which produces the probabilities of 

selling clothing items (dataset probabibilites_of_selling_items). 

Finally, these probabilities are grouped by the clothing item 

identifier to calculate the expected number of items to be sold in 

the next season (output sales_forecasts generated by aggregation).  

Several analyses depend on the entire dataflow. Considering the 

dataflow shown in Figure 1, leaders/managers commonly need to 

analyze probabilities of selling a specific clothing item with its 

sales forecast, and its description. When such data is stored in 

different datasets produced by different data transformations 

reconstructing this implicit dataflow from raw data files can be 

error prone. DfAnalyzer represents dataflows as they occur.   

2.2 Dataflow Concepts 
The smallest unit of interest is the data element (𝑒). A data element 

has values (v) for each predefined attribute (a) that represent 𝑒. The 

schema that represents e is a set A, where each a is represented as 

(name,type). A set of data elements consists of a data collection (𝑐). 

Then, a dataset (𝑠) is composed of a set of data collections (𝐶). A 

data transformation (𝑡) consumes data from one (or more) 

dataset(s) as input (𝑆𝑖𝑛𝑝𝑢𝑡), and produces data in one (or more) 

dataset(s) as output (𝑆𝑜𝑢𝑡𝑝𝑢𝑡). Furthermore, two data 

transformations can present a data dependency (𝜑) with relation to 

a dataset, when the data is produced by one data transformation 

(𝑡𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) and consumed by another (𝑡𝑛𝑒𝑥𝑡). Based on such concepts, 

a dataflow (𝐷𝐹) is defined by the composition of data 

transformations (𝑇), manipulating datasets (𝑆) concerning data 

dependencies (Φ).   

Table 1. Dataflow definitions. 

Concept Definition 

data element 

𝑒 = (𝑣1, 𝑣2, … , 𝑣𝛼) ∴ 

𝑣𝑖  𝑖𝑠 𝑎𝑛 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑖  𝑖𝑛 𝐴  

∧ 𝑎𝑖 = (𝑛𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒) 

data collection 𝑐 = {𝑒1, 𝑒2, … , 𝑒𝛽} 

dataset 𝑠 ≡ 𝐶 

data 
transformation 

𝑡 = (𝑆𝑖𝑛𝑝𝑢𝑡, 𝑆𝑜𝑢𝑡𝑝𝑢𝑡) 

data 
dependency 

𝜑 = (𝑠, 𝑡𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑡𝑛𝑒𝑥𝑡) 

dataflow 𝐷𝐹 = (𝑇, 𝑆, 𝛷) 

Figure 1 shows a dataflow view of SalesForecasts, where nodes in 

the graph represent datasets and edges represent data 

transformations. Input datasets are colored in green and 

output/input datasets in blue. Figure 2 shows some dataset views of 

SalesForecasts with the data elements that belong to each collection 

of the dataset. With this representation at the data element level, 

company’s leaders are able to relate the sales forecasts (attribute 

quantity of dataset 𝑠10) with specific clothing items (attribute 

description of dataset 𝑠9), by correlating data elements (attribute 

item_id) among datasets. 

dataflow fragment



 

Figure 2. Excerpt of a data element flow in SalesForecasts. 

3. OVERVIEW OF DFANALYZER 
DfAnalyzer follows ARMFUL [8], a component-based reference 

architecture for dataflow analysis. DfAnalyzer has six components, 

shown in Figure 3 as gray rounded rectangles: (i) Provenance Data 

Extractor (PDE); (ii) Raw Data Extractor (RDE); (iii) Raw Data 

Indexer (RDI); (iv) Dataflow Viewer (DfViewer); (iv) Query 

Interface (QI); and (vi) Database (DfDB). DfAnalyzer captures 

provenance and domain-specific data (i.e., strategic data obtained 

during the application execution). DfAnalyzer enables raw data 

extraction from such files and content indexing by direct access to 

memory or invoking third-party programs or tools. The first three 

components are invoked by plugging calls on the application, while 

the other two have independent interfaces for the user to submit 

data analyses at runtime.  

 
Figure 3. Architecture of DfAnalyzer. 

We plugged DfAnalyzer to the SalesForecasts application 

parallelized with Spark in a 1000-core computer and we observed 

an execution time overhead of up to 0.34% of the application 

elapsed time (1h:48min), which can be considered negligible. 

3.1 Provenance and Raw Data Extraction 
The PDE component provides a RESTful API, in which the body 

of HTTP requests represents the mapping between the data 

processing steps of an application and the dataflow concepts 

presented in Section 2. Figure 4 shows the modifications in the data 

transformation prediction of SalesForecasts using PDE for 

extracting provenance data. Therefore, users are able to define 

which computational methods in their applications correspond to a 

data transformation to be registered. They can also define which 

data elements consumed and produced by each data transformation 

are relevant to be registered. If raw data is stored in files, it requires 

the invocation of RDE and if indexing is desired the RDI the 

components is also invoked. Figure 4 shows a method, named as 

rawDataAccess, developed for SalesForecasts application using 

RDE and RDI to extract and index raw data from Spark Resilient 

Distributed Datasets (RDD) stored in files. Since extraction is at 

runtime, often data is still cached. 

 
Figure 4. Prediction transformation tracked by DfAnalyzer. 

3.2 Data Loading and Dataflow Analysis 
As provenance and raw data have been extracted/indexed, PDE 

loads such data into DfDB database, which is managed by 

MonetDB. DfDB follows the schema PROV-Df [8], compliant to 

W3C PROV. In distributed and parallel computing environments, 

we deploy MonetDB  and DfDB in a dedicated computational node 

to be responsible for loading data without jeopardizing the 

performance of parallel applications.   

DfAnalyzer provides DfViewer and QI for online dataflow 

analysis. DfViewer is a Web application that accesses all dataflows 

from the DfDB database and generates a view of the dataflows 

selected by the user. QI is a RESTful service that aids users to run 

their SQL queries. The user provides a dataflow fragment of 

interest, attributes to be returned (as the SELECT SQL clause), and 

conditions on attribute values (as the WHERE SQL clause) so that 

QI automatically generates the SQL to submit the queries and show 

the results. In Section 4, we present a query example using QI. 

CUSTOMER_ID COUNTRY CONTINENT … ITEM_ID DESCRIPTION

1 United_States North_America … 1 t-shirt

2 France Europe … 1 t-shirt

3 Chile South_America … 2 pants

𝑠 = combined_customers_with_items

CUSTOMER_ID ITEM_ID BUYING_PATTERN_ID PROBABILITY

1 1 1 0.50

1 1 2 0.82

2 1 1 0.93

2 1 2 0.37

3 2 1 0.76

3 2 2 0.12

𝑠9 = probabilities_of_selling_items

ITEM_ID QUANTITY

1 6351

2 3799

𝑠10 = sales_forecasts aggregation or   
<< data transformation >>

prediction or   
<< data transformation >>
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public JavaRDD<String> prediction(String transformationTag,  

                       JavaRDD<String> combined_customers_with_items) { 

     String inputDataset = Utils.getInputDataset(transformationTag); 

     String outputDataset = Utils.getOutputDataset(transformationTag); 

     // DfAnalyzer - PDE 

     pde.task(dataflowTag, transformationTag, config.getTaskID(),  

"RUNNING", outputWorkspace, config.getResource()); 

     pde.collection(inputDataset,  

"{{" + getElements("buying_patterns") + "}}"); 

    pde.dependency("{cartesian_product}",  

             "{" + config.getTaskID() + "}"); 

     pde.sendRequest(); 

     // Spark 

     JavaRDD<Tuple2<String, String>> cartesianProduct =          

                 combined_customers_with_items.cartesian(buyingPatterns). 

                 rdd().toJavaRDD(); 

     … 

     JavaRDD<String> probabilities_of_selling_items =  

               similaritiesPair.map(new Prediction()); 

     // Write RDD 

     prediction.saveAsTextFile(outputWorkspace + transformationTag);      

    // DfAnalyzer – RDE and RDI 

     rawDataAccess(transformationTag); 

     // DfAnalyzer – PDE 

     pde.changeTaskStatus("FINISHED"); 

     pde.collection(outputDataset,  

         "{{" + getElement(transformationTag) + "}}"); 

     pde.sendRequest(); 

     return probabilities_of_selling_items; 

} 



4. DEMONSTRATION PLAN 
In our demonstration session, we encourage conference attendees 

to experience runtime dataflow analysis using SalesForecasts 

application in DfAnalyzer, for example by defining raw data 

extraction and querying using DfViewer and QI. This 

demonstration application using DfAnalyzer is available at 

https://github.com/vssousa/dfanalyzer-spark. 

Use Case. John Doe is the leader of a clothing company that wants 

to predict the sales to the next season based on the consumption 

patterns of the users. He used the SalesForecasts application, as 

shown in Figure 1. He initially used the original version of this 

application, without DfAnalyzer, i.e., only the source code in the 

black color in Figure 4.  

The SalesForecasts output data is the sales_forecasts.rdd file, with 

the clothing item id and the quantity of sales for such item. 

However, to perform his predictive data analysis, he also needs the 

description of the clothing item (to understand which is the 

category, size, and other information about the item) and the 

probability of selling a specific clothing item to a customer 

according to a specific buying pattern. He uses this selling 

probability to only select clothing items that have a high probability 

(i.e., probability > 0.65) of being sold in accordance with a specific 

customer buying pattern. 

In this case, he has to write programs to access and extract raw data 

from the CSV file clothing_items.csv (item_id and description) and 

the intermediate file combined_customers_with_items.rdd (item_id 

and probability), besides the sales data from the output file 

sales_forecasts.rdd (item_id and quantity). Even with the raw data 

extracted and, maybe, indexed, he has to correlate these raw data 

from different files (i.e., he has to develop a query for a dataflow 

analysis based on raw data extraction). 

Without DfAnalyzer, John has to develop his own data analysis 

program for extracting and correlating raw data from different files 

(in different formats) and to wait until the end of the application 

execution for running this data analysis program. It is time-

consuming and error-prone. No let us see how to plug DfAnalyzer 

to SalesForecasts application and use for these analyses.  

Dataflow Specification. As the first step to use DfAnalyzer, 

database specialists scheduled a meeting with John to know which 

are the strategic data and metadata for his predictive analyses, 

besides the analysis as aforementioned. Then, database specialists 

model SalesForecasts dataflow according to the main data 

transformations and strategic data to the company’s leader. As a 

result, a dataflow specification was obtained with data 

transformations, datasets, data dependencies, and attributes to be 

monitored by DfAnalyzer components.  

Raw and Provenance Data Extraction. Since database specialists 

have a dataflow specification to guide the flow of data elements 

generation, they help John to plug DfAnalyzer components, i.e., 

RDE, PDE, RDI, for extracting raw and provenance data at 

runtime, as well as indexing. Figure 4 shows the method 

rawDataAccess() introduced in the original source code of the 

application for raw data extraction and indexing, which is based on 

the invocations of RDE and RDI as shown in Figure 5. Since 

DfAnalyzer monitoring components are plugged in the predictive 

data science application, John can start the execution. 

Dataflow Analysis. John may run DfViewer for visualizing the 

dataflow specification in a dataset perspective view (Figure 1) and 

checking if the registered a dataflow is in accordance with the data 

processing steps of the application. Then, he uses this visualization 

for defining the source target, the destination target, the attributes 

to be returned by the query, and the conditions for selecting specific 

raw data elements from the dataflow fragment of interest. Figure 6 

shows the input arguments specified to QI for generating and 

running the SQL-based query. 

 
Figure 5. Raw data extraction and indexing using DfAnalyzer. 

 

Figure 6. Predictive data analysis using the QI. 
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//command line to run RDE with cartridge Program 

./RDE PROGRAM:EXTRACT probabilities_of_selling_items 

      /root/sales_forecasts probabilities_of_selling_items.rdd  

     {customer_id:numeric, item_id:numeric, …, probability:numeric } 

//command line to run RDI with cartridge FastBit 

./RDI FASTBIT:INDEX probabilities_of_selling_items  

     /root/sales_forecasts probabilities_of_selling_items 

     {customer_id:numeric, item_id:numeric, …, probability:numeric } 

 

source(clothing_items) 

target(sales_forecasts) 

projection(clothing_items.description; sales_forecasts.quantity) 

selection(probabilities_of_selling_items.probability > 0.65) 


