Daniel Silva
email: danielcmo@ic.uff.br

Aline Paes

Esther Pacitti
email: esther.pacitti@lirmm.fr

Daniel De Oliveira

F ReeP : towards parameter recommendation in scientific workflows using preference learning *

Scientific workflows are a de facto standard for modeling scientific experiments. However, several workflows have too many parameters to be manually configured. Poor choices of parameter values may lead to unsuccessful executions of the workflow. In this paper, we present F ReeP , a parameter recommendation algorithm that suggests a value to a parameter that agrees with the user preferences. F ReeP is based on the Preference Learning technique. A preliminary experimental evaluation performed over the SciPhy workflow showed the feasibility of F ReeP to recommend parameter values for scientific workflows.

Introduction

Scientific workflows are considered a de facto standard for modeling scientific experiments that are compute-and data-intensive [START_REF] Zhao | Scientific workflow systems for 21st century, new bottle or new wine?[END_REF]. They are abstractions that represent the flow of data among activities (i.e., program invocations). The Scientific Workflow Management Systems (SWfMS) are responsible for managing the execution of workflows and collecting provenance data [START_REF] Freire | Provenance for Computational Tasks: A Survey[END_REF], which represent the execution history of the workflow. A workflow can be formally defined as a directed acyclic graph W (A, Dep). The nodes A = {a 1 ,a 2 , ..., a n } are the activities and the edges Dep represent the data dependencies among activities in A. Thus, given a i | (1 ≤ i ≤ n), the set P = {p 1 , p 2 , .., p m } represents the possible input parameters for activity a i that define the behavior of a i . Scientific Workflows are applied in many fields, such as biology and astronomy. Given the increasingly complexity of experiments in these domains [START_REF] Zhao | Scientific workflow systems for 21st century, new bottle or new wine?[END_REF]], many workflows have many parameters to be configured by users (e.g., > 40). The configuration of such parameters is a sensitive point because it can impact the execution time of the workflow and the usefulness of the produced results. This way, it is required that the user is able to configure the workflow (e.g., setting values for all the m parameters of an activity a i) as best as possible. Let us take as an example the workflow SciPhy [START_REF] Ocaña | Sciphy: a cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes[END_REF]. SciPhy aims at generating phylogenetic trees (i.e., trees that represent the evolutionary history of an organism). It is composed of four activities: (i) sequence alignment; (ii) conversion of alignment format; (iii) search for the best evolutionary model; and (iv) construction of the phylogenetic tree. Although conceptually simple (i.e., it has only four activities), SciPhy can be complex to be configured because of the number of parameters that should be explored. In addition, the user does not necessarily know a priori which configuration generates the best-quality phylogenetic tree. For example, each input file that contains DNA or RNA sequences has a number of sequences num_seq and a maximum length of sequence length_seq, which are input parameters of activity (i). However, to activity (iv) the input parameter bootstrap_replicate has its utility limited depending on the choice of values for length_seq. A poor choice of such values can generate a worthless result (in addition to the loss of time and resources). Thus, it is interesting that the parameter values can be automatically recommended to users by a Recommendation System (RS) to increase the chances of producing good results. For example, if in a given SciPhy execution the user sets the value of num_seq = 100, it would be better that the value of bootstrap_replicate to be recommended by an RS followed the value of num_seq in order to avoid incompatibility of the parameter values. This type of recommendation is feasible, since the SWfMSs collect provenance data, but it is not simple to be performed. Provenance can be used for future recommendations as we know which executions produced successful results and which parameter values were used. The motivation of this paper is, therefore, to recommend parameter values of workflow activities using provenance data collected in previous workflow executions. Thus, we propose a parameter recommendation algorithm named F ReeP for scientific workflows that benefits from the other chosen parameters. This way, F ReeP is able to suggest a value to a set of parameters that agrees with the user preferences. To accommodate such preferences together with the more appropriate recommendation, we follow a Preference Learning [START_REF] Fürnkranz | Preference learning[END_REF] technique. The experimental evaluation performed with the SciPhy workflow showed the feasibility of F ReeP to recommend parameter values.

A Brief on Preference Learning

Recommendation algorithms aim at suggesting the most relevant items to solve a task that requires a choice. In a personalized recommendation, each user receives his/her own list of items, based on his/her preferences. From the Artificial Intelligence point of view, a preference is an expression of the problem's constraints, but allowing some sort of relaxation [START_REF] Fürnkranz | Preference learning[END_REF]. In general, Preference Learning consists of inducing a predictive function that, given a set of already established-as-preferred items, it predicts the preferences for a new set of items. The most likely research task in this area is "Learning how to rank", rising from the need of obtaining an ordering relation among the preferences. The ordering task may focus on the class label, directly on the instances, or on a subsect of the objects. Particularly, one of the most used technique to learn preferences is Pairwise Label Ranking [START_REF] Hüllermeier | Label ranking by learning pairwise preferences[END_REF]. It consists of learning the preferences by decomposing the problem in smaller binary preferences problems, i.e., preferences between pairs of classes. Next, an ordering is induced relying on methods that minimize the loss function. This function, in turn, is computed according to the preferences that are violated, considering each different combination of classes.

FReeP: Feature Recommender from Preferences

In this paper, we propose a recommendation algorithm named F ReeP that relies on provenance data, preference learning, and voting systems to recommend a value for a specified parameter. The recommendation provided by F ReeP is the combination of a set of selected recommendations. These recommendations are created according to other specified parameter values. F ReeP belongs to the category of Collaborative Filtering [START_REF] Herlocker | Evaluating collaborative filtering recommender systems[END_REF]] methods and is presented in Algorithm 1.

Algorithm 1 FReeP

Require: To perform the parameter recommendation we rely on the tuples extracted from the Provenance database S. These tuples represent successful executions of a given workflow. The set of preferences P , i.e., the parameters for which the scientist already has a set of values, and the parameter to be recommended y are also provided as input to F ReeP . The first step is to create the set of all subsets of the instances (the power set)1 , grounded by the preferred parameters, called F S. For each subset of F S a horizontal partition is performed over the provenance data, by selecting only the tuples where each parameter (i.e., attribute) has the same value as specified in the user preferences. Next, only the attributes of the tuples that represent the parameters present in the user preferences are gathered (i.e., vertical partition). After that, the algorithm may follow two paths: either it uses a KNN classifier [START_REF] Cover | Nearest neighbor pattern classification[END_REF], or a LabelRank [START_REF] Hüllermeier | Label ranking by learning pairwise preferences[END_REF] classifier. Both of them use the aforementioned partitions to make the recommendation for the parameter y. If the choice is KNN, the prediction model is trained with the data in the partition and their respective values for the y parameter, yielding the prediction of values for the other parameter in the partition and stated in the user preferences. On the other hand, if the choice is LabelRank, a ranking function is trained in the same way as the KNN, however, it returns a sorted list, from the most appropriate value for y to the least one. In this paper, we choose to use the Pairwise Label Ranking method to approximate the ranking function.

1: S: { (param 1 1 , val 1 1),...(param m l , val m l) } ⊲ l
Each partition generates a possibly different recommendation to the y parameter. This implies in combining the different recommendations in order to arrive at a consensus of what it is the best one. When the chosen method is KNN, the recommendation for each partition is a single value, resulting in a list of recommended values. In this case, we use the Simple Voting System [START_REF] Fishburn | Simple voting systems and majority rule[END_REF] where the value that is most cited among the recommendations is the selected one. On the other hand, the LabelRank method returns the recommendations as a ranking. The result after the interaction at each partition is a list of rankings. Here, we could also employ a simple voting system based on the value ranked as the first one. However, this would neglect other well-ranked values among the different partitions. Thus, we use the Border Count method [START_REF] Black | Partial justification of the borda count[END_REF]] that combines all rankings into one, after giving scores for each parameter value according to its position in each ranking. After that, we use the highest ranking value as the final recommendation.

Experimental Results

To evaluate F ReeP , we used the provenance data collected by SciCumulus SWfMS when executing SciPhy workflow [START_REF] Ocaña | Sciphy: a cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes[END_REF]. SciPhy was developed to build phylogenetic trees from DNA, RNA and amino acid sequences. The dataset used to train de Machine Learning models is composed of 376 examples of executions that have not ended at a failure. We follow a 5-Fold Cross Validation procedure [START_REF] Refaeilzadeh | Cross-validation. Encyclopedia of database systems[END_REF], dividing the examples into 5 disjoint sets, and, at each iteration, 4 sets were used to train the models, while the remaining set was used as test. We considered K ∈ [3,5,7] in both pure KNN and Label Rank methods. We experiment with the recommendation of each parameter of the workflow, separately. We compute the accuracy of both models to evaluate the capability of both approaches in suggesting the right value parameter. Figure 4 shows the experimental results. We can see a clear difference in the accuracies between the recommendation for the parameter num_aligns and all the others. While for the first the recommendation reached values greater than 90%, the others reached accuracies varying from 40% to 60%. This can be explained by the smaller variation of values for the parameter num_aligns in the input dataset. Different values of the K parameter did not lead to significant changes in the recommendations, with low standard deviation among the folds. Furthermore, the rank-based model obtained worse results than KNN. Although they both come close regarding the parameters num_aligns, model_1, and model_2, the rank accuracy results for the rest of the parameters are close to zero. One explanation for such behavior is the numerical nature of these attributes and their very sparse values in the input dataset, which produces very different rankings along the training.

Related Work

The ranking strategy used in this paper was also used in the recommendation context but applied to movies scenario [START_REF] Pessiot | Learning to rank for collaborative filtering[END_REF]]. The voting method has been used to decrease the training time with large datasets in a movies recommendation task, without deteriorating the quality of the recommendation [START_REF] Das | Clustering-based recommender system using principles of voting theory[END_REF][START_REF] Mukherjee | A movie recommendation system-an application of voting theory in user modeling[END_REF]]. Particularly, in [START_REF] Mukherjee | A movie recommendation system-an application of voting theory in user modeling[END_REF]], Preference Learning is also used to leverage the recommendation. Regarding recommendation in workflows, Halioui [START_REF] Halioui | Towards an ontology-based recommender system for relevant bioinformatics workflows[END_REF]] combined natural language processing with ontologies to recommend searching keywords. In [START_REF] Soomro | Incorporating semantics in pattern-based scientific workflow recommender systems: Improving the accuracy of recommendations[END_REF]], a pattern-based recommendation approach was built to suggest workflows composition. [START_REF] Cheng | Scientific workflow clustering and recommendation[END_REF] propose an approach for identifying and recommending the workflows for reference using semantic similarity. However, the aforementioned approaches do not recommend values to the parameters.

Conclusions and Future Work

The effective use of scientific workflows and SWfMS have fostered the scientific experimentation and its analysis. However, several experiments modeled as workflows have a large set of parameters to be configured, which is not a trivial task to accomplish. While in some cases the scientist may be working on an experiment where he/she already knows at least a subset of the most appropriate values, he/she may not know which is the best values to assign to the others parameters of the workflow. In addition, a poor choice of parameters may lead to undesired results and loss of time. In this paper, we propose a parameter recommendation algorithm called F ReeP , based on Preference Learning and Voting Systems to recommend values for parameters, while restraining the recommendations to the user preferences. Experiments showed that when we employ a KNN classifier we can reach the correct parameter value in most cases, even in the presence of a reduced training set. On the other hand, we still need to improve the methods based on LabelRank so that it can achieve its full potential. As future work, we plan: (i) to consider more clever partition strategies to make the training more efficient; (ii) to rely on a non-uniform choice from the KNN classifier; (iii) to explore other classifiers; and (iv) to test other voting schemas.

Figura 1 .

 1 Figura 1. Accuracy Results for both Pure KNN and LabelRank Methods

 is the number of workflow parameters and m is the number of tuples in the provenance database 2: F : {attr | attr is a workflow parameter } 3: C : {attr_preference | attr_preference ∈ F} ⊲ attr_preference is a workflow parameter where the user defined a value 4: f(attr) : {preference_value | attr ∈ C} ⊲ preference_value is the value defined by user for parameter attr 5: P : {(attr,attr_preference) | attr ∈ C ∧ attr_preference ∈ f(attr)} y | y ∈ (F -C)

	6: procedure FREEP(type)	⊲ Type is used to select between pure KNN or Label Rank
	7:	votes ← ∅; F S ← POWER_SET(C) \ ∅ ⊲ POWERSET it the math operation that returns the set of all
		subsets	
	8:	for each set ∈ F S do	
	9:	horizontal_partition ← ∅	⊲ Horizontal partition holds only the instances matching the user
		preferences	
	10:	for each tuple ∈ S do	⊲ tuple refers to each tuple in the provenance database
	11:	f lag ← true	
	12:	for each (attr, value) ∈ tuple do
	13:	if attr ∈ C & (attr, value) ∈ P then
	14:	f lag ← f alse	
	15:	if f lag then	
	16:	horizontal_partition ← horizontal_partition ∪ {tuple}
	17:	set ← set ∪ {y}; vertical_partition ← ∅
	18:	for each tuple ∈ horizontal_partition do
	19:	f iltered_record_columns ← ∅
	20:		
			value,
		while LabelRank returns the results of the ranking process
	27:	votes ← votes ∪ {vote}	
	28:	recomendation ← GET_RECOMENDATION(type, votes)
	29:	return recomendation	
	30: function GET_RECOMMENDATION(type, votes)
	31:	if type == ′ KN N ′ then	
	32:	return ARGMAXCOUNT(votes)	
	33:	else	
	34:	return BORDACOUNT(votes)	
	35: function BORDACOUNT(rankings)	
	36:	labels ← ∅; labels_votes ← ∅	
	37:	for each rank ∈ rankings do	
	38:	for each label ∈ rank do	
	39:	if label ∈ labels then	
	40:	labels ← labels ∪ label	
	41:	labels_votes ← labels_votes ∪ (label, 0)
	42:	for each rank ∈ rankings do	
	43:	weight ← LENGTH(rank) -1	
	44:	for each label ∈ rank do	
	45:	total_votes ← total_votes | (vote, total_votes) ∈ labels_votes, vote == label
	46:	new_total_votes ← total_votes + 2 weight
	47:	label_vote ← (label, new_total_votes)
	48:	weight ← weight -1	
	49:	recomendation ← ARGMAXLABEL(labels_votes)
	50:	return recomendation	

for each (attr, value) ∈ tuple do 21: if attr ∈ set then 22: f iltered_record_columns ← f iltered_record_columns ∪ (attr, value) 23: vertical_partition ← vertical_partition ∪ f iltered_record_columns 24: recommender ← SELECT_RECOMM(type, vertical_partition) ⊲ Builds the pure KNN or the KNN + LabelRank 25: to_recommend ← {attr_pref erence | (attr, attr_pref erence) ∈ P, attr ∈ set} 26: vote ← RECOMMEND(to_recommend, recommender, type) ⊲ KNN returns the predicted

SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 -Rio de Janeiro, RJ, Brazil

In this initial version, we follow the most basic way of choosing the subsets by using the powerset of the original data. This may lead to an exponential number of partitions.

SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 -Rio de Janeiro, RJ, Brazil

thank FAPERJ, CAPES and CNPq