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Abstract—Heterogenous multicore architectures are becoming
ubiquitous in high-end smartphones. In this paper, we present
a study of two modern heterogeneous multicore architectures
based on real measurements. One architecture implements the
well-established ARM big.LITTLE 2-cluster approach while the
second one takes a leap forward and extends the concept to
3 clusters. In concrete, we analyze the performance of those
platforms running parallel workloads. Furthermore, we study
the energy and power consumption of the 3-cluster architecture
and the effects of high clock frequency on SoC temperature.

I. INTRODUCTION

Traditionally, the continuous increase in processor perfor-
mance was mostly sustained by technology scaling, which
brought higher clock frequencies with every increase in tran-
sistor density. However, power density constraints have kept
clock frequency fairly constant since 2005 and architects
have resorted to multicore architectures to continue increasing
processor performance [1].

Initially, multicore architectures included multiple identical
cores. More recently, the need for higher energy efficiency
motivated the introduction of heterogeneous multicore archi-
tectures, which are firmly consolidating as the main gateway
to higher energy efficiency in the mobile computing market.
Particularly interesting is the concept of single-ISA heteroge-
neous multicore systems introduced by Kumar et al. [2], which
is an attempt to include heterogeneity at the microarchitectural
level while preserving a common abstraction (i.e., the ISA or
Instruction-Set Architecture) to the software stack. In single-
ISA heterogeneous multicore systems, all cores execute the
same machine code and thus, any core can execute any piece
of the code, which greatly simplifies compilation and run-time
management. A body of work built on Kumar’s idea to explore
the architectural design-space of single-ISA heterogeneous
multicore systems [3], [4], [5]. Although very valuable from
a methodological perspective, most of this work is based on
abstract architectural models that are not always in sync with
reality and can lead to erroneous conclusions [6]. Accordingly,
we believe that there is a need to complementarily work on the
evaluation of modern real hardware to constantly verify the
conclusions of such architectural explorations and challenge
and improve the used abstract models.

In this paper, we present the evaluation of two single-ISA
heterogeneous multicore System-on-Chip (SoC) architectures
present in the mobile market. The first SoC includes eight

TABLE I
SPECIFICATIONS OF THE STUDIED SOCS.

MediaTek Helio X20 Samsung Exynos 7 Octa
(MT6797) (7420)

Launched 2016 Q1 2015 Q2
CMOS techn. 20 nm (TSMC) 14 nm (Samsung)
Application CPUs 10 (4+4+2) 8 (4+4)
Memory 2 GiB LPDDR2 3 GiB LPDDR4

(up to 14.9 GB/s) (up to 24.8 GB/s)
OS Android Linux
Products incl. SoC Xiaomi Redmi Note 4 Samsung Galaxy S6

cores organized as two heterogeneous clusters and the second
SoC includes ten cores and extends the heterogeneity to three
clusters. Each of these clusters includes multiple identical
cores that share a common L2 cache memory, such as the
three clusters illustrated in Figure 1. We first compare the
performance of the two SoCs to then continue with a more
detailed evaluation of the 3-cluster architecture. The latter in-
cludes power consumption, energy consumption, and thermal
behavior. Our study shows that the 3-cluster architecture is
able to achieve an optimal tradeoff between energy consump-
tion and execution time. Furthermore, we show evidence of
the importance of run-time thermal management to keep SoC
temperature within reasonable limits.

II. HETEROGENEOUS MULTICORE ARCHITECTURES

In this section, we introduce the two mobile SoCs selected
for our study, namely the MediaTek helio X20 MT6797 [7] and
the Samsung Exynos 7 Octa (7420) [8]. Both include ARMv8
heterogeneous multicore CPUs and are referred in the rest
of the paper as HelioX20 and Exynos7, respectively. We
study these SoCs from a MediaTek X20 development board
and a Howchip EXSOM-7420 evaluation platform. Some
relevant specifications of the SoCs are shown in Table I.

The Exynos7 is based on the ARM big.LITTLE tech-
nology [9], which instantiates two types of cores. LITTLE
cores are designed for maximum power efficiency while big
cores are designed to provide maximum compute performance.
Interestingly, both types of cores are coherent and share the
same ARMv8 ISA. Each cluster is composed of four cores
and has its private L2 cache memory. The big cluster features
out-of-order ARM Cortex-A57 cores clocked at a maximum
frequency of 2.1 GHz. Instead, the LITTLE cluster features
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Fig. 1. The Mediatek Helio X20 MT6797 includes a 3-cluster heterogeneous
multi-core architecture. One cluster is optimized for best power efficiency, a
second cluster for a balance between performance and power efficiency and
a last cluster for best performance.

in-order ARM Cortex-A53 cores clocked at a maximum fre-
quency of 1.5 GHz.

The HelioX20 takes a leap forward in core heterogeneity
and includes the 3-cluster architecture shown in Figure 1.
One cluster is optimized for best performance, which in-
cludes two out-of-order ARM Cortex-A72 cores clocked at
a maximum frequency of 2.31 GHz. A second cluster is
optimized for power efficiency, which includes four in-order
ARM Cortex-A53 cores clocked at a maximum frequency of
1.39 GHz. Lastly, a third cluster is optimized for a good perfor-
mance/power balance, which also includes four ARM Cortex-
A53 cores but able to reach a higher maximum frequency of
1.85 GHz. In an attempt to maintain a certain consistency
between the two SoCs, we have renamed the HelioX20
clusters as big.Medium.LITTLE.

III. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the selected
SoCs running five programs of the PARSEC 3.0 benchmark
suite [10]. The benchmark originally includes 13 programs,
but only 11 were successfully compiled and executed on the
Exynos7, which runs Linux. However, the HelioX20 does
not support Linux but Android. As a result, only 5 out the 11
programs could be compiled (by setting the static flag) and
successfully executed on Android.

All the programs in the benchmark suite support multi-
threaded parallelization and follow a data-parallel or pipeline
parallelization strategy. The user can control the num-
ber of threads spawned with a parameter passed to
the binary. blackscholes, canneal, ferret, and
streamcluster are parallelized using pthreads while
freqmine is parallelized using OpenMP, which has a much
higher level of abstraction.

We first present the performance evaluation of the entire
SoC to then analyze the performance differences of the indi-
vidual cores.
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Fig. 2. Execution time of the Region of Interest of the selected PARSEC
programs with native input set when varying the number of threads.

A. SoC Performance

The HelioX20 and Exynos7 run the Linux kernel
v3.18.22 and v3.10.61, respectively. Note that Android in-
cludes a Linux kernel. Accordingly, both kernels use the
Native POSIX Thread Library (NPTL) v2.21. The NPTL is
a so-called 1 × 1 threads library, in that threads created by
the user via the pthread_create() library function (also
known as user-level threads) are in 1 to 1 correspondence
with schedulable entities in the kernel (also known as kernel-
level threads). Furthermore, our Linux kernel includes the
extensions implemented by the Linaro group to implement
multi-core load balancing in ARM big.LITTLE architectures.
Concretely, we make use of the Global Task Scheduler (GTS),
which has the ability to use all cores simultaneously and it is
designed to improve peak performance and to include finer-
grained control of workloads that are migrated between cores,
reducing kernel overhead. In the Exynos7, the GTS scheduler
creates a list of big and LITTLE cores that is used to pick
the target core for a particular task. Then, using runnable
load average statistics, the modified Linux scheduler tracks
the average load of each task and migrates tasks to the best
core. High-intensity tasks (i.e., tasks with a high average
load) are migrated to the big core(s) and are also marked
as high-intensity tasks for more efficient future allocations.
Low-intensity tasks remain resident on the LITTLE core(s).
The GTS scheduler is not limited to two clusters and in the
HelioX20 the scheduler is configured to work with three
clusters. In this case, the LITTLE and Medium cores are used
to run the low and medium intensity tasks, respectively, and
the big cores are only used to deliver the instantaneous peak
performance demanded by the computing-intensive or time-
responsive tasks [11].

Figure 2 shows the execution time of the different programs
when varying the number of generated threads in both the
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Exynos7 and the HelioX20 SoCs. The reported execution
times correspond to the Region of Interest (ROI) of the
native input set—the largest available input set. In general,
both SoCs follow a similar trend and more threads running
on parallel generally lead to faster executions times. For the
single-threaded execution, the HelioX20 is faster in 3 out
of the 5 programs. However, for the 2-threads execution, the
Exynos7 catches up and achieves a faster execution in all the
programs. This may be due to cluster management differences
between the two SoCs. Furthermore, we observe that programs
like blackscholes or freqmine are still able to achieve
a speedup in the 8 to 10 threads transition while others such
as canneal or streamcluster start to saturate after 4
threads.

B. Cluster Management

By default, the Exynos7 has all the cores online while the
HelioX20 has most of the cores offline and wakes them up
on demand. The Mediatek core manager, known as hps or
hot-plug strategy, continuously adapts the online cores to the
computation load, which makes it very hard to monitor the
thread-to-core pinning of a particular execution.

Besides, the Exynos7 uses the interactive fre-
quency governor for all its CPUs, while the HelioX20
uses interactive for the slow A57 cores (i.e., the LIT-
TLE cluster) and the A72 cores (i.e., the big cluster), and
ondemand for the fast A57 cores (i.e., the Medium cluster).
The ondemand governor is commonly chosen by smartphone
manufacturers because it is well-tested, reliable, and virtually
guarantees the smoothest possible performance for the phone.
This governor scales its clock speed in a work queue context.
Accordingly, once the task that triggered the clock speed
ramp is finished, the clock speed will be moved back to
the minimum. However, If the user executes another task
that triggers a new ramp, the clock speed will bounce from
minimum to maximum, which can lead to negative effects on
battery life. Instead, the interactive governor scales the
clock speed over the course of a timer set arbitrarily by the
kernel developer. As a result, if an application demands a ramp

to maximum clock speed (by placing 100% load on the CPU),
a user can still execute another task before the governor starts
reducing CPU frequency. This can eliminate the frequency
bouncing discussed earlier. Furthermore, this governor is bet-
ter prepared to utilize intermediate clock speeds that range
between the minimum and maximum CPU frequencies thanks
to its timer-based approach.

The differences in core and frequency management between
the two SoCs makes it difficult to analyze in further detail the
performance of the two architectures. Accordingly, we disable
those mechanisms and study the individual core performance
in the following subsection.

C. Individual Core Performance

To gain control, we override the default configurations
of the two SoCs. In the Exynos7, we set the frequency
governor to userspace. Thereby, we can control from
the user space the frequency of each core by modifying
the scaling_setspeed file. Fore example, the following
command:

$ echo 220000 > / s y s / d e v i c e s / sys tem / cpu / cpu0 /
c p u f r e q / s c a l i n g s e t s p e e d

sets core number zero to 220 MHz. In the HelioX20, we
first disable the hps with the following command:

$ echo 0 > / p roc / hps / e n a b l e d

Once hps is disabled, we can can set the frequency gov-
ernor to userspace and wake up the individual cores (e.g.,
core number zero) with the following command:

$ echo 1 > / s y s / d e v i c e s / sys tem / cpu / cpu0 / o n l i n e

Accordingly, we wake up all the cores of the HelioX20.
Furthermore, we set all the cores in both SoCs to their
maximum clock frequency. We then use taskset to pin the
program to the desire core and execute single-threaded PAR-
SEC programs on each core type. Figure 3 shows the resulting
execution times normalized with respect to the HelioX20
LITTLE cores.



The HelioX20 big cores are ARM Cortex-A72, which is a
more modern out-of-order architecture than the ARM Cortex-
A57 of the Exynos7 big cores. Furthermore, the HelioX20
big cores are clocked at a maximum frequency of 2.31 GHz
while the Exynos7 big cores can only reach 2.1 GHz. Thus,
one should expect the HelioX20 big cores to outperform
the Exynos7 big cores, which is what the geomean shows in
Figure 3: the HelioX20 big cores are 2.20 times faster than
the HelioX20 LITTLE cores, while the Exynos7 big cores
are 2.12 times faster. However, this is not the case for all the
programs: the Exynos7 big cores are significantly faster in
the execution of streamcluster and ferret. The reason
being that, despite the superiority of the HelioX20 big core
architecture, the Exynos7 SoC includes a much faster main
memory (24.8 GB/s vs 14.9 GB/s), which leads to faster
executions of memory bounded programs.

All the remaining cores have the same in-order ARM
Cortex-A53 architecture and only differ in their maximum
clock frequency: 1.39 GHz in the HelioX20 LITTLE core,
1.5 GHz (+7%) in the Exynos7 LITTLE core, and 1.85
GHz (+32%) in the HelioX20 Medium core. In average, the
Exynos7 LITTLE cores and the HelioX20 Medium cores
are 5% and 13% faster than the HelioX20 LITTLE cores.

IV. ENERGY CONSUMPTION AND THERMAL EVALUATION

In this section, we concentrate our evaluation on the
HelioX20 SoC, as we consider its increased heterogeneity,
which goes one step beyond the traditional big.LITTLE archi-
tectures, of greater interest to study energy consumption and
thermal behavior.

We use two OpenMP programs of the Rodina benchmark
suite [12], namely heartwall and lud. We disable the
hps as shown in the previous section and pin the OpenMP
threads to cores with the GOMP_CPU_AFFINITY environ-
ment variable. We also select the dynamic OpenMP scheduler
with the OMP_SCHEDULE environment variable. Note that
a static OpenMP scheduler will be highly inefficient in our
heterogeneous multicore cluster architectures: since the work
is distributed evenly between all threads, the big cores will
finish their work faster and need to wait idly for the slower
LITTLE cores to finish their work. Instead, the dynamic
scheduler distributes dynamically the work between threads
so that the threads pinned to faster cores will be able to do
more work.

A. Measuring Power and Temperature

We use the Agilent Technologies (now KEYSIGHT)
N6705B DC Power Analyzer to measure the current con-
sumption of the board. We configure the power analyzer in
Current Measure and connect it in series between the board
and its power supply. The power supply gives 12 Volts and
limits the current to 2 Amperes, which results in a maximum
power delivery of 24 Watts. We configure the power analyzer
to capture 100 samples per second. The captured current is
then multiplied by the 12 Volts of the supply voltage to obtain
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Fig. 4. Power consumption (top) and SoC temperature (bottom) of the
execution of lud and heartwall on the HelioX20 SoC.

power. The top graph of Figure 4 shows the power consump-
tion measured on the HelioX20 SoC while executing lud
and heartwall with ten OpenMP threads, each pinned to a
different core.

We measure the SoC temperature by using a file interface
provided by the Linux kernel. The following command prints
the current temperature of the SoC:

$ c a t / s y s / c l a s s / t h e r m a l / t h e r m a l z o n e 1 / temp

Accordingly, we wrote a lightweight script that samples the
SoC temperature every second. The bottom graph of Fig-
ure 4 shows the temperature evolution of the HelioX20
SoC while executing lud and heartwall. We observe that
the execution of lud triggers a lower power consumption
than the execution of heartwall. As a result, the SoC
temperature barely reaches 60◦C during a lud execution
while it rapidly grows up to 85◦C during a heartwall
execution. Thus, we conclude that the heartwall program
triggers a more intensive use of the SoC microarchitecture
and becomes a good example application to study the limits
of such a heterogeneous SoC in terms of power consumption
and temperature.

B. Energy-Performance tradeoffs

In this subsection, we study the tradeoffs between energy
consumption and performance enabled by a 3-cluster hetero-
geneous multicore architecture.

Energy-Performance Pareto. In a first experiment, we execute
the two Rodinia programs under the following cluster config-
urations:

• L: Only the LITTLE cluster is active (4 threads).
• M: Only the Medium cluster is active (4 threads).
• B: Only the big cluster is active (2 threads).
• B+M: The big and Medium clusters are active (6 threads).
• B+L: The big and LITTLE clusters are active (6 threads).
• M+L: The Medium and LITTLE clusters are active (8

threads).
• B+M+L: All clusters are active (10 threads).
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The execution of lud (right) and heartwall (left) under
the different cluster configurations is projected on the execu-
tion time vs energy consumption Pareto space in Figure 5.
Using only the big cluster for these type of parallel workloads
is highly suboptimal as it is the most energy-hungry configu-
ration and only the 4th or 5th fastest configuration. Using only
the LITTLE cluster is the most energy efficient configuration
for running heartwall and the second most energy efficient
configuration for running lud. However, in both cases, their
execution times are around 2.5 times slower than those of the
fastest configurations. Using only the Medium cluster achieves
the same performance as using the big cluster for running
heartwall but consumes about half of the energy. Instead,
lud runs sensibly faster using only the Medium cluster than
using only the LITTLE cluster and consumes significantly less
energy than using only the big cluster.

Considering the use of two clusters, the use of the Medium
and the LITTLE cluster is always a Pareto optimal con-
figuration. The reminding two-cluster configurations, namely

big+Medium and big+LITTLE, are always Pareto dominated
by the superior three-cluster configuration, which is both faster
and more energy efficient. Finally, we observe that using the
three clusters is faster but slightly more energy-hungry than
the best use of two clusters (i.e., M+L).

Switching off cores. In this experiment, we start with the exe-
cution of heartwall on the HelioX20 with all the cores
online and study the effect in average current consumption of
switching off the fastest cores one at a time. Figure 6 illustrates
the reduction in average current as a function of the number
and type of online cores. Running with all the cores switched
on consumes 670 mA. Switching off one of the big cores
saves 60 mA, which is just 9% of the original consumption.
Instead, if we switch off the two big cores (i.e., the entire
big cluster) the current consumption drops to 330 mA, which
corresponds to 48% of the original consumption. Switching
off a Medium core saves 48 mA, which is 7% of the original
consumption. Note that the graph shows a remarkable linear



behavior as Medium cores are switched off. After switching
off the Medium cluster, the current consumption drops to 150
mA, which corresponds to 22% of the original consumption.
Switching off a LITTLE core saves 24 mA, which is 4% of the
original consumption. Having only one LITTLE core online
consumes 75 mA, which is about 9 times less than the original
current consumption.

Based on the experiment, we can conclude that the use
of the big cluster is considerably expensive in terms of
current/power consumption. Accordingly, it will rarely lead to
higher energy efficiency as not many applications will achieve
the speed up necessary to compensate for the extra power
consumption (i.e., more than a two times speed up). Further-
more, we can see that the HelioX20 has been designed to
provide excellent power scalability, with a factor 9 between
the least and the most performing configuration. We have also
measured the standby current (i.e., current consumed when no
application is executed) of the different configurations: 80 mA
when the three clusters are online, 71 mA when only the big
cluster is online, 58 mA when only the Medium cluster is
online, and 48 mA when only the LITTLE cluster is online.
Thus, the LITTLE cluster standby current consumption is 14
times lower than that of running heartwall on all the cores.

But power scalability does not necessarily translate into
energy scalability. Figure 7 shows the energy consumption vs
execution time of the configurations presented in Figure 6. The
configuration with the lowest current consumption turns out to
be 11.5 times slower than the fastest configuration and thus
becomes the more energy-hungry configuration. The latter is
two times more energy-hungry than the most energy efficiency
configuration. Based on these results, we can conclude that
data parallel applications run more efficiently in clusters
having all their cores online. This is particularly evident in
the big and the LITTLE cluster, in which switching off cores
only leads to slower and more energy-hungry configurations.

Finally, we use the Linux perf tool to gain access to the
core performance counters and study the utilization factor of
each core. In concrete, we read the number of cycles that each
core is active and divide that value by the execution time. The
latter results in the effective frequency of operation of that core
and the ratio between this effective frequency and the actual
core frequency gives the core utilization factor. Based on that
metric, we can assess that the LITTLE cluster configuration
(i.e., 4L) achieves a utilization factor of 91% while the three-
cluster configuration (i.e., 2B4M4L) achieves a utilization of
53% for the big cores, 57% for the Medium cores and 89%
for the LITTLE cores. This indicates that, despite using the
dynamic OpenMP scheduling, the fastest cores still spend
a sizable amount of time idle.

C. Thermal Evaluation

In this subsection, we study how the cluster configuration
affects the HelioX20 SoC temperature. The execution of
heartwall shown in Figure 4 starts with the big cores
configured at their maximum frequency of 2.31GHz, however,
the frequency drops to 1.5 GHz at the end of the execution.
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Fig. 8. Heating up process of a Medium core running heartwall at 1.09
GHz. A Tmax of 55◦C is reached after more than 2000 seconds.

As one can see in the bottom graph, a thermal supervisor
is overruling our setting of maximum frequency to keep
SoC temperature below a thermal threshold that seems to
be set at around 80–85◦C. Accordingly, thermal management
is becoming paramount as mobile platforms keep on using
increasingly powerful cores.

To better understand the heating process and how this is
influenced by the core clock frequency, we run multiple con-
secutive heartwall executions on a Medium core config-
ured to an intermediate clock frequency of 1.09 GHz. Figure 8
shows the resulting temperature evolution. We identify three
different phases: (1) quick temperature increase, (2) slow
temperature increase, and (3) stable temperature of Tmax. The
latter is a function of the application, the core architecture, the
core frequency, the type of heat spreader (see the picture in
Figure 11) and the ambient temperature.
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We overrule the default thermal configuration and set the
new threshold to 120◦C by running the following command:

$ the rma l manag e r / e t c / . t p / . h t120 . mtc

Then, we repeat the same experiment but starting now at
the maximum clock frequency of the Medium core (i.e.,
1.84 GHz) to change back to 1.09 GHz after 340 seconds.
Figure 9 shows how the temperature quickly shoots up to more
than 90◦C while running at maximum frequency. Once the
frequency is reduced, the temperature quickly decreases and
slowly reaches the Tmax of the final frequency. The figure also
shows that the execution starting with the maximum frequency
finishes executing all the heartwall instances faster than the
run at a constant frequency. That acceleration comes at the
expense of a temperature increase and higher instantaneous
power consumption. While the latter does not necessarily
translate into a higher energy consumption, provided that the
achieved acceleration is large enough, the temperature increase
can be fatal: excessive temperature may harm users and even
damage permanently the SoC.

Figure 10 extends the experiment to include the thermal
behavior of the LITTLE cores. We observe that the LITTLE
cores are more thermal friendly than the Medium cores and
remain well below 60◦C when running at their maximum
frequency (i.e., 1.39 GHz). Interestingly, we can see the
thermal difference between the Medium and LITTLE cores
when running both at 1.09 GHz. Since they both have the same
core architecture and frequency, the execution time is exactly
the same. However, the Medium core reaches a Tmax of 53◦C
while the LITTLE core remains below 45◦C. When running
at the minimum frequency (i.e., 220 MHz), the LITTLE core
remains below 35◦C but requires more than 2900 seconds to
complete the execution.

Considering that the threshold for thermal throttling (i.e.,
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Fig. 10. Thermal behaviour of LITTLE (L) and Medium (M) cores run-
ning the same heartwall load at different frequencies. When running at
1.09 GHz, a Medium core heats up 8◦C more than a LITTLE core.
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Fig. 11. Variation of the Tmax reached by a Medium core while running
heartwall as a function of the clock frequency. Thermal throttling will be
needed for frequencies above 1.5 GHz.

reduction of frequency to avoid overheating) is set around
80◦C by default, we sweep different clock frequencies of the
Medium core to find the maximum frequency that can be
used without overheating above the 80◦C. Figure 11 shows
the Tmax of different frequencies of the Medium core run-
ning heartwall. To avoid thermal throttling, the frequency
should not exceed the 1.5 GHz. Note that the maximum
frequency of a LITTLE core is 1.39 GHz, so the frequencies
that lead to thermal throttling in Medium cores are basically
the ones making those cores superior in performance. But
thermal throttling will only be necessary after several minutes
of continuous intense processing. For instance, a Medium core
can process heartwall at its maximum frequency during
190 seconds before overheating above the 80◦C.

The big cores are particularly susceptible to thermal throt-
tling due to their more complex architecture (e.g., deeper
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Fig. 12. Time that a big core can sustain heartwall processing before
overheating above 80◦C. At its maximum frequency (i.e., 2.31 GHz), a big
core can only run 6 seconds before activating thermal throttling.

pipeline, higher parallelism, etc.) and higher frequencies. Fig-
ure 12 shows the time that a big core can sustain heartwall
processing before overheating above 80◦C depending on the
core frequency. At its maximum frequency, a big core can only
run 6 seconds before activating thermal throttling.

V. CONCLUSIONS

In this paper, we have presented a study of two modern
heterogeneous multicore architectures based on real measure-
ments. We have compared the performance of a typical 8-
cores big.LITTLE Exynos7 architecture with a more exotic
10-core HelioX20 architecture that extends the concept of
heterogeneous clusters from two to three.

Performance-wise, we do not see an advantage in increasing
the number of cores from 8 to 10. On the contrary, the
HelioX20 is faster in 3 out of the 5 programs in the single-
threaded execution. However, for the 2-threads execution, the
Exynos7 catches up and achieves a faster execution in all the
programs. When studying the individual cores, the superior
A72 big cores of the HelioX20 outperform the A57 big
cores of the Exynos7 for the compute intensive programs.
However, the trend is reversed in memory intensive workloads
that take advantage of the superior LPDDR4 of the Exynos7
SoC, which is almost two times faster than the HelioX20
LPDDR2.

We have further analyzed the energy and power consump-
tion of the HelioX20 3-cluster architecture. We have found
that running on the 3 clusters is a Pareto optimal use of
the architecture in the energy consumption vs execution time
design space. Running on the Medium and LITTLE cluster
is also Pareto optimal, saving in energy consumption at the
expense of a longer execution time. We have also found a
factor 9 power scalability between the fastest (i.e., all cores

online) and slowest (i.e., only on LITTLE core online) core
configuration. However, this remarkable power scalability only
translates to a limited energy proportionality when running a
parallel program. For example, switching off the big cluster
during the execution of heartwall can save 25% of the
energy at the expense of 30% longer execution time.

The high-performance configurations of the HelioX20
consume around 8 Watts of power, which critically affects SoC
temperature. Our experiments show that a Medium core will
activate thermal throttling when running at frequencies higher
than 1.5 GHz during a certain time. For example, thermal
throttling will be activated after running the Medium core at
its maximum frequency for a period of 190 seconds. The big
cores are even more sensitive to overheating and will activate
thermal throttling after only 6 seconds of processing at its
maximum frequency. Accordingly, we conclude that the big
cores of such an architecture are not meant to support sustained
processing but rather to assist processing in sporadic cases.
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