
HAL Id: lirmm-01871487
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01871487v1

Submitted on 10 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assisting Configurations-based Feature Model
Composition: Union, Intersection and Approximate

Intersection
Jessie Carbonnel, Marianne Huchard, André Miralles, Clémentine Nebut

To cite this version:
Jessie Carbonnel, Marianne Huchard, André Miralles, Clémentine Nebut. Assisting Configurations-
based Feature Model Composition: Union, Intersection and Approximate Intersection. 12th Interna-
tional Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), Apr 2017,
Porto, Portugal. pp.116-140, �10.1007/978-3-319-94135-6_6�. �lirmm-01871487�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01871487v1
https://hal.archives-ouvertes.fr

Assisting Configurations-based
Feature Model Composition:

Union, Intersection and Approximate Intersection

Jessie Carbonnel1, Marianne Huchard1,
André Miralles2, and Clémentine Nebut1

1 LIRMM, CNRS and Université de Montpellier,
161 rue Ada, 34095, Montpellier Cedex 5, France

{jessie.carbonnel,marianne.huchard,clementine.nebut}@lirmm.fr
2 TETIS, IRSTEA, 500 rue Jean-François Breton,

34093, Montpellier Cedex 5, France
{andre.miralles}@teledetection.fr

Abstract. Feature Models (FMs) have been introduced in the domain of
software product lines to model and represent product variability. They
have become a de facto standard, based on a logical tree structure ac-
companied by textual cross-tree constraints. Other representations are:
(product) configuration sets from concrete software product lines, log-
ical representations, constraint programming, or conceptual structures,
coming from the Formal Concept Analysis (FCA) framework. Modeling
variability through FMs may consist in extracting them from configura-
tion sets (namely, doing FM synthesis), or designing them in several steps
potentially involving several teams with different concerns. FM composi-
tion is useful in this design activity as it may assist FM iterative building.
In this paper, we describe an approach, based on a configuration set and
focusing on two main composition semantics (union, intersection), to
assist designers in FM composition. We also introduce an approximate
intersection notion. FCA is used to represent, for a product family, all
the FMs that have the same configuration set through a canonical form.
The approach is able to take into account cross-tree constraints and FMs
with different feature sets and tree structure, thus it lets the expert free
of choosing a different ontological interpretation. We describe the imple-
mentation of our approach and we present a set of concrete examples.

Keywords: Software Product Line, Feature Model, Feature Model Com-
position, Feature Model Merging, Formal Concept Analysis

1 Introduction

Software Product Line Engineering (SPLE) is a development paradigm which
aims to develop a set of related and similar software systems as a single entity
rather than developing individually each software system [30]. From a devel-
opment point of view, the core of this methodology is a generic architecture

where off-the-shelf reusable artifacts can be plugged depending a given set of
requirements, and from which can easily be derived a set of software variants.
SPLE is composed of two phases. Domain engineering consists in analyzing and
representing the domain, developing the off-the-shelf artifacts and implementing
the generic architecture. Application engineering consists in giving the final user
the opportunity to select the characteristics she/he wants in her/his software
product, and then to derive the corresponding software variant composed with
the matching artifacts.

Variability modeling is a task that takes place during domain representation.
It consists in modeling what varies in the software variants, and how it varies.
It is central to SPLE paradigm, as a substantial part of the method is based
on the variability representation, as for instance designing the generic architec-
ture, or guiding the user to select characteristics. The most common approaches
model variability in terms of features, where a feature is a distinguishable char-
acteristic which is relevant to one or several stakeholders. Feature models (FMs)
are considered the standard to model variability with these approaches. They
are a family of visual/graphical languages which depict a set of features and
dependencies between these features. FMs are used, amongst others, to derive
selection tools for the end product designer.

Nowadays, practitioners have to cope with product lines which are more and
more complex. Managing one, huge feature model representing the whole product
line is unrealistic. A solution to ease the application of the SPLE approach in
these cases is to divide the product line according to various concerns and to
manage a separate and specific feature model for each concern. However, even
though it is easier to manage separate FMs, for some design activities it can
be useful to merge these FMs, as for commonalities analysis between different
concerns. Therefore, defining operations that enable feature model composition
is necessary. Feature model composition also has other purposes, in the context
of Software Product Line reengineering, for feature model reuse and adaptation.

Several approaches for FM composition have been proposed in the past, that
are reported in [1]. The main directions for feature model composition in the
literature are using operators on the feature model structure, or propositional
logic computation. Although these approaches have their advantages, either they
tend to confine the designer in a predefined ontological view, or they produce
approximate results, or they need a significant work to build a feature model
from the result (when the result is a logic formula). Besides, operators on feature
model structure hardly take into account the textual cross-tree constraints.

In this paper, we investigate feature model composition in the contexts where
the product configuration set is known (or can be obtained) and where the en-
tities to be composed are either several feature models, or a feature model and
a product configuration set, or several product configuration sets. The paper
extends previous research presented in [15]. The approach uses the framework
of Formal Concept Analysis [22] which provides relevant tools for variability
representation. This framework ensures the production of sound and complete
compositions, taking into account the cross-tree constraints. Our approach ex-

ploits Formal Concept Analysis properties to produce intermediate canonical
and graphical representations (Equivalence Class Feature Diagrams, or ECFDs)
which give assistance to a designer to manually derive a feature model. The
ECFD contains all the possible ontological links and avoids confining the de-
signer in a specific ontological view. Two main composition operations are de-
fined (union and intersection), and, in this paper, we also study the problem of
common sub-configuration extraction (approximate intersection), which arises
when the intersection is empty, but the feature models have some similarities.
Except in extreme cases, the approximate intersection is not empty. We present
a prototype tool which computes union, intersection, and approximate intersec-
tion, and we conduct an evaluation on real feature models. The results allow us
to show concrete situations where the approach is scalable, to draw its scope of
applicability and to compare the different operations.

Next Section 2 defines feature models and gives an overview of the approach.
Section 3 introduces the main composition operations (union and intersection).
Section 4 introduces Formal Concept Analysis and shows how the framework
helps to build an intermediate canonical and graphical representation with the
aim to assist a designer in feature model composition. The section also proposes
an assisting approach for the extraction of common sub-configurations (approx-
imate intersection) which is based on the conceptual structure. The prototype
tool and the evaluation are presented in Section 5. Related work and a discus-
sion are developed in Section 6. Section 7 summarizes the approach and provides
perspectives for this research.

2 Context and overview

In this section, we define feature models (Section 2.1), then we provide an
overview of the compositional approach (Section 2.2).

2.1 Feature Models

The most common SPLE approaches model variability in terms of features,
where a feature is a distinguishable characteristic which is relevant to some of
the involved stakeholders. Feature Models (FMs) are considered the standard
to model variability with these approaches [25]. They are a family of visual lan-
guages which depict a set of features and dependencies between these features [5].
In this way, they define the legal combinations of these features, namely the pos-
sible software variants of the product line (also called product configurations or
simply configurations). In FMs, the features are organized in a hierarchy, where
each feature represents a characteristic or a concept at several levels of increasing
details, and where each edge represents an ontological relation as ”is-a-kind-of”,
”refines”, ”is-a-part-of”, ”implements”, etc. Dependencies are expressed on the
edges of the tree with graphical decorations, or in textual cross-tree constraints.
Figure 1 gives an example of an FM representing an SPL about e-commerce ap-
plications, in the most common formalism (FODA [25]). The example states that

e commerce (root feature) requires a catalog. This mandatory relation is indi-
cated through an edge ending with a black disk. Also, it shows that e commerce

optionally possesses a basket, and this is indicated by an edge ending with a
white circle. In FMs, the children of a feature may also be grouped into xor
groups (meaning that if the parent feature belongs to a configuration, exactly
one child feature of the group is also present) or into or groups (meaning that if
the parent feature belongs to a configuration, one or more child features of the
group are also present). An xor group is indicated by a black line connecting the
edges going from the parent to the children of this group. In the example, one
can see that an e commerce application proposes a catalog presentation as a
grid or as a list (but not both). An or group is indicated by a black filled zone
connecting the edges going from the parent to the children of this group. We can
see in the example that the proposed payment method may be credit card, or
check, or both. In Figure 1, two cross-tree constraints, are added to the feature
tree, to indicate a mutual dependency between payment method and basket.

payment method→ basket
basket→ payment method

Optional

Xor

Mandatory

Or

Requires Exclude

Fig. 1. Left-hand side: An FM describing the variability in a family of e commerce
applications in FODA formalism. Right-hand side: Main feature tree annotations.

An FM owns an ontological semantics. Closeness and correspondences be-
tween FMs and ontologies are studied in [18]. The ontological semantics is the
domain knowledge expressed by the feature tree along with the other feature
dependencies (groups, mutex and constraints). For instance, we can read in the
e-commerce FM that catalog is a mandatory characteristic that refines the
concept of e commerce, and that (pay with) check implements the concept of
payment method. In our work, we also are interested in another semantics of
feature models, the configuration semantics. It is given by the set of valid con-
figurations, which are the combinations of features (feature sets) which respect
all the dependencies given by the FM. The set of configurations of an FM f is
denoted by 〚 f 〛. Our e-commerce FM here has 8 valid configurations, which
correspond to the description of the 8 possible software variants of the product

line. Equation 1 shows 〚 e commerce 〛.

Ec,Ca,G Ec,Ca, L

Ec,Ca,G, Pm,Cc,B Ec,Ca, L, Pm,Cc,B

Ec,Ca,G, Pm,Ch,B Ec,Ca, L, Pm,Ch,B

Ec,Ca,G, Pm,Cc, Ch,B Ec,Ca, L, Pm,Cc, Ch,B

(1)

2.2 Compositional Approach Overview

Figure 2 illustrates the proposed composition operations. The input can be: two
feature models (top left), one feature model and one configuration set (bottom
left), or two configuration sets (not illustrated). The configuration sets are com-
puted for each input feature model, and then represented in the form of formal
contexts. The composition operations (union and intersection) are made on the
formal contexts. A conceptual structure (here an AC-poset, namely a structure
only containing the concepts introducing the features) is built for the union
(resp. intersection) formal context. The ECFD, which is a canonical and graph-
ical structure is then extracted from the AC-poset; it supports the designer to
compose a new FM. All these notions are explained in the next sections.

A

B C

A

B

D

U

U

union
AC-poset

intersection
AC-poset

A B C

C1

C2

A B D

C3

C4

formal context FC1

formal context FC2

A B

C1-3

A B C

C1-3

C2

C4

D

FORMAL CONCEPT ANALYSIS ECFD
extraction

union formal context

intersection formal context

union-ECFD

intersec.-ECFD

{A,B}
{A,B,D}

A

B C

OR

F1

F2

Fig. 2. An overview of the FM composition process. The FMs F1 and F2 (top left)
have resp. FC1 and FC2 as associated configuration sets / formal contexts.

3 Feature Model Composition

In this section, we define the union and intersection of feature models (Section
3.1), then we discuss the main existing approaches to implement them in order
to motivate ours (Section 3.2).

3.1 Intersection/union based composition

Nowadays, practitioners have to cope with product lines which are more and
more complex, and managing one, huge feature model representing the whole
product line is unrealistic. To ease the application of the SPL approach in these
cases, a solution is to divide the product line according to separate concerns
and to manage a distinct and more specific feature model for each one of these
concerns. However, even though it is easier to manage, for some design activities
it can be necessary to merge these feature models (or part of them), and therefore
we need operations that enable feature model composition [2]. Among the various
composition operations shown in [2], merge-union and merge-intersection have
a special place for managing FMs that give different views of a system. Merge-
union is an integrated view, while merge-intersection allows to highlight the
common core. They are defined using the configuration semantics as follows.

Definition 1 (Merge-intersection [1]).
The merge-intersection operation, denoted by ∩, builds a feature model FM3

from two feature models FM1 and FM2 such that 〚FM3〛=〚FM1〛∩ 〚FM2〛.

Definition 2 (Merge-union [1]).
The merge-union operation, denoted by ∪∼, builds a feature model FM3 from
two feature models FM1 and FM2 such that 〚FM3〛⊇〚FM1〛∪ 〚FM2〛. This is
an approximate union.

Definition 3 (Merge-strict-union [1]).
The merge-strict-union operation, denoted by ∪, builds a feature model FM3

from two feature models FM1 and FM2 such that 〚FM3〛=〚FM1〛∪ 〚FM2〛.

By definition, the merge-strict-union is a restriction of the merge-union. Fig-
ure 2 illustrates merge-intersection and merge-strict-union on a simple example,
with 〚F1〛= {{A,B}, {A,B,C}} and 〚F2〛= {{A,B}, {A,B,D}}. Thus intersec-
tion and strict union are as follows: 〚F1〛∩ 〚F2〛= {{A,B}} and 〚F1〛∪ 〚F2〛=
{{A,B}, {A,B,C}, {A,B,D}}. An example of a merge-union is given in next
Section 3.2.

3.2 Comparing main implementations of composition operations

Several methods have been proposed for implementing merge-union and merge-
intersection. The two main approaches are based on the feature tree structure or
on the logic formula associated with the FMs [2]. Both take as input two feature
models.

The approach based on logic formulas consists in using the logic formulas
that are equivalent to the FMs to be merged. In our case, a formula for F1 can
be (A∧B)∨ (A∧B∧C), while a formula for F2 can be (A∧B)∨ (A∧B∧D). In
[2], the proposed formula for the merge-intersection (resp. merge-strict-union)
is given by Equation 2 (resp. Equation 3). While the approach is sound and
complete, and can be implemented using the FM to derive the logic formula

as defined in [11], it needs to be completed by a second step consisting in FM
extraction from the logic formula, for example, using the approach given in [19].

(((A ∧B) ∨ (A ∧B ∧ C)) ∧ (¬D)) ∧ (((A ∧B) ∨ (A ∧B ∧D)) ∧ (¬C)) (2)

(((A ∧B) ∨ (A ∧B ∧ C)) ∧ (¬D)) ∨ (((A ∧B) ∨ (A ∧B ∧D)) ∧ (¬C)) (3)

For discussing the structural approach based on the feature tree, we need
to introduce a slightly more complicated example, and we use a follow up of
the e-commerce example. Figure 3 presents two feature models representing e-
commerce applications and that are to be merged. Table 1 presents their re-
spective sets of valid configurations. These configurations are given an identifier
(such as FM1C1) for later use in the paper. The structural approach is based
on a set of composition rules which compute the merge-intersection and the
merge-union. These rules are listed in [2]. Their result is shown in Figure 4. For
example, a rule for merge-union composition establishes that the xor group be-
low Catalog of FM2, when merged with the mandatory grid feature of Catalog
in FM1, gives an or group below Catalog in the merge-union (see right-hand
side of Figure 4). An underlying hypothesis in this approach is that the same
set of features is shared by the two FMs to be merged. In our case, this is not
the case and the rules sometimes produce a non-strict merge-union, as for ex-
ample configuration {Ec,Ca,G,L, Pm,Ch} is not in the merge-strict-union of
the configurations appearing in Table 1: this configuration indeed contains L
which is not available in FM1, and Ch which is not available in FM2. A main
characteristic of this approach is that the rules do not reconsider all the onto-
logical semantics and especially the child-parent relationships. In our example,
two different solutions for attaching payment method may be considered: below
e commerce, as it is preserved by the structural rule or below catalog, which is
an alternative that can be considered by a designer (with a ”part-of” semantics
in the associated software components), but is not proposed by the rule. Besides,
it is important to underline that this approach does not take into account the
cross-tree constraints, if some exist.

e_commerce (Ec)

catalog (Ca) payment_method (Pm)

grid (G) credit_card (Cc) check (Ch)

e_commerce (Ec)

catalog (Ca) payment_method (Pm)

grid (G) list (L) credit_card (Cc)

Fig. 3. Two feature models (left-hand, FM1 and right-hand, FM2) representing e-
commerce applications and that are to be merged.

Table 1. Configuration sets of FM1 and FM2 from Figure 3.

Ec Ca G Pm Cc Ch

FM1C1 x x x

FM1C2 x x x x x

FM1C3 x x x x x

FM1C4 x x x x x x

Ec Ca G L Pm Cc

FM2C1 x x x

FM2C2 x x x

FM2C3 x x x x x

FM2C4 x x x x x

catalog

credit_card

payment_method

e_commerce

grid list

catalog

credit_card

payment_method

grid check

e_commerce

Fig. 4. Merge-intersection (left-hand side) and merge-union (right-hand side) of FM1

and FM2 from Figure 3 using the structural approach of [2].

This is why, despite the qualities of these approaches, it is useful to have
a complementary point of view, based on the configuration set, which ensures
the soundness and completeness of merge-intersection and merge-strict-union
operations, is able to take into account cross-tree constraints and FMs with
different feature sets, and does not confine the designer in a specific ontological
view (if a FM is badly designed, but its configuration set is correct, our approach
produces a correct result), while assisting her/him in the FM construction. We
propose such a solution in the following section. The solution can be used for
merging two feature models, or one feature model and a configuration set, or
two configuration sets.

4 Formal Concept Analysis for Feature Model
Composition

In Section 4.1, we briefly present the notion of formal context. A formal context
is an input data for Formal Concept Analysis (FCA). We define (merge) inter-
section and strict union in terms of operations on formal contexts and illustrate
the definitions in the context of variability modeling. The conceptual structures
that are built by FCA are presented in Section 4.2. Then, we introduce an inter-
mediate structure, the Equivalence Class Feature Diagram (ECFD) in Section
4.3. The ECFD associated with a configuration set is a canonical, graphical
representation of variability: all FMs having the same configuration set have a
projection in the ECFD (and can be extracted from it). We show how the ECFD
can assist the designer in building feature models which are consistent with the

domain. At last, we extend the scope of the study by an approach for extracting
the common sub-configurations in Section 4.4.

4.1 Formal Contexts for intersection and strict union

Formal Concept Analysis (FCA) is a mathematical data analysis framework for
hierarchical clustering and rule extraction [22]. In its basic form, it concentrates
on a restricted application of Galois connection and Galois lattice theory to
binary relationships [12, 10, 20]. As input, it takes a set of objects described by
a set of attributes, arranged in a tabular form called a formal context.

Definition 4 (Formal context). A formal context K is a 3-tuple (G,M, I),
where G is an object (configuration) set, M is an attribute (feature) set, and
I ⊆ G ×M is a binary relation which associates objects (configurations) with
attributes (features) they own. Given a context K = (G,M, I), for g ∈ G we will
denote by I(g) the set of features of g, i.e. the set {m ∈M |(g,m) ∈ I}.

The two binary relationships of Table 1, which presents the configuration
sets of FM1 and FM2, are formal contexts. Each row corresponds to an object
(a configuration) and each column corresponds to an attribute (a feature). The
left-hand side formal context indicates that configuration FM1C1 comprises the
attributes Ec,Ca,G. We present in the next Section 4.2 the conceptual struc-
tures that are extracted from a formal context.

For defining the intersection and strict union formal contexts, we first intro-
duce the notion of equality of objects (configurations), denoted by ,, as objects
having the same set of attributes. In tables and figures, which are generated by
tools, when applicable, , is denoted by ”=”.

Definition 5 (Equality of objects, ,).

g1 , g2 ⇔ g1 ∈ G1, g2 ∈ G2 and I1(g1) = I2(g2)

We then define the formal context associated with intersection as the rows
that are present in the two initial formal contexts (Definition 6). A labeling of
rows is added to indicate their origin. Table 2 shows the formal context associated
with the intersection of FM1 and FM2 formal contexts from Table 1.

Definition 6 (Intersection formal context). The formal context of inter-
section Inter(K1,K2) is
KInter(K1,K2) = (GInter(K1,K2),MInter(K1,K2), IInter(K1,K2)) such that:

– GInter(K1,K2) = {gg1,g2
| ∃(g1, g2) ∈ G1 ×G2, g1 , g2}

– MInter(K1,K2) = M1 ∩M2

– IInter(K1,K2) = {(gg1,g2,m) | m ∈MInter(K1,K2), gg1,g2 ∈ GInter(K1,K2), (g1,m) ∈
I1(or equivalently (g2,m) ∈ I2)}

Definition 7 introduces the formal context associated with strict union. Table
3 shows the formal context associated with the strict union of FM1 and FM2

formal contexts from Table 1. It highlights the two common configurations (first
two rows) and the configurations that are specific to one FM (next four rows).

Table 2. Formal context associated with the intersection of FM1 and FM2 formal
contexts from Table 1.

Ec Ca G Pm Cc

FM1C1 = FM2C1 x x x

FM1C2 = FM2C3 x x x x x

Definition 7 (Strict union formal context). Let us consider:

– the set of common configurations (from Def. 6) GInter(K1,K2) and the corresponding
relation IInter(K1,K2)

– the set of configurations specific to G1: SPE(G1) = {g1 | g1 ∈ G1 and @g2 ∈
G2, with gg1,g2 ∈ GInter(K1,K2)}

– the set of configurations specific to G2: SPE(G2) = {g2 | g2 ∈ G2 and @g1 ∈
G1, with gg1,g2 ∈ GInter(K1,K2)}

The formal context of strict union Union(K1,K2) is:
KUnion(K1,K2) = (GUnion(K1,K2),MUnion(K1,K2), IUnion(K1,K2)) such that:

– GUnion(K1,K2) = GInter(K1,K2) ∪ SPE(G1) ∪ SPE(G2)
– MUnion(K1,K2) = M1 ∪M2

– IUnion(K1,K2) = IInter(K1,K2)

∪ {(g,m) | g ∈ SPE(G1),m ∈MUnion(K1,K2), (g,m) ∈ I1}
∪ {(g,m) | g ∈ SPE(G2),m ∈MUnion(K1,K2), (g,m) ∈ I2}

Table 3. Formal context associated with the strict union of FM1 and FM2 formal
contexts from Table 1.

Ec Ca G L Pm Cc Ch

FM1C1 = FM2C1 x x x

FM1C2 = FM2C3 x x x x x

FM1C3 x x x x x

FM1C4 x x x x x x

FM2C2 x x x

FM2C4 x x x x x

4.2 Conceptual structures

From a formal context, specialized algorithms of the FCA framework build for-
mal concepts. A formal concept is a maximal group of objects associated with
the maximal group of attributes they share. It can be read in the table of the
context as a maximal rectangle of crosses (modulo permutations of rows and
columns).

Definition 8 (Formal concept). Given a formal context K = (G,M, I), a
formal concept associates a maximal set of objects with the maximal set of at-
tributes they share, yielding a set pair C = (Extent(C), Intent(C)) such that:

– Extent(C) = {g ∈ G|∀m ∈ Intent(C), (g,m) ∈ I} is the extent of the
concept (objects covered by the concept).

– Intent(C) = {m ∈ M |∀g ∈ Extent(C), (g,m) ∈ I} is the intent of the
concept (shared attributes).

For example, ({FM1C1 = FM2C1, FM1C2 = FM2C3, FM1C3, FM1C4}, {Ec,
Ca,G}) is a formal concept in strict union of Table 3.

The formal concepts are ordered using inclusion of their extent (or reverse
inclusion of their intent). Given two formal concepts C1 = (E1, I1) and C2 =
(E2, I2) of K, the concept specialization/generalization order �C is defined by
C2 �C C1 if and only if E2 ⊆ E1 (and equivalently I1 ⊆ I2). C2 is a specialization
(a subconcept) of C1. C1 is a generalization (a superconcept) of C2. Due to these
definitions, C2 intent inherits (contains) the attributes from C1 intent, while C1

extent inherits the objects from C2 extent. For example, concept ({FM1C1 =
FM2C1, FM1C2 = FM2C3, FM1C3, FM1C4}, {Ec, Ca,G}) is a superconcept
of concept ({FM1C3, FM1C4}, {Ec, Ca,G, Pm,Ch}) in strict union of Table 3.

Definition 9 (Concept lattice). If we denote by CK the set of all concepts of
K, LK=(CK , �C), is the concept lattice associated with K.

The graphical representation of the conceptual structures (as concept lat-
tices) exploits the inclusion property to avoid representing in the concepts the
top-down inherited attributes (features) and the bottom-up inherited objects
(configurations). An attribute appears in the highest concept that possesses this
attribute. We say that this concept introduces the attribute, and it is then an
Attribute-Concept. An object appears in the lowest concept that possesses this
object. We say that this concept introduces the object, and it is then an Object-
Concept. A concept is represented in this document by a three-parts box. The
upper part is the concept name; the middle part contains the simplified intent
(deprived of the top-down inherited attributes); the bottom part contains the
simplified extent (deprived of the bottom-up inherited objects).

Specific suborders, that contain only some concepts, can be isolated in the
concept lattice. In these structures, configurations are organized depending on
the features they share, and dually, the features are structured depending on
the configurations in which they are. Thus, these structures permit to empha-
size and extract information about variability. The difference is that some of
them keep only some of this variability information. The AOC-poset (Attribute
Object Concept partially ordered set) contains only the concepts introducing
at least one object (configuration), or at least one attribute (feature), or both.
In the AOC-poset (as in the concept lattice) a configuration (resp. a feature)
appears only once, thus we have a maximal factorization of configurations and
features. Another interesting conceptual structure to address our problem is the
AC-poset (Attribute-Concept poset) where one configuration may appear sev-
eral times (and be introduced by several lowest concepts), but features remain

maximally factorized revealing an even more simple structure, focusing on the
representation of the feature hierarchy. The AC-poset is the minimal conceptual
structure necessary to extract logical dependencies between features. The four
structures: formal context, concept lattice, AOC-poset and AC-poset are equiv-
alent, in the sense that each one can be rebuilt from any other one, without
ambiguity.

Left-hand side of Figure 5 shows the AC-poset associated with the formal
context of Table 3. It emphasizes: co-occuring features, e.g. e commerce and
catalog always appear together in any configuration; implication between fea-
tures, e.g. when a configuration has the feature list it always has the feature
catalog; mutually exclusive features, e.g. list and grid never appear together
in any configuration; and feature groups, e.g. when payment method is in a con-
figuration, there is at least check or credit card, or they are both present. As
this kind of information is rather difficult to read in an AC-poset, in the next sec-
tion, we propose an equivalent diagrammatic representation that we have called
the Equivalence Class Feature Diagram (ECFD) and which is closer to the FM.

Concept_union_0

list (L)

FM2C2
FM2C4

Concept_union_5

e_commerce (Ec)
catalog (Ca)

Concept_union_2

credit_card (Cc)

FM1C2FM2C3
FM1C4
FM2C4

Concept_union_3

payment_method (Pm)

Concept_union_4

grid (G)

FM1C1FM2C1
FM1C2FM2C3

Concept_union_1

check (Ch)

FM1C3
FM1C4

list

e_commerce
catalog

credit_card

payment_methodgrid

check

Xor-group

Co-occuring
features

feature implication

Or-group

Mutex

Fig. 5. Left-hand side: AC-poset associated with the strict union formal context of
Table 3. Right-hand side: ECFD extracted from the AC-poset.

4.3 Equivalence Class Feature Diagram (ECFD)

The ECFD seeks to be more intuitive than the AC-poset to read variability
information. It depicts the feature dependencies extracted from the initial set of
configurations that are summarized in the AC-poset, in a representation close to
a feature model but without explicit ontological semantics. Therefore it includes
all equivalent feature models, hence its name.

Figure 5 shows the ECFD (right-hand side) extracted from the AC-poset
(left-hand side). Co-occuring features (as e commerce and catalog) are in a same
box. Arrows between boxes represent feature implications (like check implies

list

e_commerce
catalog

credit_card

payment_methodgrid

check

e_commerce as the root
linked to catalog by a
mandatory relationship

Mutex

Xor-group
with catalog
as the parent

require CTC
(check already has
a parent-feature)

Or-group

catalog
as the parent

list

catalog

credit_card

payment_methodgrid

check

e_commerce

list = check ; check → grid

Fig. 6. Left-hand side: ECFD for the strict union formal context of Table 3 annotated
with designer choices. Right-hand side: First extracted FM.

list

e_commerce
catalog

credit_card

payment_methodgrid

check

e_commerce as the root
linked to catalog by a
mandatory relationship

Mutex

Xor-group
with catalog
as the parent

require CTC
(check already has
a parent-feature)

Or-group

e_commerce
as the parent

list

catalog

credit_card

payment_method

grid check

e_commerce

list = check ; check → grid

Fig. 7. Left-hand side: Reminder of the ECFD for the strict union formal context of
Table 3 annotated with designer choices. Right-hand side: Second extracted FM.

grid). Groups of boxes connected by horizontal lines rooted in an upper feature
summarize feature groups (like list and grid rooted in box e commerce-catalog,
or check and credit card rooted in box payment method). Xor groups are
marked with a cross. A cross also represents mutually exclusive features, also
called mutex (like list and check) when they do not belong to a group. The
constructs and the semantics of the ECFD are more generally given in Table 4
and a construction algorithm is available in [16]. If we consider an AC-poset cor-
responding to a set of feature models with the same configuration set, all these
FMs conform to the AC-poset. This means that each dependency expressed in
these feature models matches a dependency expressed in the corresponding AC-
poset. For instance, if there is a child-parent (fc, fp) in one FM, it belongs to
the AC-poset in this way: let Cc be the concept introducing fc and let Cp be
the concept introducing fp, we have Cc �C Cp.

The ECFD structures the variability information extracted from the config-
uration set, and it can guide the expert in assigning ontological semantics on its
logical dependencies. Figures 6 and 7 show the guidance process. The two FMs
at the right-hand side of the figure have the same configuration-semantics. To
obtain them, first the designer has to choose between e commerce and catalog.

construct semantics ex. of conform FM

A = {a1, · · · , anA} features ai are
always present
together (or ab-
sent)

a1

a3a2

A = {a1, · · · , anA}

B = {b1, · · · , bnB}

When bi fea-
tures are
present, all ai

features are
present as well

a1

a3a2 b1

b3b2

A

B C

or-group: when
ai features
are present,
either the bi
are present,
or the ci are
present, or the
bi and the ci
are present

a1

b1a3a2 c1

c2b3b2

A

X

B C

xor-group:
when ai fea-
tures are
present, ei-
ther the bi are
present, or the
ci are present
(not both)

a1

b1a3a2 c1

c2b3b2

A B

X

mutex: fea-
tures ai and
features bi are
nether present
together

a1

a3a2

b1

b2 b3

a1 → ¬b1
b1 → ¬a1

Table 4. Equivalence class feature diagram (ECFD): constructs and semantics [15].
The third column is an example of conform feature model with nA = nB = 3 and
nC = 2.

One is the root (e.g. e commerce), and the other (e.g. catalog) is a mandatory
feature connected to the root. The xor group list and grid has to be connected
to e commerce or to catalog. The designer here chooses catalog as the parent
of the group. Then payment method is connected either to catalog (Figure 6)
or to e commerce (Figure 7). Feature check can be a child of grid, or it can
belong to the or group (check, credit card, rooted in payment method). The
second choice is made. The cross-tree constraints list = check and check →
grid are added to the FMs.

The left-hand side of Figure 8 shows the ECFD extracted from the inter-
section AC-poset, built from Table 2. In this very simple case, the difference
between the AC-poset and the ECFD is only that in the AC-poset, the nodes
(concepts) also contain the list of configurations. The right-hand side shows a
possible FM extracted from the ECFD. The top box of co-occurring features
gives rise to mandatory feature grid refining mandatory feature catalog re-
fining root e commerce. With the bottom box, the designer chooses to insert
payment method as an optional sub-feature of catalog, and credit card as a
mandatory feature refining payment method.

e_commerce
catalog

credit_card
payment_method

grid catalog

credit_card

payment_methodgrid

e_commerce

Fig. 8. Left-hand side: ECFD for the intersection formal context of Table 2. Right-hand
side: An extracted FM.

4.4 Extraction of common sub-configurations

As we noticed during our evaluation (reported in the next section), while FM
strict union is always informative, FM intersection is often empty, even when the
initial FMs have similarities. We illustrate this issue with a slight modification of
the e-commerce example. To the configurations of FM1, we add UserManagement

(Um) as a mandatory sub-feature of e commerce (Ec) (the new FM is denoted
by FM1e). To the configurations of FM2, we simply add Paypal (Pp) as a
mandatory sub-feature of Credit Card (Cc) (the new FM is denoted by FM2e).
After these additions, there is no more common configuration to FM1e and
FM2e . Table 5 shows the extended formal contexts for FM1e , FM2e and the

strict union formal context. Figure 9 shows the AC-poset built from the union
formal context.

Table 5. Top: Configuration sets of FM1e and FM2e from FM1 and FM2 of Figure
3 extended with UserManagement (Um) and Paypal (Pp). Bottom: Strict union formal
context FM1e

⋃
FM2e .

FM1e Ec Ca G Pm Cc Ch Um

FM1eC1 x x x x

FM1eC2 x x x x x x

FM1eC3 x x x x x x

FM1eC4 x x x x x x x

FM2e Ec Ca G L Pm Cc Pp

FM2eC1 x x x

FM2eC2 x x x

FM2eC3 x x x x x x

FM2eC4 x x x x x x

UnionExt Ec Ca G L Pm Cc Ch Um Pp

FM1eC1 x x x x

FM1eC2 x x x x x x

FM1eC3 x x x x x x

FM1eC4 x x x x x x x

FM2eC1 x x x

FM2eC2 x x x

FM2eC3 x x x x x x

FM2eC4 x x x x x x

Concepts in the AC-poset highlight different types of information on common
parts and differences between the FMs. Their study allows us to determine a
common core in feature combinations and to categorize the sub-configurations:

– (Specific sub-configuration) When the (complete) extent only contains con-
figurations from one feature model, the intent is a sub-configuration or a
valid configuration for this feature model only. In both cases, it is specific to
this feature model and does not belong to a common core.

– (Core sub-configuration) When the (complete) extent contains configurations
from both feature models, the intent is a partial common configuration (in
a broad meaning, namely it can be a valid configuration) and:
• (Configuration) If the simplified extent contains one configuration of

both feature models, the intent is a valid configuration for both and it is
in the intersection which is not empty (it was the case for Concept Union 4

in Figure 5).
• (Strict semi-partial sub-configuration) If the simplified extent only con-

tains configurations from one feature model (as for Concept UnionExt 6

in Figure 9, whose simplified extent only contains configurations from
FM2e), the intent is a strict partial configuration for the feature model
which has no configuration in the simplified extent (here FM1e) and a
valid configuration for the other (here FM2e).

• (Strict partial sub-configuration) If the simplified extent is empty (as for
Concept UnionExt 7 and Concept UnionExt 5 in Figure 9), the intent

������������������

��������

������
������

������������������

���������������
������������

������������������

����������

������
������

������������������

��������������������

������
������

������������������

�������������������

������������������

����������������

������
������

������������������

��������

������
������

������������������

�����������

������
������

Fig. 9. AC-poset associated with the strict union of the configuration sets of FM1e

and FM2e .

is a strict partial configuration. It is not valid for neither of the feature
models, but it is contained inside some of the configurations of both
feature models and it highlights a similarity between them.

When the intersection is small or empty, the concepts of the core category are
especially useful for exploring more deeply the commonalities between the two
feature models. They represent possibly incomplete configurations, from which
specific features present in only one FM (like Um to Pp), or specific combinations
have been removed. From these concepts, we can build an approximate intersec-
tion (denoted by

⋂∼
). The corresponding formal context is built by keeping the

intents of the core concepts and assigning them arbitrary configuration names
(as common sub-configurations, possibly incomplete).

Figure 10 show the formal context (left-hand side) and the AC-poset (right-
hand side) associated with FM1

⋂∼
FM2 and FM1e

⋂∼
FM2e . They are iden-

tical. The difference lies in the fact that when considering FM1

⋂∼
FM2, the

formal context contains the configurations of FM1

⋂
FM2 (which is not empty).

Figure 11 shows the ECFD extracted from this AC-poset. This is not appro-
priate in this case to build the groups and the mutex. For example, in the intents
of the core concepts, features G and Pm never appear together, while they may
appear together in complete valid configurations. Appropriate information that
can be read is: co-occurring features, mandatory features, optional features and
implications. In this example, two possible FMs that can be derived by an expert.
In this specific case, she/he will preferably choose the FM where e commerce is
the root. Here, the approximate intersection is simple, but in the general case,

Ec Ca G Pm Cc
c1 x x
c2 x x x
c3 x x x
c4 x x x x

��������������������������

��

��

��������������������������

��

��

��������������������������

�

��

��������������������������

��
��

��

Fig. 10. Left-hand side: Formal context of FM1

⋂∼ FM2 and FM1e

⋂∼ FM2e . Right-
hand side: The corresponding AC-poset.

Fig. 11. Left-hand side: ECFD of the approximate intersection. Right-hand side: Two
possible FMs extracted from the ECFD.

.

complex ECFDs can be found and the expert benefits from their full poten-
tial: compared to a logic-based approach, building an FM for an approximate
intersection is guided; compared to a feature tree structure-based approach, no
presupposition is made about the ontological relations.

5 Implementation and Assessment

The approach has been implemented as presented in Figure 12. It uses two
existing tools. Familiar3 [3] is an executable Domain Specific Language, pro-
vided with an environment allowing to create, modify and reason about FMs.
In the current project, we use it to build the configuration set of an FM.
rcaexplore4 is a framework for Formal Concept Analysis which offers a va-
riety of analysis kinds. It is used to build the AC-poset from which the ECFD
structure (nodes and edges) is extracted. We also developed specific tools for
this project: ConfigSet2FormalContext builds a formal context (within in-
put format of rcaexplore) from a configuration set extracted with Familiar;
ComputeInterAndUnion builds the intersection and strict union formal contexts;
ComputeGroupsAndMutex computes the groups Xor, Or and the mutex of the

3 https://nyx.unice.fr/projects/familiar/
4 http://dolques.free.fr/rcaexplore/

ECFD. To obtain the approximate intersection, an additional tool, ComputeApprox
computes the core concepts of the AC-poset and an ECFD without groups or
mutex, which are not appropriate in this case.

Fig. 12. The implemented process (extended from [15]).

We apply the approach on several feature models that own from 4 to 864
configurations, and from 6 to 26 features. Some are taken from the SPLOT
repository5 [27], from the Familiar6 website, or from the literature, and we also
made some variants of these feature models. In Table 6, we give the number of
features, configurations, xor groups, or groups and constraints of each selected
FM. We also compute the ECFD and indicate the number of xor groups, or
groups, mutex, situations where a box in the ECFD has several direct parents
(multi-par.), and nodes. The number of groups, e.g. xor groups, may vary between
the FM and the ECFD. For example, one xor group of the ECFD may combine
several xor groups of the FM when there are additional constraints, or the ECFD
may reveal more possible xor groups than initially indicated in the FM.

Table 7 presents information about intersection, approximate intersection
and strict union. The built ECFDs have reasonable size compared to the input
FMs, with node number ranging from 2 to 22, mutex from 0 to 32, xor and or
groups from 0 to 16, and very few multi-parent situations. This is encouraging
if we consider that experts have to extract FMs, guided by the ECFDs.

The last two columns of Table 7 respectively show the difference between:
intersection and approximate intersection; strict union and approximate inter-
section. For example, if we consider FM1 ∩∼ FM2, we can notice that union
FM1 ∪ FM2 feature number (7) is 40% more than the FM1 ∩∼ FM2 feature
number (5). FM1 ∪ FM2 sub-configurations (or AC-poset node number) (6)
are 50% more than the FM1 ∩∼ FM2 feature number (4). Intersection FM1
∩ FM2 feature number (5) is 0% less than the FM1 ∩∼ FM2 feature number

5 http://www.splot-research.org/
6 http://familiar.variability.io/

Table 6. FMs (and the corresponding ECFDs) used for testing the approach [15]. var.
stands for variant. Cst stands for Constraint. e-commerce FMs are the examples of this
paper, Eshop FMs come from SPLOT, Wiki FMs come from FAMILIAR documenta-
tion (or are variants), Bicycle FMs are variants of Mendonca SPLOT FMs.

FM Feature Model ECFD
#feat #conf. #Xor #Or # Cst #Xor #Or #mutex #multi-par. #nodes

FM1 (e-com.) 6 4 0 1 0 0 1 0 0 3
FM2 (e-com.) 6 4 1 0 0 1 0 0 0 4
Martini Eshop 11 8 1 1 1 1 2 1 1 6
Tang Eshop 10 13 1 1 2 1 2 1 1 7
Toacy Eshop 12 48 1 2 0 1 2 0 0 9

Wiki-V1 14 10 4 0 4 3 2 5 2 9
Wiki-V2 (V1 var.) 17 50 4 1 4 6 13 1 1 13
Wiki-V3 (V1 var.) 18 120 3 2 6 2 2 1 0 13

Bicycle1 19 64 2 0 2 1 0 0 0 10
Bicycle2 22 192 5 0 1 6 1 6 0 17
Bicycle3 25 576 4 0 2 5 1 8 0 19
Bicycle4 26 864 5 0 2 6 1 8 0 21

(5). FM1 ∩ FM2 sub-configurations (or AC-poset node number) (2) are 50%
less than the FM1 ∩∼ FM2 feature number (4). When intersection is empty,
a relatively low difference between approximate intersection and strict union
(like the Martini-Tang case, with 33%) indicates a good similarity between the
FMs, not highlighted by the configuration-semantics. Reversely, when intersec-
tion is empty, but the difference between approximate intersection and union
is high (like the WikiV1-WikiV3 case, with more than 150% for features, and
260% for common sub-configurations) reveals a low similarity. When approxi-
mate intersection is close to intersection (like the Bicycle3-Bicycle4 example),
this means that the configuration-semantics is well captured by the common
sub-configurations and features. When approximate intersection feature number
is close to intersection feature number (like the Bicycle1-Bicycle2 example, with
-6.7%), but this is not the case for node number (-40%), this means that there
are many common features, but the configuration-semantics is not well captured
by the common sub-configurations. This information also can guide an expert
in her/his composition process.

6 Related Work and Discussion

Formal Concept Analysis has many applications in software engineering as was
summarized in [36] for the period 1992-2003. Since this period new applica-
tions appeared, that range from fault localization [17] to bad smells and design
patterns detection [9], suggest appropriate refactorings to correct some design
defects [28], or analyzing software version control repositories [23]. In the do-
main of SPLE, FCA serves as a foundation for different approaches. Loesch and
Ploederer [26] analyze the concept lattice between configurations and features to
find variability information such as the co-occurring features, groups of features
that are never present together, etc. This analysis helps extracting constraints

Table 7. Merge-intersection, approximate intersection, and merge-strict union ECFDs
(extended from [15]). #conf. (resp. #subconf) is the number of different configurations
for intersection and strict-union (resp. sub-configurations for approximate intersection).
na stands for ”non applicable”.

FM Formal context ECFD % diff with ∩∼

#feat #(sub)conf. #Xor #Or #mutex #multi-par. #nodes #feat. #nodes

FM1 ∩ FM2 5 2 0 0 0 0 2 -0% -50%
FM1 ∩∼ FM2 5 4 na na na 0 4 . .
FM1 ∪ FM2 7 6 1 1 1 1 6 +40% +50%

Martini∩Tang 0 0 0 0 0 0 0 -100% -100%
Martini ∩∼ Tang 9 6 na na na 0 6 . .
Martini∪Tang 12 21 1 2 3 1 8 +33% +33%

Martini∩Toacy 0 0 0 0 0 0 0 -100% -100%
Martini ∩∼ Toacy 9 6 na na na 0 6 . .
Martini∪Toacy 14 56 1 1 4 0 10 +56% +67%

Tang∩Toacy 8 5 1 2 0 0 5 -11.1% -16.7%
Tang ∩∼ Toacy 9 6 na na na 0 6 . .
Tang∪Toacy 13 56 1 1 4 1 10 +44% +67%

WikiV1∩WikiV2 0 0 0 0 0 0 0 -100% -100%
WikiV1 ∩∼ WikiV2 11 7 na na na 0 7 . .
WikiV1∪WikiV2 20 60 5 6 26 0 16 +82% +129%

WikiV1∩WikiV3 0 0 0 0 0 0 0 -100% -100%
WikiV1 ∩∼ WikiV3 9 5 na na na 0 5 . .
WikiV1∪WikiV3 23 130 3 4 42 0 18 +156% +260%

WikiV2∩WikiV3 11 6 2 0 1 0 6 -0% -45.5%
WikiV2 ∩∼ WikiV3 14 11 na na na 0 11 . .
WikiV2∪WikiV3 21 164 6 14 10 1 17 +50% +55%

Bicycle1∩Bicycle2 14 8 1 0 0 0 6 -6.7% -40%
Bicycle1 ∩∼ Bicycle2 15 10 na na na 0 10 . .
Bicycle1∪Bicycle2 26 248 6 1 32 2 21 +73% +110%

Bicycle3∩Bicycle4 23 288 5 1 8 0 18 -4.2% -5.3%
Bicycle3 ∩∼ Bicycle4 24 19 na na na 0 19 . .
Bicycle3∪Bicycle4 27 1152 6 1 8 0 22 +13% +16%

or reorganizing features, e.g. by merging or removing some of them. These ideas
are deepen and reused in feature model analysis or synthesis in [38, 31, 6, 35].
Another available tool in the framework of FCA is the notion of implicative
systems, used in [31]. This is another logical encoding of the formula which is
equivalent to a concept lattice (or to a feature model), which can be rather com-
pact. The relationship between scenarios, functional requirements and quality
requirements is studied in [29]. FCA-based identification of features in source
code has been studied for software product line in [37, 7], where they use the
description of software variants by source code elements. Finding traceability
links between features and the code is more specifically studied in [32]. In [21],
authors analyze source code parts and scenarios which execute them and use fea-
tures, with the purpose to identify parts of the code which correspond to feature
implementation. Carbonnel et al. analyze PCMs from Wikipedia or randomly
generated to evaluate the scale up of FCA on this type of data in [14] and the
associated ECFDs in [16].

Several approaches for FM composition are compared in [1] and [4]. In [33]
and [24] the input feature models are maintained separately and links are estab-
lished between them through constraints. The approach of [2] establishes, in a
first phase, the matching between similar elements, then an algorithm recursively
merges the feature models with structural rules. Catalogs of local transformation
rules are proposed in [34, 8]. Other approaches encode the FMs into propositional
formulas [11], then compute the formula representing the intersection (resp. the
union), then synthesize a FM from the boolean formula [19]. The logic and
structural approaches have been illustrated and discussed in Section 3.2 and our
approach was illustrated with the example used for illustrating the structural
approach.

Compared to the logic approach, our approach also is sound and complete,
and we produce a structure (the ECFD with all feature groups and mutex)
which assists the expert in the extraction of the composed FM. Compared to
the structural approach, ours does not make any presupposition about which
relations are ontological, allowing to fix possible mistakes in the initial FMs. In
our approach, the configuration-semantics and the non-contradictory ontological
child-parent edges are preserved. We accept FMs with different feature sets,
and we take into account cross-tree constraints. Our approach computes the
merge-strict-union, the merge-intersection, and we also compute an approximate
intersection, which is useful when the configuration sets to be merged have an
empty, or small, intersection, and in general, for having a core description of
the two FMs. When there are hierarchy mismatches, the AC-poset manages this
information but the vocabulary (feature names) has to be the same (it can be
aligned before the merge operations).

Our approach needs to know the list of configurations, thus as such, the pro-
posed solution is restricted to some contexts: FMs that have limited number of
configurations; real-world product lines given with configuration sets. Many FMs
have a very large configuration set, as Video player FM from SPLOT, with 71
features and more than 1 billion configurations. We do not address these cases,
as we more specifically address the contexts where the FMs have a reasonable
number of configurations, which corresponds in particular to FMs coming from
real-world product lines. Concerning product lines inducing a number of config-
urations not tractable by FCA, our approach also could benefit from product
line decomposition: dividing a feature model according to scopes, concerns or
teams into less complex interdependent feature models. Besides, the paper [13]
gives a procedure to derive (in a polynomial time) an implicative system directly
from a feature model, thus without using the configuration set which may be an
obstacle in some cases as noticed by [31]. The logical semantics is guaranteed
by the FCA framework. The computational complexity is polynomial for AC-
posets, in the size of the number of configurations and the number of features.
Thus this is very different from the complexity of concept lattices, which may
be exponential in worst cases. As detailed by [31], ECFD group and mutex com-
putation might be exponential in the number of configurations or features but
remains reasonable in typical situations, with an optimized implementation.

7 Conclusion

We have proposed an approach to assist designers in configurations-based FM
composition. We focused on strict union, intersection and approximate inter-
section. FCA was used to represent all the FMs with the same configuration
semantics through a canonical form, the ECFD (Equivalence Class Feature Dia-
gram). Our approach may take into account different feature sets and structures,
as well as cross-tree constraints. It allows to reset the ontological relationships.
We have implemented our approach and we have tested it on concrete examples.

As future work, we would like to investigate more the approximate intersec-
tion. More specifically, from the intersection and union AC-posets, we would like
to define similarity metrics, e.g. based on the size of intents and the number of
concepts of each category (strict partial, strict semi-partial, configuration). We
also would like to define a composition approach based on implicative systems, to
discard the limit imposed by the current need to have the configuration set. Let
us notice that having the configuration set is not always a limit, as in concrete
product line, this is the standard data.

References

1. Acher, M., Collet, P., Lahire, P., France, R.B.: Comparing approaches to im-
plement feature model composition. In: 6th Eur. Conf. on Modelling Founda-
tions and Applications (ECMFA). pp. 3–19 (2010), http://dx.doi.org/10.1007/
978-3-642-13595-8_3

2. Acher, M., Collet, P., Lahire, P., France, R.B.: Composing feature models. In:
2nd Int. Conf. Software Language Engineering (SLE), 2009, Revised Selected Pa-
pers. LNCS, vol. 5969, pp. 62–81. Springer (2010), http://dx.doi.org/10.1007/
978-3-642-12107-4_6

3. Acher, M., Collet, P., Lahire, P., France, R.B.: Familiar: A domain-specific language
for large scale management of feature models. Science of Computer Programming
(SCP) 78(6), 657–681 (2013)

4. Acher, M., Combemale, B., Collet, P., Barais, O., Lahire, P., France, R.: Composing
your Compositions of Variability Models. In: 16th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems (MODELS). LNCS,
vol. 8107, pp. 352–369 (2013), https://hal.inria.fr/hal-00859473

5. Achtaich, A., Roudies, O., Souissi, N., Salinesi, C.: Selecting SPL Modeling
Languages: a Practical Guide. In: 3rd IEEE World Conf. on Complex Sys-
tems (WCCS). Marrakech, Morocco (2015), https://hal.archives-ouvertes.

fr/hal-01527521

6. Al-Msie’deen, R., Huchard, M., Seriai, A., Urtado, C., Vauttier, S.: Reverse engi-
neering feature models from software configurations using formal concept analy-
sis. In: 11th International Conference on Concept Lattices and Their Applications
(CLA). pp. 95–106 (2014), http://ceur-ws.org/Vol-1252/cla2014_submission_
13.pdf

7. Al-Msie’deen, R., Seriai, A., Huchard, M., Urtado, C., Vauttier, S., Salman, H.E.:
Mining Features from the Object-Oriented Source Code of a Collection of Software
Variants Using Formal Concept Analysis and Latent Semantic Indexing. In: 25th

Conf. on Software Engineering and Knowledge Engineering (SEKE). pp. 244–249
(2013)

8. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., de Lucena, C.J.P.: Refac-
toring product lines. In: 5th Int. Conf. on Generative Programming and Compo-
nent Engineering (GPCE). pp. 201–210 (2006), http://doi.acm.org/10.1145/

1173706.1173737
9. Arévalo, G., Ducasse, S., Gordillo, S., Nierstrasz, O.: Generating a catalog of unan-

ticipated schemas in class hierarchies using formal concept analysis. Inf. Softw.
Technol. 52, 1167–1187 (November 2010)

10. Barbut, M., Monjardet, B.: Ordre et Classification (volume 2). Hachette (1970)
11. Batory, D.S.: Feature Models, Grammars, and Propositional Formulas. In: 9th Int.

Conf. on Software Product Lines (SPLC). pp. 7–20 (2005)
12. Birkhoff, G.: Lattice theory, Colloquium publications, vol. 25. American Mathe-

matical Society (1940)
13. Carbonnel, J., Bertet, K., Huchard, M., Nebut, C.: FCA for software product lines

representation: Mixing product and characteristic relationships in a unique canon-
ical representation. In: 13th International Conference on Concept Lattices and
Their Applications (CLA). pp. 109–122 (2016), http://ceur-ws.org/Vol-1624/
paper9.pdf

14. Carbonnel, J., Huchard, M., Gutierrez, A.: Variability representation in product
lines using concept lattices: Feasibility study with descriptions from wikipedia’s
product comparison matrices. In: 1st International Workshop on Formal Con-
cept Analysis and Applications, FCA&A 2015, co-located with 13th Interna-
tional Conference on Formal Concept Analysis (ICFCA). pp. 93–108 (2015),
http://ceur-ws.org/Vol-1434/paper7.pdf

15. Carbonnel, J., Huchard, M., Miralles, A., Nebut, C.: Feature model composition
assisted by formal concept analysis. In: 12th Int. Conf. on Evaluation of Novel
Approaches to Software Engineering (ENASE). pp. 27–37 (2017), https://doi.
org/10.5220/0006276600270037

16. Carbonnel, J., Huchard, M., Nebut, C.: Analyzing Variability in Product Families
through Canonical Feature Diagrams. In: 29th Int. Conf. on Software Engineering
and Knowledge Engineering (SEKE). pp. 185–190 (2017)

17. Cellier, P., Ducassé, M., Ferré, S., Ridoux, O.: Dellis: A data mining process for
fault localization. In: 23rd Int. Conf. on Software Engineering and Knowledge En-
gineering (SEKE). pp. 432–437 (2009)

18. Czarnecki, K., Kim, C.H.P., Kalleberg, K.T.: Feature models are views on ontolo-
gies. In: 10th Int. Conf. on Software Product Lines (SPLC). pp. 41–51 (2006),
https://doi.org/10.1109/SPLINE.2006.1691576

19. Czarnecki, K., Wasowski, A.: Feature Diagrams and Logics: There and Back Again.
In: 11th Int. Conf. on Software Product Lines (SPLC). pp. 23–34 (2007)

20. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge Univer-
sity Press, Cambridge (1990), http://www.worldcat.org/search?qt=worldcat_

org_all&q=0521367662
21. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE

Trans. Softw. Eng. 29(3), 210–224 (2003)
22. Ganter, B., Wille, R.: Formal concept analysis - mathematical foundations.

Springer (1999)
23. Greene, G.J., Esterhuizen, M., Fischer, B.: Visualizing and exploring software

version control repositories using interactive tag clouds over formal concept lat-
tices. Information & Software Technology 87, 223–241 (2017), https://doi.org/
10.1016/j.infsof.2016.12.001

24. Heymans, P., Schobbens, P., Trigaux, J., Bontemps, Y., Matulevicius, R., Classen,
A.: Evaluating formal properties of feature diagram languages. IET Software 2(3),
281–302 (2008), http://dx.doi.org/10.1049/iet-sen:20070055

25. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA): Feasibility Study. Technical Report
CMU/SEI-90-TR-21 - ESD-90-TR-222 (1990)

26. Loesch, F., Ploedereder, E.: Restructuring Variability in Software Product Lines
using Concept Analysis of Product Configurations. In: 11th Eur. Conf. on Soft.
Maintenance and Reengineering (CSMR). pp. 159–170 (2007)

27. Mendonca, M., Branco, M., Cowan, D.: S.P.L.O.T.: Software Product Lines Online
Tools. In: 24th ACM SIGPLAN Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications. pp. 761–762. (OOPSLA), ACM
(2009), http://doi.acm.org/10.1145/1639950.1640002

28. Moha, N., Hacene, A.R., Valtchev, P., Guéhéneuc, Y.: Refactorings of De-
sign Defects Using Relational Concept Analysis. In: 6th Int. Conf. on For-
mal Concept Analysis (ICFCA). pp. 289–304 (2008), https://doi.org/10.1007/
978-3-540-78137-0_21

29. Niu, N., Easterbrook, S.M.: Concept analysis for product line requirements. In: 8th
Int. Conf. on Aspect-Oriented Software Development (AOSD). pp. 137–148 (2009)

30. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineer-
ing: Foundations, Principles, and Techniques. Springer Science & Business Media
(2005)

31. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from for-
mal contexts. In: 15th Int. Conf. on Software Product Lines (SPLC) Workshop
Proceedings (Vol. 2). p. 4 (2011)

32. Salman, H.E., Seriai, A., Dony, C.: Feature-to-code traceability in a collection of
software variants: Combining formal concept analysis and information retrieval.
In: 14th Conf. on Inf. Reuse and Integration (IRI). pp. 209–216 (2013)

33. Schobbens, P., Heymans, P., Trigaux, J., Bontemps, Y.: Generic semantics of fea-
ture diagrams. Computer Networks 51(2), 456–479 (2007), http://dx.doi.org/
10.1016/j.comnet.2006.08.008

34. Segura, S., Benavides, D., Cortés, A.R., Trinidad, P.: Automated merging of
feature models using graph transformations. In: Generative and Transforma-
tional Techniques in Software Engineering II, International Summer School
(GTTSE 2007), Revised Papers. pp. 489–505 (2007), http://dx.doi.org/10.

1007/978-3-540-88643-3_15

35. Shatnawi, A., Seriai, A.D., Sahraoui, H.: Recovering architectural variability of a
family of product variants. In: 14th Int. Conf. on Soft. Reuse (ICSR). pp. 17–33
(2015)

36. Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal concept analysis
support for software engineering activities. In: Formal Concept Analysis: Founda-
tions and Applications, pp. 250–271. No. 3626 in LNCS–LNAI, Springer-Verlag
(2005)

37. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants.
In: 19th Working Conf. on Reverse Engineering (WCRE). pp. 145–154 (2012)

38. Yang, Y., Peng, X., Zhao, W.: Domain feature model recovery from multiple appli-
cations using data access semantics and formal concept analysis. In: 16th Working
Conf. on Reverse Engineering (WCRE). pp. 215–224 (2009)

