Towards the Extraction of Variability Information to Assist Variability Modelling of Complex Product Lines

Jessie Carbonnel 1 Marianne Huchard 1 Clémentine Nebut 1
1 MAREL - Models And Reuse Engineering, Languages
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Software product line engineering gathers a set of methods that rely on systematic reuse and mass customisation to reduce the development time and cost of a set of similar software systems. Boolean feature models are the de facto standard used to represent product line variability in terms of features, a feature being a distinguishable characteristic of one or several softwares. The extractive adoption of a product line from a set of individually developed softwares requires to extract variability information from a collection of software descriptions to model their variability. With the appearance of more and more complex software systems, software product line engineering faces new challenges including variability extraction and modelling. Extensions of boolean feature models, as multi-valued attributes or UML-like cardinalities have since been proposed to support variability modelling in complex product lines. In this paper, we propose research directions to address the issue of extracting more complex variability information, as a part of extended feature models synthesis from software descriptions. We consider the capabilities of Formal Concept Analysis, a mathematical framework for knowledge discovery, along with two of its extensions called Pattern Structures and Relational Concept Analysis, to answer this problematic. These frameworks bring theoretical foundations to complex variability extraction algorithms.
Type de document :
Communication dans un congrès
Rafael Capilla; Malte Lochau; Lidia Fuentes. VAMOS: Variability Modelling of Software-Intensive Systems, Feb 2018, Madrid, Spain. ACM Press, 12th International Workshop on Variability Modelling of Software-Intensive Systems, pp.113-120, 2018, 〈https://vamos2018.wordpress.com/〉. 〈10.1145/3168365.3168378〉
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01872793
Contributeur : Marianne Huchard <>
Soumis le : mercredi 12 septembre 2018 - 14:46:25
Dernière modification le : mercredi 19 septembre 2018 - 01:14:32

Fichier

vamos2018.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jessie Carbonnel, Marianne Huchard, Clémentine Nebut. Towards the Extraction of Variability Information to Assist Variability Modelling of Complex Product Lines. Rafael Capilla; Malte Lochau; Lidia Fuentes. VAMOS: Variability Modelling of Software-Intensive Systems, Feb 2018, Madrid, Spain. ACM Press, 12th International Workshop on Variability Modelling of Software-Intensive Systems, pp.113-120, 2018, 〈https://vamos2018.wordpress.com/〉. 〈10.1145/3168365.3168378〉. 〈lirmm-01872793〉

Partager

Métriques

Consultations de la notice

17

Téléchargements de fichiers

10