
HAL Id: lirmm-01872793
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01872793v1

Submitted on 12 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the Extraction of Variability Information to
Assist Variability Modelling of Complex Product Lines

Jessie Carbonnel, Marianne Huchard, Clémentine Nebut

To cite this version:
Jessie Carbonnel, Marianne Huchard, Clémentine Nebut. Towards the Extraction of Variability Infor-
mation to Assist Variability Modelling of Complex Product Lines. VAMOS: Variability Modelling
of Software-Intensive Systems, Feb 2018, Madrid, Spain. pp.113-120, �10.1145/3168365.3168378�.
�lirmm-01872793�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01872793v1
https://hal.archives-ouvertes.fr

Towards the Extraction of Variability

Information to Assist Variability Modelling of

Complex Product Lines

Jessie Carbonnel, Marianne Huchard, Clémentine Nebut
LIRMM, University of Montpellier, CNRS, Montpellier, France

https://dl.acm.org/citation.cfm?id=3168365.3168378

Abstract

Software product line engineering gathers a set of methods that rely on
systematic reuse and mass customisation to reduce the development time
and cost of a set of similar software systems. Boolean feature models are
the de facto standard used to represent product line variability in terms of
features, a feature being a distinguishable characteristic of one or several
softwares. The extractive adoption of a product line from a set of individ-
ually developed softwares requires to extract variability information from
a collection of software descriptions to model their variability. With the
appearance of more and more complex software systems, software prod-
uct line engineering faces new challenges including variability extraction
and modelling. Extensions of boolean feature models, as multi-valued at-
tributes or UML-like cardinalities have since been proposed to support
variability modelling in complex product lines. In this paper, we propose
research directions to address the issue of extracting more complex vari-
ability information, as a part of extended feature models synthesis from
software descriptions. We consider the capabilities of Formal Concept
Analysis, a mathematical framework for knowledge discovery, along with
two of its extensions called Pattern Structures and Relational Concept
Analysis, to answer this problematic. These frameworks bring theoretical
foundations to complex variability extraction algorithms.

1 Introduction

Software Product Line Engineering (SPLE) [PBvdL05] is an approach based on
systematic reuse and mass customisation that aims at reducing the development
time and cost of a set of similar software systems. In this process, variability
modelling is a central task that documents common and variable assets, along
with the way they can be combined to constitute a valid software system. Repre-
senting assets by features, a feature being a distinguishable characteristic of one
or several softwares, is the most commonly used variability modelling approach,

1

where feature models (FMs) [KCH+90] are the de facto standard to model vari-
ability. FMs organise a set of features in a hierarchy representing several levels
of details, and express constraints between these features to depict their possible
interactions in a software system.

However, software systems tend to become more and more complex [FKL+06].
This complexity may arise from the size of the software systems, or from the
types of information that have to be represented to model them. This affects
traditional software product line approaches, and gives new challenges in the
domain of complex software product lines [HGR12]. In order to tackle the scale-
related complexity of software systems, propositions and approaches to manage
multi product lines (MPLs) are flourishing [HGR12, Bot13, Bos09, RSKuR08].
MPLs consist into dealing with several smaller and interconnected software
product lines that compose a bigger and more complex one, in order to ease
its overall management. Besides, FM extensions have been proposed these past
years to improve the expressiveness of original FMs (also called boolean FMs)
and cope with more complex product lines. The prevalent FM extensions are
the three ones one can find in the cardinality-based feature model notation
[CBUE02, CHE04], i.e., multi-valued attributes, UML-like cardinalities and ref-
erences between different feature models. When multi-valued attributes and
UML-like cardinalities allow to enrich the FMs capabilities to model more com-
plex and detailed variability information, references allow to connect several
different FMs to support MPLs.

Automated synthesis of boolean FMs from software system descriptions
have been widely studied in the literature [ACP+12, HLE11, HLE13, LLG+15,
RPK11, CW07, AMdSH+14, DDH+13, LLE14]. A significant number of these
approaches rely on a phase of variability information extraction from the given
descriptions, as a part of the FM synthesis. However, to the best of our knowl-
edge, only Becan et al. [BBGA15] have studied the automated synthesis of
extended FMs, or the extraction of more complex variability information to
help manage complex software product lines.

Formal Concept Analysis (FCA) [GW99] is a mathematical framework widely
used in knowledge discovery [PEVD10] and in software reverse engineering ap-
plications [Sne00]. From a set of objects described by a set of binary attributes,
the application of FCA organises the objects depending on the attributes they
share in a canonical structure that highlights their commonalities and variabil-
ity. This framework has been used to extract variability information found in
boolean feature models, when the objects represent software variants and when
the attributes represent features [AMdSH+14, RPK11, LP07, CHN17]. Besides,
FCA possesses several extensions, as for instance to take into account tempo-
ral data, similarities between data, or relationships between several different
datasets.

In this paper, we propose research directions to address the problem of ex-
tracting complex variability information from software descriptions, as a part
of the process of extended feature model synthesis. In what follows, we call
augmented variability information the information that involves multi-valued
attributes and UML-like cardinalities, i.e., not only boolean features. Inter-

model variability information is the name we give to variability information
involving elements from different feature models. We assess the usage of FCA,
along with two of its extensions called Pattern Structures and Relational Con-
cept Analysis, as mathematical frameworks to extract complex (i.e., augmented
and/or inter-model) variability information in the form of logical relationships.
The theoretical foundations of variability extraction algorithms provided by
these frameworks is what motivated our choice. The aim of this research is to
ease the transition from individually developed software variants that are more
and more complex, to systematic software reuse and mass customisation ap-
proaches. The remainder of this paper is organised as follows. Boolean feature
models and their extensions for complex variability modelling are presented in
Section 2, where we identify the kinds of logical relationships they represent. In
Section 3, we present the theoretical bases of Formal Concept Analysis, Pattern
Structures and Relational Concept Analysis. We expose our research plan in
Section 4. Related work is discussed in Section 5, and Section 6 concludes the
paper.

2 Feature Models and their Extensions

In this section, we present boolean feature models along with their three preva-
lent extensions that have been proposed to document and manage more complex
variability (i.e., within the same FM and between different FMs). We also iden-
tify the logical semantics of each one of the variability information given by
these variability models, in the form of logical relationhips.

2.1 Boolean Feature Models

Boolean Feature Models (FMs) [KCH+90] are a family of graphical languages
which allow to define the scope of a product line in terms of features (i.e., dis-
tinguishable characteristics) and constraints between these features. Figure 1
presents a boolean FM about e-commerce applications. A boolean FM repre-
sents a finite set of features in a hierarchy (called feature tree), that expresses
child-parent relationships. Constraints can be represented graphically by dec-
orating the edges of the feature tree: these constraints show how the selection
of a feature may affect the selection of its child features. A black disc forces
the selection of the child feature when the parent feature is selected (mandatory
relationship), whereas a white circle indicates that the child feature can be se-
lected optionally (optional relationship). Several child features can be grouped,
a group being depicted by an arc which indicates the number of features that
can be selected: a black-filled arc states that at least one child feature of the
group has to be selected (or-group), and a non-filled arc shows that exactly one
child feature of the group has to be selected (xor-group). Finally, additional
constraints that cannot be expressed in the feature tree can be added. They are
typically requires and exclude constraints. The boolean FM of Figure 1 states
that: all e-commerce applications have a catalog, that is either displayed in a

list or in a grid; an application can optionally support payment methods, credit
card and check being the two possible proposed methods; it can also possess a
basket management; having a basket necessitates to support payment methods,
and conversely.

e_commerce

catalog payment_method basket

grid list credit_card check

Optional

Xor

Mandatory

Or

Requires Exclude

payment method → basket

basket → payment method

Figure 1: Boolean FM about e-commerce applications

FMs give some knowledge about the modelled domain and the interaction
of some of its concepts. Extracting FM relationships that convey correct on-
tological knowlegde from a set of product descriptions without using external
ontologies or relying on an expert intervention is quite infeasible. Besides, the
parallel between boolean FMs and propositional logic has been widely studied
[Man02, CW07, BSRC10]; writing boolean FMs in the form of propositional
formulas allows to represent the logical semantics of the FM constraints and to
display the feature interaction through logical relationships. Extracting logical
relationships from a set of product descriptions is easier and less error-prone
than extracting ontological FM relationships. Table 1 shows the logical seman-
tics of the FM as presented in [CW07, PSA+12].

Table 1: Logical semantics of a boolean FM constraints; p represents a parent
feature, ci a child feature, and fi any feature

FM constraints Logical semantics
child-parent c→ p
optional none
mandatory p→ c
or-group p→ {c1 ∨ ... ∨ cn}
xor-group p→ {c1 ⊕ ...⊕ cn}
requires f1 → f2
exclude f1 → ¬f2

Therefore, we can identify in boolean FMs the following logical relationships

between features: implications (f1 → f2, from child-parent, mandatory and
requires relationships), mutex (f1 → ¬f2, from exclude constraints), the par-
ticular case of double implications that we call co-occurrences (f1 ↔ f2, from
double requires relationships), or-groups and xor-groups.

2.2 Extended Feature Models

In what follows, we will consider the two extended feature models of Figure 2.
The left-hand side FM represents e-commerce applications as the one in Fig-
ure 1, but with some additional information. The feature catalog possesses an
attribute productsPerPage of type integer that defines the maximum number
of products depicted in a catalog page. The cardinality of the feature catalog

states that an e-commerce has at least one catalog but can have several ones.
The two group cardinalities constrain the number of features that can be se-
lected in the corresponding group. This FM does not directly include a fea-
ture basket, but it is connected to another FM about basket management
that can support a bank verification process. The constraint credit card →
bank verification is a requires constraint involving a feature of each FM, and
grid → productsPerPage ≥ 15 is a requires constraint involving a feature and
an attribute value.

e_commerce

catalog payment_method

grid list

credit_card check

productsPerPage (int)

bank_verification

[1..n]

<1-1>

<1-2>

basket

payment method ↔ basket
credit card → bank verification

grid → productsPerPage ≥ 15

Figure 2: Extended feature models with a feature attribute, a feature cardinality,
group cardinalities and a reference

2.2.1 Attributes

An extension of boolean FMs proposes to add multi-valued attributes. An at-
tribute possesses a type (e.g., integer, string, enumeration) and is associated

with one feature of the FM. This extension permits to model more detailed in-
formation without complexifying the FM [CBUE02]. In fact, in an “all-feature
view” of the FM, each attribute value would be represented as a feature. In the
cases where the possible values are too numerous (as for numerical values), the
number of features would be too important and the FM would be unintelligi-
ble. For instance, introducing an attribute productsPerPage of type integer in
the feature catalog reduces the number of features necessary to represent this
information, as shown in Figure 3.

1 ... 100

catalog

productsPerPage
catalog

productsPerPage (int)

Figure 3: Representing numerous values with features (left-hand side) versus
with an attribute (right-hand side)

Introducing attributes and their values in FMs allows to express complex
variability information, i.e., requires and exclude constraints between features
and/or attribute values. In our example of Figure 2, the constraint grid →
productsPerPage ≥ 15 involves a feature and an attribute value. As stated
by their name, feature-groups are only defined over the set of features, so they
do not involve attributes. The variability information induced by attributes thus
corresponds to the following logical relationships: implications, co-occurences
and mutex between a feature and an attribute value, or between two attribute
values. We call these additional logical relationships augmented variability in-
formation.

2.2.2 Cardinalities

Another extension of FMs introduces UML-like cardinalities on features and on
feature-groups [CHE04].

Feature-group cardinalities depict the minimum and the maximum number
of sub-features that can be selected in a group (denoted < min − max >).
Therefore, the boolean feature model group notations for xor-groups and or-
groups do not stand anymore: xor-groups are defined by a cardinality < 1 −
1 >, while or-groups by a cardinality < 1 − n >. This can be written in
propositional logic by representing each combination of sub-features of the group

that is allowed by the cardinality. Let p be a feature, and {f1, f2, f3} be a
feature-group with p as a parent and associated with the cardinality < 2− 3 >.
The logical relationship representing this group is:
p→ ((f1 ∧ f2 ∧ ¬f3) ∨ (f1 ∧ f3 ∧ ¬f2) ∨ (f2 ∧ f3 ∧ ¬f1) ∨ (f1 ∧ f2 ∧ f3))

Feature cardinalities define the minimum and the maximum number of oc-
currences of a given feature in a valid configuration (denoted [min..max]). Ex-
cept for the graphical notation that can be different, feature cardinalities can be
seen as attributes: in the example of Figure 2, the cardinality of catalog could
be represented by an attribute occurrence with the domain [1..n]. Hence, fea-
ture cardinalities could also be represented by features, as we have seen before
with attribute values. Note that even though the representation is different, the
information stays the same. Figure 4 depicts the different (yet equivalent) ways
to represent a feature cardinality.

1 ... 100

catalog

occurrence

catalog

occurrence [1..n]

catalog

[1..n]

Figure 4: Different ways to represent a feature cardinality

Group-cardinalities allow to consider that all feature-groups are the same
kind of variability information: not as xor-/or-groups, but as feature-groups as-
sociated with a cardinality. Thus, concerning feature groups, this FM extension
does not add any new kind of variability information compared to the one found
in boolean FMs, but generalises two existing ones. Moreover, as feature cardi-
nalities can be seen as feature attributes, the kinds of variability information
induced by feature cardinalities are the same as the ones induced by attributes,
i.e., augmented variability information.

2.2.3 References

The last FM extension we consider allows the definition of references, which
increase the FM modularity [CBUE02, CHE04]. A reference is a feature of an
FM representing another FM, and is graphically represented by a connection
between the feature and the other FM root feature. This extension permits
to split a large FM into several more specific FMs which are connected to each

other (e.g., following separation of concerns), thus avoiding monolithic and large
models which are difficult to work with. Also, this extension allows to reuse
the sub-FMs in several places of the product line. Constraints as requires and
exclude ones can then be defined between features of different yet connected
FMs. In Figure 2, a reference (denoted by a dotted line) is defined between
the root feature of the left-hand side FM about e-commerce applications, and
the right-hand side FM about baskets. The cross-tree constraint credit card

→ bank verification between features of the two FMs represents what we
called an inter-model variability information, i.e., a logical relationship between
elements of separated FMs.

3 Formal Concept Analysis and its Extensions

In this section, we present the bases of Formal Concept Analysis theory and two
of its extensions: Pattern Structures, that allow to extract logical relationships
between more complex data types than binary attributes (e.g., multi-valued
attributes, numerical values) and Relational Concept Analysis, which permits
to extract relationships between elements of different datasets.

3.1 Formal Concept Analysis

Formal Concept Analysis (FCA) [GW99] is a mathematical framework for hi-
erarchical clustering of a set of objects that are described by a set of binary
attributes. As input, FCA takes a formal context F = (O,A, J), where O is
the set of objects, A is the set of binary attributes and J ⊆ O × A is a binary
relationship stating “which objects possess which binary attributes”. A formal
context can be represented by a table O × A: a cross in the cell (o, a) states
that the object o possesses the binary attribute a. Table 2 presents an excerpt
of a formal context where the objects represent variants of e-commerce appli-
cations, and the binary attributes represent 8 possible features characterising
these softwares.

The application of FCA on a formal context extracts a set of formal con-
cepts, where each formal concept represents “a maximal set of objects shar-
ing a maximal set of binary attributes”. A formal concept is thus a pair
C = (E, I) where E = {o ∈ O | ∀a ∈ I, (o, a) ∈ J} is the concept’s extent
and I = {a ∈ A | ∀o ∈ E, (o, a) ∈ J} is the concept’s intent. The set of formal
concepts CF of a formal context F can be partially ordered by the set-inclusion
order (denoted ≤s) on the concepts’ extents. Given two concepts C1 = (E1, I1)
and C2 = (E2, I2), C1 ≤s C2 if and only if E1 ⊆ E2 and I2 ⊆ I1. C1 is called a
sub-concept of C2, and C2 a super-concept of C1. The set of all concepts CF of
a formal context, provided with the order ≤s form a lattice structure (CF ,≤s)
called a concept lattice. Figure 5 presents the concept lattice obtained from
Table 2.

An arrow represents a relation from a concept to one of its super-concepts,
i.e., the partial order. Here, the concepts are presented in an optimised way by

Table 2: Formal context with 8 objects representing e-commerce applications
described by 8 binary attributes

e
co

m
m

er
ce

ca
ta

lo
g

g
ri

d

li
st

p
ay

m
en

t
m

et
h
o
d

cr
ed

it
ca

rd

ch
ec

k

b
a
sk

et

v1 x x x

v2 x x x x x x

v3 x x x x x x

v4 x x x x x x x

v5 x x x

v6 x x x x x x

v7 x x x x x x

v8 x x x x x x x

displaying each object and each binary attribute only once in the structure. An
object (resp. a binary attribute) is introduced in the lowest (resp. greatest) con-
cept of the concept lattice possessing it. Therefore, a concept inherits all the ob-
jects of its sub-concepts, and all the binary attributes of its super-concepts. For
instance, Concept 11 possesses the binary attributes check, payment method,
basket, e commerce and catalog, and the objects v3, v4, v7 and v8.

The way the objects (i.e., similar softwares) and the binary attributes (i.e.,
software characteristics) are organised in the concept lattice highlights informa-
tion regarding their variability. More specifically, using the proper algorithms
[CHN17], one can extract logical relationships involving the binary attributes,
as implications, co-occurrences, mutual exclusions (mutex) and groups (in the
sense of the feature groups one can find in boolean feature models). This ex-
traction approach is complete as it allows to extract all the logical relationships
(among the four types presented before) that are true for the considered set of
objects.

3.2 Pattern Structures

Pattern Structures [GK01] have been proposed as a generalisation of FCA to
describe a set of objects O with data types that are more complex than binary
attributes. In this approach, each object is characterised by a description (or
pattern) taken from a set of descriptions (denoted D) having the same type.
A set of descriptions can be of any type of data on which one can establish
similarities. The similarity of two descriptions d1 and d2 of D is given by a
similarity operator (denoted u) that returns the most specific description of
D which generalises both d1 and d2. For instance, in the software engineering
domain, a set of descriptions could depict programming languages, and one can
define the similarity of the two descriptions Java and C++ by a third description

Java u C++ = Object Oriented Language. The similarity operator is associated
to a subsumption relation v that allows to partially order the set of descriptions
D. In our example, Object Oriented Language v C++. The set of objects O,
the partially ordered description set (D,u) and the mapping δ : O → D that
associates each object o ∈ O with a description d ∈ D form a Pattern Structure.
Given a Pattern Structure PS = (O, (D,u), δ), one can extract a set of pattern
concepts, where a pattern concept represents a maximal set of objects O′ ⊆ O
decribed by the most specific description d ∈ D characterising all the objects
of O′. The set of all pattern concepts extracted from a Pattern Structure can
be partially ordered by the relation ≤ps as follows: given two pattern concepts
C1 = (O1, d1) and C2 = (O2, d2), C1 ≤ps C2 if and only if O1 ⊆ O2 and
d2 v d1. The set of all pattern concepts of PS provided with the partial order
≤ps form a pattern concept lattice. In a pattern concept lattice, the set of
objects is structured depending on their (potentially complex) descriptions and
their similarities.

Descriptions can be of atomic types (e.g., dates, numerical values, String),
but it is possible to combine several sets of descriptions (that could be of dif-
ferent types) in a vector of descriptions. The similarity between two vectors of
descriptions can be obtained by computing the similarity of descriptions with
the same rank in the vectors:

< d1i, d2i, ..., dni > udv < d1j , d2j , ..., dnj >

=< d1i u1 d1j , d2i u2 d2j , ..., dni un dnj >.

Therefore, in this framework, a set of vectors of descriptions can be handled in
the same way as a set of descriptions of atomic type. As vectors of descriptions
can gather several different types of descriptions, they are great candidates to
represent complex software configurations. Note that the same kind of mining
algorithms used with traditional concept lattices can be applied on pattern con-
cept lattices; this opens the field for extraction of logical relationships involving
data types that are more complex than binary attributes (e.g., multi-valued
attributes).

3.3 Relational Concept Analysis

Relational Concept Analysis (RCA) [HHNV13] extends traditional FCA to take
into account several formal contexts, and to define relations between the sets of
objects of these formal contexts. As for traditional FCA, each formal context
describes a set of objects depending on a set of binary attributes. In addition,
RCA allows to link a set of objects with another set of objects by a relationship
expressed through a relational context. A relational context is a 3-tuple R =
(O1, O2, r) where O1 (called the source set) and O2 (called the target set) are
two sets of objects such that there are two formal contexts (O1, A1, J1) and
(O2, A2, J2), and where r ⊆ O1 × O2 is a binary relationship. For instance,
a formal context could represent softwares described by binary attributes as
spam-prevention or open source. Another formal context could represent

programming languages described by attributes representing their paradigms.
Finally, a relational context could represent the relationship “is-written-in”,
associating the softwares (source context) with the programming languages they
are written in (target context).

As input, RCA takes a Relational Context Family (RCF) of the form (F ,R)
such that F is a set of formal contexts Fi = (Oi, Ai, Ji), i ∈ {1, 2, ..., n}, andR is
a set of relational contexts Rj = (Ok, Ol, rj), j ∈ {1, 2, ...,m}, with rj ⊆ Ok×Ol,
and Ok, Ol respectivelly being the sets of objects of the formal contexts Fk ∈ F
and Fl ∈ F . Given a formal context F = (O,A, J), we define rel(F) the
set of relational contexts having O as source set. The application of RCA
extends each formal context F depending on the relational contexts of rel(F)
to take into account the relations defined between the objects. More precisely,
for each relational context Rj = (Ok, Ol, rj) ∈ R, RCA extends the formal
context of Ok with relational attributes representing a relation based on rj to
a concept that can be extracted from the formal context of Ol. In our previous
example, the formal context about softwares would be extended with relational
attributes involving the concepts extracted from the programming language
formal context.

The application of RCA generates a succession of contexts and concept lat-
tices associated with the RCF (F ,R). Relational attributes appear in the con-
cept lattices as traditional binary attributes, but they can be considered as
references towards concepts of other lattices. Therefore, the objects in these
concept lattices are not only structured by their binary attributes, but also by
relational attributes. In other words, these objects are still organised depend-
ing on their binary attributes, but also by the binary attributes of the objects
from other formal contexts they are in relation with. For instance, the con-
cept lattice associated with the formal context about softwares before extension
would organise them depending on their spam prevention and whether they are
open source or not. Then, the relationship “is-written-in” would extend the
concept lattice to also organise the softwares depending on the paradigms of
the programming languages they are written in. An example of an information
that could be found in this extended concept lattice may be “all the softwares
that are written in at least one object oriented programming language are open
source”.

Mining algorithms can be applied on extended concept lattices to extract
logical relationships between binary attributes and relational attributes, thus
representing logical relationships between binary attributes of different lattices.
Applied on connected sets of related software systems, it would allow to extract
relationships between features of different software families.

4 Research Plan

In what follows, we propose research directions to address the problem of ex-
tracting complex variability information within a set of related software de-
scriptions, and in between different yet interconnected software families. We

propose a methodology based on Formal Concept Analysis and its extensions
to extract augmented/inter-model variability information in the form of logical
relationships, and we specify the expected output format.

4.1 Research Questions

We seek to extract the variability information corresponding to three FM ex-
tensions proposed to handle complex product lines. As we have seen in the
introduction, the modelling needs of a complex product line are two-fold: needs
to model more complex information, and needs to cope with large scale models.
Thus, we decompose our goal in two research questions.

RQ1: How to extract the augmented variability information nec-
essary to synthesise a feature model with extended modelling capa-
bilities? Here we focus on the necessity to extract more complex information.
This question concerns the extensions applicable on a single FM, i.e., the ones
that complement traditional boolean FMs with multi-valued attributes and car-
dinalities.

RQ2: How to extract the inter-model variability information nec-
essary to synthesise interconnected feature models? This time, we focus
on the necessity to cope with the size of a large product line. The question con-
cerns the extension consisting in defining references between several (possibly
extended) FMs.

4.2 Data and Methodology

To answer these two research questions, we will work on data taken from Product
Comparison Matrices (PCMs) [SAB13]. PCMs are matrices that depict a set
of products against a set of their characteristics, hence representing a set of
products of the same family in a way that ease their comparison by a user.
We decided to work on PCMs for two reasons. First, they gather in their cells
heterogeneous data, including both binary attributes (yes/no values that can be
considered as features) and multi-valued attributes. Thus, they are interesting
candidates for the extraction of augmented variability information. Also, the
large number of PCMs that can be found on internet and the large scope of
product families they represent allow to find links between different PCMs. More
precisely, one can find PCMs having characteristics whose values represent the
products of other PCMs. In these cases, one can be able to extract references and
therefore inter-model variability information between several product families.
The main drawback of using PCMs lies in the fact that they are not formalised
and in most cases they need to be cleaned before being automatically processed
[SAB13, NBA+17].

RQ1: To extract augmented variability information in the form of logi-
cal relationships, we will use traditional Formal Concept Analysis along with
Pattern Structures.

Traditional FCA allows to extract all implications, co-occurrences and mutex
between features, as well as feature groups (or-groups and xor-groups) [CHN17,

RPK11, LP07]. Moreover, by analysing the extents of concepts introducing
features involved in a feature group, it is possible to extract the corresponding
group cardinality. Figure 6 presents the grammar of the variability information
that can be extracted with traditional FCA. We simplify the logical relationships
representing feature-groups by introducing the notation (p, {f1, ..., fn}, < min−
max >) to be used instead of the one aforementioned in Section 2.2.2.

Besides, Pattern Structures permit to extract, in addition to variability in-
formation extracted by traditional FCA, all implications, co-occurrences and
mutex between a feature and an attribute value, and between two attribute
values. Also, given a PCM’s characteristics, one can extract feature cardinali-
ties by 1) analysing the minimum and maximum number of values in the cells
of a characteristic, or by 2) identifying characteristics with numerical values
representing the occurrence of a feature. A feature cardinality is then handled
as a multi-valued attribute with a numerical type. It is noteworthy that, as
FCA is applied on Pattern Structures, all the variability information extracted
with FCA can also be extracted with Pattern Structures. The grammar of the
variability information that can be extracted using Pattern Structures (minus
the ones extracted with traditional FCA) is presented in Figure 7.

RQ2: To extract inter-model variability information between different
software families, we will use Relational Concept Analysis. By synthesising
relational contexts depending on PCMs’ characteristic values representing the
products of other PCMs, one can build interconnected concept lattices with
RCA. Then, it is possible to apply usual algorithms on extended concept lat-
tices to extract all implications, co-occurrences and mutex between features of
different software families (i.e., different PCMs). Figure 8 presents the grammar
of the variability information that can be extracted with RCA. As for Pattern
Structures, we only present the information that is specific to an extraction
using RCA.

We sum up the variability information types that can be extracted and by
which frameworks in Table 3. For now, we envision to extract logical rela-
tionships involving only features between different software families. However,
research has been made about the combination of Pattern Structures and RCA
[CN14]. This would permit to extract augmented variability information be-
tween software families: for instance, a co-occurrence between a feature of a
software family, and an attribute value of another software family. This is left
as future considerations.

5 Related Work

FM extraction from product descriptions: Several dedicated algorithms
for the synthesis of boolean FMs can be found in the litterature [ACP+12,
DDH+13, HLE11, HLE13]. Some authors use search-based methods to perform
the extraction, as [LLE14] with genetic programming, and [LLG+15] assessing
evolutionary algorithms, hill climbing and random search for this task. Loesch
and Plodereder [LP07] first use FCA to analyse and reorganise an FM through

Table 3: List of variability information types depending on the frameworks
permiting to extract them
Variability information FCA Pattern Structures RCA
implication X X X
co-occurrence X X X
mutex X X X
feature group and
group cardinality X X X
augmented implication X
augmented co-occurrence X
augmented mutex X
inter-model implication X
inter-model co-occurrence X
inter-model mutex X

the variability information provided by conceptual structures built from its set
of valid configurations. Ryssel et al. [RPK11] and then Al-Msie’Deen et al.
[AMHS+14] propose to extract an FM from a set of software descriptions en-
coded in a formal context. All these works have in common the fact that they
synthesise boolean FMs representing constraints between features, whereas we
aim to extract more complex constraints to later build extended FMs. To the
best of our knowledge, Becan et al. [BBGA15] are the only ones that propose
a method to extract extended FMs (in the form of attributed FMs) from prod-
uct descriptions. They propose dedicated algorithms to extract, in addition to
regular boolean FMs relationships, a set of implications involving at least one
attribute value. In comparison, our approach would allow to extract mutex and
co-occurrences involving attribute values, as well as implications, mutex and
co-occurrences involving elements of separate FMs. Also, the frameworks we
use for these tasks give mathematical foundations to the variability extraction
algorithms, and lie on a single and canonical structure that naturally empha-
sises the variability of a set of variants.
Pattern Structures: Ganter and Kuznetsov [GK01] first introduced Pattern
Structures for an application on graphs representing molecules. Since, it has
been used fo knowledge discovery on complex data types, e.g., mining sequen-
tial data [BEJ+16], RDF triples classification [BCNR17, RATN] or functional
dependencies extraction [BKN14].
Relational Concept Analysis: RCA was first used to build class model ab-
stractions [AFHN06]. It has been applied for restructuring ontologies [STNB11,
RHVN11], refactoring design defects [MHVG08] or extracting tranformation
rules from model transformation examples [SDH+12].

6 Conclusion

In this paper, we studied three extensions of FMs (multi-valued attributes,
cardinalities and references) to cope with complex product line variability mod-
elling. We presented Formal Concept Analysis as a mathematical framework
that brings theoretical foundations to the extraction of variability information
from product descriptions. We also presented two FCA extensions, Pattern
Structures and Relational Concept Analysis that allow to extract variability
information involving cardinalities, multi-valued attributes and features from
different yet connected software families. We linked variability information that
can be extracted by these three frameworks with the one found in extended
FMs. We proposed research directions to extract complex variability informa-
tion using these frameworks, as a part of extended FM synthesis from product
descriptions.

In the future, we plan to apply this methodology on existing datasets repre-
senting software family descriptions. We will analyse the extracted variability
information and study different methods to separate the consistent from the in-
consistent ones, and to provide a ranking of the most pertinent information for
the expert. As we have said before, we will study the combination of Pattern
Structures and Relational Concept Analysis to extract augmented variability
information between different extended FMs. Finally, we will consider the sec-
ond part of the feature model synthesis that consists in building the FM from
the extracted information.

References

[ACP+12] Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Hey-
mans, Charles Vanbeneden, Philippe Collet, and Philippe Lahire.
On extracting feature models from product descriptions. In Proc.
of the 6th Int. Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS’12), pages 45–54, 2012.

[AFHN06] Gabriela Arévalo, Jean-Rémy Falleri, Marianne Huchard, and
Clémentine Nebut. Building Abstractions in Class Models: For-
mal Concept Analysis in a Model-Driven Approach. In Proc. of
the 9th Int. Conference on Model Driven Engineering Languages
and Systems (MoDELS’06), pages 513–527, 2006.

[AMdSH+14] Ra’Fat Al-Msie ’deen, Abdelhak-Djamel Seriai, Marianne
Huchard, Christelle Urtado, Sylvain Vauttier, and Ahmad Al-
Khlifat. Concept lattices: A representation space to structure
software variability. In Proc. of the 5th Int. Conference on In-
formation and Communication Systems (ICICS’14), pages 1–6,
2014.

[AMHS+14] Ra’Fat Al-Msie’deen, Marianne Huchard, Abdelhak Seriai, Chris-
telle Urtado, and Sylvain Vauttier. Reverse Engineering Feature

Models from Software Configurations using Formal Concept Anal-
ysis. In Proc. of the 11th Int. Conference on Concept Lattices and
Their Applications (CLA’14), pages 95–106, 2014.

[BBGA15] Guillaume Bécan, Razieh Behjati, Arnaud Gotlieb, and Math-
ieu Acher. Synthesis of attributed feature models from product
descriptions. In Proc. of the 19th Int. Conference on Software
Product Line (SPLC’15), pages 1–10, 2015.

[BCNR17] Quentin Brabant, Miguel Couceiro, Amedeo Napoli, and Justine
Reynaud. From Meaningful Orderings in the Web of Data to
Multi-level Pattern Structures. In Proc. of 23rd Int. Symposium
on Foundations for Intelligent Systems (ISMIS’17), pages 622–
631, 2017.

[BEJ+16] Aleksey Buzmakov, Elias Egho, Nicolas Jay, Sergei O. Kuznetsov,
Amedeo Napoli, and Chedy Räıssi. On mining complex sequential
data by means of FCA and pattern structures. Int. Journal of
General Systems, 45(2):135–159, 2016.

[BKN14] Jaume Baixeries, Mehdi Kaytoue, and Amedeo Napoli. Charac-
terizing functional dependencies in formal concept analysis with
pattern structures. Annals of Mathematics and Artificial Intelli-
gence, 72(1-2):129–149, 2014.

[Bos09] Jan Bosch. From software product lines to software ecosys-
tems. In Proc. of the 13th Int. Software Product Lines Conference
(SPLC’09), pages 111–119, 2009.

[Bot13] Goetz Botterweck. Variability and Evolution in Systems of Sys-
tems. In Proc. of the 1st Workshop on Advances in Systems of
Systems (AiSoS’13), pages 8–23, 2013.

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Au-
tomated analysis of feature models 20 years later: A literature
review. Information Systems, 35(6):615–636, 2010.

[CBUE02] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ul-
rich W. Eisenecker. Generative Programming for Embedded Soft-
ware: An Industrial Experience Report. In Proc. of the 1st
ACM SIGPLAN/SIGSOFT Conference on Generative Program-
ming and Component Engineering (GPCE’02), pages 156–172,
2002.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker.
Staged Configuration Using Feature Models. In Proc. of the
3rd Int. Conference on Software Product Lines (SPLC’04), pages
266–283, 2004.

[CHN17] Jessie Carbonnel, Marianne Huchard, and Clémentine Nebut. An-
alyzing Variability in Product Families through Canonical Fea-
ture Diagrams. In Proc. of the 29th Int. Conference on Software
Engineering & Knowledge Engineering (SEKE’17), pages 185–
190, 2017.

[CN14] Vı́ctor Codocedo and Amedeo Napoli. A proposition for com-
bining pattern structures and relational concept analysis. In
Proc. of the 12th Int. Conference on Formal Concept Analysis
(ICFCA’14), pages 96–111, 2014.

[CW07] Krzysztof Czarnecki and Andrzej Wasowski. Feature Diagrams
and Logics: There and Back Again. In Proc. of the 11th Int.
Conference on Software Product Lines (SPLC’07), pages 23–34,
2007.

[DDH+13] Jean-Marc Davril, Edouard Delfosse, Negar Hariri, Mathieu
Acher, Jane Cleland-Huang, and Patrick Heymans. Feature
model extraction from large collections of informal product
descriptions. In Proc. of the 9th Joint Meeting of the Eu-
ropean Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’13), pages 290–300, 2013.

[FKL+06] Steven Fraser, Gregor Kiczales, Ricardo Lopez, Peter G. Neu-
mann, Linda M. Northrop, Martin C. Rinard, Douglas C.
Schmidt, and Kevin J. Sullivan. The ultra challenge: soft-
ware systems beyond big. In Companion to the 21th Annual
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’06), pages 929–
933, 2006.

[GK01] Bernhard Ganter and Sergei O. Kuznetsov. Pattern Structures
and Their Projections. In Proc. of the 9th Int. Conference on
Conceptual Structures (ICCS’01), pages 129–142, 2001.

[GW99] Bernhard Ganter and Rudolf Wille. Formal concept analysis -
mathematical foundations. Springer, 1999.

[HGR12] Gerald Holl, Paul Grünbacher, and Rick Rabiser. A system-
atic review and an expert survey on capabilities supporting multi
product lines. Information & Software Technology, 54(8):828–852,
2012.

[HHNV13] Mohamed Rouane Hacène, Marianne Huchard, Amedeo Napoli,
and Petko Valtchev. Relational concept analysis: mining concept
lattices from multi-relational data. Annals of Mathematics and
Artificial Intelligence, 67(1):81–108, 2013.

[HLE11] Evelyn Nicole Haslinger, Roberto E. Lopez-Herrejon, and Alexan-
der Egyed. Reverse Engineering Feature Models from Programs’
Feature Sets. In Proc. of the 18th Working Conference on Reverse
Engineering (WCRE’11), pages 308–312, 2011.

[HLE13] Evelyn Nicole Haslinger, Roberto Erick Lopez-Herrejon, and
Alexander Egyed. On Extracting Feature Models from Sets of
Valid Feature Combinations. In Proc. of the 16th Int. Conference
on Fundamental Approaches to Software Engineering (FASE’13),
Held as Part of the European Joint Conferences on Theory and
Practice of Software (ETAPS’13), pages 53–67, 2013.

[KCH+90] Kyo Kang, Sholom Cohen, James Hess, William Novak, and
A. Peterson. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical Report CMU/SEI-90-TR-021, 1990.

[LLE14] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. Feature Model Synthesis with Genetic Programming. In
Proc. of the 6th Int. Symposium on Search-Based Software Engi-
neering (SSBSE’14), pages 153–167, 2014.

[LLG+15] Roberto Erick Lopez-Herrejon, Lukas Linsbauer, José A. Galindo,
José Antonio Parejo, David Benavides, Sergio Segura, and
Alexander Egyed. An assessment of search-based techniques for
reverse engineering feature models. Journal of Systems and Soft-
ware, 103:353–369, 2015.

[LP07] Felix Loesch and Erhard Ploedereder. Restructuring Variability
in Software Product Lines using Concept Analysis of Product
Configurations. In Proc. of the 11th European Conference on
Software Maintenance and Reengineering, Software Evolution in
Complex Software Intensive Systems (CSMR’07), pages 159–170,
2007.

[Man02] Mike Mannion. Using First-Order Logic for Product Line Model
Validation. In Proc. of the 2nd Int. Conference on Software Prod-
uct Lines (SPLC’02), pages 176–187, 2002.

[MHVG08] Naouel Moha, Amine Rouane Hacene, Petko Valtchev, and Yann-
Gaël Guéhéneuc. Refactorings of design defects using relational
concept analysis. In Proc. of the 6th Int. Conference in Formal
Concept Analysis (ICFCA’08), pages 289–304, 2008.

[NBA+17] Sana Ben Nasr, Guillaume Bécan, Mathieu Acher, João
Bosco Ferreira Filho, Nicolas Sannier, Benoit Baudry, and Jean-
Marc Davril. Automated extraction of product comparison ma-
trices from informal product descriptions. Journal of Systems and
Software, 124:82–103, 2017.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank J van der Linden. Software
Product Line Engineering: Foundations, Principles, and Tech-
niques. Springer Science & Business Media, 2005.

[PEVD10] Jonas Poelmans, Paul Elzinga, Stijn Viaene, and Guido De-
dene. Formal concept analysis in knowledge discovery: a sur-
vey. In Proc. of the 8th Int. Conference on Conceptual Structures
(ICCS’10), pages 139–153, 2010.

[PSA+12] Jeff Z Pan, Steffen Staab, Uwe Aßmann, Jürgen Ebert, and Yut-
ing Zhao. Ontology-driven software development. Springer Science
& Business Media, 2012.

[RATN] Justine Reynaud, Mehwish Alam, Yannick Toussaint, and
Amedeo Napoli. A Proposal for Classifying the Content of the
Web of Data Based on FCA and Pattern Structures. In Proc.
of 23rd Int. Symposium on Foundations for Intelligent Systems
(ISMIS’17), pages 684–694.

[RHVN11] Mohamed Rouane-Hacene, Petko Valtchev, and Roger Nkambou.
Supporting ontology design through large-scale FCA-based on-
tology restructuring. In Conceptual Structures for Discovering
Knowledge, pages 257–269. Springer, 2011.

[RPK11] Uwe Ryssel, Joern Ploennigs, and Klaus Kabitzsch. Extraction
of feature models from formal contexts. In Workshop Proc. (Vol-
ume 2) of the 15th Int. Conference on Software Product Lines
(SPLC’11), pages 4:1–4:8, 2011.

[RSKuR08] Marko Rosenmüller, Norbert Siegmund, Christian Kästner, and
Syed Saif ur Rahman. Modeling dependent software product lines.
In Proc. of the GPCE Workshop on Modularization, Composition
and Generative Techniques for Product Line Engineering (McG-
PLE’08), pages 13–18, 2008.

[SAB13] Nicolas Sannier, Mathieu Acher, and Benoit Baudry. From com-
parison matrix to Variability Model: The Wikipedia case study.
In Proc. of the 28th Int. Conference on Automated Software En-
gineering (ASE’13), pages 580–585, 2013.

[SDH+12] Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine
Nebut, and Houari A. Sahraoui. Generation of Operational Trans-
formation Rules from Examples of Model Transformations. In
Proc. of the 15th Int. Conference on Model Driven Engineering
Languages and Systems (MODELS’12), pages 546–561, 2012.

[Sne00] Gregor Snelting. Software reengineering based on concept lattices.
In Proc. of the 4th European Conference on Software Maintenance
and Reengineering (CSMR’00), pages 3–10, 2000.

[STNB11] Lian Shi, Yannick Toussaint, Amedeo Napoli, and Alexandre
Blansché. Mining for Reengineering: An Application to Semantic
Wikis Using Formal and Relational Concept Analysis. In Proc.
of the 8th Extended Semantic Web Conference (ESWC’11), pages
421–435, 2011.

Concept_13

grid

v1

Concept_0

Concept_1

v8

Concept_2

v4

Concept_10

list

v5

Concept_8

Concept_14

payment_method
basket

Concept_9

Concept_4

v6

Concept_12

credit_card

Concept_7

v2

Concept_3

v7

Concept_5

Concept_11

check

Concept_6

v3

Concept_15
e_commerce

catalog

Figure 5: Concept lattice associated with the formal context of Table 2

variability information := relationship*
relationship := implication — co-occurrence —

mutex — group
implication := feature ’→’ feature
co-occurrence := feature ’↔’ feature
mutex := feature ’→’ ’¬’ feature
group := ’(’ feature ’,’ ’{’ feature set ’}’

’,’ cardinality ’)’
feature set := feature — feature set ’,’ feature
feature := feature name
cardinality := ’<’ nb min ’,’ nb max ’>’

Figure 6: Grammar of variability information that can be extracted with tradi-
tional FCA

variability information := relationship*
relationship := implication — co-occurrence —

mutex
implication := augmented element ’→’

augmented element
co-occurrence := augmented element ’↔’

augmented element
mutex := augmented element ’→’

’¬’ augmented element
augmented element := feature — attribute
feature := feature name
attribute := attribute name ’=’ value

Figure 7: Grammar of the augmented variability information that can be ex-
tracted with Pattern Structures

variability information := relationship*
relationship := implication — co-occurrence —

mutex
implication := inter-model element ’→’

inter-model element
co-occurrence := inter-model element ’↔’

inter-model element
mutex := inter-model element ’→’

’¬’ inter-model element
inter-model element := software family ’:’ feature
feature := feature name
software family := family name

Figure 8: Grammar of the inter-model variability information that can be ex-
tracted with RCA

