
HAL Id: lirmm-01872807
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01872807

Submitted on 12 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On extracting relevant and complex variability
information from software descriptions with pattern

structures
Jessie Carbonnel, Marianne Huchard, Clémentine Nebut

To cite this version:
Jessie Carbonnel, Marianne Huchard, Clémentine Nebut. On extracting relevant and complex variabil-
ity information from software descriptions with pattern structures. ICSE: International Conference
on Software Engineering, May 2018, Gothenburg, Sweden. pp.304-305, �10.1145/3183440.3194982�.
�lirmm-01872807�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01872807
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Poster: On Extracting Relevant and Complex Variability
Information from Software Descriptions with Pattern Structures

Jessie Carbonnel, Marianne Huchard, Clémentine Nebut
LIRMM, Université de Montpellier, CNRS, Montpellier, France

{jcarbonnel,huchard,nebut}@lirmm.fr

ABSTRACT
The migration from existing software variants to a software product
line is an arduous task that necessitates to synthesise a variabil-
ity model based on already developed softwares. Nowadays, the
increasing complexity of software product lines compels practi-
tioners to design more complex variability models that represent
other information than binary features, e.g., multi-valued attributes.
Assisting the extraction of complex variability models from variant
descriptions is a key task to help the migration towards complex
software product lines. In this paper, we address the problem of
extracting complex variability information from software descrip-
tions, as a part of the process of complex variability model synthesis.
We propose an approach based on Pattern Structures to extract vari-
ability information, in the form of logical relationships involving
both binary features and multi-valued attributes.

CCS CONCEPTS
• Information systems→ Information extraction; • Software
and its engineering → Software product lines; Software re-
verse engineering;

KEYWORDS
Software Product Line, Reverse Engineering, Variability Extraction
ACM Reference format:
Jessie Carbonnel, Marianne Huchard, Clémentine Nebut. 2018. Poster: On
Extracting Relevant and Complex Variability Information from Software
Descriptions with Pattern Structures. In Proceedings of 40th International
Conference on Software Engineering Companion, Gothenburg, Sweden, May
27-June 3, 2018 (ICSE ’18 Companion), 2 pages.
https://doi.org/10.1145/3183440.3194982

1 INTRODUCTION
Software Product Line (SPL) Engineering [4] is a development para-
digm that seeks to develop a set of similar software systems through
systematic artefact reuse and mass-customisation. The core of this
approach is based on the development of a generic software ar-
chitecture, on which variable and reusable software artefacts can
be plugged depending on given requirements. The key of SPL im-
plementation is variability modelling, i.e., representing what can
vary in the software systems to be developed, and how it can vary.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3194982

Variability is usually expressed in terms of binary features, which
are distinguishable variant characteristics. A recent survey shows
that a significant part of companies opt for an extractive adoption
strategy of SPL [1]; it is an arduous task that implies to extract vari-
ability information based on descriptions of the existing software
systems, in order to build a variability model [3].

Pattern Structures are a mathematical framework for hierarchi-
cal clustering of a set of objects described by complex data called
patterns, allowing to extract all logical relationships that are true for
the considered set of objects. In this paper, we propose amethod that
uses Pattern Structures to extract logical relationships involving
both features and multi-valued attributes from complex variability
descriptions, i.e., depicting not only binary features. It is a first
step towards the automated synthesis of complex variability mod-
els from existing software systems. The aim of this research is to
ease the transition of more and more complex software variants
that have been individually developed, to software reuse and mass-
customisation approaches. Our method is sound and complete, and
offers theoretical foundations to complex variability information
extraction.

2 METHOD OVERVIEW
The proposed extraction method is based on Pattern Structures (PS)
[2], a mathematical framework used for knowledge discovery on
a set of objects described by complex data, e.g., numerical values,
graphs, sets of values. PS describe each object of a set O according
to a pattern, that can be of any type of data on which one can
define a similarity operator ⊓. Applied to a set of patterns, this
operator returns a pattern representing their most specific common
generalisation. We applied our method on existing multi-valued
matrices taken from the software comparison category of wikipedia.
Here, the objects represent the software variants, and the patterns
represent the variant descriptions. Table 1 presents an excerpt of a
multi-valued matrix depicting softwares and their characteristics.
It describes 5 software variants depending on 5 characteristics:
Open Source , Corporate and Personal are binary characteristics,
First Release is a characteristic having 4 possible Date-typed values,
and Lanдuaдe is a characteristic with 3 possible String-typed values.
Our method can be decomposed in the 4 steps of Figure 1.

variant
descriptions

pattern
vectors

pattern
concept
lattice

variability
information

identifying
patterns

knowledge
discovery

defining
taxonomies

pattern
taxonomy

building 
the lattice

Figure 1: Extracting complex variability information from
variant descriptions using Pattern Structures.

https://doi.org/10.1145/3183440.3194982
https://doi.org/10.1145/3183440.3194982


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Jessie Carbonnel, Marianne Huchard, Clémentine Nebut

Table 1: Excerpt of a multi-valued matrix representing soft-
ware variant descriptions taken from wikipedia

O
pe
n
So
ur
ce

Co
rp
or
at
e

Pe
rs
on

al

Fi
rs
tr
el
ea
se

La
ng

ua
ge

1 Confluence X X 2004 Java EE
2 GrokOla X 2014 JavaScript
3 Jive X 2006 Java EE
4 Wagn X X X 2006 Ruby
5 Wiki.js X X X 2017 JavaScript

Identifying patterns. Patterns can be values of atomic types, e.g.,
a Date, a String or a number. But, one can choose to compose
several patterns to form a vector of patterns, that can be considered a
pattern as well. In our case, a variant descriptionmay be represented
as a pattern vector depicting the values of each characteristic of
the matrix. This first step consists in identifying in the variant
descriptions the set of component patterns that will form the pattern
vectors. As binary characteristics have a {true, f alse} domain, the
set of binary characteristics having a true value of a variant can be
considered as one multi-valued characteristic. This representation
choice does not alter the extracted information and permits to
simplify the processed data.

The pattern vectors for the software variants of Table 1 are thus
of the form v = ⟨Pf , Pf r , Pl ⟩, where Pf is the set of features (i.e.,
binary characteristics), followed by the value of the attribute First
Release (FR) (Pf r ) and then the value of the attribute Language
(Pl ). The two following pattern vectors respectively represent the
softwares Confluence and GrokOla:
v1 = ⟨{Corporate, Personal }, FR = 2004, Lanдuaдe = Java EE⟩

v2 = ⟨{Corporate}, FR = 2014, Lanдuaдe = JavaScript⟩

Defining taxonomies. Now that we have specified the pattern
vectors, we have to define similarities between the elements of
each component pattern. A similarity operator is associated to a
subsumption relation ⊑, allowing the set of patterns P to be par-
tially ordered in a taxonomy, in which each pair of elements has
a unique most specific common generalisation pattern. In other
words, it structures the patterns by specialisation, andp1 ⊑ p2 ⇐⇒
p1 ⊓ p2 = p1,∀p1,p2 ∈ P . For example, let us consider Pf the
first component of our vector, representing the binary features
owned by the variants. The similarity between a variant described
by the feature set {Corporate, Personal } and another variant de-
scribed by {Corporate} is that they are both described by the feature
set {Corporate} (denoted {Corporate, Personal } ⊓f {Corporate} =
{Corporate}). Also, a way to define the similarity of a variant first
released in 2004 and a variant first released in 2014 is that they
have both been released between 2004 and 2014 (2004 ⊓f r 2014 =
[2004, 2014]). Once we have defined the similarity operators of the
component pattern characterising our software variants, we can
compute similarity between these pattern vectors:
v1 ⊓v2 = ⟨{Corporate}, FR = [2004, 2014],Lanдuaдe = ¬Ruby⟩

Building the lattice. The set of objects O , the pattern taxonomy
(P ,⊓) and the mapping δ : O → P associating each object of O to

its pattern in P , form a Pattern Structure. Given a Pattern Structure
PS = (O, (P ,⊓),δ ), a pattern concept of PS is a tuple (O ′,p) such
that O ′ ⊆ O and p ∈ (P ,⊓), which represents a maximal set of
objects and the most specific pattern corresponding to these objects.
This means that there is no other object than the ones in O ′ that
corresponds to the pattern p, and that there is no other pattern
more specific than p which corresponds to all the objects from O ′.
These pattern concepts can be partially ordered: given two pattern
concepts C1 = (O1,p1) and C2 = (O2,p2) of PS , C1 ≤ps C2 if and
only if O1 ⊆ O2 and p1 ⊑ p2. The set of all pattern concepts of
PS provided with the order ≤ps forms a lattice structure called a
pattern concept lattice.

Knowledge discovery. The pattern concept lattice emphasises
several types of variability information, i.e., logical relationships
between features and/or attribute values, that state how these ele-
ments can be combined to compose a software of the software fam-
ily. The most represented and studied variability relationship types
in the literature are implications between elements, co-occurring el-
ements, mutually exclusive elements and feature-groups. All these
types of variability information can be extracted from PS using the
proper algorithms [5]. By theoretical definition, variability extrac-
tion with Pattern Structures is complete, in the sense where they
allow to extract all logical relationships (among the 4 aforemen-
tioned types) that are true for the considered set of variants.

3 CONCLUSION AND PERSPECTIVES
We presented an approach to extract complex variability informa-
tion from software variant descriptions based on Pattern Structures.
It allowed us to extract variability information by considering not
only the software variants’ features, but also multi-valued attributes.
This work is a first step toward a more generic approach to assist
practitioners into extracting complex variability models.

Our extraction method is complete and therefore extracts an
important number of relationships. It appears that a significant part
of them are "accidental", i.e., true for the considered set of variants
but not regarding the domain. In future work, we plan to study
existing techniques to lower the number of considered extracted
relationships by deepening the separation of the meaningful ones
from the accidental ones. Another future work will be to consider
the extraction of other kinds of variability information that could
be useful to synthesise complex variability models from software
descriptions. Particularly, relationships between several indepen-
dent but connected software families are to be studied, allowing
applications in the field of multiple software product lines.

REFERENCES
[1] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,

Krzysztof Czarnecki, and Andrzej Wasowski. 2013. A survey of variability model-
ing in industrial practice. In Proc. of the 7th Int. Workshop on Variability Modelling
of Software-intensive Systems. 7:1–7:8.

[2] Bernhard Ganter and Sergei O. Kuznetsov. 2001. Pattern Structures and Their
Projections. In Proc. of the 9th Int. Conf. on Conceptual Structures. 129–142.

[3] Charles W. Krueger. 2001. Easing the Transition to Software Mass Customization.
In Proc. of the 4th Int. Workshop on Software Product-Family Engineering. 282–293.

[4] Klaus Pohl, Günter Böckle, and Frank J van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles, and Techniques. Springer Science &
Business Media.

[5] Uwe Ryssel, Joern Ploennigs, and Klaus Kabitzsch. 2011. Extraction of feature
models from formal contexts. InWorkshop Proc. (Vol. 2) of the 15th Int. Conf. on
Software Product Lines. 4:1–4:8.


	Abstract
	1 Introduction
	2 Method overview
	3 Conclusion and Perspectives
	References

