S. Grimnes, O. G. Martinsen, B. , and B. Basics, , 2014.

H. P. Schwan, Electrical properties of tissue and cell suspensions, Advances in Biological and Medical Physics, vol.5, pp.147-209, 1957.

H. Dastjerdi, R. Soltanzadeh, and H. Rabbani, Designing and implementing bioimpedance spectroscopy device by measuring impedance in a mouse tissue, Journal of Medical Signals and Sensors, pp.187-194, 2013.

A. S. Tucker, R. M. Fox, S. Member, and R. J. Sadleir, Biocompatible, High Precision, Wideband, Improved Howland Current Source With Lead-Lag Compensation, pp.1-8, 2012.
DOI : 10.1109/tbcas.2012.2199114

H. Hong, A. Demosthenous, I. F. Triantis, P. Langlois, and R. Bayford, A high output impedance CMOS current driver for bioimpedance measurements, 2010 IEEE Biomedical Circuits and Systems Conference, pp.230-233, 2010.

L. Constantinou, R. Bayford, and A. Demosthenous, A Wideband Low Distortion CMOS Current Driver for Tissue Impedance Analysis, IEEE Transactions on Circuits and Systems II: Express Briefs, issue.c, pp.1-1, 2015.

W. M. Sansen, Analog Design Essentials, 2006.

P. Bertemes-filho, B. H. Brown, and .. J. Wilson, A comparison of modified Howland circuits as current generators with current mirror type circuits, Physiological measurement, vol.21, issue.1, pp.1-6, 2000.

O. Casas, J. Rosell, R. Bragós, P. J. Lozano, and . Riu, A parallel broadband real-time system for electrical impedance tomography, Physiological measurement, vol.17, pp.1-6, 1996.

S. Hong, K. Lee, and U. Ha, A 4. 9 m-Sensitivity Mobile Electrical Impedance Tomography IC for Early Breast-Cancer Detection System, IEEE Journal of Solid-State Circuits, vol.50, issue.1, pp.245-257, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00709017

M. Rahal, J. M. Khor, A. Demosthenous, A. Tizzard, and R. Bayford, A comparison study of electrodes for neonate electrical impedance tomography, Physiological Measurement, vol.30, issue.6, p.73, 2009.