
HAL Id: lirmm-01875046
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01875046v1

Submitted on 18 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Re-architecting OO Software into Microservices
Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Christophe

Dony, Rahina Oumarou Mahamane

To cite this version:
Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Christophe Dony, Rahina Oumarou
Mahamane. Re-architecting OO Software into Microservices. ESOCC: European Conference on
Service-Oriented and Cloud Computing, Sep 2018, Como, Italy. pp.65-73, �10.1007/978-3-319-99819-
0_5�. �lirmm-01875046�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01875046v1
https://hal.archives-ouvertes.fr


Re-architecting OO Software into Microservices

A Quality-Centred Approach

Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane,
Christophe Dony, and Rahina Oumarou Mahamane

LIRMM, CNRS and University of Montpellier, France
{selmadji, seriai, bouziane, dony}@lirmm.fr
rahina.oumarou-mahamane@etu.umontpellier.fr

Abstract. Due to its tremendous advantages, microservice architectural
style has become an essential element for the development of applications
deployed on the cloud and for those adopting the DevOps practices. Mi-
grating existing applications to microservices allow them to benefit from
these advantages. Thus, in this paper, we propose an approach to auto-
matically identify microservices from OO source code. The approach is
based on a quality function that measures both the structural and behav-
ioral validity of microservices and their data autonomy. Unlike existing
works, ours is based on a well-defined function measuring the quality of
microservices and use the source code as the main source of information.

Keywords: Object-Oriented · Microservices · Migration · Identification

1 Introduction

Recently, microservice architectural style has become an essential element for
the development of applications deployed on the cloud or for those adopting the
DevOps practices [10, 5]. In this style, an application consists of a set of small
services which are independently deployable. Usually, each microservice can only
manage its own data [10, 12]. These services communicate through lightweight
mechanisms and they are deployed using containers such as Docker [12–14].

For the cloud, microservices facilitate the reconfiguration of an application
according to the changes that may occur at runtime [3]. These changes can be
related to cloud resources (e.g. resource allocation, etc), quality of service (e.g.
scalability guarantees, etc) or any other event (e.g. failure, etc). For DevOps, mi-
croservices facilitate a continuous integration, delivery and deployment tasks[5].

Besides the adoption of microservice architectural style for the development
of new applications, the migration of existing monolithic ones to this style allows
them to benefit from all the above-mentioned advantages. The migration process
consists of three steps: 1) comprehension of the existing system (i.e. reverse
engineering), 2) identification of microservices and 3) packaging them.

Different works have proposed strategies to achieve this migration [8, 9, 4, 11].
Some of these approaches propose limited and ad-hoc heuristics for identifying
microservices. Indeed, they do not consider the data autonomy of microservices



2 A. Selmadji et al.

[8, 4] or they focus on measuring internal coupling and cohesion of microservices
and not their external coupling [4, 11]. Finally, some others require, in addition
to the source code, the use of other artifacts [8, 11] that can be unavailable.

In this paper, we tackle these limitations by proposing an automatic approach
to identify microservices from OO source code. Unlike existing approaches, ours
considers the specificity of microservices. It is based on a quality function that
measures the functional validity of a microservice and its data autonomy.

The remainder of this paper is organized as follows. Section 2 outlines related
works. Section 3 presents the proposed approach for identifying microservices.
Section 4 evaluates our proposal. Finally, section 5 concludes the paper.

2 Related Works

An attempt at providing a structured approach to identify microservices from
monolith is Service Cutter [8]. Service Cutter uses artifacts and documents re-
lated to the software engineering process to build a graph representation which
is decomposed through graph cutting. The limitation of Service Cutter is that
the used artifacts and documents can be unavailable or not up to date.

Levcovitz et al. [9] proposed an approach to identify microservices from mono-
lithic enterprise applications. The approach consists of grouping each user inter-
face with the business functionality it calls and the database tables used by this
functionality in a microservice. Therefore, the main limitation of this approach is
that it is based on a restrictive hypothesis about the architecture of the monolith
to be decomposed (i.e. MVC architecture).

Mazlami et al. [11] proposed a formal model to extract microservices from
monoliths. More precisely, the authors used three formal coupling strategies
and embed those in a graph-based clustering algorithm. In this approach, some
coupling strategies depend on the change history of the code. Thus, if it is
unavailable or consists of a limited number of commits, the approach is unusable.

Baresi et al. [4] proposed an approach to identify microservices from an Ope-
nAPI specification. The identification process consists of matching the terms in
the specifications against a reference vocabulary to suggest possible decomposi-
tions. The limitation of this approach is relying on well-defined interfaces that
provide meaningful names. Moreover, database partitioning was not handled.

In conclusion, the existing works suffer from considerable limitations in terms
of the restrictions associated with the used artifacts, the exploited information,
and the partitioning measures on which they are based.

3 Microservices Identification from OO Source Code

Our microservices identification approach is based on four principles: 1) It consid-
ers OO software, 2) It exploits, mainly, the source code to identify microservices,
3) It defines a function that measures the quality of a microservice. 4) It exploits
the information concerning the relations between the entities of the code and the
information related to the persistent data manipulated in this code.



Re-architecting OO Software into Microservices 3

3.1 From Microservices Characteristics Description to
Characteristics Evaluation

Characteristics of Microservices: Lewis and Fowler [10] define microservices
as small services, communicating with lightweight mechanisms. These services
are independently deployable by fully automated deployment machinery. They
may be written in different programming languages and use different data storage
technologies. Newman [12] considers microservices as small, autonomous services
that work together. Pujals [13] defines microservices as autonomous lightweight
processes, created and deployed with relatively small effort and ceremony.

Based on these definitions and others [14], we identified microservice’s main
characteristics: 1) Small and focused on one function: a microservice is typically
responsible for a simple business functionality. 2) Autonomous: microservices are
separate entities. They communicate via network calls and each one manages
its own database. 3) Technology neutral: with a system composed of a set of
microservices, each one can use different technologies. 4) Automatically deployed:
if the number of microservices increases, automatic deployment is required.

The above characteristics can be classified into two categories: 1) those re-
lated to the structure and behavior of microservices and 2) others related to the
microservice development platform. Therefore, to measure the quality of can-
didate microservices, only the characteristics that define microservice structure
and behavior are selected: small and focused on one function and autonomous.

Evaluation of the ”Focused on One Function” Characteristic: in our
approach, a microservice M is viewed as a set of classes collaborating to provide
one function. This collaboration can be determined from source code through the
internal coupling, that represents the degree of direct and indirect dependencies
between classes. Moreover, it can be determined by the number of volatile data1

whose use is shared by these classes. It reflects the internal cohesion. Thus, FOne
(Equation 1 ) evaluates the characteristic Focused on One Function.

FOne(M) =
1

2
(InternalCoupling(M) + InternalCohesion(M)) (1)

Evaluation of the Structural and Behavioral Autonomy of a Microser-
vice: microservices are separate entities. Thus, in order that a set of classes
represents a microservices their dependencies on external classes should be min-
imal. This can be measured using external coupling (see Equation 2 ).

FAutonomy(M) = ExternalCoupling(M) (2)

Evaluation of the Data Autonomy of a Microservice: a microservice can
be completely data autonomous if it does not require any data from other mi-
croservices. In order that a microservice require less external data, its classes

1 Attributes are an example of volatile data.



4 A. Selmadji et al.

need to manipulate the same data. Thus, FData (Equation 3 ) is based on mea-
suring data dependencies between the classes of the microservice (FIntra), and
their data dependencies with classes not belonging to the microservice (FInter).

FData(M) =
1

2
(FIntra(M) − FInter(M)) (3)

The FIntra (resp. FInter) function applied on a microservice M represents
the ratio between the number of data shared between its classes (resp. with other
classes) and the total number of data manipulated in the microservice.

Global Evaluation of a Microservice: the global evaluation (Equation 4 )
of a microservices depends on the evaluation of its characteristics.

FMicro(M) =
1

n
(αFOne(M) − βFAutonomy(M) + γFData(M)) (4)

Where M is a microservice, α, β and γ are coefficient weights determined by
software architect and n = α+ β + γ. By default, the value of each term is 1.

3.2 Evaluation of Microservice Characteristics Based on Metrics

Internal coupling: internal coupling evaluates the degree of direct and indirect
dependencies between classes. The more two classes use each other’s methods
the more they are coupled. Hence, the internal coupling is measured as follows:

InternalCoupling(M) =

∑
CouplingPair(P )

NbPossiblePairs
(5)

Where P=(Cl1,Cl2) is a pair of classes of the microservice M, NbPossiblePairs
is the number of possible pairs of classes in M, whereas CouplingPair is:

CouplingPair(Cl1, Cl2) =
NbCalls(Cl1, Cl2) +NbCalls(Cl2, Cl1)

TotalNbCalls
(6)

Where NbCalls(Cl1,Cl2) is the number of calls of the methods of Cl1 by those
of Cl2 and TotalNbCalls is the number of method calls in the application. Indeed,
measuring internal coupling using Equation 5 takes into account the frequency of
calls. However, it does not promote clusters in which all the classes are coupled.
For this reason, we introduced the sum of the standard deviations between the
coupling values in the evaluation of the internal coupling (Equation7 ).

InternalCoupling(M) =

∑
CouplingPair(P ) − SumStandardDev

NbPossiblePairs
(7)

External coupling: external coupling evaluates the degree of direct and in-
direct dependencies of the classes belonging to a candidate microservices on
external classes. It is measured similarly to internal coupling, with only one dif-
ference which is the set of used pairs. To measure external coupling, each pair
consists of two classes such that exactly one of them belong to the microservice.



Re-architecting OO Software into Microservices 5

Internal cohesion: internal cohesion evaluates the strength of interactions
between classes. Usually, two classes are more interactive if their methods work
on the same attributes. Thus, internal cohesion is measured as follows:

InternalCohesion(M) =
NbDirectConnect

NbPossibleConnect
(8)

Where NbPossibleConnect is the possible number of connections between the
methods of the classes belonging to the microservice M, whereas NbDirectCon-
nect is the number of connections between these methods. Two methods m1
and m2 are directly connected if they both access the same attribute or the call
trees starting at m1 and m2 access the same attributes. Because our aim is to
measure the cohesion between the classes of the microservices, the connections
between the methods of the same class are not considered. Note that, this inter-
nal cohesion measurement metric is a variation of the metric TCC (Tight Class
Cohesion) proposed by Bieman and Kang [7].

3.3 Clustering Process

To identify microservices from OO code, classes are grouped based on their de-
pendencies. Hence, a hierarchical agglomerative clustering algorithm [1] is used.
We consider our function to measure the quality of a microservice as the simi-
larity function used in the algorithm. Thus, the classes that maximize the value
of the quality function are grouped together. More details can be found in [1].

4 Experimentation and Validation

4.1 Research questions and Data Collection

To validate our approach we conducted an experiment to answer the following
research questions: RQ1: does the proposed approach produce an adequate de-
composition of an OO application into microservices? RQ2: is the definition of
the quality function, without considering data autonomy, adequate? RQ3: does
the evaluation of data autonomy enhance the quality of microservices?

To answer these questions, we have experimented on three OO applications
of different sizes: small (FindSportMates2), average (SpringBlog3) and relatively
large (InventoryManagementSystem4). Table 1 provides some metrics on them.

4.2 Experimental Protocol

The answers to the research questions are based on a tool developed in Java.
To answer RQ1, we used our tool to identify microservices. Then, we compared
them to those identified manually. The protocol for answering RQ2 is similar

2 github.com/chihweil5/FindSportMates
3 github.com/Raysmond/SpringBlog
4 github.com/gtiwari333/java-inventory-management-system-swing-hibernate-nepal



6 A. Selmadji et al.

Table 1. Applications metrics

Application
No of
classes

No of classes representing
database tables

Code size
(LOC)

InventoryManagementSystem 104 19 13447

FindSportMates 17 5 785

SpringBlog 42 5 1615

to the one used for RQ1 with one difference: we set our tool to identify mi-
croservices based on a function related to the characteristics ”focused on one
function” and ”structural and behavioral autonomy”. To answer RQ3 , we com-
pare the precision and recall values related to the answers of RQ1 and RQ2 .

4.3 Direct Results

The source code of each of the previous applications was partitioned into a set of
clusters. Table 2 shows the results obtained based on the entire quality function
(FMicro) and on a quality function without the data autonomy part (FSem).

Table 2. Microservice extraction results

Application No of microservices
Average no of classes

per microservice
FMicro FSem FMicro FSem

InventoryManagementSystem 10 9 8.5 9.44

FindSportMates 2 2 6 6

SpringBlog 4 4 9.25 9.25

To evaluate the microservices obtained by our approach, we compare them
with those identified manually. Thus, we classify the microservices obtained man-
ually in three categories: 1) Those that exactly match the ones identified by our
approach. The microservices identified by our approach and are classified in this
category are considered excellent. 2) Those that can be obtained by a simple
composition/decomposition of the microservices identified by our approach. The
microservices identified by our approach of this category are considered good. 3)
Those that are neither in the first nor in the second categories. The microservices
identified by our approach that are classified in this category are considered bad.

The classification results are described in Table 3 and expressed in term of
precision and recall in Table 4. Precision (resp. recall) assesses the ratio be-
tween the number of good and excellent microservices to the total number of
the classified ones (resp. the number of the manually identified ones).

4.4 Answers to Research Questions

The precision values obtained based on FMicro are greater than 83%. This shows
that a large part of the manually identified microservices are identified by our



Re-architecting OO Software into Microservices 7

approach. The recall values obtained based on FMicro are also greater than 75%.
This means that a large part of the microservices identified by our approach are
those identified manually. Thus, we answer RQ1 as follows: our approach allows
obtaining an adequate decomposition of an OO application into microservices.

Table 3. Microservice classification results

Application
No of excellent
microservices

No of good
microservices

No of bad
microservices

FMicro FSem FMicro FSem FMicro FSem

InventoryManagementSystem 1 1 17 15 3 5

FindSportMates 0 0 3 3 1 1

SpringBlog 3 2 7 8 3 3

In addition, similarly to FMicro, the precision values obtained based on the
partial quality function FSem, are between 80% and 100%.

Table 4. Precision and recall measurement

Application Precision Recall
FMicro FSem FMicro FSem

InventoryManagementSystem 90% 80% 85,71% 76,19%

FindSportMates 100% 100% 75% 75%

SpringBlog 83,33% 83,33% 76,92% 76,92%

The interpretation of the recall values for FSem is the same as FMicro while
considering that the recall values are either equal to or lower than those obtained
by relying on FMicro. Based on these values, the answer to RQ2 is the definition
of the quality function, without considering data autonomy, is adequate.

The precision and recall values obtained based on FSem are equal to or less
than those obtained based on FMicro. The values that are equal are related to
applications that do not manipulate many persistent data. Thus, the answer to
RQ3 is the evaluation of data autonomy enhance the quality of microservices.

4.5 Threats to Validity

Threats to Internal Validity: our approach may be affected by two internal
threats. Firstly, each class belongs to only one microservice. However, in some
applications, some classes may participate in several functionalities. Neverthe-
less, this generally concerns only certain classes that the architect can duplicate.
Secondly, we rely on a hierarchical clustering algorithm. This algorithm allows
obtaining values of the quality function close to optimal ones.

Threats to External Validity: there are two external threats. Firstly, the
quality of the OO source code can impact the identification. Secondly, the match-
ing between the microservices obtained by our approach and those obtained
manually can vary according to the granularity of the manually identified ones.



8 A. Selmadji et al.

5 Conclusion

We presented, in this paper, an approach for the identification of microservices
by an analysis of OO source code. This approach is based on both the evaluation
of microservice quality, using a quality function, and an algorithm for grouping
classes according to the value of this quality. The conducted experimentation
shows the relevance of the obtained microservices using our approach compared
to those identified manually. However, the results need to be consolidated by ex-
perimentations on very large applications. Moreover, inspired by existing works
[2, 6], we will propose an approach to package the identified microservices and
deploy them on the cloud while taking into account the dynamic reconfiguration.

References

1. Adjoyan, S., Seriai, A.D., Shatnawi, A.: Service identification based on quality
metrics object-oriented legacy system migration towards soa. In: SEKE (2014)

2. Alshara, Z., Seriai, A.D., Tibermacine, C., Bouziane, H.L., Dony, C., Shatnawi,
A.: Migrating large object-oriented applications into component-based ones: in-
stantiation and inheritance transformation. In: ACM SIGPLAN Notices. vol. 51,
pp. 55–64. ACM (2015)

3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: European Conference on Service-
Oriented and Cloud Computing. pp. 201–215. Springer (2015)

4. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through inter-
face analysis. In: European Conference on Service-Oriented and Cloud Computing.
pp. 19–33. Springer (2017)

5. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional (2015)

6. Bastide, G., Seriai, A., Oussalah, M.: Adapting software components by structure
fragmentation. In: Proceedings of the 2006 ACM symposium on Applied comput-
ing. pp. 1751–1758. ACM (2006)

7. Bieman, J.M., Kang, B.K.: Cohesion and reuse in an object-oriented system. ACM
SIGSOFT Software Engineering Notes (1995)

8. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: A sys-
tematic approach to service decomposition. In: European Conference on Service-
Oriented and Cloud Computing. pp. 185–200. Springer (2016)

9. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting mi-
croservices from monolithic enterprise systems. arXiv preprint arXiv, (2016)

10. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term.
MartinFowler. com 25 (2014)

11. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic soft-
ware architectures. In: Web Services (ICWS), 2017 IEEE International Conference
on. pp. 524–531. IEEE (2017)

12. Newman, S.: Building microservices: designing fine-grained systems. ” O’Reilly
Media, Inc.” (2015)

13. Sharma, S.: Mastering Microservices with Java. Migrating to Cloud-Native Archi-
tectures Using Microservices: An Experience ReportPackt Publishing Ltd (2016)

14. Sharma, S., Gonzalez, D.: Microservices: Building scalable software (2017)

View publication statsView publication stats

https://www.researchgate.net/publication/327312581

