S. Im, N. Srivastava, K. Banerjee, and K. E. Goodson, Scaling analysis of multilevel interconnect temperatures for high-performance ics, IEEE Transactions on Electron Devices, vol.52, issue.12, pp.2710-2719, 2005.

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller, Journal of Applied Physics, vol.97, issue.2, p.23706, 2005.

A. Todri-sanial, J. Dijon, and A. Maffucci, Carbon Nanotubes for Interconnects, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01444977

K. Liew, C. Wong, X. He, and M. Tan, Thermal stability of single and multi-walled carbon nanotubes, Physical Review B, vol.71, issue.7, p.75424, 2005.

B. Wei, R. Vajtai, and P. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, vol.79, issue.8, pp.1172-1174, 2001.

A. Todri-sanial, R. Ramos, H. Okuno, J. Dijon, A. Dhavamani et al., A survey of carbon nanotube interconnects for energy efficient integrated circuits, IEEE Circuits and Systems Magazine, vol.17, issue.2, pp.47-62, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01795757

K. Banerjee and A. Mehrotra, Global (interconnect) warming, IEEE Circuits and Devices Magazine, vol.17, issue.5, pp.16-32, 2001.

A. K. Goel, High-Speed VLSI Interconnections, 2007.

A. L. Petit, S. Roche, and J. Salvetat, Understanding Carbon Nanotubes, from Basics to Application. Lect. Notes Phys.,édition Springer, 2006.

P. G. Collins, Defects and disorder in carbon nanotubes, Materials: Structures, Properties and Characterization Techniques, vol.2, pp.156-184, 2009.

M. Zhang and J. Li, Carbon nanotube in different shapes, Materials today, vol.12, issue.6, pp.12-18, 2009.

P. Poncharal, C. Berger, Y. Yi, Z. L. Wang, and W. A. De-heer, Room temperature ballistic conduction in carbon nanotubes, The Journal of Physical Chemistry B, vol.106, issue.47, pp.12-104, 2002.

A. Urbina, I. Echeverria, A. Pérez-garrido, A. Díaz-sánchez, and J. Abellán, Quantum conductance steps in solutions of multiwalled carbon nanotubes, Physical review letters, vol.90, issue.10, p.106603, 2003.

S. Esconjauregui, M. Fouquet, B. C. Bayer, C. Ducati, R. Smajda et al., Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects, Acs Nano, vol.4, issue.12, pp.7431-7436, 2010.

Q. Cao, S. Han, J. Tersoff, A. D. Franklin, Y. Zhu et al., End-bonded contacts for carbon nanotube transistors with low, size-independent resistance, Science, vol.350, issue.6256, pp.68-72, 2015.

H. Li, W. Yin, K. Banerjee, and J. Mao, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects, IEEE Transactions on electron devices, vol.55, issue.6, pp.1328-1337, 2008.

A. Naeemi and J. D. Meindl, Compact physical models for multiwall carbon-nanotube interconnects, IEEE Electron Device Letters, vol.27, issue.5, pp.338-340, 2006.

H. Li, W. Lu, J. Li, X. Bai, and C. Gu, Multichannel ballistic transport in multiwall carbon nanotubes, Physical review letters, vol.95, issue.8, p.86601, 2005.

J. Liang, R. Ramos, J. Dijon, H. Okuno, and D. Kalita, A physicsbased investigation of pt-salt doped carbon nanotubes for local interconnects, Electron Devices Meeting (IEDM, pp.35-40, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01795777

P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, Carbon nanotube electronics, Proceedings of the IEEE, vol.91, issue.11, pp.1772-1784, 2003.

N. Chiodarelli, O. Richard, H. Bender, M. Heyns, S. De-gendt et al., Correlation between number of walls and diameter in multiwall carbon nanotubes grown by chemical vapor deposition, Carbon, vol.50, issue.5, pp.1748-1752, 2012.

M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber et al., Resonant electron scattering by defects in single-walled carbon nanotubes, Science, vol.291, issue.5502, pp.283-285, 2001.

J. Lee, S. Berrada, J. Liang, T. Sadi, V. P. Georgiev et al., The impact of vacancy defects on cnt interconnects: From statistical atomistic study to circuit simulations, Simulation of Semiconductor Processes and Devices (SISPAD, pp.157-160, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01795799

P. Holgate, The lognormal characteristic function, Communications in Statistics-Theory and Methods, vol.18, issue.12, pp.4539-4548, 1989.

J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature, vol.391, issue.6662, p.59, 1998.

Y. Massoud and A. Nieuwoudt, Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits, ACM Journal on Emerging Technologies in Computing Systems (JETC), vol.2, issue.3, pp.155-196, 2006.

H. H. Sørensen, P. C. Hansen, D. E. Petersen, S. Skelboe, and K. Stokbro, Efficient wave-function matching approach for quantum transport calculations, Physical Review B, vol.79, issue.20, p.205322, 2009.

M. Brandbyge, J. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Physical Review B, vol.65, issue.16, p.165401, 2002.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera et al., The siesta method for ab initio order-n materials simulation, Journal of Physics: Condensed Matter, vol.14, issue.11, p.2745, 2002.

C. Lee, E. Pop, A. D. Franklin, W. Haensch, and H. Wong, A compact virtual-source model for carbon nanotube fets in the sub-10-nm regimepart i: Intrinsic elements, IEEE transactions on electron devices, vol.62, issue.9, pp.3061-3069, 2015.

A. Nieuwoudt and Y. Massoud, On the impact of process variations for carbon nanotube bundles for vlsi interconnect, IEEE Transactions on Electron Devices, vol.54, issue.3, pp.446-455, 2007.