A. Todri-sanial, J. Dijon, and A. Maffucci, Carbon Nanotubes for Interconnects, pp.978-981, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01879918

K. Liew, C. Wong, X. He, and M. Tan, Thermal stability of single and multi-walled carbon nanotubes, Physical Review B, vol.71, issue.7, p.75424, 2005.

B. Wei, R. Vajtai, and P. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, vol.79, issue.8, pp.1172-1174, 2001.

W. Zhou, J. Vavro, N. M. Nemes, J. E. Fischer, F. Borondics et al., Charge transfer and fermi level shift in p-doped single-walled carbon nanotubes, Physical Review B, vol.71, issue.20, p.205423, 2005.

J. Liang, L. Zhang, N. Azemard-crestani, P. Nouet, and A. Todrisanial, Physical description and analysis of doped carbon nanotube interconnects, IEEE International Workshop on Power and Timing Modeling, Optimization and Simulations (PATMOS), pp.250-255, 2016.
URL : https://hal.archives-ouvertes.fr/lirmm-01457338

M. Monthioux, Carbon meta-nanotubes: Synthesis, properties and applications, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02106281

L. Yu, C. Shearer, and J. Shapter, Recent development of carbon nanotube transparent conductive films, Chemical reviews, vol.116, issue.22, pp.13-413, 2016.

S. L. Hellstrom, M. Vosgueritchian, R. M. Stoltenberg, I. Irfan, M. Hammock et al., Strong and stable doping of carbon nanotubes and graphene by moo x for transparent electrodes, Nano letters, vol.12, issue.7, pp.3574-3580, 2012.

B. Chandra, A. Afzali, N. Khare, M. M. El-ashry, and G. S. Tulevski, Stable charge-transfer doping of transparent single-walled carbon nanotube films, Chemistry of Materials, vol.22, issue.18, pp.5179-5183, 2010.

J. E. Fischer, Chemical doping of single-wall carbon nanotubes, Accounts of chemical research, vol.35, issue.12, pp.1079-1086, 2002.

L. Kavan, P. Rapta, L. Dunsch, M. J. Bronikowski, P. Willis et al., Electrochemical tuning of electronic structure of single-walled carbon nanotubes: in-situ raman and vis-nir study, The Journal of Physical Chemistry B, vol.105, issue.44, pp.10-764, 2001.

J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng et al., Nanotube molecular wires as chemical sensors, science, vol.287, issue.5453, pp.622-625, 2000.

V. Skakalova, A. Kaiser, U. Dettlaff-weglikowska, K. Hrncarikova, and S. Roth, Effect of chemical treatment on electrical conductivity, infrared absorption, and raman spectra of single-walled carbon nanotubes, The Journal of Physical Chemistry B, vol.109, issue.15, pp.7174-7181, 2005.

B. B. Parekh, G. Fanchini, G. Eda, and M. Chhowalla, Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization, Applied Physics Letters, vol.90, issue.12, p.121913, 2007.

Y. Zhao, J. Wei, R. Vajtai, P. M. Ajayan, and E. V. Barrera, Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals, Scientific reports, vol.1, p.83, 2011.

S. Esconjauregui, L. Darsie, Y. Guo, J. Yang, H. Sugime et al., Efficient transfer doping of carbon nanotube forests by moo3, ACS nano, vol.9, issue.10, pp.10-422, 2015.

J. Dijon, R. Ramos, A. Fournier, H. Le-poche, H. Fournier et al., Record resistivity of in-situ grown horizontal carbon nanotube interconnect, Technical proceedings of the 2014 NSTI nanotechnology conference and expo, vol.3, pp.17-20, 2014.

B. Padya, D. Kalita, P. Jain, G. Padmanabham, M. Ravi et al., Self-organized growth of bamboo-like carbon nanotube arrays for field emission properties, Applied Nanoscience, vol.2, issue.3, pp.253-259, 2012.

A. L. Petit, S. Roche, and J. Salvetat, Understanding Carbon Nanotubes, from Basics to Application, Lect. Notes Phys, 2006.

J. Liang, R. Ramos, J. Dijon, H. Okuno, and D. Kalita, A physicsbased investigation of pt-salt doped carbon nanotubes for local interconnects, Electron Devices Meeting (IEDM, pp.35-40, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01795777

H. H. Sørensen, P. C. Hansen, D. E. Petersen, S. Skelboe, and K. Stokbro, Efficient wave-function matching approach for quantum transport calculations, Physical Review B, vol.79, issue.20, p.205322, 2009.

X. Ma, L. Adamska, H. Yamaguchi, S. E. Yalcin, S. Tretiak et al., Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes, ACS nano, vol.8, issue.10, pp.10-782, 2014.

S. Datta, Quantum transport: atom to transistor, 2005.

H. Li, W. Yin, K. Banerjee, and J. Mao, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects, IEEE Transactions on electron devices, vol.55, issue.6, pp.1328-1337, 2008.

C. Lee, E. Pop, A. D. Franklin, W. Haensch, and H. Wong, A compact virtual-source model for carbon nanotube fets in the sub-10-nm regimepart i: Intrinsic elements, IEEE transactions on electron devices, vol.62, issue.9, pp.3061-3069, 2015.

A. Nieuwoudt and Y. Massoud, On the impact of process variations for carbon nanotube bundles for vlsi interconnect, IEEE Transactions on Electron Devices, vol.54, issue.3, pp.446-455, 2007.

F. Pukelsheim, The three sigma rule, The American Statistician, vol.48, issue.2, pp.88-91, 1994.

A. A. Vyas, C. Zhou, and C. Y. Yang, On-chip interconnect conductor materials for end-of-roadmap technology nodes, IEEE Transactions on Nanotechnology, 2016.

L. Wilson, International technology roadmap for semiconductors (itrs), 2013.