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Abstract 

 

Identifying and counting fish individuals on photos and videos is a crucial task to cost-effectively 

monitor marine biodiversity, yet it remains difficult and time-consuming. In this paper, we present a 25 

method to assist the identification of fish species on underwater images, and we compare our model 

performances to human ability in terms of speed and accuracy. We first tested the performance of a 

convolutional neural network (CNN) trained with different photographic databases while 

accounting for different post-processing decision rules to identify 20 fish species. Finally, we 

compared the performance of species identification of our best CNN model with that of humans on 30 

a test database of 1197 fish images representing nine species. The best CNN was the one trained 

with 900 000 images including (i) whole fish bodies, (ii) partial fish bodies and (iii) the 

environment (e.g. reef bottom or water). The rate of correct identification was 94.9%, greater than 

the rate of correct identification by humans (89.3%). The CNN was also able to identify fish 

individuals partially hidden behind corals or behind other fish and was more effective than humans 35 

to identify fish on smallest or blurry images while humans were better to identify fish individuals in 

unusual positions (e.g. twisted body). On average, each identification by our best CNN using a 

common hardware took 0.06 seconds. Deep Learning methods can thus perform efficient fish 

identification on underwater images and offer promises to build-up new video-based protocols for 

monitoring fish biodiversity cheaply and effectively. 40 

 

 

Keywords: marine fishes, convolutional neural network, underwater pictures, machine learning, 

automated identification 
 45 
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Introduction 

  

Coral reefs host a massive and unique biodiversity with, for instance, more than 6,000 fish species 

(Mouillot et al., 2014) and provide key services to millions of people worldwide (Rogers et al., 

2017). Yet, coral reefs are increasingly impacted by global warming, pollution and overfishing 50 

(Graham et al., 2011; Robinson et al., 2017; Scott and Dixson, 2016; Hughes et al., 2017; Cinner et 

al. 2018). The monitoring of fish biodiversity through space and time on coral reefs (Halpem et al., 

2008; Jackson et al., 2001) is thus a critical challenge in marine ecology in order to better 

understand the dynamics of these ecosystems, predict fisheries productivity for dependent human 

communities, and improve conservation and management strategies to ensure their sustainability 55 

(Krueck et al., 2017; Pandolfi et al., 2003). 

 

Most surveys of coral reef fishes are based on underwater visual censuses (UVC) carried out by 

scuba divers (Brock, 1954; Cinner et al., 2016, 2018; Thresher and Gunn, 1986). While non-

destructive, this protocol requires the identification and enumeration of hundreds of individuals 60 

belonging to hundreds of species so it can only be performed by highly trained scientific divers 

while being time consuming. In addition, the accuracy of such visual-based assessments is highly 

dependent on conditions (depth, dive duration) and divers experience while the presence of diver 

biases the detection of some furtive species (Chapman and Atkinson, 1986; Harvey et al., 2004; 

Sale and Sharp, 1983; Watson and Harvey, 2007; Willis, 2001).  65 

 

Over the last decade, underwater cameras have been increasingly used to record fish individuals on 

fixed videos, along belt transects (Cappo, 2003; Langlois et al., 2010; Mallet and Pelletier, 2014), or 

around baits to attract predators (Harvey et al., 2007; Watson et al., 2005; Willis and Babcock, 

2000). Video-based surveys provide estimations of fish abundance and species diversity similar to 70 

UVC-based surveys (Pelletier et al., 2011). Video-based methods can be used to overcome the 

limitations of human-based surveys (depth, time underwater). They also provide a permanent record 

that could later be re-analyzed. However, assessing fish biodiversity and abundance from videos 

requires annotation by highly trained specialists and is a demanding, time-consuming and expensive 

task with up to several hours required to identify fish individuals per hour of video (Francour et al. 75 

1999). There is thus an urgent need to develop new tools for automatic identification of fish 

individuals on photos and videos to provide accurate, efficient, repeatable and cost-effective 

monitoring of reef ecosystems.  

 

Automatic and accurate identification of organisms on photos is crucial to move toward automatic 80 

video processing. In addition, automatic identification of species on photos is especially relevant for 

citizen science. For instance, the application pl@ntNet (https://plantnet.org/) automatized the 

identification of 13,000 species of plants. For fishes, some public tools like inaturalist.org or fishpix 

(http://fishpix.kahaku.go.jp) offer the possibility to upload images that will be manually identified 

by experts. These valuable initiatives would benefit from the support of automatic identification 85 

algorithms to save time of experts. 

 

The performance of recent methods dedicated to the automatic identification of objects on images 

has drastically increased over the last decade (Siddiqui et al, 2017; Lowe, 1999). However, some of 

these methods have been tested only on images recorded in standardized conditions, in terms of 90 

light and/or fish position (e.g. only lateral views) (Levi, 2008; Alsmadi et al, 2010). Identification of 

fish individuals on ‘real-life’ underwater images is more challenging because (i) color and 

brightness are highly variable between images and even within a given image, (ii) the environment 

is textured and has a complex 3-dimentional architecture, (iii) fish can be recorded in various 

positions and are often hidden behind other fish or corals, and (iv) the acquisition camera and its 95 

internal parameters can be variable. 

 

https://plantnet.org/
http://fishpix.kahaku.go.jp/
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Recently, an accurate automation of detection and identification of fish individuals has been 

obtained (Shortis et al., 2016) using machine-learning methods such as support vectors machines 100 

(Blanc et al. 2014), nearest neighbor classifiers (Levi, 2008), discriminant analysis classifiers 

(Spampinato et al., 2010) or Deep Learning (Li et al., 2015). The latest competitions (Joly et al., 

2106) and comparisons (Villon et al., 2016) show that Deep Learning based methods, which are a 

type of neural network combining simultaneously automatic image descriptor and descriptor 

classification, tend to achieve the highest performance, particularly convolutional neural network 105 

(CNN) that add deep layers to classical neural networks (Lecun et al., 2015).  

 

However, the accuracy of CNN methods is highly dependent on the extent and the quality of data 

used during the training phase, i.e. the set of images annotated by experts for all classes to identify. 

The effects of the extent of the training database (i.e. the number of images per class) and 110 

associated post-processing decision rules on the performance of the whole identification process 

remain untested. Since real-life videos of coral reef fishes and thus images extracted from those 

videos are highly diverse in terms of surrounding conditions (environment, light, contrast) and fish 

positions, the performance of identification methods must be carefully tested using an independent 

dataset to assess its robustness over changing conditions. 115 

 

Furthermore, the performance of models should be compared to the performance of humans to 

determine whether machine-based assessment of fish biodiversity provides an advantage over 

traditional human processing of images (Matabos et al., 2017). Here we tested the performance of 4 

models, built with the same CNN architecture, for automatic identification of fish species on coral 120 

reefs. Specifically, we assessed the effect of several training image datasets and several decision 

rules, with a particular focus to identify fish partially hidden behind the coral habitat. We then 

compared the performances of the best CNN models to those of humans. 

 

 125 

Methods 

 

Image acquisition for training and testing CNN models 

We used GoPro Hero3+ black and GoPro Hero4+ black cameras to record videos at 30 fps over 50 

reef sites around the Mayotte island (Mozambique Channel, Western Indian Ocean) including 130 

fringing and barrier reefs, and at depth from 1 to 25m. Videos were recorded from April to 

November 2015. Recording conditions varied between sites and days, especially in term of light and 

environment (i.e. proportion of hard and soft corals, sand and water visible). All videos were 

recorded with a resolution of 1280x720 (HD) and 1920x1080 pixels (full HD) with default settings 

for color temperature and exposure (i.e. no use of protune or automatic color balance adjustment). 135 

For all recordings, the cameras remained stationary and no artificial light or filter were used. We 

recorded 116 videos representing a total of 25 hours.  

 

For all videos, 5 frames per second were extracted leading to a database of 450,000 frames. Fish 

individuals were delineated and identified by undergraduate, master degree students and PhD 140 

students in marine biology trained for fish identification on videos with the support of identification 

keys and under the supervision of experts (Froese and Pauly, 2000; Taquet and Diringer, 2007). 

Each annotation consisted in drawing a rectangle bounding box around a single fish individual, 

including only its very close context as illustrated on Fig.1.a, and associating a label (i.e. species 

name) to this individual. We call those specific images “thumbnails”. 145 

The criteria for the annotation were: 

1) Annotate a fish only if there is no more than 10% of its surface covered by another object (fish, 

coral, or substrate).  
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2) Annotate a fish only if it can be identified at the species level in the frame (i.e. independently 

from previous or next frames where the same fish could have a better position for identification). 150 

3) Annotate a fish only if its apparent size is larger than 3,000 squared pixels, i.e. ignoring fish 

individuals too far from the camera.  

4) Annotate images from different habitats and depths to represent a broad range of light conditions 

and environment, and target at least 1,200 thumbnails per species. 

 155 

We did not consider thumbnails of individuals in positions where they are hard to identify (such as 

fish seen from front) since they would bring more noise than relevant information for the algortihm 

as the discriminating parts of the fish are hidden (specific color pattern, marks, etc). We did not 

process the image with background subtraction for 2 reasons: 

1) We did assume that in our case the context helps to identify fish species, as some species tend to 160 

be associated with some particular environment such as Amphiprion in sea anemone, Chromis 

viridis on Acroporas, Caesionidae in plain water etc... 

2) We wanted our process to be used on full images. In such context, separating fish individuals 

from their background would be either manual or not reliable. 

 165 

This annotation procedure yielded a training dataset (T0) with 44,625 annotated fish thumbnails  

belonging to 20 species (Table 1). The 20 species present in the training dataset represent the most 

common species appearing in the videos and belong to 12 families among the most diverse and 

abundant on coral reefs worldwide (e.g. Pomacentridae, Acanthuridae, Chaetodontidae, Labridae).  

Models were then tested using a set of images independent from the ones used for the training phase 170 

to ensure a cross validation procedure and that model performance reflects real-life study case. 

More specifically, the test dataset was built using 6 videos recorded in contexts different from those 

of videos used for training (i.e. sites or days not included in the training database). Annotations of 

these videos were made like the training dataset except that it included fish individuals partially 

hidden by other fish or by corals as well as fish individuals viewed from front or back (their identity 175 

being checked using when necessary previous or next frames). As our goal is to identify fish species 

on images and photos, the test without any filter allows to assess to which extent our algorithm is 

performing to help users to take a picture good enough for fish identification. 

 

We obtained a test dataset of 4,405 annotated fish thumbnails belonging to 18 out of the 20 species 180 

present in the training dataset (Table S3). We then randomly selected a subset of 1,197 fish 

thumbnails belonging to 9 species to compare the performance of humans vs. obtained models 

(Table S3).  

 

 185 

Deep-learning algorithm 

We used a convolutional neural network (CNN) architecture to build a fish identification model 

(Schmidhuber, 2015). CNNs are a class of deep learning algorithms used to analyze data and 

particularly to classify objects from images (Krizhevsky et al., 2012).  

 190 

CNNs are made of layers of interconnected neurons and each neuron includes a ‘convolutional 

kernel’ that computes a set of mathematical operations (defined by ‘weights’) on the matrices of 

values describing the image (i.e. values for each color channel for each pixel). 

Convolutional features are combinations of pixel values that encode information about target 

classes. Low level features can detect edges or color patterns, while, high level features might 195 

differentiate different fish shapes.  

This process yielded ‘feature maps’, i.e. a vector describing image characteristics (shapes, colors, 

statistical information of the image). 
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The main difference between CNNs and other classifiers is that CNNs build the “feature extractors” 200 

(convolutions in the case of CNN) and the classifier conjointly. 

Then the last layer of the network classifies those feature maps with a soft-max method and gives as 

output scores corresponding to the “probability” that each image belongs to each of the learned 

classes (Lecun et al., 2015). More precisely, the training phase of the network consists in iteratively 

modifying the weights of the convolutional kernels (hence features maps) to optimize the 205 

classification score of all classes. 

 

We used a GoogLeNet architecture as it was the winner of the 2015 competition imageNet (Szegedy 

et al., 2015), an identification challenge on 1,000 different classes. This CNN is composed of 22 

layers. It uses inception modules. Inception modules allow the network to use convolutions of 210 

different sizes (1*1, 3*3 and 5*5 pixels) and to weight each of these convolutions. This network 

could thus account more or less strongly for the context of each pixel, which increases the range of 

possibilities to improve its performance during the training. 

 

A link to a depository with architecture details is given at the end of references. We stopped the 215 

network training after 70 epochs (i.e. a complete scope of the dataset where each image is used only 

once), to prevent overfitting. We used a learning rate of 10
-5

, an exponential learning decay with a 

Gamma of 0.95, a dropout of 50% and an Adam Solver type as learning parameters. Those are 

classic hyper-parameters for a fast convergence of the network without over-fitting (Srivastava, 

2014). The weight initialization is also classic with a random Gaussian initialization. The training 220 

lasted 8 days on our configuration; we trained and ran our code on a computer with 64GB of RAM, 

an i7 3.50GHz CPU and a Titan X GPU card for 900,000 images. 

 

We used at least 2200 thumbnails per fish species class, and batches of 16 images to train our 

network. We ran this architecture on Caffe (Jia et al, 2014). To focus on the impact of the training 225 

data, we used the same CNN architecture for our training and test procedures. 

 

Building the training datasets 

Using the raw training dataset of 20 fish species (Table S1) we built 4 different datasets to assess 

the influence of the dataset building on classification results (Table S2). 230 

 

The first training dataset T1 contained raw fish thumbnails (T0) and their respective mirror images. 

More precisely, we doubled the number of thumbnails per fish individual by flipping each 

thumbnail with respect to the vertical axis. Such a procedure homogenizes the proportion of left-

oriented and right-oriented individuals in the database and we hypothesize it could improve the 235 

average identification rate since fish individuals are seen in all positions.  

 

The second training dataset T2 contained fish thumbnails from T1 plus “part of fish” thumbnails. 

Thumbnails of this class were obtained by splitting each thumbnail of T0 into 4 parts: upper part, 

lower part, right part, and left part as shown on Fig.1. b. We hypothesized that this class can prevent 240 

from misidentification of partially hidden individuals. For instance, if a black and white fish is 

partially hidden so that only its dark part is visible it would likely be confounded with a full dark 

fish. 

 

The third training dataset T3 contained fish thumbnails from T2 plus thumbnails of a single class 245 

“Environment”. Environment thumbnails were extracted at random in portion of frames where no 

fish was detected. We hypothesized that such a procedure can help distinguishing between fish 

species given the high diversity of environments present around them, i.e. allowing CNN models to 

find more efficiently features discriminating fishes whatever the background around them. 

 250 
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The fourth training dataset T4 contained thumbnails from T3 minus the “part of fish”, which is 

replaced by 20 classes “part of species” obtained by splitting thumbnails from each species. The 

difference between T3 and T4 was that T3 contained only one global class “part of fish” whereas T4 

contained as many “part of species” classes as there were “fish” species. 

 255 

 

Figure 1: Thumbnails samples. 

a) Examples of thumbnails of whole fish individuals from the training database and b) examples of 

thumbnails extracted from whole fish picture to build “part of fish” and “part of species” classes. 

 260 

 

 

Testing the performance of models 

We first compared the performance of the 4 models trained using each of the 4 training datasets. In 

addition, we tested the performance of models after correcting their raw outputs using two a 265 

posteriori decision rules. First, since the networks trained with T2, T3 or T4 are likely to recognize 

environment samples with a high confidence score (over 99%) they could thus classify some fish as 

an environment class (i.e. false positive). We therefore defined a decision rule (r1): when the first 

proposition of the network was ‘environment’ with a confidence lower than 99% we provide, as 

final output, the fish class with the highest probability. 270 

Similarly, as “part of species” classes present in T4 were just a methodological choice to improve 

model performance (and hence were absent from the test database), we defined a second decision 

rule (r2): when the result given by the network is “part of species X”, we provide, as final output, 

“species X”. 

 275 

We then compared the performance of the best model with the performance of humans, in terms of 

accuracy and time needed to identify fish thumbnails. This experiment aimed to compare the results 

obtained by humans to those obtained by the CNN using a fair method. This means that during the 

comparison procedure both CNN and humans were shown thumbnails without any contextual 

information (there was no general view of the scene), and the thumbnails were never seen before 280 

the test procedure. The procedure could even be slightly in favor of humans because they knew that 

there were only 9 species to classify, whereas the CNN worked from the 21 species learned and 

misclassification could occur with a higher probability. 

 

Our goal was to allow humans to identify species as fast as possible in this particular context. For 285 

this purpose, we developed an online survey tool operating in Chrome web browser which allowed 

users to easily and quickly identify a fish on a picture displayed at the center of the window by 

either writing the name of the species (with auto-completion) or to select it from a list. A “help” 
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sheet showing a reference picture of the fish species to identify was available in the same window 

(Fig. S1). Once a user selected a species, time to perform the identification was saved and a new 290 

randomly chosen fish picture was displayed.  

 

This comparison was performed on 1197 randomly chosen thumbnails of only 9 species present in 

the test thumbnail dataset (Table S3) to ease the test for humans. The test lasted 20 minutes with the 

help of 10 undergraduate students, 2 Master Degree and 2 PhD student in biology from the 295 

University of Montpellier who were previously trained to identify these fish species. Such a short 

test duration for humans reduces tiredness that could decrease identification accuracy and rapidity. 

We then compared the answers to the ground truth (i.e. identification made by experts in fish 

taxonomy) and computed the time needed to perform each identification. We finally compared 

correct identification rate and time per fish individual between humans and the best CNN model.  300 

 

Results 

 

Influence of the training database and of post-processing on model performance 

The 4 CNN models obtained with 4 different datasets (T1, T2, T3, T4) had similar mean 305 

identification success rate, close to 87% (Table 1). However, there were marked differences in 

correct identification rate between models for several species. For instance, Dascyllus carneus was 

correctly identified in only 4% of the cases by model trained with only whole fish thumbnails (T1) 

while it was correctly identified in more than 90% of cases by the three other models. Conversely, 

Pomacentus sulfureus was more often correctly identified by the models trained with T1 than by 310 

models trained with environment thumbnails (T3 and T4). 

 

Table 1:  

Raw success rate (%) of the 4 CNN models trained with different thumbnails datasets for 

identifying 18 fish species. See details about training databases in Table S2. 315 

 
Species Only whole fish (T1) Whole fish and part of fish 

(T2) 

Whole fish, environment 

and part of fish (T3) 

Whole fish, environment 

and part of species (T4) 

Abudefduf sparoides 80.8 94.9 85.8 82.8 

Abudefduf vaigiensis 94.5 89.0 89.0 80.0 

Chaetodon trifascialis 94.7 90.4 91.0 85.1 

Chromis weberi 98.8 96.6 92.9 98.8 

Dascyllus carneus 4.0 91.5 92.3 91.5 

Monotaxis grandoculis 90.0 68.0 77.7 79.1 

Myripristis botche 100 80.0 75.0 95.0 

Naso elegans 96.2 92.4 89.7 95.1 

Naso vlamingii 92.6 95.3 89.1 95.8 

Nemateleotris magnifica 100 98.2 99.5 99.1 

Odonus niger 79.5 91.4 92.6 81.8 

Plectroglyphidodon lacrymatus 100 100 74.2 94.0 

Pomacentrus sulfureus 97.8 67.6 82.5 73.8 

Pterocaesio tile 100 100 100 99.5 

Pygoplytes diacanthus 84.2 91.5 84.2 86.8 

Thalassoma hardwicke 83.9 82.7 88.0 87.3 

Zanclus cornutus 93.3 84.3 86.4 89.0 

Zebrasoma scopas 89.0 88.8 88.8 92.7 

Mean identification success 
rate 

87.6 87.9 87.7 86.9 
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Post-processing raw outputs of the model T4 following decision rule r1 (i.e. environment not 

considered as a correct result), improved correct identification rate from 86.9 to 90.2% (Table 2). 320 

Adding decision rule r2 (i.e. identification of a part of a species considered as a correct answer) 

increased this success rate to 94.1% (Table 2). Hence, post-processing raw outputs of the model 

trained with the most complete dataset provided the best identification rate. Among the 18 species, 

success rate ranged from 85.2 to 100%, with only 3 species being correctly identified in less than 

90% of cases and 9 species being correctly identified in more than 95% of cases, including 3 with a 325 

correct identification rate >99%. 

 

Confusions between 2 fish species were lower than 4% (Table 3). Confusion between a fish and the 

environment was common when no post-processing was applied with for instance up to 20.9% of 

Pomacentrus sulfureus individuals misidentified as environment (Tables S4, S5). However, 330 

applying decision rule r1 decreased this error rate to less than 4% (Table 3). 

 

Table 2: 

Success rate (%) of 3 CNN models for identifying 18 fish species. First column presents accuracy 

based on raw output of a deep-learning model trained with thumbnails of whole fish, part of species 335 

and environment (as last column of Table 2). Second column presents accuracy after applying a 

decision rule ‘r1’ keeping most likely fish class if ‘environment’ was the most likely class. Third 

column presents results after applying decision rule ‘r1’ plus decision rule ‘r2’: “part of species X” 

is equivalent to “species X”. Numbers are percentages of correct fish identification. 

 340 

Species Raw output Decision Rule r1 Decision Rules r1 and 

r2 

Abudefduf sparoides 82 88 91.9 

Abudefduf vaigiensis 80 89 98 

Chaetodon trifascialis 85.1 87.8 91.5 

Chromis weberi 98.8 98.8 99.2 

Dascyllus carneus 91.5 91.5 91.5 

Monotaxis grandoculis 79.1 83.3 86.1 

Myripristis botche 95 95 95 

Naso elegans 95.1 96.7 97.8 

Naso vlamingii 95.8 96 96 

Nemateleotris magnifica 99.1 100 100 

Odonus niger 81.8 81.8 85.2 

Plectroglyphidodon lacrymatus 94 94 96 

Pomacentrus sulfureus 73.7 78.1 87.9 

Pterocaesio tile 99.5 100 100 

Pygoplytes diacanthus 86.8 89.4 92.1 

Thalassoma hardwicke 87.3 89.6 94.2 

Zanclus cornutus 89 95.3 98.4 

Zebrasoma scopas 92.7 92.7 92.7 

Average success rate 86.9 90.2 94.1 
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Table 3: 

 Performance and confusion rates of CNN model for 9 fish species.The CNN was trained with 

dataset T4 (see Table 1), including thumbnails of whole fish, part of species and environment. Raw 345 

CNN outputs were post-processed with following decision rules:  

‘r1’: If the highest probability is lower than 99% and is for class “environment” then the fish class 

with the second highest probability is kept. 

‘r2’: Outputs “part of species X” are considered as equivalent to “species X” (i.e. the scores of A. 

sparoides and part of A. sparoides were merged). 350 

Columns indicate the species to classify, and rows indicate the results (most probable species) given 

by the model (i.e. percentages on the diagonal indicate success rate). Only values over 1% are 

shown. Full names of species are in Table 1 

 

Species A.sparoides A. vaigiensis C. Trifascialis N. elegans P. sulfureus P. diacanthus T. hardwicke Z. cornutus Z. scopas 
A.sparoides 91.9      1.3   

A. vaigiensis 1.1 98.2        

C. Trifascialis   91.5    1.0   
C. Weberi 2.2      1.1 1.5  

D. caruleus         3.9 
N. elegans    97.8      
P. sulfureus 1.0 1.8 1.0  87.9 2.5    

P. diacanthus     3.8 92.1    

P. lacrymatus      2.6    
T. Hardwicke 2.0  1.5    94.2   

Z. cornutus 1.0       98.5  

Z. scopas         92.7 
Environment     3.6 2.6   1.0 

 355 
 

 

 

Performance of CNN models vs. humans 

On average, each human identified 270 fish thumbnails during the 20-minute test. Mean rate of 360 

correct classification for humans was of 89.3% with a standard deviation of 6% (Table 4). Rate of 

correct classification achieved by the best model on the same thumbnails was of 94.9% with a 

standard deviation of 3.3%. Correct classification rate by the best model ranged from 88.2% 

(Abudefduf sparoides) to 98.2% (Abudefduf vaigiensis). For only one species (Zanclus cornutus), 

the best model had a lower performance than humans but both were higher than 97%. The mean 365 

time needed to identify a fish by humans was 5 seconds, with the fastest answer given in 2 seconds 

and the longest in 9 seconds. On average, each classification by our final model took 0.06 seconds 

with hardware detailed above. 

When tested against humans using a challenge with only 9 potential species, the network was more 

effective on smaller or blurrier thumbnails, while humans were better to recognize unusual positions 370 

(Fig. 2). There were only 2% of fish individuals which were neither identified by humans nor by the 

network (Fig. 2). 

However, experts with more than 10 years of experience in the field may have outperformed the 

CNN model in terms of correct identification particularly for hidden or unusually positioned fish. 

 375 
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Table 4: Accuracy (success rate in %) of fish identification by humans and by the best CNN model 

for 9 species. The model was trained using thumbnails of whole fish, part of fish species and 

environment (T?). Raw outputs were post-processed applying two decision rules: (r1) keeping most 380 

likely fish class if “environment” was the most likely class, and (r2) considering “part of species X” 

equivalent to “species X”. 

 

Species Number of thumbnails tested Deep-learning model  Humans  

Abudefduf sparoides 88 93.4 87.7 

Abudefduf vaigiensis 47 97.3 84.7 

Chaetodon trifascialis 149 95.1 89.4 

Naso elegans 165 98.4 94.8 

Pomacentrus sulfureus 443 97.9 93.2 

Pygoplites diacanthus 35 90.4 77.4 

Thalassoma hardwicke 73 96 91 

Zanclus cornutus 53 97.1 97.8 

Zebrasoma scopas 144 96.2 88.3 

Average success rate 1197 95.7 89.3 

 

 385 

 

Discussion 

 

Assessing the performance of the same CNN trained with four different datasets demonstrates that 

correct identification rates were all close to 87% . Thus, a training dataset made of more than 1300 390 

thumbnails of each species could yield a success rate similar to the ones obtained in image 

identification challenges in more controlled conditions (Siddiqui et al., 2017). Beyond their number, 

thumbnails of each species used to train the network were extracted from different videos and 

different sites to include as many orientations of fish as possible and to embrace a strong 

environmental variability in terms of light, colors and depth. However, our best CNN model may 395 

perform more poorly with a broader range of species across other locations and environments. Our 

18 species belong to 12 different families so are likely to differ in shape or color. With much more 

congeneric species these differences would make the identification much more challenging.  

 

Despite a similar mean success rate, the performance of the four models differed markedly for some 400 

species. Ten out of the 18 species were more often correctly identified when CNN models were 

trained using thumbnails of part of fish or environment, and eight other species were better 

identified by the model trained with only whole fish picture. Additionally, some species were often 

misidentified as environment (Table S5), even if the probability of this class was lower than 

99%.Such confusion could be explained by the fact that some small species are always close to 405 

corals and of similar colors, e.g. the yellow benthic fish Pomacentrus sulfureus. Similarly, for the 

small Dascyllus carneus case, which is often misclassified with almost all fish species when 

background was not included in the training dataset, the addition of environment thumbnails 

certainly helps the network to focus on features unique to the fish body rather than to its 

surrounding. 410 

 

We demonstrate that the best results were obtained after applying two a posteriori decision rules on 

raw outputs from the neural network trained with the most complete set of thumbnails. This model 
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reached a success rate of 94.1% for the 18 species tested, with only 3 species being correctly 

identified in less than 90% of cases. Therefore, training a neural network with thumbnails from 415 

surrounding environment and thumbnails of part of each fish species is important to reach a high 

correct identification rate in real-life cases. The class “Environment” adds versatility to the training 

and hence helps the network to select features that are robust to the context around fish. Including 

classes “part of species” allows the network to classify correctly individuals partially hidden by 

other fish or corals. Such situations were common in the test dataset as illustrated by the fact that up 420 

to 9% of individuals of Abudefduf vaigiensis were classified as “part of A. vaigensis” rather than 

“whole A. vaigensis”. 

 

The success rate of the best model is similar to that of the model of Siddiqui et al. (2016) which 

reached a success rate of 94.3% on 16 species. This latter model was trained on a much smaller 425 

training dataset of 1309 thumbnails than our model (> 900 000 thumbnails). However, Siddiqui’s 

model was designed to identify fish on videos recorded in partially controlled conditions (i.e. fish 

swimming close to a baited camera) while in our case we tested the ability of the model to identify 

fish partially hidden by corals as well as shot in all positions and orientations. The few 

misidentifications by our best model mostly occurred when only the face or back of fish was 430 

visible. Such an issue could be easily circumvented in practice when analyzing videos because it is 

likely that each fish will be seen from the side on at least one frame (out of the 25 frames recorded 

per second by most cameras). 

 

 435 

Figure 2: Samples of thumbnails recognized by the CNN model and not recognized by humans (a), 

samples of thumbnails recognized by humans and not recognized by the CNN model (b) and sample 

of thumbnails misidentified by both humans and the CNN model (c). 

 

 440 
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Identification methods such as the ones presented here pave the way towards new ecological 

applications. First, such methods can work continuously and their performance is constant through 

time and hence reproducible, contrary to human experts who work discontinuously and are likely to 

perform differently through time. Given the high rate of correct identifications, the best model could 445 

be used to pre-process a massive number of thumbnails: up to 1 million thumbnails per day. 

Furthermore, additional post processing procedures could be used. For example, under a certain 

threshold (e.g. 98% certainty), human experts could be asked to check the thumbnails identified by 

CNN models. Such a two-step workflow would ensure a very high identification rate while saving 

time of experts in fish taxonomy who will not have to identify “obvious” fish that can be accuratly 450 

identified by models. In addition, identification methods could also be used as a tool to initiate 

citizen science programs, for example where divers upload images of fish and obtain the most likely 

taxonomic identification from a CNN model. Therefore, the continued development of these 

identification tools could potentially offer benefits for both professional scientists collecting 

massive raw data from the field, and for citizens to improve their awareness and knowledge about 455 

biodiversity (e.g. Bradley et al., 2017)  

 

The method tested here is one step towards the identification of hundreds or thousands of fish 

species that occur on coral reefs (Kulbicki et al., 2013). Since the performance of CNNs is known to 

increase with the number of classes (i.e. the 1000 classes of ImageNet) (Krizhevsky et al., 2012), 460 

there is no theoretical limit to such upscaling, the main challenge being to increase the size of the 

training dataset and the computer power. However, the identification of rare species will remain 

challenge given the difficulty to collect enough thumbnails of such species in different conditions to 

train the model. Future work is also needed to broaden the range of conditions where the model is 

efficient for most of species. In this paper, we considered only fixed videos recorded between 1m 465 

and 25m for both our training and testing datasets. It would relevant to include deeper videos as 

well as videos recorded with other protocols (e.g. baited remote underwater videos, transects). 

 

Ultimately, the goal of automatic identification is not only to classify fish into species, but also to 

localize and count them, and estimate their size (body length) on videos. The detection task in 470 

underwater videos remains challenging as the context is particularly complex. Towards this aim, 

including “environment” and “part of species” classes in the training of models will enhance the 

accurate detection of fish inidividuals partially hidden behind corals or other fish, for instance using 

a sliding windows approach over a video frame. We could also associate a classifier with a detector 

(Weinstein et al., 2015, Price Tack et al, 2016). Such algorithms focus on the detection of objects of 475 

interest (such as fish individuals) in images. Ultimately, deep-learning based methods could help 

marine ecologists to develop new video-based protocols for a massive monitoring of increasingly 

imperiled reef fish biodiversity, in the same way as next-generation sequencing of DNA has 

revolutionized several research domains including biodiversity monitoring (Deiner et al., 2017). 
 480 
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SUPPLEMENTARY TABLES 

 

Table S1. Raw fish thumbnails training dataset 

 

 645 

 

Classes Number of thumbnails 

Abudefduf sparoides 1241 

Abudefduf vaigiensis 5674 

Chaetodon trifascialis 1456 

Chromis weberi 3576 

Dascyllus carneus 2276 

Lutjanus kasmira 1652 

Monotaxis grandoculis 1239 

Myripristis botche 1264 

Naso elegans 2068 

Mulloidichtys vanicolensis 1264 

Naso vlamingii 1789 

Nemateleotris magnifica 1189 

Odonus niger 2986 

Plectroglyphidodon lacrymatus 652 

Pomacentrus sulfureus 5176 

Preocaesio tile 3088 

Pygoplytes diacanthus 1106 

Thalassoma hardwicke 1579 

Zanclus cornutus 1886 

Zebrasoma scopas 1835 

 

 



 

 

Table S2. The four thumbnails datasets used to train the four models, with for each the number of 

thumbnails per class in the training datasets, with class “environment” gathering thumbnails of 650 

water and substrate (sand, corals) while “Part of fish” gathers all thumbnails of half of a fish 

individual and the "part of species" classes contain thumbnails of half of individuals for each 

species. 

 
 655 

Species Only whole fish 

(T1) 

Whole fish + “Part of 

fish” (T2) 

Whole fish + Environment + 

“Part of fish” (T3) 

Whole fish + environment + “Part of 

species” (T4) 

 

Abudefduf sparoides 2482 2482 2482 2482 
Abudefduf vaigiensis 11328 11328 11328 11328 

Chaetodon trifascialis 2912 2912 2912 2912 
Chromis weberi 7152 7152 7152 7152 

Dascyllus carneus 4552 4552 4552 4552 
Lutjanus kasmira 3300 3300 3300 3300 

Monotaxis grandoculis 2478 2478 2478 2478 
Mulloidichtys 

vanicolensis 

2528 2528 2528 2528 

Myripristis botche 2528 2528 2528 2528 
Naso elegans 4138 4138 4138 4138 

Naso vlamingii 3578 3578 3578 3578 
Nemateleotris magnifica 2378 2378 2378 2378 

Odonus niger 5972 5972 5972 5972 
Plectroglyphidodon 

lacrymatus 

1304 1304 1304 1304 

Pomacentrus sulfureus 10352 10352 10352 10352 
Preocaesio tile 6176 6176 6176 6176 

Pygoplytes diacanthus 2212 2212 2212 2212 
Thalassoma hardwicke 3158 3158 3158 3158 

Zanclus cornutus 3772 3772 3772 3772 
Zebrasoma scopas 3670 3670 3670 3670 

Part of  

Abudefduf sparoides 

   4964 

Part of  

Abudefduf vaigiensis 

   22656 

Part of  

Chaetodon trifascialis 

   5824 

Part of  

Naso elegans 

   14304 

Part of  

Pomacentrus sulfureus 

   20704 

Part of  

Lutjanus kasmira 

   6600 

Part of  

Pygoplites diacanthus 

   4424 

Part of  

Thalassoma hardwicke 

   6316 

Part of  

Zanclus cornutus 

   7544 

Part of  

Zebrasoma scopas 

   7340 

Part of  

Chromis weberi 

   14034 

Part of  

Monotaxis grandoculis 

   4956 

Part of  

Plectroglyphidodon 

lacrymatus 

   1304 

Part of  

Dascyllus carneus 

   9097 

Part of  

Myripristis botche 

   5056 

Part of  

Naso vlamingii 

   7156 

Part of  

Nemateleotris magnifica 

   4744 

Part of  

Odonus niger 

   11944 

Part of  

Pterocaesio tile 

   12352 

Part of  

Mulloidichtys 

vanicolensis 

   7528 

Part of Fish 

 

 521555 521555  

Environment   862174 862174 
 

 



 

 

Table S3: Number of thumbnails of each fish species present in test datasets used in this study 
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Class Dataset for testing models 

performance 

Dataset for testing model  

performance vs human 

performance 

Abudefduf sparoides 103 88 

Abudefduf vaigiensis 59 47 

Chaetodon trifascialis 208 146 

Chromis weberi 269  

Dascyllus carneus 269  

Monotaxis grandoculis 72  

Myripristis botche 20  

Naso elegans 189 165 

Naso vlamingii 358  

Nemateleotris magnifica 246  

Odonus niger 176  

Plectroglyphidodon lacrymatus 150  

Pomacentrus sulfureus 1567 443 

Pterocaesio tile 215  

Pygoplytes diacanthus 39 35 

Thalassoma hardwicke 111 73 

Zanclus cornutus 64 53 

Zebrasoma scopas 184 144 

Total 4405 1197 

 



 

 

Table S4. Performance of CNN model trained with T4 thumbnails set to identify nine fish species 

with no post processing; species are identified in columns and rows refer to whole fish and parts of 

fish present in the training dataset.  

Part of species X means that some individual were recognized as part of a fish species. 665 

Only percentages of over 1% are shown. 

 
Species A.sparo

ides 

A.vaigiensis C.trifascialis N.elegans P.sulfureus P.diacanthus T.hardwicke Z.cornutus Z.scopas 

A. sparoides 82.8         

A .vaigiensis 1.1 80.0        

C. trifascialis   85.1       

C. weberi       1.1   

N. elegans    95.1     3.9 

P. sulfureus     73.8 2.6    

P. diacanthus       86.8   

T. hardwicke        87.3  

Z. cornutus         89.0 

Z. scopas         92.7 

Part of A. 

sparoides 

6.0         

Part of A. 

vaigiensis 

1.0 9.1        

Part of C. 

trifascialis 

  2.6       

Part of N. elegans    1.6      

Part of P. 

sulfureus 

  1.1  4.3     

Part of P. 

diacanthus 

         

Part of T. 

hardwicke 

      2.6   

Part of Z. 
cornutus 

       6.2  

Part of Z. scopas          

Environment 8.0 10.9 9.5 2.2 20.9 7.9 9.2 4.6 2.8 

 



 

 

Table S5. Performance of our final CNN model to identify 9 fish species. 

Raw model  output was post-processed with following decision rule: outputs “ part of species X” 670 

and “species X” are considered the same (i.e., the results of A. sparoides and part of A. sparoides 

are added together); species are in columns with rows indicating the percentage of good 

identification for each species and only values over 1% are shown.  
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Species A. 

sparoides 

A. 

vaigiensis 

C. 

trifascialis 

N.elegans P.sulfureus P.diacanthus T.hardwicke Z.cornutus Z.scopas 

A. sparoides 89.0         

A. vaigiensis 2.1 89.1        

C. 

trifascialis 

  97.7       

C. weberi       1.1   

D. caruleus         3.9 

N. elegans    95.7      

P. sulfureus   3.1  78.1 2.6    

P. diacanthus      86.8    

T. hardwicke      89.4    

Z.cornutus        95.2  

Z. scopas         92.7 

Environment 8.0 10.9 9.5 2.1 20.9 7.9 9.2 4.6 2.8 

 



 

 

SUPPLEMENTARY FIGURES 

 

 

Supplementary Figure 1. Screenshot of the online application used for testing human performance 680 

in identifying fish on thumbnails. Picture of fish to identify is displayed on the left part. Name for 

species should be typed in the bottom text bar (with auto-completion). The help box with examples 

of the 9 species to identify is visible on the right. 
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