
HAL Id: lirmm-01886160
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01886160v1

Submitted on 2 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-Preserving Top-k Query Processing in
Distributed Systems

Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez

To cite this version:
Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez. Privacy-Preserving Top-k Query Processing in
Distributed Systems. Euro-Par: European Conference on Parallel and Distributed Computing, Aug
2018, Turin, Italy. pp.281-292, �10.1007/978-3-319-96983-1_20�. �lirmm-01886160�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01886160v1
https://hal.archives-ouvertes.fr

Privacy-Preserving Top-k Query Processing in
Distributed Systems

Sakina Mahboubi1, Reza Akbarinia1, and Patrick Valduriez1

INRIA & LIRMM, University of Montpellier, France,

Abstract. We consider a distributed system that stores user sensitive
data across multiple nodes. In this context, we address the problem of
privacy-preserving top-k query processing. We propose a novel system,
called SD-TOPK, that is able to evaluate top-k queries over encrypted
distributed data without needing to decrypt the data in the nodes where
they are stored. We implemented and evaluated our system over syn-
thetic and real databases. The results show excellent performance for
SD-TOPK compared to baseline approaches.

1 Introduction

We consider a distributed system where users can outsource their sensitive data
and issue top-k queries. A top-k query is an important kind of query that allows
the user to get the k data items that are most relevant to the query. The user
data are encrypted (for privacy reasons) and distributed (for performance rea-
sons) across multiple nodes. In this context, we address the problem of privacy-
preserving top-k query processing.

Privacy preserving top-k query processing is critical for many applications
that outsource sensitive data. For example, consider a university that outsources
the students database in a public cloud, in Infrastructure-as-a-Service (IaaS)
mode, with non-trusted nodes. The database is vertically partitioned (for per-
formance reasons) and encrypted. Then, an interesting top-k query over the
encrypted distributed data is the following: return the k students that have the
worst averages in some given courses.

There are different approaches for processing top-k queries over plaintext
(non encrypted) data. One of the best known approaches is TA [6] that works
on sorted lists of attribute values. However, there is no efficient solution capable
of evaluating efficiently top-k queries over encrypted data in distributed systems.

In this paper, we propose a system, called SD-TOPK (Secure Distributed
TOPK), that encrypts and stores user data in a distributed system, and is able
to evaluate top-k queries over the encrypted data. SD-TOPK comes with a novel
top-k query processing algorithm that finds a set of encrypted data that is proven
to contain the top-k data items. This is done without having to decrypt the data
in the nodes where they are stored. In addition, we propose a powerful filtering
algorithm that removes the false positives as much as possible without data
decryption.

II

We implemented and evaluated the performance of our system over synthetic
and real databases. The results show excellent performance for SD-TOPK com-
pared to TA-based approaches. They show the efficiency of our filtering algorithm
that eliminates almost all false positives in the distributed system, and reduces
significantly the communication cost between the distributed system and the
user.

The rest of this paper is organized as follows. Section 2 gives the problem defi-
nition. Section 3 describes SD-TOPK system. Section 4 presents the performance
evaluation results. Section 5 discusses related work, and Section 6 concludes.

2 Problem Definition

In this section, we define the problem which we address.

2.1 Top-k Queries

By a top-k query, the user specifies a number k, and the system should return
the k most relevant answers. The relevance degree of the answers to the query
is determined by a scoring function. A common method for efficient top-k query
processing is to run the algorithms over sorted lists (also called inverted lists)
[6]. Let us define them formally.

Let D be a set of n data items, then the sorted lists are m lists L1, L2, ..., Lm,
such that each list Li contains every data item d ∈ D in the form of a pair
(id(d), si(d)) where id(d) is the identification of d and si(d) is a value that
denotes the local score (attribute value) of d in Li. The data items in each list
Li are sorted in descending order of their local scores. For example, in a relational
table, each sorted list represents a sorted column of the table where the local
score of a data item is its attribute value in that column.

Let f be a scoring function given by the user in the top-k query. For each
data item d ∈ D an overall score, denoted by ov(d), is calculated by applying
the function f on the local scores of d. Formally, we have ov(d) = f(s1(d), s2
(d), ..., sm(d)).

The result of a top-k query is the set of k elements that have the highest
overall scores among all elements of the database. In this work, we assume that
the scoring function is in the class of linear functions with positive coefficients
(denoted by LFPC). Formally, a function f is LFPC if f = a1x1 + a2x2 + . . .+
amxm where each coefficient ai ≥ 0 for 1 ≤ i ≤ m. Many functions such as SUM,
COUNT, AVG and MAX are in the class of LFPC functions.

2.2 Distributed System and Adversary Model

We suppose that the sorted lists are stored in the nodes of a distributed system.
We make no specific assumption about the distributed system architecture which
can be very general, e.g., a cluster of nodes. Formally, let P be the set of the

III

nodes in the distributed system. Each sorted list Li is kept in a node p ∈ P . We
call p the owner of Li.

We consider the honest-but-curious adversary model for the nodes of the dis-
tributed system. In this model, the adversary is inquisitive to learn the sensitive
data without introducing any modification in the data or protocols. This model
is widely used in many preserving processing solutions [10].

2.3 Problem Statement

The problem we attack in this paper is top-k query processing over encrypted
data in distributed systems.

Let D be a database composed of n data items. We want to encrypt the data
items contained in D, and store the encrypted data items in a distributed system.
Then, our goal is to develop a distributed algorithm A that given any top-k query
q (including a scoring function f) returns the k data items that have the highest
overall scores with regard to f . This should be done without decrypting the data
items in the nodes of the distributed system, while minimizing the response time
and the communication cost of the query execution.

3 SD-TOPK System

In this section, we present our system, called SD-TOPK, that encrypts and
outsources the user data in a distributed system, and is capable to efficiently
evaluate top-k queries over the distributed encrypted data.

The rest of this section is organized as follows. We first describe the architec-
ture of our outsourcing system. Then, we present our method for encrypting the
data items and storing them in the distributed system. Afterwards, we propose
our algorithm for processing top-k queries over the encrypted data.

3.1 System Architecture

The architecture of our outsourcing system has two main components:

– Trusted client. It is responsible for encrypting the user data, decrypting
the results and controlling the user accesses. The security keys used for data
encryption/decryption are managed by this part of the system. When a
query is issued by a user, the trusted client checks the access rights of the
user. If the user does not have the required rights to see the query results,
then her demand is rejected. Otherwise, the query is transformed to a query
that can be executed over the encrypted data. Note that the trusted client
component should be installed in a trusted location, e.g., the machine(s) of
the person/organization that outsources the data.

– Remote service. It is installed in the nodes of the distributed system, and is
responsible for storing the encrypted data, executing the queries provided by
the trusted client, and returning the results. This component does not keep
any security key, thus cannot decrypt the encrypted data in the distributed
system.

IV

3.2 Data Encryption and Outsourcing

Before outsourcing a database, SD-TOPK creates sorted lists for all important
attributes, i.e., those that may be used in the top-k queries. Then, each sorted
list is partitioned into buckets. There are several methods for partitioning a
sorted list, for example dividing the attribute domain of the list to almost equal
intervals or creating buckets with equal sizes. In the current implementation of
our system, we use the latter method, i.e., we create buckets with almost the
same size where the bucket size is configurable by the system administrator.

Let b1, b2, ..., bt be the created buckets for a sorted list Lj . Each bucket
bi has a lower bound, denoted by min(bi), and an upper bound, denoted by
max(bi). A data item d is in the bucket bi, if and only if its local score (attribute
value) in the list Lj is between the lower and upper bounds of the bucket, i.e.,
min(bi) ≤ sj(d) < max(bi).

We use two types of encryption schemes (methods) for encrypting the data
item ids and the local scores of the sorted lists: deterministic and probabilistic.
With the deterministic scheme, for two equal inputs, the same ciphertexts (en-
crypted values) are generated. We use this scheme to encrypt the ID of the data
items. This allows us to have the same encrypted ID for each data item in all
sorted lists.

The probabilistic scheme is used to encrypt the local scores (attribute values)
of data items. With the probabilistic encryption, for the same plaintexts different
ciphertexts are generated, but the decryption function returns the same plaintext
for them. Thus, for example if two data items have the same local scores in a
sorted list, their encrypted scores may be different. The probabilistic encryption
is the strongest type of encryption.

After encrypting the data IDs and local scores of each list Li, the trusted
client puts them in their bucket (chosen based on the local score). Then, the
trusted client sends the buckets of each sorted list to one node in the distributed
system. The buckets are stored in the nodes according to their lower bound
order. However, there is no order for the data items inside each bucket, i.e., the
place of the data items inside each bucket is chosen randomly. This prevents the
nodes to know the order of data items inside the buckets.

3.3 Top-k Query Processing Algorithm

The main idea behind top-k query processing in SD-TOPK is to use the bucket
boundaries and a new technique to decide when to stop reading the encrypted
data from the lists.

For each top-k query, one of the nodes of the distributed system performs
the coordination between the nodes to execute the query. We call this node as
coordinator. The coordinator may be the node that initially receives the user’s
query or be randomly chosen among the system nodes.

Let us describe our top-k query processing algorithm. Given a top-k query
with a number k and a scoring function f that is linear with positive coefficients,
i.e., it is in the form of f = a1x1 +a2x2 + . . .+amxm. SD-TOPK chooses a node
as coordinator, and then the following steps are performed to answer the query:

V

1. The coordinator broadcasts the query in parallel to the nodes, and asks each
node to return the buckets that contain the k first data items in its list. Each
node returns the encrypted identifier of the first k data items, as well as the
lower bound of their including buckets.

2. For each returned data item d, the coordinator calculates its minimum over-
all score defined as follows: ovmin(d) = f(v1(d), v2(d), ..., vm(d)) where vi(d)
is the lower bound of the bucket that contains d in the list Li. If d has not
been returned to the coordinator by the owner of a list Lj then vj(d) = 0.

3. The coordinator sorts the received data items according to their minimum
overall score, and chooses the data item d′ that has the kth minimum overall
score denoted by δ. Then, it uses the minimum overall score of d′ to calculate
a threshold θ as follows: θ = δ∑m

i=1 ai
where a1, . . . , am are the coefficients in

the scoring function.
4. The coordinator broadcasts θ in parallel to the nodes. Each node returns to

the coordinator the buckets that have upper bounds greater than or equal
to θ.

5. Let Y be the set of all data items that are sent to the coordinator by at least
one node. We call Y the set of candidate items. The coordinator sends the
encrypted id of all data items contained in Y to the nodes, and they return
the encrypted score of each data item contained in Y .

6. Finally, the coordinator returns to the trusted client the candidate items and
their encrypted local scores.

When the trusted client receives the candidate items, it decrypts them using the
secret keys. Then, it calculates for each candidate d its overall score, extracts
the k data items that have the highest overall scores, and returns them to the
user.

The following theorem shows that the output of the above algorithm contains
the encrypted top-k data items.

Theorem 1. Given a top-k query with a scoring function f that is linear with
positive coefficients. Then, the output of the top-k algorithm of SD-TOPK con-
tains the encrypted top-k results.

Proof. Let the scoring function be f = a1x1 + a2x2 + . . . + amxm. Let Y
be the output of the algorithm, i.e., the set of candidate items. To prove the
theorem, it is sufficient to show that each data item d that has not been sent
to the coordinator in the 4th step of the algorithm, has an overall score less
than or equal to the overall score of at least k data items in Y . Let θ be the
threshold value that is sent to the nodes in the 4th step of the algorithm. For
each list Li, let si be the local score of d in the list Li. The overall score of d
is computed as ov(d) = a1s1 + . . . + amsm. Since d has not been sent to the
coordinator, from the 4th step of the algorithm we know that si < θ. Thus, we
have ov(d) < a1 × θ + . . . + am × θ =

∑m
i=1 ai × θ. From the 3rd step of the

algorithm, we know that θ = δ∑m
i=1 ai

. Thus, we have ov(d) < δ. In other words,

the overall score of d is less than the minimum overall score of the data item d′

VI

that is the kth data item found in the 3rd step of the algorithm. Therefor, the
overall score of d is less than at least k data items found by the top-k algorithm
of SD-TOPK, so d cannot be among the top-k results. �

In the set Y returned by the above algorithm, in addition to the top-k results
there may be false positives. Below, we propose a filtering algorithm to eliminate
most of them in the distributed system, without decrypting the data items.

Given the set of candidate data items Y , the filtering algorithm executed by
the coordinator proceeds as follows:

1. Calculate the minimum overall score of all candidate data items, sort them
according to their minimum overall score, and take the kth minimum overall
score denoted by δ2.

2. Calculate the maximum overall score of all candidate data items, and elimi-
nate those with maximum overall score less than < δ2. The maximum over-
all score of a data item d is computed as follows: ovmax(d) = f(v1(d), v2(d)
, ..., vm(d)) where vi(d) is the upper bound of the bucket that contains d in
the list Li. If d has not been returned to the coordinator by the node that
keeps Li then vi(d) is equal to the lower bound of the last bucket received
from that node.

The above algorithm eliminates almost all false positives (see the experi-
mental results on filtering rate in Section 4), and by doing that it improves
significantly the response time of the queries because the eliminated false posi-
tives do not need to be communicated to the trusted client and should not be
decrypted.

To strengthen the security of our system, we obfuscate the bucket boundaries
as follows. We choose two random numbers a and c. These numbers are kept
secret in the trusted client. Before sending the encrypted database to the nodes
of the distributed system, the trusted client multiplies the lower (and upper)
bounds of buckets by a secret number a, and then adds the secret number c to
the result. These obfuscated bucket boundaries are sent to the nodes together
with the encrypted IDs and scores.

4 Performance Evaluation

In this section, we first describe the experimental setup, and then report the
results of our experiments.

4.1 Setup

We implemented SD-TOPK and performed experiments on real and synthetic
datasets. As in some previous work on privacy (e.g., [10]), we use the Gowalla
database, which is a location-based social networking dataset collected from users
locations. The database contains 6 million tuples where each tuple represents
user number, time, user geographic position, etc. In our experiments, we are
interested in the attribute time, which is the second value in each tuple. As

VII

in [10], we decomposed this attribute into 6 attributes (year, month, day, hour,
minute, second), and then created a database with the values of those attributes.
In addition to the real dataset, we have also generated random datasets using
uniform and Gaussian distributions.

We compared SD-TOPK with two algorithms based on the TA algorithm
[6]: Remote-TA and Block-TA. In Remote-TA, the trusted client retrieves the
encrypted data from the sorted lists of the distributed system one by one using
sorted access, and for each retrieved data d, it retrieves the encrypted local
scores of d from the other lists, decrypts the read local scores, computes the
TA threshold, and checks if it can stop or not (as in TA). Block-TA is like
Remote-TA, except that the encrypted data items are read block by block. For
the TA-based algorithms, we sort the encrypted data items in each list based on
their initial order (i.e., their order in plaintext).

In the experiments, the number of nodes is equal to the number of lists, i.e.,
each node stores one of the lists. The coordinator of SD-TOPK is one of the
nodes of the system (randomly chosen).

We study the effect of several parameters: 1) n: the number of data items in
the database; 2) m: the number of lists; 3) k: the number of required top items;
4) bsize: the number of data items in the buckets (or blocks) in SD-TOPK and
Block-TA. The default value for n is 2M items. Unless otherwise specified, m is 5,
k is 50, and bsize is 10. The default database is the synthetic uniform database,
and the latency of the messages is around 50 ms.

To evaluate the performance of SD-TOPK, we measured the following met-
rics:

– Response time: includes top-k query processing time, communication time,
filtering time, and the result post-processing time (e.g., decryption).

– Filtering rate: the number of false positives eliminated by the filtering
algorithm in the distributed system.

– Communication cost: we measure two metrics: 1) the number of mes-
sages communicated between the nodes to answer a top-k query; 2) the total
number of bytes communicated to answer a top-k query.

4.2 Effect of Database Size

In this section, we compare the response time of SD-TOPK, Remote-TA and
Block-TA, while varying the number of data items, i.e., n.

Figure 1 shows how response time evolves, with increasing n, while the other
parameters are set as default values described in Section 4. Note that the results
are shown in logarithmic scale. The response time of all approaches increases
with increasing the database size. SD-TOPK is the best; its response time is
at least two orders of magnitude better than the other algorithms. This high
difference between SD-TOPK and TA-based algorithms is mainly due to the
high number of encrypted data items that should be decrypted by TA-based
algorithms in trusted client, and also the messages needed for communicating
them. Block-TA performs better than Remote-TA, because of reading the lists
in blocks, thus it needs less number of messages.

VIII

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 6 7 8 9 10 15 20 100

R
es

p
o
n
se

 t
im

e
(s

)

n (x1000)

SD-TOPK
Block TA

Remote TA

Fig. 1: Response time vs. number of
database tuples

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1 2 3 4 5 6 7

R
es

p
o
n
se

 t
im

e
(s

)

m (list)

SD-TOPK
Block TA

Remote TA

Fig. 2: Response time vs. number of lists

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100 110

R
es

p
o
n
se

 t
im

e
(s

)

k

SD-TOPK

Fig. 3: Response time vs. k

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 6 7 8 9 10 15 20 100

N
u
m

b
er

 o
f

m
es

sa
g
es

n (x1000)

SD-TOPK
Block TA

Remote TA

Fig. 4: Number of communicated mes-
sages vs. number of database tuples

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 6 7 8 9 10 15 20 100

C
o
m

m
u
n
ic

at
ed

 d
at

a
si

ze
 (

b
y
te

)

n (x1000)

SD-TOPK
Block TA

Remote TA

Fig. 5: Size of communicated data (in
bytes) vs. number of database tuples

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 20 50 100 250 500 1000

R
es

p
o
n
se

 t
im

e
(s

)

Bucket size

SD-TOPK

Fig. 6: Response time vs. bucket size

IX

4.3 Effect of the Number of Lists

Figure 2 shows the response time of SD-TOPK and TA-based algorithms when
varying m (i.e., the number of attributes in the scoring function), and the other
parameters set as default values. We observe that the response time of SD-TOPK
increases slightly comparing to Remote-TA and Block-TA when the number of
lists increases. The reason is that when we increase the number of lists, more
data (sent by the nodes) should be processed by the coordinator for finding the
candidate items.

4.4 Effect of k

Figure 3 shows the response times of SD-TOPK with increasing k, and the other
parameters set as default values. We observe that with increasing k the response
time increases slightly. The reason is that when k increases, SD-TOPK needs
to get more data items from the list owner nodes in each step. In addition,
increasing k augments the number of data items that the trusted client needs to
decrypt (because at least k data items are decrypted by the trusted client).

4.5 Effect of Bucket Size

Figure 6 reports the response time of SD-TOPK when varying the size of buckets,
and the other parameters set as default values. We observe that the response time
increases slightly when the bucket size increases. The reason is that increasing the
bucket size increases the number of data items to be considered in the different
steps of SD-TOP algorithm. It also increases the number of false positives to be
removed by the filtering algorithm.

4.6 Communication Cost

We measure the communication cost of SD-TOPK, Remote-TA and Block-TA
in terms of the total number of messages exchanged between the different nodes
of the distributed system and the size of the exchanged data.

Figure 4 shows the number of communicated messages while increasing the
number of tuples and fixing the other parameters to the default values. We
observe that SD-TOPK needs to exchange a small number of messages comparing
to the others approaches. The reason is that SD-TOPK runs in only some rounds
of communication, and does not depend on the database size. But for the TA-
based algorithms, the number of messages depends on the position where they
stop in the lists, and that position depends on the database size.

Figure 5 illustrates the size of the communicated data in bytes, while increas-
ing the number of tuples in the database and setting the other parameters to the
default values. We note that the size of the communicated data increases with
the database size. The amount of data transferred by SD-TOPK is less than that
of Remote-TA and Block-TA. The reason is that SD-TOPK uses the obfuscated
bucket boundaries to check the top-k data items and these boundaries have a
size less than the encrypted scores used by other algorithms.

X

4.7 Filtering Rate

We study the efficiency of the filtering algorithm of SD-TOPK by using different
datasets. The results are shown in Table 1. The results show that the filtering
algorithm is very efficient over all the tested datasets. However, there is a lit-
tle difference in the filtering rates because of the local score distributions. For
example, in the Gaussian distribution, the local scores of many data items are
very close to each other, thus the filtering rate decreases in this dataset.

Uniform dataset Real dataset Gaussian dataset

filtering Rate 100% 99.995% 99.991%

Table 1: False positive elimination by the filtering algorithm of SD-TOPK over
different databases

5 Related Work

In the literature, there has been some research work to process keyword queries
over encrypted data , e.g., [2, 13]. For example [2] and [13] propose match-
ing techniques to search words in encrypted documents. However, the proposed
techniques cannot be used to answer top-k queries. There have been also some
solutions proposed for secure kNN similarity search, e.g., [5, 3, 4, 11, 15]. The
problem is to find k points in the search space that are the nearest to a given
point. This problem should not be confused with the top-k problem in which the
given scoring function plays an important role, such that on the same database
and with the same k, if the user changes the scoring function, then the output
may change. Thus, the proposed solutions proposed for kNN cannot deal with
the top-k problem.
The bucketization technique (i.e., creating buckets) has been used in the litera-
ture for answering range queries over encrypted data, e.g., [8, 7]. For example, in
[8], Hore et al. use this technique, and propose optimal solutions for distributing
the encrypted data in the buckets in order to guarantee a good performance for
range queries. In [9], Kim et al. propose an approach for preserving the privacy
of data access patterns during top-k query processing. In [14], Vaidya et. al.
propose a privacy preserving method for top-k selection from the data shared
by individuals in a distributed system. Their objective is to avoid disclosing the
data of each node to other nodes. Thus their assumption about the nodes is
different from ours, because they can trust the node that stores the data (this
is why the data are not crypted), but in our system we trust no node of the
distributed system.
CryptDB [12] is a system designed for processing SQL like queries over encrypted
data. It is capable to execute several types of queries, e.g., exact-match, join and
range queries. However, top-k queries are not supported by CryptDB.
The Three Phase Uniform Threshold (TPUT) [1] is an efficient algorithm to
answer top-k queries in distributed systems. Like our SD-TOPK algorithm, it is
done in few round-trips between the nodes of the distributed system. However,

XI

TPUT can be used only with the queries in which the scoring function is SUM,
whereas our algorithm can be used for a large range of scoring functions. In
addition, our algorithm finds top-k results over encrypted data, while TPUT
can be used only over plaintext data.
In [16], the authors propose an approach for top-k query processing over en-
crypted data. The proposed approach assumes the existence of two non-colluding
nodes s1 and s2 in two different clouds. One of the nodes, say s2, has the de-
cryption keys, and the other one, say s1, stores the data. Top-k query processing
proceeds by using the TA algorithm and accessing the encrypted data in s1,
such that after reading each data in s1, its encrypted local scores are sent to the
node s2 (using a special protocol) where they are decrypted and compared with
the TA threshold. Our assumptions about the distributed system are different.
In our solution, we do not need to trust any node, and during the top-k query
processing, we do not decrypt the encrypted data in the nodes of the system. In
addition, the solution in [16] needs a lot of communications between cloud nodes
(i.e., at least two messages for each sorted/random access, which is even more
than the TA-based algorithms compared with SD-TOPK).

6 Conclusion

In this paper, we proposed SD-TOPK, an efficient system that encrypts and out-
sources user data in a distributed system, and is able to evaluate top-k queries
over encrypted data, without decrypting them in the nodes of the system. We
evaluated the performance of our solution over synthetic and real databases.
The results show excellent response time and communication cost for SD-TOPK.
They show that the response time of SD-TOPK can be several order of mag-
nitude better than that of the TA-based algorithms. This is mainly due to its
optimized top-k query processing and filtering algorithms. The results also show
a significant gain in communication cost of SD-TOPK compared to the other al-
gorithms. They also show the efficiency of the filtering algorithm that eliminates
almost all false positives in the distributed system.

Acknowledgement

The research leading to these results has received funding from the European
Union’s Horizon 2020 - The EU Framework Programme for Research and Inno-
vation 2014-2020, under grant agreement No. 732051

Bibliography

[1] P. Cao and Z. Wang. Efficient top-k query calculation in distributed net-
works. In Proc. of ACM PODC, pages 206–215, 2004.

[2] Y-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In ACNS, pages 442–455, 2005.

[3] S. Choi, G. Ghinita, H-S. Lim, and E. Bertino. Secure knn query processing
in untrusted cloud environments. IEEE TKDE, 26(11):2818–2831, 2014.

[4] X. Ding, P. Liu, and H. Jin. Privacy-preserving multi-keyword top-k simi-
larity search over encrypted data. IEEE TDSC, (99):1–14, 2017.

[5] Y. Elmehdwi, B K. Samanthula, and W Jiang. Secure k-nearest neighbor
query over encrypted data in outsourced environments. In Proc. of IEEE
ICDE, pages 664–675, 2014.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[7] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multidi-
mensional range queries over outsourced data. J. VLDB, 21(3):333–358,
2012.

[8] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range
queries. In VLDB, pages 720–731, 2004.

[9] Hyeong-Il Kim, Hyeong-Jin Kim, and Jae-Woo Chang. A privacy-preserving
top-k query processing algorithm in the cloud computing. In Economics of
Grids, Clouds, Systems, and Services (GECON), pages 277–292, 2016.

[10] R. Li, Alex X. Liu, Ann L. Wang, and B. Bruhadeshwar. Fast range query
processing with strong privacy protection for cloud computing. PVLDB,
7(14):1953–1964, 2014.

[11] Xiaojing Liao and Jianzhong Li. Privacy-preserving and secure top-k query
in two-tier wireless sensor network. In Global Communications Conference
(GLOBECOM), pages 335–341, 2012.

[12] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari
Balakrishnan. Cryptdb: processing queries on an encrypted database. Com-
mun. ACM, 55(9):103–111, 2012.

[13] D. Xiaodong Song, D. Wagner, and A. Perrig. Practical techniques for
searches on encrypted data. In IEEE S&P, pages 44–55, 2000.

[14] Jaideep Vaidya and Chris Clifton. Privacy-preserving top-k queries. In Data
Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference
on, pages 545–546. IEEE, 2005.

[15] W K. Wong, D W-L. Cheung, B. Kao, and N. Mamoulis. Secure knn com-
putation on encrypted databases. In ACM SIGMOD, pages 139–152, 2009.

[16] Haohan Zhu Xianrui Meng and George Kollios. Top-k query processing on
encrypted databases with strong security guarantees. arXiv:1510.05175v2,
2016.

