
HAL Id: lirmm-01886164
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01886164

Submitted on 2 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Answering Top-k Queries over Outsourced Sensitive
Data in the Cloud

Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez

To cite this version:
Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez. Answering Top-k Queries over Outsourced
Sensitive Data in the Cloud. DEXA 2018 - 29th International Conference on Database and Expert
Systems Applications, Sep 2018, Regensburg, Germany. pp.218-231, �10.1007/978-3-319-98809-2_14�.
�lirmm-01886164�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01886164
https://hal.archives-ouvertes.fr

Answering Top-k Queries over Outsourced
Sensitive Data in the Cloud

Sakina Mahboubi, Reza Akbarinia, and Patrick Valduriez

INRIA & LIRMM, University of Montpellier, France
FirstName.LastName@inria.fr

Abstract. The cloud provides users and companies with powerful ca-
pabilities to store and process their data in third-party data centers.
However, the privacy of the outsourced data is not guaranteed by the
cloud providers. One solution for protecting the user data is to encrypt
it before sending to the cloud. Then, the main problem is to evaluate
user queries over the encrypted data.
In this paper, we consider the problem of answering top-k queries over
encrypted data. We propose a novel system, called BuckTop, designed
to encrypt and outsource the user sensitive data to the cloud. BuckTop
comes with a top-k query processing algorithm that is able to process
efficiently top-k queries over the encrypted data, without decrypting the
data in the cloud data centers.
We implemented BuckTop and compared its performance for processing
top-k queries over encrypted data with that of the popular threshold
algorithm (TA) over original (plaintext) data. The results show the ef-
fectiveness of BuckTop for outsourcing sensitive data in the cloud and
answering top-k queries.

Keywords: Cloud, Sensitive Data, Top-k Query

1 Introduction

The cloud allows users and companies to efficiently store and process their data
in third-party data centers. However, users typically loose physical access control
to their data. Thus, potentially sensitive data gets at risk of security attacks, e.g.,
from employees of the cloud provider. According to a recent report published by
the Cloud Security Alliance [4], security attacks are one of the main concerns
for cloud users.

One solution for protecting user sensitive data is to encrypt it before sending
to the cloud. Then, the challenge is to answer user queries over encrypted data.
A naive solution for answering queries is to retrieve the encrypted database
from the cloud to the client, decrypt it, and then evaluate the queries over
plaintext (non encrypted) data. This solution is inefficient, because it does not
take advantage of the cloud computing power for evaluating queries.

In this paper, we are interested in processing top-k queries over encrypted
data in the cloud. A top-k query allows the user to specify a number k, and the

2

system returns the k tuples which are most relevant to the query. The relevance
degree of tuples to the query is determined by a scoring function.

Top-k query processing over encrypted data is critical for many applications
that outsource sensitive data. For example, consider a university that outsources
the students database in a public cloud, with non-trusted nodes. The database
is encrypted for privacy reasons. Then, an interesting top-k query over the out-
sourced encrypted data is the following: return the k students that have the
worst averages in some given courses.

There are many different approaches for processing top-k queries over plain-
text data. One of the best known approaches is TA (threshold algorithm) [8] that
works on sorted lists of attribute values. TA can find efficiently the top-k results
because of a smart strategy for deciding when to stop reading the database.
However, TA and its extensions assume that the attribute values are available
as plaintext, and not encrypted.

In this paper, we address the problem of privacy preserving top-k query pro-
cessing in clouds. We first propose a basic approach, called OPE-based, that uses
a combination of the order preserving encryption (OPE) and the FA algorithm
for privacy preserving top-k query processing.

Then, we propose a complete system, called BuckTop, that is able to effi-
ciently evaluate top-k queries over encrypted data, without decrypting them in
the cloud. BuckTop includes a top-k query processing algorithm that works on
the encrypted data, and returns a set that is proved to contain the encrypted
data corresponding to the top-k results. It also comes with an efficient filtering
algorithm that is executed in the cloud and removes most of the false positives
included in the set returned by the top-k query processing algorithm. This fil-
tering is done without needing to decrypt the data in the cloud.

We implemented BuckTop, and compared its response time over encrypted
data with a baseline algorithm and with TA over original (plaintext) data. The
experimental results show excellent performance gains for BuckTop. For exam-
ple, the results show that the response time of BuckTop over encrypted data is
close to TA over plaintext data. The results also illustrate that more than 99.9
% of the false positives can be eliminated in the cloud by BuckTop’s filtering
algorithm.

The rest of this paper is organized as follows. Section 2 gives the problem
definition. Section 3 presents our basic approach for privacy preserving top-k
query processing. Section 4 describes our BuckTop system and its algorithms.
Section 5 reports performance evaluation results. Section 6 discusses related
work, and Section 7 concludes.

2 Problem Definition

In this paper, we address the problem of processing top-k queries over encrypted
data in the cloud.

By a top-k query, the user specifies a number k, and the system should return
the k most relevant answers. The relevance degree of the answers to the query

3

is determined by a scoring function. A common method for efficient top-k query
processing is to run the algorithms over sorted lists (also called inverted lists) [8].
Let us define them formally.

Let D be a set of n data items, then the sorted lists are m lists L1, L2, ..., Lm,
such that each list Li contains every data item d ∈ D in the form of a pair
(id(d), si(d)) where id(d) is the identification of d and si(d) is a value that
denotes the local score (attribute value) of d in Li. The data items in each list
Li are sorted in descending order of their local scores. For example, in a relational
table, each sorted list represents a sorted column of the table where the local
score of a data item is its attribute value in that column.

Let f be a scoring function given by the user in the top-k query. For each
data item d ∈ D an overall score, denoted by ov(d), is calculated by applying
the function f on the local scores of d. Formally, we have ov(d) = f(s1(d), s2
(d), ..., sm(d)). The result of a top-k query is the set of k elements that have the
highest overall scores among all elements of the database. Like many previous
works on top-k query processing (e.g., [8]), we assume that the scoring function
is monotonic.

The sorted lists model for top-k query processing is simple and general. For
example, suppose we want to find the top-k tuples in a relational table according
to some scoring function over its attributes. To answer such query, it is sufficient
to have a sorted (indexed) list of the values of each attribute involved in the
scoring function, and return the k tuples whose overall scores in the lists are the
highest.

For processing top-k queries over sorted lists, two modes of access are usually
used [8]. The first is sorted (sequential) access that allows us to sequentially
access the next data item in the sorted list. This access begins with the first
item in the list. The second is random access by which we look up a given data
item in the list.

In this paper, we consider the honest-but-curious adversary model for the
cloud. In this model, the adversary is inquisitive to learn the sensitive data
without introducing any modification in the data or protocols. This model is
widely used in many solutions proposed for secure processing of the different
queries [13].

Let us now formally state the problem which we address. Let D be a database,
and E(D) be its encrypted version such that each data c ∈ E(D) is the ciphertext
of a data d ∈ D, i.e., c = Enc(d) where Enc() is an encryption function. We
assume that the database E(D) is stored in one node of the cloud.

Given a number k and a scoring function f , our goal is to develop an al-
gorithm A, such that when A is executed over the database E(D), its output
contains the ciphertexts of the top-k results.

3 OPE-based Top-k Query Processing Approach

In this section, we propose an approach, called OPE-based, that uses a combi-
nation of the order preserving encryption (OPE) [1] and the FA algorithm [7]

4

for privacy preserving top-k query processing. Our main contribution, called
BuckTop, is presented in the next section.

Let us first explain how the local scores are encrypted. With the OPE-based
approach, the local scores (attribute values) in the sorted lists are encrypted
using the order preserving encryption technique. We also use a deterministic
encryption method for encrypting the ID of data items. The deterministic en-
cryption generates the same ciphertexts for two equal inputs. This allows us to
do random access to the encrypted sorted lists by using the ID of data items.

After encrypting the data IDs and local scores in each sorted list, the lists
are sent to the cloud.

Let us now describe how top-k queries can be answered in the cloud over
the encrypted data. Given a top-k query Q with a scoring function f , the query
is sent to the cloud. Then, the cloud uses the FA algorithm for processing Q
as follows. It continuously performs sorted access in parallel to each sorted list,
and maintains the encrypted data IDs and their encrypted local scores in a set
Y . When there are at least k encrypted data IDs in Y such that each of them
has been seen in each of the lists, then the cloud stops doing sorted access to
the lists. Then, for each data item d involved in Y , and each list Li, the cloud
performs random access to Li to find the encrypted local scores of d in Li (if it
has not been seen yet). The cloud sends Y to the user machine which decrypts
the local scores of each item d ∈ Y , computes their overall scores, and find the
final k items with the highest overall scores.

Theorem 1. Given a top-k query with a monotonic scoring function, the OPE-
based approach returns a set that includes the encrypted top-k elements.

Proof. Let Y be the set of data items, which have been seen by top-k query
processing algorithm in some lists before it stops. Let Y ′ ⊆ Y be set of data
items that have been seen in all lists. Let d′ ∈ Y ′ be the data item whose overall
score among the data items in Y ′ is the minimum. In each list Li, let s′i be the
real (plaintext) local score of d′ in Li.

We show that any data item d, which has not been seen by the algorithm
under sorted access, has an overall score that is less than or equal to that of
d′. In each list Li, let si be the plaintext local score of d in Li. Since d has
not been seen by the top-k query processing algorithm, and the encrypted data
items in the lists are sorted according to their initial order, we have si ≤ s′i, for
1 ≤ i ≤ m. Since, the scoring function f is monotonic, then we have f(s1, ..., sm)
≤ f(s′1, ..., s

′
m). Thus, the overall score of d is less than or equal to that of d′.

Therefore, the set Y contains at least k data items whose overall scores are
greater than or equal to that of the unseen data d. �

4 BuckTop System

In this section, we present our BuckTop system. We first describe the architecture
of BuckTop, and introduce our method for encrypting the data items and storing

5

them in the cloud. Afterwards, we propose an algorithm for processing top-k
queries over encrypted data, and an algorithm for filtering the false positives in
the cloud.

4.1 System Architecture and Data Encryption

The architecture of BuckTop system has two main components:

– Trusted client. It is responsible for encrypting the user data, decrypting
the results and controlling the user accesses. The security keys used for data
encryption/decryption are managed by this part of the system. When a query
is issued by a user, the trusted client checks the access rights of the user. If
the user does not have the required rights to see the query results, then her
demand is rejected. Otherwise, the query is transformed to a query that can
be executed over the encrypted data.
For example, suppose we have a relation R with attributes att1, att2,, attm,
and the user issues the following query:
SELECT * FROM R ORDERED BY f(att1, . . . , attm) LIMIT k;
This query is transformed to:
SELECT * FROM E(R) ORDERED BY F (E(att1),. . . , E(attm)) LIMIT k;
where E(R) and E(atti) are the encrypted name of the relation R and the
attribute atti respectively.
Note that the trusted client component should be installed in a trusted
location, e.g., the machine(s) of the person/organization that outsources the
data.

– Service provider. It is installed in the cloud, and is responsible for storing
the encrypted data, executing the queries provided by the trusted client, and
returning the results. This component does not keep any security key, thus
cannot decrypt the encrypted data in the cloud.

Let us now present our approach for encrypting and outsourcing the data
to the cloud. As mentioned before, the trusted client component of BuckTop is
responsible for encrypting the user databases. Before encrypting a database, the
trusted client creates sorted lists for all important attributes, i.e., those that may
be used in the top-k queries. Then, each sorted list is partitioned into buckets.
There are several methods for partitioning a sorted list, for example dividing the
attribute domain of the list to almost equal intervals or creating buckets with
equal sizes [9]. In the current implementation of our system, we use the latter
method, i.e., we create buckets with almost the same size where the bucket size
is configurable by the system administrator.

Let b1, b2, ..., bt be the created buckets for a sorted list Lj . Each bucket
bi has a lower bound, denoted by min(bi), and an upper bound, denoted by
max(bi). A data item d is in the bucket bi, if and only if its local score (attribute
value) in the list Lj is between the lower and upper bounds of the bucket, i.e.,
min(bi) ≤ sj(d) < max(bi).

We use two types of encryption schemes (methods) for encrypting the data
itme ids and the local scores of the sorted lists: deterministic and probabilistic.

6

With the deterministic scheme, for two equal inputs, the same ciphertexts (en-
crypted values) are generated. We use this scheme to encrypt the ID of the data
items. This allows us to have the same encrypted ID for each data item in all
sorted lists.

The probabilistic scheme is used to encrypt the local scores (attribute values)
of data items. With the probabilistic encryption, for the same plaintexts different
ciphertexts are generated, but the decryption function returns the same plaintext
for them. Thus, for example if two data items have the same local scores in a
sorted list, their encrypted scores may be different. The probabilistic encryption
is the strongest type of encryption.

After encrypting the data IDs and local scores of each list Li, the trusted
client puts them in their bucket (chosen based on the local score). Then, the
trusted client sends the buckets of each sorted list to the cloud. The buckets are
stored in the cloud according to their lower bound order. However, there is no
order for the data items inside each bucket, i.e., the place of the data items inside
each bucket is chosen randomly. This prevents the cloud to know the order of
data items inside the buckets.

4.2 Top-k Query Processing Algorithm of BuckTop

The main idea behind top-k query processing in BuckTop system is to use the
bucket boundaries to decide when to stop reading the encrypted data from the
lists.

Given a top-k query Q including a number k and a scoring function f . To
answer Q, the following top-k processing algorithm is executed by the service
provider component of BuckTop:

1. Let Y be an empty set;
2. Perform sorted access to the lists:

2.1 Read the next bucket, say bi, from each list Li (starting from the head
of the list);

2.2 For each encrypted data d contained in the bucket bi:

2.2.1. Perform random access in parallel to the other lists to find the en-
crypted score and the bucket of d in all lists;

2.2.2. Compute a minimum overall score for d, denoted by min ovl(d),
by applying the scoring function on the lower bound of the buckets
that contain d in different lists. Formally, min ovl(d) = f(min(b1),
min(b2), ...,min(bm)), where bi is the bucket involving d in the list
Li.

2.2.3. Store the encrypted ID of d, its encrypted local scores, and its min ovl
score in the set Y.

2.3 Compute a threshold TH as follows: TH = f(min(b′1), min(b′2), ...
,min(b′m)), where b′i is the last bucket seen under sorted access in the Li,
for 1 < i < m. In other words, TH is computed by applying the scoring
function on the lower bounds of the last seen buckets in the lists.

7

2.4 If the set Y contains at least k encrypted data items having minimum
overall scores higher than TH, then stop. Otherwise, go to Step 2.1.

When the top-k query processing algorithm stops, the set Y includes the en-
crypted top-k data items (see the proof below). This set is sent to the trusted
client that decrypts its contained data items, computes the overall scores of the
items, removes the false positives (i.e., the items that are in Y but not among
the top-k results), and returns the top-k items to the user.

The following theorem shows that the output of BuckTop top-k query pro-
cessing algorithm contains the encrypted top-k data items.

Theorem 2. Given a top-k query with a monotonic scoring function f , the
output of BuckTop top-k query processing algorithm contains the encrypted top-
k results.

Proof. Let Y be the output of the BuckTop top-k query processing algorithm,
i.e., the set that contains all the encrypted data items seen under sorted access
when the algorithm ends. We show that each data item d that is not in Y
(d /∈ Y), has an overall score that is less than or equal to the overall score of at
least k data items in Y . Let si be the local score of d in the list Li. Let b′i be
the last bucket seen under sorted access in the list Li, i.e., when the algorithm
ends. Since d is not in Y , it has not been seen under sorted access in the lists.
Thus, its involving buckets are after the buckets seen under sorted access by the
algorithm. Therefore, we have si < min(b′i) for 1 ≤ i ≤ m, i.e., the local score
of d in each list Li is less than the lower bound of the last bucket read under
sorted access in Li. Since the scoring function is monotonic, we have f(s1, ..., sm)
< f(min(b′1),min(b′2), ...,min(b′m)) = TH. Thus, the overall score of d is less
than TH. When the algorithm stops, there are at least k data items in Y whose
minimum overall scores are greater than or equal to TH. Thus, their overall
scores are at least TH. Therefore, their overall scores are greater than or equal
to that of the data item d.

In the set Y returned by the top-k query processing algorithm of BuckTop,
in addition to the top-k results there may be false positives. Below, we propose
a filtering algorithm to eliminate most of them in the cloud, without decrypting
the data items. As shown by our experimental results, our filtering algorithm
eliminates most of the false positives (more than 99% in the different tested
datasets). This improves significantly the response time of top-k queries, because
the eliminated false positives do not need to be communicated to the trusted
client and should not be decrypted by it.

In the filtering algorithm, we use the maximum overall score, denoted by
max ovl of each data item. This score is computed by applying the scoring
function on the upper bound of the buckets involving the data item in the lists.
The algorithm proceeds as follows:

1. Let Y ′ ⊆ Y be the k data items in Y that have the highest minimum overall
scores (min ovl) among the items contained in Y .

8

2. Let dmin be the data item that has the lowest min ovl score in Y ′.
3. For each item d ∈ Y

3.1 Compute the maximum overall score of d, i.e., max ovl(d), by applying
the scoring function on the upper bound of the buckets involving d in the
lists. Formally, let max(bi) be the upper bound of the bucket involving
d in the list Li. Then, max ovl(d) = f(max(b1),max(b2), ...,max(bm)).

3.2 If the maximum overall score of d is less than or equal to the mini-
mum overall score of dmin, then remove d from Y . In other words, if
max ovl(d) ≤ min ovl(dmin)⇒ Y = Y − {d}

Let us prove that the filtering algorithm works correctly. We first show that
the minimum overall score of any data item d, i.e. min ovl(d), which is computed
based on the lower bound of its buckets, is less than or equal to its overall score.
We also show that the maximum overall score of d, i.e. max ovl(d), is higher
than or equal to its overall score.

Lemma 1. Given a monotonic scoring function f , the minimum overall score
of any data item d is less than or equal to its overall score.

Proof. The minimum overall score of a data item d is calculated by applying
the scoring function on the lower bound of the buckets in which d is involved.
Let bi be the bucket that contains d in the list Li. Let si be the local score of d
in Li. Since d ∈ bi, its local score is higher than or equal to the lower bound of
bi, i.e. min(bi) ≤ si. Since f is monotonic, we have f(min(b1), ...,min(bm)) ≤
f(s1, ..., sm). Therefore, the minimum overall score of d is less than or equal to
its overall score. �

Lemma 2. Given a monotonic scoring function f , the maximum overall score
of any data item d is greater than or equal to its overall score.

Proof. The proof can be done in a similar way as Lemma 1. �

The following theorem shows that the filtering algorithm works correctly, i.e.,
the removed data are only false positives.

Theorem 3. Any data item removed by the filtering algorithm cannot belong to
the top-k results.

Proof. The proof can be done by considering the fact that any removed data
item d has a maximum overall score that is lower than the minimum overall score
of at least k data items. Thus, by using Lemmas 1 and 2, the overall score of d
is less than or equal to that of at least k data items. Therefore, we can eliminate
d. �

A security analysis of the BuckTop system is provided in [15].

5 Performance Evaluation

In this section, we evaluate the performance of BuckTop using synthetic and real
datasets. We first describe the experimental setup, and then report the results
of our experiments.

9

5.1 Experimental Setup

We implemented our top-k query processing system and performed our tests on
real and synthetic datasets. As in some previous work on encrypted data (e.g.,
[13]), we use the Gowalla database, which is a location-based social networking
dataset collected from users locations. The database contains 6 million tuples
where each tuple represents user number, time, user geographic position, etc.
In our experiments, we are interested in the attribute time, which is the second
value in each tuple. As in [13], we decompose this attribute into 6 attributes
(year, month, day, hour, minute, second), and then create a database with the
following schema R(ID, year, month, date, hour, minute, second), where ID is the
tuple identifier. In addition to the real dataset, we have also generated random
datasets using uniform and Gaussian distributions.

We compare our solution with the two following approaches:

– OPE : this is the OPE-based solution (presented in Section 3) that uses the
order preserving encryption for encrypting the data scores.

– TA over plaintext data: the objective is to show the overhead of top-k query
processing by BuckTop over encrypted data compared to an efficient top-k
algorithm over plaintext data.

In our experiments, we have two versions of each database: 1) the plain-
text database used for running TA; 2) the encrypted database used for running
BuckTop and OPE.

In our performance evaluation, we study the effect of several parameters: 1)
n: the number of data items in the database; 2) m: the number of lists; 3) k: the
number of required top items; 4) bsize: the number of data items in the buckets
of BuckTop. The default value for n is 2M items. Unless otherwise specified, m
is 5, k is 50, and bsize is 20. In our tests,the default database is the synthetic
uniform database.

In the experiments, we measure the following metrics:

– Cloud top-k time: the time required by the service provider of BuckTop
in the cloud to find the set that includes the top-k results, i.e., the set Y .

– Response time: the total time elapsed between the time when the query
is sent to the cloud and the time when the k decrypted results are returned
to the user. This time includes the cloud top-k time, the filtering, and the
result post-processing in the client (e.g., decryption).

– Filtering rate: the number of false positives eliminated by the filtering
algorithm in the cloud.

We performed our experiments using a node with 16 GB of main memory
and Intel Core i7-5500 @ 2.40Ghz as processor.

5.2 Effect of the Number of Data Items

In this section, we compare the performance of TA over plaintext data with
BuckTop and OPE over encrypted data, while varying the number of data items,
i.e., n.

10

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6

C
lo

u
d

 t
o

p
-k

 t
im

e
(m

s)

n (million)

TA
BuckTop

OPE

Fig. 1: Cloud top-k time vs. number of
database tuples

 1000

 10000

 100000

 1x10
6

 0 1 2 3 4 5 6

R
es

p
o
n

se
 t

im
e

(m
s)

n (million)

TA
BuckTop

OPE

Fig. 2: Response time vs. number of
database tuples

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100 110

R
es

p
o

n
se

 t
im

e
(m

s)

k

TA
BuckTop

Fig. 3: Response time vs. k

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

R
es

p
o

n
se

 t
im

e
(m

s)

Bucket size

BuckTop

Fig. 4: Response time vs. bucket size

Figure 1 shows how cloud top-k time evolves, with increasing n, and the
other parameters set as default values described in Section 5.1. The cloud top-k
time of all approaches increases with n. But, OPE takes more time than the two
other approaches, because it stops deeper in lists, and thus reads more data.

Figure 2 shows the total response time of BuckTop, OPE and TA while
varying n, and the other parameters set as default values. Note that the figure
are is in logarithmic scale. TA does not need to decrypt any data, so its response
time is almost the same as its cloud time. The response time of BuckTop is
slightly higher than its cloud top-k time, as in addition to top-k query processing
it performs the filtering in the cloud and also needs to decrypt at least k data
items. We see that the response time of OPE is much higher than its cloud top-k
time. The reason is that OPE returns to the trusted client a lot of false positives,
which should be decrypted, and removed from the final result set. But, this is
not the case for BuckTop as its filtering algorithm removes almost all the false
positives in the cloud (see the results in Section 5.5), thus there is no need to
decrypt them.

11

Database size (M) 1 2 3 4 5 6

Rate of eliminated false positives 100% 100% 100% 99.99% 99.99% 100%

A: over Uniform dataset

Database size (M) 1 2 3 4 5 6

Rate of eliminated false positives 99.98% 99.99% 99.99% 99.99% 99.99% 99.99%

B: over Real dataset

Database size (M) 1 2 3 4 5 6

Rate of eliminated false positives 99.94% 99.96% 99.97% 99.98% 99.98% 99.98%

C: over Gaussian dataset

Table 1: False positive elimination by our filtering algorithm over different datasets

5.3 Effect of k

Figure 3 shows the total response times of BuckTop with increasing k, and the
other parameters set as default values. We observe that with increasing k the
response time increases. The reason is that Bucktop needs to go deeper in the
lists to find the top-k results. In addition, increasing k augments the number
of data items that the trusted client needs to decrypt (because at least k data
items are decrypted by the trusted client).

5.4 Effect of Bucket Size

Figure 4 reports the response time of BuckTop when varying the size of buckets,
and the other parameters set as default values. We observe that the response
time increases when the bucket size increases. The reason is that the top-k query
processing algorithm of Bucktop reads more data in the lists, because the data
are read bucket by bucket. In addition, increasing the bucket size increases the
number of false positives to be removed by the filtering algorithm, and eventually
decrpting the none eliminated false positives in the client side.

5.5 Effect of the Filtering Algorithm

BuckTop’s filtering algorithm is used to eliminate/reduce the false positives in
the cloud. We study the filtering rate by increasing the size of the dataset. For
the uniform synthetic dataset, the results are shown in Table 1-A. For datasets
with up to three million data items, the filtering method eliminates 100% of
the false positives, and the cloud returns to the trusted client only the k data
items that are the result of the query. For larger datasets, BuckTop filters up
to 99,99% of the false positives. By using the Gaussian dataset, we obtain the
results shown in Table 1-C. We see that around 99,94% of false positives are
eliminated.

Over the real dataset, Table 1-B shows the filtering rate. We observe that
the filtering algorithm eliminates 99,99% of false positives. Thus, the filtering
algorithm is very efficient over all the tested datasets. However, there is a little

12

difference in the filtering rate for different datasets because of the local score
distributions. For example, in the Gaussian distribution, the local scores of many
data items are very close to each other, thus the filtering rate decreases in this
dataset.

6 Related Work

In the literature, there has been some research work to process keyword queries
over encrypted data , e.g., [2, 17]. For example [2] and [17] propose matching
techniques to search words in encrypted documents. However, the proposed tech-
niques cannot be used to answer top-k queries. There have been also some solu-
tions proposed for secure kNN similarity search, e.g., [3,5,6,14,19]. The problem
is to find k points in the search space that are the nearest to a given point.
This problem should not be confused with the top-k problem in which the given
scoring function plays an important role, such that on the same database and
with the same k, if the user changes the scoring function, then the output may
change. Thus, the proposed solutions proposed for kNN cannot deal with the
top-k problem.

The bucketization technique (i.e., creating buckets) has been used in the
literature for answering range queries over encrypted data, e.g., [9, 10, 16]. For
example, in [10], Hore et al. use this technique, and propose optimal solutions
for distributing the encrypted data in the buckets in order to guarantee a good
performance for range queries.

There have been access pattern attacks against range query processing meth-
ods that use the bucketization technique, e.g. [11]. The main idea is to utilize
the intersection between the results of the queries and also some background
knowledge to guess the bucket boundaries. However, these attacks are not valid
for our approach, because there is no range in our queries. In our system, the
main plaintext information in the queries is k (i.e., the number of asked top
tuples), and this information is not usually useful to violate the privacy of users.

In [12], Kim et al. propose an approach for preserving the privacy of data
access patterns during top-k query processing. In [18], Vaidya et. al. propose a
privacy preserving method for top-k selection from the data shared by individuals
in a distributed system. Their objective is to avoid disclosing the data of each
node to other nodes. Thus their assumption about the nodes is different from
ours, because they can trust the node that stores the data (this is why the data
are not encrypted), but in our system we trust no node of the cloud.

Meng et al [20] propose a solution for processing top-k queries over encrypted
data. They assume the existence of two non-colluding nodes in the cloud, one of
which can decrypt the data (using the decryption key) and execute a TA-based
algorithm. Our assumptions about the cloud are different, as we do not trust
any node of the cloud.

13

7 Conclusion

In this paper, we proposed a novel system, called BuckTop, designed to encrypt
sensitive data items, outsource them to a non-trusted cloud, and answer top-
k queries. BuckTop has a top-k query processing algorithm that is executed
over encrypted data, and returns a set containing the top-k results, without
decrypting the data in the cloud. It also comes with a powerful filtering algorithm
that eliminates significantly the false positives from the result set.

We validated our system through experimentation over synthetic and real
datasets. We compared its response time with OPE over encrypted data, and
with the popular TA algorithm over original (plaintext) data. The experimental
results show excellent performance gains for BuckTop. They illustrate that the
overhead of using BuckTop for top-k processing over encrypted data is very low,
because of efficient top-k processing and false positive filtering.

Acknowledgement

The research leading to these results has received funding from the European
Union’s Horizon 2020 - The EU Framework Programme for Research and Inno-
vation 2014-2020, under grant agreement No. 732051.

References

1. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order-
preserving encryption for numeric data. In SIGMOD Conf., pages 563–574, 2004.

2. Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In ACNS, pages 442–455, 2005.

3. S. Choi, G. Ghinita, H-S Lim, and E. Bertino. Secure knn query processing in
untrusted cloud environments. IEEE TKDE, pages 2818–2831, 2014.

4. C. Coles and J. Yeoh. Cloud adoption practices and priorities survey report.
Technical report, Cloud Security Alliance report, January 2015.

5. X. Ding, P. Liu, and H. Jin. Privacy-preserving multi-keyword top-k similarity
search over encrypted data. IEEE TDSC, (99):1–14, 2017.

6. Y. Elmehdwi, BK. Samanthula, and W. Jiang. Secure k-nearest neighbor query
over encrypted data in outsourced environments. In ICDE Conf., 2014.

7. Ronald Fagin. Combining fuzzy information from multiple systems. J. Comput.
Syst. Sci., 58(1):83–99, 1999.

8. Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

9. B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multidimensional
range queries over outsourced data. VLDB J., 21(3):333–358, 2012.

10. B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries.
In VLDB Conf., pages 720–731, 2004.

11. MS. Islam, M. Kuzu, and M. Kantarcioglu. Inference attack against encrypted
range queries on outsourced databases. In ACM CODASPY, pages 235–246, 2014.

12. H-I. Kim, H-J. Kim, and J-W. Chang. A privacy-preserving top-k query processing
algorithm in the cloud computing. In GECON Conf., pages 277–292, 2017.

14

13. R. Li, Alex X. Liu, Ann L. Wang, and B. Bruhadeshwar. Fast range query pro-
cessing with strong privacy protection for cloud computing. PVLDB, 7(14), 2014.

14. Xiaojing Liao and Jianzhong Li. Privacy-preserving and secure top-k query in
two-tier wireless sensor network. In Global Communications Conference (GLOBE-
COM), pages 335–341, 2012.

15. S. Mahboubi, R. Akbarinia, and P. Valduriez. Top-k Query Processing Over Out-
sourced Encrypted Data. Research Report RR-9053, INRIA, 2017.

16. C. Sahin, T. Allard, R. Akbarinia, A. El Abbadi, and E. Pacitti. A differentially
private index for range query processing in clouds. In ICDE Conf., 2018.

17. DX. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In IEEE S&P, pages 44–55, 2000.

18. Jaideep Vaidya and Chris Clifton. Privacy-preserving top-k queries. In ICDE
Conf., pages 545–546, 2005.

19. WK. Wong, DW. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on
encrypted databases. In SIGMOD Conf, pages 139–152, 2009.

20. Haohan Zhu Xianrui Meng and George Kollios. Top-k query processing on en-
crypted databases with strong security guarantees. In ICDE Conf., 2018.

