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Abstract—Performing non-aggregate range queries on cloud
stored data, while achieving both privacy and efficiency is a
challenging problem. This paper proposes constructing a dif-
ferentially private index to an outsourced encrypted dataset.
Efficiency is enabled by using a cleartext index structure to
perform range queries. Security relies on both differential privacy
(of the index) and semantic security (of the encrypted dataset).
Our solution, PINED-RQ develops algorithms for building and
updating the differentially private index. Compared to state-of-
the-art secure index based range query processing approaches,
PINED-RQ executes queries in the order of at least one magni-
tude faster. The security of PINED-RQ is proved and its efficiency
is assessed by an extensive experimental validation.

I. INTRODUCTION

Substantial advances in cloud technologies have made out-
sourcing data to the cloud highly beneficial today. However,
strong concerns from private companies and public institutions
about the security of the outsourced data still hamper the
adoption of cloud solutions. This reluctance is fed by frequent
massive data breaches either caused by external attacks against
cloud service providers or by negligent or opaque practices
from the service provider.

During the last decade, a large body of academic work has
tackled the problem of outsourcing databases to an untrusted
cloud while maintaining both confidentiality and SQL-like
querying functionality (at least partially). However, to the
best of our knowledge, performing range queries efficiently
in this context has not been addressed in a satisfactory
manner. Range queries express a bounded restriction over the
retrieved records. They are fundamental database operations.
For example, assume that a university has outsourced its
student database to the cloud. The following SQL query
can retrieve the records of students with a grade between
A and B: SELECT * FROM students WHERE grade ≥
3.0 AND grade ≤ 4.0. Most related work has essentially
focused on trading efficiency with security. In particular, they
either allow unacceptable security leakage or employ costly
cryptographic computations. For example, bucketization
techniques [12] do not provide formal privacy guarantees and
order preserving encryption based schemes (OPE) [2] are
vulnerable to statistical attacks, while searchable symmetric
encryption schemes [14], [5] suffer from execution times that
are incompatible with real-world efficiency requirements.

In this paper, we advocate a novel efficient approach without
sacrificing sound formal privacy guarantees. We build on the

most recent advances in the field of privacy-preserving data
publishing by using cryptography with differential privacy for
performing selection range queries. Our solution proposes
to send two complementary data structures to the cloud:
an encrypted version of the database, e.g., AES encryption
scheme, indexed by a hierarchy of histograms, such that both
are perturbed to satisfy differential privacy. Efficiency comes
from the disclosure of the index, in the clear, to the cloud,
for guiding the query execution strategy. No computation is
ever performed on encrypted data. Privacy comes from the
differential privacy guarantees of the function that computes
the encrypted database and the index. Indeed, the differential
privacy model is today’s de facto standard for protecting
personal information that needs to be partially disclosed. It
applies to the functions computed on personal data, and defines
privacy as a limit on the impact that any possible record may
have on their outputs. This new efficiency/privacy trade-off,
however, comes at a cost: the differentially private perturbation
makes the index inaccurate. There may be some records that
are relevant to the query that will not be retrieved (false
negatives), and there may be some irrelevant records that
will actually be returned (false positives). After receiving the
result set, clients perform post-processing to filter out false
positive records. This lower precision is the inevitable cost of
increased privacy. A specific query processing strategy must be
designed to cope with such inaccuracies, as well as an update
management system to maintain the data structures when the
original database is updated (inserts, deletes, or modifications
of records) without jeopardizing the privacy guarantees.

We propose PINED-RQ (Privacy-preserving INdex for
Encrypted Databases dedicated to Range Queries) which
makes the following contributions:

1) A differentially private function computing the en-
crypted dataset and its hierarchical index.

2) An update strategy for managing the insertion, deletion,
and modification of records on the cloud.

3) Formal proofs showing the security of PINED-RQ.
4) A thorough empirical evaluation demonstrating the effi-

ciency and quality of the query processing strategy.

To the best of our knowledge, this is the first work that
builds, uses, and maintains a differentially private index for
performing selection range queries.



Fig. 1: System Model

II. PROBLEM DEFINITION

A. Basic Components

Trusted Component. Raw data is produced by the data
provider and queried by data consumers. The data provider
encrypts the data and creates a differentially private index,
which are sent to the cloud. Both the data provider and data
consumers are trusted (see Figure 1), they are considered
to be honest. For example, in a university setting, the data
provider would be the university information system and the
data consumers are the teachers and administrators.

Untrusted Component. The cloud is untrusted. It stores the
data outsourced by the data provider and processes the queries
posed by data consumers. We assume the cloud is honest-but-
curious: it records all information resulting from its exchanges
with the trusted components and may infer anything that can
be inferred in a computationally-feasible way.

B. Basic Data Structures

The dataset stored by the data provider is a relation
D(A1, . . . , Ad) where each Ai is an attribute. Queries are
non-aggregate single-dimensional range queries, over a single
attribute Aq . A query Q consists of a set of disjunctions of
non-overlapping ranges over Aq : Q ← φ1 ∨ . . . ∨ φl where
each φi is a range defined by a minimum and a maximum
value, φi.min and φi.max, such that ∩∀iφi = ∅. Without
loss of generality, we assume a query Q consists of a single
range. Data Consumers submit queries in the clear to the
cloud, without leading to any security breach. The attributes
of D can be of any type, except Aq which must be a totally
ordered data type to allow range queries. The set of records in
D that satisfy Q exactly is called the set of relevant records
and is denoted R.

In order for the cloud to process queries, the data provider
provides the following two data structures to the cloud:
• An encrypted version of the dataset denoted D. The en-

cryption r of a record r ∈ D is performed by concatenat-
ing the attribute bit values of r and encrypting the result-
ing bitstring by a semantically-secure encryption scheme
[11], which means that no probabilistic polynomial-time
algorithm is able to gain additional knowledge on a
record given its encrypted version and (possibly) auxiliary
information (e.g., AES in CBC mode). Loosely speaking,
semantic security implies that no information leaks about
a cleartext bitstring, given its encrypted value.

• An index, denoted I(Aq), over the queriable attribute of
D, Aq , computed from D but pointing to the encrypted

records r ∈ D. The index is sent in the clear to the cloud.
The information in the nodes of the index is randomly
perturbed so that differential privacy is satisfied.

The differentially private perturbation of the index results in
an inherent approximation in the set of records that is returned:
false positives may be returned while false negatives may be
omitted. The recall and precision of an approximate set of
records returned by the cloud are defined as follows.

Definition 1 (Recall and Precision): Given a query Q, with
an exact set of relevant recordsR in D, while the set of records
returned by the cloud is R̃, then the recall r and precision p

of R̃ are: r = |R ∩ R̃|/|R| and p = |R ∩ R̃|/|R̃|.

C. End-to-End Privacy Model

PINED-RQ combines a differentially-private perturbation
scheme with a semantically-secure encryption scheme. Differ-
ential privacy and semantic security are two well-established
models but each comes with is own formalism and assump-
tions. We first describe these two models in their usual settings,
and then show how PINED-RQ integrates them consistently
to come up with an overall unified end-to-end privacy model.

1) Traditional Differential Privacy: The ε-differential pri-
vacy model [6] requires that whatever the output of an ε-
differentially private function, the probability that any given
individual record r ∈ D(A1, . . . , An) is present in the dataset
is close to the probability that r is absent by an eε factor.
This model considers a very strong adversary that is not
computationally-bounded (information-theoretic guarantees).
Definition 2 gives a formal definition.

Definition 2 (ε-differential privacy [6], [8]): Randomized
function f satisfies ε-differential privacy if:

Pr[f(D1) = O] ≤ eε · Pr[f(D2) = O]
for any set O ∈ Range(f) and any dataset D1 and D2 that
differ in at most one record.

PINED-RQ perturbs the index I(Aq) based on the Laplace
mechanism (Definition 3) and on the composability properties
of the ε-differential privacy model.

Definition 3 (Laplace mechanism [7]): Let D1 and D2 be
two datasets such that D2 is obtained from D1 by changing the
value of one record. Let f be a real-valued function. Let L(λ)
denote a random variable which has a Laplace distribution
with probability density function pdf(x, λ) = 1

2λ · e
−|x|/λ.

The Laplace mechanism consists of adding L(max ‖f(D1)−
f(D2)‖1/ε) to the output of f, where ε > 0.

Theorem 1 (Compositions [15]): Let (f1, . . . , fn) be a se-
quence of real-valued functions each satisfying εi-differential
privacy. This sequence of functions satisfies (1) (

∑n
i=1 εi)-

differential privacy when applied to the same dataset (sequen-
tial), and (2) (max(εi))-differential privacy when applied to
disjoint datasets (parallel).

2) Traditional Semantic Security: Efficient private key en-
cryption schemes today satisfy semantic security (e.g., AES in
CBC mode). Loosely speaking, semantic security considers a
computationally-bounded adversary, i.e., a probabilistic poly-
nomial time algorithm, and requires that anything computable
from the encrypted message and any auxiliary information,



e.g., obtained from another external data source, can also
be computed efficiently from the auxiliary information only.
Definition 4 is a simplification of Definition 5.2.1 in [10]1.

Definition 4 (Semantic security [10]): A private key en-
cryption algorithm Eχ, where χ is the secret key, is semanti-
cally secure if for every probabilistic polynomial time algo-
rithm A there exists a probabilistic polynomial time algorithm
A′ such that for every input dataset D, every auxiliary back-
ground knowledge ζ ∈ {0, 1}∗, every polynomially bounded
function g : {0, 1}∗ → {0, 1}∗, every polynomial p(·), every
sufficiently large n ∈ N , it holds that :

Pr[An(Eχ(D), |D|, ζ) = g(D)] < Pr[A′n(|D|, ζ) = g(D)]+
1

p(n)
3) Unified Privacy Model for PINED-RQ: The unified

privacy model of PINED-RQ is a probabilistic relaxation of a
variant of differential privacy that considers computationally-
bounded adversaries [16] and that consequently takes into
account the cryptographically-negligible leaks due to the use
of efficient real-world encryption schemes. Definition 5 is a
simplification of εn-SIM-CDP, the simulation-based computa-
tional differential privacy model proposed in [16].

Definition 5 (εn-SIM-CDP privacy[16]): Randomized
function fn provides εn-SIM-CDP if there exists a function
Fn that satisfies εn-differential-privacy and a polynomial
p(·), such that for every input dataset D, every probabilistic
polynomial time adversary A, every auxiliary background
knowledge ζ ∈ {0, 1}∗, and every sufficiently large n ∈ N , it
holds that :
|Pr[An(fn(D, ζ)) = 1]− Pr[An(Fn(D, ζ)) = 1]| ≤ 1

p(n)
Finally, the overall end-to-end privacy model of PINED-RQ

is stated in Definition 6.
Definition 6 ((ε, δ)n-Probabilistic-SIM-CDP): A random-

ized function fn is said to provide (ε, δ)n-Probabilistic-SIM-
CDP, if it provides εn-SIM-CDP to each individual with
probability greater than or equal to δ, where δ ∈]0, 1].

D. Problem in a Nutshell

We address the problem of designing the functions
(1) CREATE, in charge of computing the two complementary
data structures I(Aq) and D, (2) INSERT and MOD/DEL, in
charge of handling the updates over D, and (3) the query
processing strategies of the cloud that answer cleartext range
queries Q while ensuring high recall and precision, (4) all that
while satisfying (ε, δ)n-Probabilistic-SIM-CDP.

III. STATIC CONTEXT: THE CREATE FUNCTION

In this section, we discuss the basic design of the PINED-
RQ CREATE function and the corresponding query processing
strategy in a read-only context. Throughout the section, we
refer to the sample example depicted in Figure 2. The aim is to
publish a student GPA dataset to a cloud server privately. The
original dataset has 7 student records with GPAs from 0 to 4.
Initially, a clear index is constructed for the dataset where leaf

1For simplicity, we use the single-message setting formalization but em-
phasize that it is extended easily to the multiple-messages setting (see
Definition 5.2.8 in [10]).

nodes point to the tuples with the corresponding GPA value.
Then, the index entries are perturbed with differentially private
noise which results in adding dummy records or deleting some
records. In the example, 1 dummy record is inserted to the
node with range [2, 3) and 1 dummy record is removed from
the node with range [0, 1). After the perturbation, the records
are encrypted with a semantically secure encryption scheme.
Finally, the cloud is provided the output of the CREATE
function : namely, the encrypted dataset D and the cleartext
differentially private index I(Aq) over D. In this section, we
first describe the CREATE function, then prove that it satisfies
the (ε, δ)n-Probabilistic-SIM-CDP privacy model, and finally
present a simple query execution strategy.

A. Data Structures Output by CREATE

We describe the two data structures provided to the cloud,
and demonstrate the end-to-end security of the proposed
system.

The first data structure computed by the data provider is
the differentially private index. The design of this index must
address the conflicting goals of allowing the retrieval of the
records in a given range query while satisfying differential
privacy. Both false negatives and positives are inherent, thus
the challenge lies in reducing them to realistic numbers. To this
end, we propose to benefit from two fruitful research tracks:
on the one hand, from the B+-Tree family of indices, widely
used in traditional databases for supporting range queries,
and on the other hand, from the more recent differentially
private hierarchies of histograms, that have been shown to
answer aggregate range queries accurately while satisfying
differential privacy [18]. Index I (Aq) is a balanced tree over
the encrypted dataset D in which each intermediate node
contains a fixed-size set of pointers and each leaf node contains
a set of pointers to the data records in D.

1) Basics : Nodes and Histograms: In a B+-Tree, a key is
a single value, e.g., an integer, that indicates the range within
which fall the records that can be accessed while following
the associated pointers. In our context, rather than using single
values as indications for ranges, we propose to use histograms.
Indeed, histograms can be used as accurate estimators for
ranges through the distributions they disclose. Histograms are
defined in Definition 7. Histograms are also well known for
integrating well with differential privacy [18]: the Laplace
mechanism and the parallel composition theorem together
allow adding a random variable sampled independently in
L (1/ε) to each bin in order to satisfy ε-differential privacy.

Definition 7 (Histogram and Histogram Bins): Let Φ ←
(φ1, . . . , φk) be a set of non-overlapping ranges that partition
the domain of queriable attribute Aq . Each range φi ∈ Φ
is associated to its corresponding bin bi where bi stores the
number of data records within the range of φi. Each bin
belongs to a unique node (as in Definition 8) in the index. A
histogram h is a complete set of bins over the entire domain.

Definition 8 (Node): A node is a histogram bin/pointer pair,
where the pointer references either a child node or encrypted
data records. Each node represents a bin of a histogram.
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Fig. 2: Sample Publication

Considering the example from Figure 2, the index structure
has 7 nodes where 4 of them are leaf nodes. The leaf nodes
have histogram bins {[0, 1), [1, 2), [2, 3), [3, 4]}. 4 leaf nodes
together construct a complete histogram at the leaf level.

2) Building I (Aq): The hierarchy of nodes in the index
structure is built following a three-step process. The first step
computes the clear index, i.e., the nodes and the pointers. It
does require a single pass over the clear dataset to associate
each data record with the corresponding leaf node. Later, the
hierarchy of the index is constructed considering the non-
private branching factor, a system parameter of the structure.
The second step perturbs the nodes of the index based on the
Laplace mechanism to satisfy differential privacy and post-
processes them in order to increase its utility. The third step
encrypts the data records with a semantically secure encryption
scheme after constructing the differentially private index. The
dataset is scanned twice: 1) during the first step to construct
the leaf nodes, a scan that is both necessary and sufficient
for computing the histograms, and 2) during the encryption of
data records. We explain now each step.

The first step computes each level of the hierarchy itera-
tively, starting from the leaf nodes at the bottom and ending
with the single root node at the top. First, the leaf nodes (level
0) are instantiated. The number of leaf nodes is computed from
the domain of the queriable attribute Aq and a unit-length
interval that defines the length of each histogram bin. For
example, if the attribute domain is from 0 to 100 and the unit-
length interval is 1, then there are 100 leaf nodes with ranges
{[0, 1), [1, 2), .., [99, 100]}. Once the leaf nodes are created,
then a scan of the cleartext dataset creates a pointer from
the corresponding node to the data records and incrementing
each bin’s counter by 1. When the scan is completed, the leaf
nodes have the correct numbers with associated pointers to
the actual data records. Considering the example in Figure 2,
the leaf nodes of the clear index have counts 3, 2, 1, 1 for
the corresponding ranges of {[0, 1), [1, 2), [2, 3), [3, 4]}. This
means there are 3 data records whose values are within the
range of [0, 1) and the first leaf node has pointers to these
records. All nodes together at the same level construct a

complete histogram over the domain [0, 4]. The nodes of the
upper levels are then computed such that each upper node
points to a set of children nodes. The number of pointers
that map to child nodes is set to the branching factor. The
range of the bin of a node is a union of the children nodes’
ranges, i.e., given Φ0 is the range partitioning of the leaf nodes
Φ0 ← (φ0

1, . . . , φ
0
k), the upper level range partitioning of the

domain is Φ1 ← ∪ml=1

(
∪l+bf−1
l φ0

l

)
. The count of the bin is

computed by summing the counts of the child nodes. In our
toy example, the upper node for the range [0, 2) has a count
of 5, which is the summation of two child nodes [0, 1) and
[1, 2). As can be seen from the figure, the branching factor
for the example is 2. This process goes on iteratively until a
single node remains, which is the root node (highest level).

The second step perturbs the clear index to satisfy dif-
ferential privacy. The differentially private computation of
hierarchies of histograms has been extensively studied in the
context of analytical queries. Although our context is different,
PINED-RQ can benefit from the strategies proposed in [13],
[4], [18] for distributing the privacy budget over the levels.
Cormode et al. [4] compare a uniform budget allocation to
a geometric budget allocation approach. The uniform budget
allocation strategy allocates budgets to each level equally
such that if the index has h levels, each level is allocated a
budget of ε/h. In the geometric budget allocation, the allocated
budget increases geometrically from the root to the leaves.
The root receives the lowest budget, whereas the leaf nodes
receive the highest budget. Cormode et al. demonstrate that
geometric budgeting outperforms the uniform strategy as the
height of an index increases. However, for shallower indexes
(h ≤ 5), both strategies are competitive. Qardaji et al. [18]
also explore the effect of privacy budget allocation and do not
recommend optimizing the privacy budget allocation as long
as the optimal branching factor is selected. Our approach also
uses a uniform budget allocation strategy. The straightforward
approach to apply differential privacy is to sample a random
noise from the Laplace distribution for each node bin and
add the sampled noise to the original count. The total privacy
budget is denoted by εtotal. Consider the example discussed



before (Figure 2). The root node of the clear index has
a count of 7 (range = [0, 4]). After the perturbation, the
same node has a bin count of 8. This means the sampled
noise for the bin is 1. Clearly, differential privacy causes a
loss of utility in the index. Qardaji et al. [18] increase the
utility of a histogram by generalizing the constrained inference
approach proposed in [13]. The constrained inference provides
consistency constraints between parent/children histograms,
which has also been adopted by [4]. PINED-RQ also adopts
the constrained inference approach to increase utility.

Unlike earlier approaches, we tackle a new problem while
satisfying the differential privacy of the index. Earlier ap-
proaches target answering analytical range queries where the
utility loss occurs due to the sampling of noises. However, the
noise itself does not cause any problem since it only changes
the count in the bins. This is also the case for the inner nodes
in our index and our approach also updates the count of the
node bins. However, in our context, the leaf nodes point to
the data records which brings a novel challenge regarding
noise sampling. We use the Laplace mechanism to sample
noises and the sampled noises can be negative or positive as
well. Therefore, our index construction handles two cases: 1)
sampling of a positive noise, and 2) sampling of a negative
noise, which are discussed next.

a) Positive noise sampling at leaf nodes: If the noise v
sampled from the Laplace mechanism is positive, v dummy
records are inserted at uniformly-random positions in the
dataset and v additional pointers from the leaf node to the
dummy records are created. Assuming bin bi has a count of
ci, the updated count will be ci + v. Note that each node in
the index is perturbed separately and such a rule applies for
each node that is perturbed with positive noise. Considering
the example in Figure 2, the actual count of the node with
bin range [2, 3) is 1 in the clear index. This means there is
only one real record in the real dataset that falls into this
range. During perturbation, the sampled noise is v = 1 and
the bin count of the same node in the differentially private
index is 2. The differentially private index is outsourced to
the cloud in the clear which means an adversary sitting in the
cloud is able to see the counts of the nodes. In case a dummy
record is not inserted into the actual dataset, the adversary
would be able to see that there is only 1 pointer to the dataset
from the node with the range [2, 3) even if the bin count is
2. This would allow an adversary to infer the actual number
of records within this range regardless of the node’s count
information. To hide such information from the adversary,
inserting dummy records is necessary. This allows us to ensure
that the number of pointers pointing to the real dataset matches
the count inside the node. The encryption of data records with
semantically secure encryption scheme, as will be explained
later, prevents the adversary from distinguishing real records
from the dummy records.

b) Negative noise sampling at leaf nodes: The handling
of negative noise during the perturbation is a bit more com-
plicated. When the sampled noise v is negative, this requires
removing some data records from the dataset in order to ensure

differential privacy (while still guaranteeing that they can be
retrieved). Considering the toy example, the node with a range
[0, 1) is perturbed with noise −1 and a uniform-randomly
selected single record -(David, 0.7) in this example- in this
range is removed from the actual dataset. Completely remov-
ing records from the dataset results in missing actual data
during query processing. This is not reasonable as removing
records might cause a decrease in recall (low utility). Although
removing these records from the actual dataset is enough
to ensure the differential privacy of the index, PINED-RQ
introduces a new approach to handle removed records without
violating differential privacy to achieve higher performance.

To handle removed records, PINED-RQ creates a fixed-
sized overflow array for each leaf node. Basically, each leaf
node is expanded by the size of an overflow array. Recall that
the updated count of bin bi is pi = ci+v after the perturbation.
Once an actual record is removed from a node, it is removed
from the actual dataset and inserted into the corresponding
overflow array. Then, each leaf node is expanded by the size
of an overflow array. Assuming the size of an overflow array is
o, the finalized bi becomes pi + o. If there are any records for
a node that is removed as a result of sampling negative noise,
it is inserted back to the dataset, and a pointer to this record is
placed into the empty space in the leaf node. The dataset size
is also expanded for each overflow array, given there are n
leaf nodes, the dataset size is increased by o ∗ n. This allows
removed records to stay in the dataset. The pointer to the
record is placed in the leaf node’s overflow array. Considering
our example, the removed record from the leaf node with range
[0, 1) is inserted into the overflow array for the same node.
During perturbation, the other two leaf nodes are perturbed
with noise 0 and one leaf node is perturbed with positive
noise 1. Therefore, their overflow arrays do not contain any
actual records. However, leaving them empty would reveal
to an adversary that the data records in the overflow arrays
are real data records. To ensure privacy, the number of real
records in each array should be indistinguishable. Hence, the
empty spaces in the arrays are padded with dummy data, so
each overflow array consists of the same number of records.
The size can be selected probabilistically large enough to
store any removed records. Since the noise is sampled from
the Laplace distribution, it can be selected based on the
inverse of the cumulative distribution function (CDF) of the
Laplace distribution with a very high probability. Note that it
is possible for a sampled noise to be out of the selected bound.
In this case, it is possible to append data records to their
associated overflow arrays. This prevents PINED-RQ from
missing the records. Later, we show that appending records to
the associated overflow arrays does not violate PINED-RQ’s
end-to-end privacy guarantee. Note that although overflow
records from the overflow arrays are theoretically possible,
it is very unlikely to happen if the size of the overflow array
is selected large enough.

Setting the parameters. Our histogram-based index struc-
ture shares similarities with the hierarchy of histograms pro-
posed in [18]. Two important parameters, branching factor and



number of bins, have a significant impact on the accuracy of
the index. Qardaji et al. [18] discuss computing the branching
factor and point out that when the number of bins is high, the
optimal branching factor is around 16. The empirical analysis
in [18] also highlights that the best performance is delivered
when the branching factor is selected between 8 and 16.
Therefore, we set the branching factor in PINED-RQ to 16.

B. Privacy Guarantees of the CREATE Function
We now show that the CREATE function of PINED-RQ

satisfies (ε, δ)n-Probabilistic-SIM-CDP as in Definition 6.
Theorem 2: Index I(Aq) satisfies εtotal-differential privacy

(as defined in Definition 2) where εtotal is the budget dedicated
to index perturbation, i.e, εtotal =

∑h
i=0 εi.

Proof: We consider neighboring datasets as two datasets,
D1 and D2, differing in at most one record. Each node
represents a bin of a histogram and a difference of a single
record affects a maximum of one node: either increment
or decrement count by 1. The maximum change 1 is used
as a global sensitivity to sample noises from the Laplace
distribution. Each bin is perturbed with a noise sampled from
the Laplace mechanism, i.e., L(1/εi). At each given level li,
the set of bins (of histogram) satisfy εi-differential privacy
(parallel composition theorem). Second, any given root-to-leaf
path satisfies

∑
i εi-differential privacy. As a result, thanks

to the distribution of the privacy budget,
∑
i εi = εtotal.

Moreover, since the composition of any function with a
differentially-private function also satisfies differential privacy,
the post-processing of the histograms in I(Aq) also satisfies
εtotal-differential privacy.

Once PINED-RQ constructs the differentially private index,
it encrypts each data record in D and overflow arrays with
a semantically secure symmetric encryption scheme param-
eterized with the secret key χ while preserving the pointer
relation. The output of the encryption is the encrypted dataset
D and encrypted overflow arrays. Note that semantic security
guarantees that our computationally-bounded adversary has no
way to distinguish encrypted dummy records from actual ones,
neither in D nor in encrypted overflow arrays. We demonstrate
in Theorem 3 the overall guarantees of the CREATE function.

Theorem 3: The CREATE function, in charge of com-
puting I (Aq), D, and the overflow arrays satisfies (ε, δ)n-
Probabilistic-SIM-CDP as defined in Definition 6.

Proof: We have shown above (Theorem 2) that computing
I (Aq) satisfies εtotal-differential privacy. We start with the
computation of D and then consider the overflow arrays.
Computation of D. First, the records in D are all en-
crypted with a semantically secure encryption scheme whether
they are real records or dummy records. Loosely speaking,
this means that a computationally-bounded adversary has
negligible probability to distinguish encrypted real/dummy
records from random bitstrings2. Due to this negligible leak,

2Note that semantic security leaks the size of the encrypted dataset, i.e., the
total number of encrypted records per leaf (the encrypted records are grouped
by leaf). But this does not endanger ε-differential privacy because the number
of encrypted records is equal to the perturbed count of their corresponding
bin, which was perturbed to satisfy ε-differential privacy.

(information-theoretic) ε-differential privacy is not satisfied
anymore. We thus switch to the εn-SIM-CDP computational
analogue. Consider the pair made of the following two ran-
domized functions : f1 that computes I (Aq), and f2 that
encrypts the real/dummy records and outputs D. Consider
the following equation : |Pr[An({f1

n(D, ζ), f2
n(D, ζ)}) =

1] − Pr[An(Fn(D, ζ)) = 1]|. First, it is easy to see that
Pr[An({f1

n(D, ζ), f2
n(D, ζ)}) = 1] = Pr[An(f1

n(D, ζ)) =
1] + Pr[An(f2

n(D, ζ)) = 1]. Second, for f2
n, the definition of

semantic security (Definition 4) yields : Pr[An(f2
n(D, ζ)) =

1] < Pr[An(∅) = 1] + 1
p(n) = 1

p(n) . Third, for f1
n, we have

Pr[An(f1
n(D, ζ)) = 1] − Pr[An(Fn(D, ζ)) = 1] = 0 because

both Fn and f1
n are ε-differentially private functions. As a re-

sult, |Pr[An({f1
n(D, ζ), f2

n(D, ζ)}) = 1]− Pr[An(Fn(D, ζ)) =
1]| = |Pr[An(f1

n(D, ζ)) = 1] + Pr[An(f2
n(D, ζ)) = 1] −

Pr[An(Fn(D, ζ)) = 1]| < 1
p(n) . This is precisely the definition

of εn-SIM-CDP (Definition 5).
Overflow arrays. Finally, let introduce the overflow arrays.
First, we consider the case where the number of removed
records does not exceed the size of any overflow array. In
that case, εn-SIM-CDP is still satisfied because (1) there
is exactly one overflow array per leaf, (2) each overflow
array has the same size, and (3) all the records contained
in an overflow array are encrypted by a semantically secure
encryption scheme. Second, we consider the case where the
number of removed records exceeds at least one overflow
array. Note that this may happen only to the leaves that store
a number of encrypted records higher than the capacity of an
overflow array. Since the exceeding records are kept, appended
to their corresponding overflow arrays, εn-SIM-CDP is not
satisfied anymore for the corresponding leaves. Fortunately,
we are able to decide on the probability that this case occurs,
say δ, by computing from the Laplace cumulative distribution
the minimum size that an overflow array should have to absorb
negative noise. This results in satisfying εn-SIM-CDP with a
probability of δ, which is precisely the definition of (ε, δ)n-
Probabilistic-SIM-CDP (Definition 6).

C. Query Processing Strategy

Static PINED-RQ deploys a simple query processing strat-
egy to answer client requests. Given a range query, the query
execution starts from the root of the index, and traverses the
child of any node that has a non-negative intersection with the
provided range. This is repeated recursively until the leaves
of the index. In the leaf nodes, if a node has a positive count
with the overlapping range query, then PINED-RQ returns the
records pointed to by the corresponding node. If a leaf node
is reached, independent of the node count, PINED-RQ returns
the records in the overflow array for the corresponding node
since PINED-RQ prioritizes high recall. Recall that PINED-
RQ returns false positive and negative records in the result
set. When data consumers receive the result set, they post-
process to data to filter out the records that do not belong to
the queried range. The remaining records are the set of correct
results for the query.



Fig. 3: Updates in PINED-RQ

IV. DYNAMIC CONTEXT : INSERT & MOD/DEL
FUNCTIONS

This section extends our description of PINED-RQ to sup-
port updates, namely, insert, delete or modify operations after
the initial publication to the cloud server. We propose two
new functions that satisfy our privacy guarantees: INSERT for
handling insert operations, and MOD/DEL for handling modify
and delete operations.

Supporting updates with a differentially private index raises
several important issues: 1) How to manage a privacy budget
over multiple updates? 2) How are updates reflected on the
published differentially private index and the encrypted stor-
age? 3) How does query processing work after the updates?
PINED-RQ supports updates for append-only applications as
well as applications with any number of inserts but a finite
number of modifications and deletes to the existing records.
Append-only data repositories are very popular and have
widespread applications. Likewise, many real-world applica-
tions have finite updates to existing records while support-
ing insert operations, for example, university and medical
databases. In the university case, students in a university have
a finite number of updates to their grades, and it is unlikely
that their grades changes once a student graduates. On the
other hand, each year new students register to the university.

Data is published in the cloud with an initial index struc-
ture. A simple approach would process updates one by one,
but given that PINED-RQ is differentially private and each
publication consumes a fraction of the privacy budget, such
an approach would exhaust the budget quickly. Therefore,
PINED-RQ handles updates in batches. Queries are sent to
the data provider rather than to the storage server. Hence, the
data provider becomes a proxy and mediates the client-storage
server communication. Proxy-based secure storage systems
have been shown to deliver reasonable performance [17], [19],
therefore, utilizing the data provider as a proxy does not cause
drastic performance degradation in PINED-RQ.

A. General Approach

Assume a delete of record ri is requested, PINED-RQ must
handle this delete without compromising privacy. PINED-
RQ does not remove the record from the published index
and database - doing so would violate differential privacy
(e.g., tagging or removing a record directly from the database
would reveal that ri is not a dummy record). Instead, the
data provider maintains small databases, called ∆DB and

∆DBji where i denotes the publication index and j denotes the
jth batched modification/delete updates corresponding to the
ith publication (see Figure 3). PINED-RQ stores new insert
operations in ∆DB. ∆DBji are used to store modifications and
deletes corresponding to the ith publication, i.e., ∆DB1

1 and
∆DB2

1 store updates related to the first publication. When the
system is initialized and the initial dataset is published, the
data provider stores modifications and deletes in ∆DB1

1. With
incoming modifications and deletes, ∆DB1

1 grows and the data
provider decides to publish ∆DB1

1 to the cloud at some point.
After ∆DB1

1 is published to the cloud, the data provider stores
modifications and deletes related to the first publication set in
∆DB2

1. Inserts, on the other hand, are batched in ∆DB, which
also grows until the data provider decides to publish to the
cloud as DB2 with its associated index structure.

In PINED-RQ, each update operation is a new insert to
either ∆DB or one of the ∆DBji databases. When a new
insert operation is requested, the data provider inserts it to
∆DB. Although such action is obvious in the case of an insert
operation, deletes and modifies result in inserting new records
to the ∆DBji corresponding to the modified/deleted record.
Each record has an additional attribute indicating the type of
operation, i.e., insert, delete or modify. ∆DB and ∆DB1

1 are
initially empty and after some updates, differentially private
indexes for them are created and then published to the server.

B. INSERT Function for handling inserts

An interesting feature of inserts that PINED-RQ exploits
is that newly inserted records can be grouped together and
each new group is associated with a new privacy budget.
Considering the university example discussed before, each
year new students register to the university with no records in
the published dataset. Instead of integrating new students to the
previous publication, which would require using the partially
consumed privacy budget, PINED-RQ associates these new
students with a new publication and hence with a full new
privacy budget.

1) Data Structures and Algorithms: Assume that the ini-
tially published dataset contains records with specific key
values in attribute Aq , denoted by {K1, ..., Km}. Note that
a key might have multiple records in the database, e.g.,
records ri and rj might belong to K1. Now consider an
insert operation related to a new key Km+1. The data provider
will note that there is no intersection with earlier publications
regarding Km+1. Therefore, this new record can be associated
with a new publication set. If there is an intersection with an
earlier publication, the data provider would process Km+1

as a modify/delete. All keys K1..m are related with the
first publication; however, Km+1 is mapped to the second
publication. The data provider stores new inserts in ∆DB, and,
after processing some number of updates, it publishes ∆DB
to the cloud by constructing a secure index. Now, the cloud
stores two encrypted databases, denoted by DB1 and DB2,
and two differentially private indexes, DP-INDEX1 and DP-
INDEX2, which point to DB1 and DB2, respectively. After
this point, further insert operations will be associated with the



third publication. In this way, PINED-RQ can use separate
privacy budgets (εtotal, δtotal) for each set of publications
using parallel composition, which ensures differential privacy.

If the initial publication of a set of inserts consumes the
full privacy budget (εtotal, δtotal), it is not possible to perform
further publications associated with that publication set. To
allow the system to continue publishing, the initial publication
should use an initial ε privacy budget denoted by εinit such
that εinit < εtotal. The remaining budget is used to perform
future publications.

2) Privacy Proof:
Theorem 4: The INSERT function satisfies (εtotal, δ)n-

Probabilistic-SIM-CDP while processing inserts.
Proof: PINED-RQ stores new inserts in ∆DB. After

some time, it creates a differentially private index DP-INDEXi
on ∆DB by dedicating some privacy budget denoted by εi.
The created index DP-INDEXi is εi differentially private.
Given εi ≤ εtotal, DP-INDEXi satisfies εtotal-differential
privacy. PINED-RQ creates each DP-INDEXi on a disjoint
dataset, hence from parallel composition (Theorem 1), PINED-
RQ with the INSERT function is (max(εi), δ)-Probabilistic-
SIM-CDP. Since εi ≤ εtotal, PINED-RQ with INSERT also
satisfies (εtotal, δ)-Probabilistic-SIM-CDP with new inserts.

C. MOD/DEL Function for Handling Modifies and Deletes

Assume a student objects to a grade after the grades have
been submitted. As a consequence, this grade needs to be
changed. As discussed earlier, a direct modification of a
student’s grade in the published database violates privacy
guarantees. Therefore, PINED-RQ stores updates related to
previous publications in ∆DBji where i corresponds to the
publication DBi that contains the record corresponding to this
student, and j refers to the jth update batch of this publication.

Later, the data provider publishes these ∆DBji to the
cloud. The main question is when to perform publications
regarding modifications/deletes and how to allocate the privacy
budget among multiple publications (publications to the same
dataset need to share the same budget). Recall that the initial
publication uses a privacy budget of εinit. Hence, all future
publications have to use the remaining privacy budget, denoted
by εrem where εrem = εtotal − εinit, to create a differentially
private index over ∆DBji and publish to the cloud. As stated
earlier, it is possible to perform multiple ∆DBji publications.
If this is the case, the remaining budget should also be shared
among multiple ∆DBji publications. But the question is how?

1) When to Publish: The straightforward solution would
be to perform periodic publications, i.e., after some fixed time
or some fixed number of updates. The challenge with this
approach is deciding on the parameters. It is obvious there is a
trade-off between executing queries through the data provider
and the server. Therefore, we consider the cost in the decision
process for performing publications. The cost might depend
on many external factors, e.g., location of servers, bandwidth,
etc., but specifying these factors is beyond the scope of this
paper. We assume there is a constant cost ratio between storing
data at the data provider compared to the server, denoted by

α. The decision is based on the following heuristic approach:
α×Relative Size×

(
1 +

εrem
εtotal

)
≥ 2µ (1)

where Relative Size is the ratio of the perturbed data size
stored in the data provider compared to the server and µ
is a constant threshold parameter. εrem is always less than
or equal to εtotal, i.e., εrem/εtotal ≤ 1. Thus, the ratio on
the left hand side (1 + εrem/εtotal) ≤ 2. In the best case,
this ratio is 2, therefore, µ is multiplied by a constant factor
of 2 to match the ratio (1 + εrem/εtotal). The right hand
side is the minimum threshold that needs to be reached to
trigger publication. Whenever the current ratio at the data
provider (the left hand side of the inequality ) exceeds the
minimum threshold, the data provider constructs an index DP-
INDEXji for ∆DBji and publishes the index along with the
encrypted ∆DBji to the cloud. A higher µ results in less
frequent publications in bigger batches. In our analysis, we
found 2 to be reasonable for µ. In addition, higher α triggers
more frequent publications. When the system is out of budget,
no further publications can be performed, but the system can
continue serving modifications/deletes using the data provider.

2) Allocating the Privacy Budget: PINED-RQ allocates a
privacy budget for the publication in a novel way. Previous
works on differentially private updates were in the context of
data streams, which have different characteristics. A notable
exception is [20], which requires a system administrator to
decide on the total number of publications k upfront, where
each publication consists of updates in batches. The budget
is split equally among publications (i.e., each publication
receives ε/k). However, this deterministic approach does not
consider any external factors like dataset sizes. Thus, PINED-
RQ uses the perturbed database size as a basis for allocation
which considers the relative data storage at the data provider
and εrem. Equations 2 and 3 compute the allocated privacy
budget for ∆DBji together.

ε∆DBj
i

= εrem ×
Size(∆DBji )

Size(DBi +
∑j
l=1 ∆DBli)

(2)

As εrem decreases, the system requires a higher ratio
between the size of the storage at the data provider versus
that in the cloud to perform publication. However, increasing
this ratio results in storing more data in the data provider. Note
that it is possible for Equation 2 to allocate very small budgets.
Therefore, PINED-RQ allows a system administrator to set a
minimum budget threshold for the allocated privacy budget
denoted by εmin. If ε∆DBj

i
is less than εmin, the budget for

publication ε∆DBj
i

is set to εmin. To achieve higher utility,
PINED-RQ uses a simple motivation, namely, less budget for
bigger datasets, and more budget for smaller datasets.

ε∆DBj
i

= max(ε∆DBj
i
, εmin) (3)

As each publication has its own budget, the data provider
performs computations for each publication independently to
decide on the publication of ∆DBji and its budget ε∆DBj

i
.

3) Privacy Proof:
Theorem 5: PINED-RQ with the MOD/DEL function satis-

fies (εtotal, δ
k)-Probabilistic-SIM-CDP with modifications and

deletes, where k is the number of non-disjoint publications.



Proof: The modifications and deletes on the published
dataset are also new inserts into ∆DBji , which is initially
stored at the data provider. PINED-RQ applies a heuris-
tic budget allocation mechanism for each publication, i.e.,
εtotal ≥

∑k
j=1 ε∆DBj

i
for any i where k is the number of

publications on the set i. Hence from sequential composition
(Theorem 1), PINED-RQ satisfies (εtotal, δ

k)-Probabilistic-
SIM-CDP while processing modifications and deletes.

D. Executing Queries

In the steady state, the server might have multiple in-
dexes, e.g., DP-INDEXi, ∆DP-INDEXji , ∆DP-INDEXj+1

i ,
DP-INDEXi+1. Clients send queries to the data provider and
the data provider partially answers the query based on its local
information stored in ∆DB and ∆DBji . In addition, the data
provider redirects the query to the server. To retrieve the latest
state, the server might need to process a query over all indexes
as the data might be deleted or modified. Since each index is
independent, parallel execution is possible and existing parallel
query execution strategies can be directly applied.

V. PERFORMANCE EVALUATION

This section presents experimental results that demonstrate
the efficiency and practicality of PINED-RQ by examining the
effects of varying system configuration parameters. We imple-
mented PINED-RQ in Java. All experiments are conducted
on a machine running Windows 7 with i5-2320 3 GHz CPU
and 8 GB memory. The branching factor (bf ) is set to 16
and the total privacy budget εtotal to 1. The domain of Aq is
normalized to [0, 100]. The size of overflow arrays is selected
using the inverse of the CDF of the Laplace distribution for a
given ε with 99.99% confidence interval.

Datasets. The experiments were performed with both syn-
thetic and real datasets. To emulate real-world scenarios, the
synthetic datasets follow two distributions: uniform or Zipfian
with a skewness of 1, and contain 0.5 million records. For real
datasets, we chose Gowalla [3], a social networking website
where users share their locations by checking-in, and the US
Postal Employees [1], USPS, dataset. The Gowalla dataset
consists of 6, 442, 890 check-in records. For query attribute,
we use the 32-bit integer representation of check-in times. The
experiments are performed on different sized datasets starting
from 0.5 to 5 million records, created by choosing records uni-
formly from the complete Gowalla dataset. The USPS dataset
compromises 624, 414 employees. We use annual salary as
a query attribute and filtered out employee records with an
hourly payment rate. After filtering, the dataset consists of
394, 763 records. The USPS dataset is highly skewed, whereas
Gowalla is relatively uniform.

Query Set. In the experiments, we create various query
sets of ranges corresponding to 1%, 5%, 10%, 25%, 50%, and
75% of the entire domain. For each set of query ranges, we
sample 1000 queries uniformly over the domain. Unless stated,
all other experiments are conducted using a uniform workload.

Evaluation metrics. The main metrics used are recall
and precision. Note that PINED-RQ constructs a differentially

private index; therefore, it does not always return the complete
set of true records in a given range. It is also possible to
have false records in the returned set. Therefore, the aim of
PINED-RQ is to maintain privacy while achieving high recall
and keeping the precision as high as possible. In addition, we
measure the elapsed time for query execution.

A. Effect of Overflow Arrays

In this set of experiments, we analyze how the index
construction mechanism performs in the presence or absence
of overflow arrays. As discussed earlier, depending on the sam-
pled noise, the recall of a query might drastically decrease. Our
empirical findings validate this claim. These experiments are
run on different datasets. The synthetic uniform and skewed
datasets are denoted by S-Uniform and S-Zipfian, respectively.
We use a variant of the Gowalla dataset with 0.5 million
records, similar to the synthetic data sets and approximately
equal to the USPS dataset of size 394, 763 records.

Without Overflow Arrays. Figure 4 shows the recall and
precision results of PINED-RQ over different datasets by vary-
ing the query range size without deploying overflow arrays. In
this setting, negatively sampled noise might cause the removal
of a significant number of data records from the publication.
Although PINED-RQ delivers high recall and precision for
most of the cases, the performance with lower ranges sizes
might not be satisfactory for both real datasets. For example,
PINED-RQ delivers 85.15% recall and 92.26% precision for
the USPS dataset when the range size is 5%. This is not the
case for the synthetic datasets. During query execution, most
of the decisions are made at the leaf level where each node
covers 1 unit-length interval. The real datasets do not provide
a perfect distribution so some of the nodes might cover very
few records. If such nodes are perturbed with relatively high
positive or low negative noises, the returned results include
a number of false positive records or miss actual records.
Therefore, the leaf nodes are more error-prone due to the
added differentially private noise if a covered bin has a very
low count. This is observed in Gowalla and USPS datasets.
Some ranges have low counts and data removal causes query
execution to suffer from low recall (e.g., as low as 85% for 5%
range queries on the USPS dataset). This affects the overall
recall performance for the USPS and Gowalla datasets. The
removal of data records decreases recall for every dataset but
is less observable for the synthetic datasets. The reason is
that they follow almost a perfect distribution and leaf node
bins have high enough counts (even the skewed one) which
make the impact of removed records negligible. Although
one can argue that PINED-RQ delivers good performance
for the synthetic datasets even with no overflow array, real
world application/datasets usually do not follow perfect data
distribution.

With Overflow Arrays. When PINED-RQ deploys over-
flow arrays, it achieves almost 100% recall for all cases except
small ranges executed over Gowalla (see Figure 5). Recalls for
small ranges are relatively high (98.6 − 98.8%). PINED-RQ
misses some records since query execution stops traversing
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Fig. 4: PINED-RQ without overflow arrays
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Fig. 5: PINED-RQ with overflow arrays

the index when overlapped ranges have a negative count.
Some nodes have low counts as discussed before and the
added differentially private noise misleads the query execution
algorithm. Regardless of the dataset and the query range,
the deployment of overflow arrays improves recall. This is
also true for precision except in the case of USPS. While
achieving higher recall, the precision drops to 85.52% from
93.53 when query size is 10%. Even in the worst case,
achieving an 85.52% precision is decent. Note that both recall
and precision are important in evaluating system performance.
In this context, recall is more crucial and higher recall is
preferable at the cost of lower precision most of the time.
Note that the rest of the experiments use overflow arrays unless
otherwise stated.

B. Skewness & Workload

When the data distribution is skewed, the precision perfor-
mance of PINED-RQ is affected by the workload type (e.g.,
uniform, skewed). If a query range covers the skewed area,
PINED-RQ delivers high recall and precision. We analyzed
this case in more detail and Figure 6 presents our findings. We
use datasets Gowalla and USPS, and two different workloads:
uniform or own. The workload tag “own” means the query set
that is executed over the dataset follows the same distribution
as the dataset, and hence is skewed too. This is realistic,
as it would be expected that the more dense areas of the
dataset will be more often queried. The first part of the tag
in the legend describes the dataset itself and the second part
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describes the type of workload used in the experiments. The
executions of uniform randomly selected queries on Gowalla
and USPS were presented in Figure 5 and discussed in the
previous subsection. When the workload follows a dataset’s
distribution, the queries are generated randomly following this
distribution. Independent of the underlying dataset and range
size, PINED-RQ delivers high recall and precision when the
workload follows the dataset’s own distribution. In all cases,
both recall and precision are very close to 100%. This is not
the case with uniform-randomly generated workloads, where
performance depends on the queries. From our observations,
precision and recall are quite high when the query range
covers the skewed area and most of the queries in the skewed
workloads cover the skewed area.

C. Scalability

We use variants of the Gowalla dataset with a scaling factor
of 0.5 million to test scalability. Figure 7 shows the results with
increasing size. Each curve in the graph represents a different
query size. Although there are small fluctuations in terms of
recall and precision from 500 thousand to 1.5 million records
for small queries, 1% and 5%, after 1.5 million, the recall
value does not fluctuate and achieves almost 100% for all
cases, which is quite significant. Larger dataset size means
higher counts in the nodes. The magnitude of noise sampled
from the Laplace mechanism is independent of the dataset
size. Therefore, as the dataset size increases, the impact of
the perturbation noise becomes negligible. This is a significant
design advantage of PINED-RQ. The precision results are also
less sensitive to changes in dataset size. In all cases, PINED-
RQ achieves 99− 100% precision, which is quite good from
a system performance point of view.

D. Effect of Epsilon

The effect of a privacy budget in differentially private
publications has been studied by many prior works and it is
known that smaller privacy budgets provide less utility, since
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less budget causes higher noise sampling from the Laplace
distribution. This hypothesis is also valid in our system and
more observable in precision. Thanks to its design, PINED-
RQ is capable of delivering high recall even if the privacy
budget is small. Moreover, PINED-RQ is expected to have
higher precision with larger privacy budgets. The results of
our experiments verifying this claim are presented in Figure 8.
In the earlier experimental sections, the privacy budget was
set to 1. When the budget is dropped to a 0.5 or 0.1, the
smaller ranges suffer in terms of precision (down to 80% for
range queries of size 5% in the worst case for ε = 0.1). The
recall rate slightly increases as the range size increases, since
the added noise is quite small compared to the counts at the
upper levels of the index. In the same case, the precision also
increases. On the other hand, if the privacy budget is doubled,
there is a slight improvement in recall with no significant
improvement in terms of precision.

E. Index Scan Timing

PINED-RQ maintains its index in the clear and this ensures
fast query processing times. Figure 9 shows the average index
scan times per query over different range sizes. We use our
default dataset Gowalla dataset with 500,000 records in these
experiments. The scan times are in the order of milliseconds.
As the range size increases, the index scan time also increases
since query processing has to consider more index nodes at
the lower levels of the index. Compared to the related work
discussed in Section VI, which perform heavy cryptographic
computations during query execution, PINED-RQ is quite fast.
Even for the largest sized range 75%, PINED-RQ scans the
index in 29.78 ms. The execution of similarly sized range
queries over similar datasets takes slightly less than 103

seconds in [5] when the most secure Logarithmic-SRC index
model is deployed. [5] guarantees 100% recall - note that
precision can also be quite low, e.g., 50% for small to medium
sized ranges. In contrast, PINED-RQ achieves approximately
100% recall in almost all cases and in the worst case 85%
precision. However, PINED-RQ does not guarantee 100%
recall. This is a reasonable performance trade-off given the
orders of magnitude improvement in execution times.

F. Updates

This section evaluates the performance of PINED-RQ’s
update management system. To simulate updates, we use
an update-only uniform workload generator where 80% of
the updates are new inserts, whereas the remaining 20% are
modifications to earlier records. Due to the lack of space, we
do not discuss the behavior of PINED-RQ for different update

parameters. Here, we consider a specific scenario which fits
well with the targeted application and evaluate PINED-RQ
in terms of precision and recall. The results are presented
in Figure 10. In this setting, we set εtotal to 1, the initial
publication privacy budget εinit to 0.7, the minimum publica-
tion budget εmin to 0.3, the cost for storing data at the data
provider α to 5, and the update frequency parameter µ to 2.
The initial publication uses a synthetic uniform dataset of size
500k records. The system is tested after each publication to the
server. To focus on the performance of indexes, the reported
recall and precision rates do not consider the answers returned
from the data provider (the results returned from the data
provider have 100% recall and precision, which will obviously
increase the recall and precision of query answers). The x-
axis of the graphs in Figure 10 represents the publication
id, i.e., the initial publication is denoted by P0 and the next
publication is denoted by P1. There are 10 publications where
nine of them are publications of inserts while P7 is a special
publication consisting solely of modifications to P0, with a
size of 307, 693 records, on the initially published dataset.

The initial publication uses a budget of 0.7. This is also
true for other publications except for P7, which uses a budget
of 0.3. Thanks to the parallel composition of differential
privacy, PINED-RQ maintains its privacy while publishing
new datasets with similar accuracy. Therefore, there is no
significant effect on the performance of PINED-RQ while
new datasets are published. The later publications only have a
positive outcome since recall for the smallest range 1% starts
from 99% with the initial publication and slightly increases
with further updates. On the other hand, the precision for
the same range is constant over the publications and is not
affected by further publications. For all other ranges, PINED-
RQ delivers decent performance with almost 100% recall and
precision. Note that for each query, PINED-RQ scans all
indexes in parallel, therefore, there is very small overhead in
the index scan time compared to a single index case.

To compare our heuristic budget allocation mechanism, we
ran experiments using the equal budget allocation [20]. Since
there is no specific publication triggering mechanism in [20],
we use PINED-RQ’s publication triggering mechanism for
both systems. Considering the initial publication, there are
7 publications where εtotal is distributed. This experimental
setup only considers modifications/deletes which relies on
sequential composition. εinit is set to 0.1. In this setup,
PINED-RQ’s heuristic approach and the equal budget alloca-
tion provide approximately similar recall around 99.99%. The
precision results are also very close to each other although
our heuristic approach provides 0.1% more precision. This is
simply the result of negligible noise sampling compared to the
number of records on the leaves. When we ran similar experi-
ments with a smaller dataset, e.g., 10k records, the difference
between the two approaches is more obvious. PINED-RQ’s
budget allocation strategy provides 3−4% more recall and 1%
more precision, since the heuristic budget allocation strategy
favors allocating more budget to the smaller dataset while the
uniform budget allocation does not consider dataset size.
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Fig. 10: PINED-RQ update performance

VI. RELATED WORK

There have been many research efforts to improve the
quality of privacy preserving histograms for aggregate queries,
e.g., [18]. In our work, we take advantage of these results
to improve the quality of the histograms used in the nodes
of PINED-RQ. Bucketization has been used for answering
range queries over outsourced data [12]. These approaches
are complementary to ours as they can be used for optimal
distribution of the encrypted data in the outsourced database.
Order preserving encryption (OPE) and its variations [2] have
been also used for range query processing. Unlike PINED-RQ,
they reveal the underlying data distribution and are vulnerable
to statistical attacks. Eu-Jin Goh [9] proposed a secure index
that allows a user with a trapdoor for a data x to test if the
database contains x or not. The index reveals no information
about the data for which the user does not have the trapdoor.
The objective of PINED-RQ index is different from that of [9]
as it targets range queries instead of exact match queries. The
recent works by Li et al. [14] and Demertzis et al. [5] rely on
Searchable Symmetric Encryption (SSE) To take advantage
of SSE, Demertzis et al. propose three types of indexing
approaches the most secure approach of which has high space
requirements, i.e., O(n∗m2) where n is the database size and
m the domain size. Even if the space requirement is improved,
the proposed index scheme suffers from a high number of
false positives along with execution times in the hundreds of
seconds, unlike PINED-RQ which has execution times in the
hundreds of milliseconds. The objective in [14], [5] is to
provide index indistinguishability for the structure and node
values in the index. PINED-RQ differs from this work in its
objectives, as we aim at providing index differential privacy.

VII. CONCLUSION

PINED-RQ is a highly efficient and differentially private
one-dimensional range query execution framework that con-
structs a novel differentially private index over an outsourced
database. Unlike other differentially private systems, PINED-
RQ is extended to support update operations. To the best
of our knowledge, PINED-RQ is the first work that builds,
uses and maintains a differentially private index for per-
forming selection range queries. We have demonstrated the
security of PINED-RQ and shown empirically its practicality
and efficiency through extensive experiments performed on
synthetic and real datasets. Future work includes generalizing
the PINED-RQ approach to other index structures, especially
those designed for higher dimension data.
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