N

N

Spark-parSketch: A Massively Distributed Indexing of
Time Series Datasets
Oleksandra Levchenko, Djamel-Edine Edine Yagoubi, Reza Akbarinia, Florent
Masseglia, Boyan Kolev, Dennis Shasha

» To cite this version:

Oleksandra Levchenko, Djamel-Edine Edine Yagoubi, Reza Akbarinia, Florent Masseglia, Boyan
Kolev, et al.. Spark-parSketch: A Massively Distributed Indexing of Time Series Datasets. CIKM
2018 - 27th ACM International Conference on Information and Knowledge Management, Oct 2018,
Turin, Ttaly. pp.1951-1954, 10.1145/3269206.3269226 . lirmm-01886760

HAL Id: lirmm-01886760
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01886760
Submitted on 3 Oct 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-01886760
https://hal.archives-ouvertes.fr

Spark-parSketch: A Massively Distributed Indexing of Time
Series Datasets

Oleksandra Levchenko, Djamel-Edine Yagoubi,

Reza Akbarinia, Florent Masseglia, Boyan Kolev
Inria & LIRMM, Montpellier, France
first.last@inria.fr

ABSTRACT

A growing number of domains (finance, seismology, internet-of-
things, etc.) collect massive time series. When the number of se-
ries grow to the hundreds of millions or even billions, similarity
queries become intractable on a single machine. Further, naive
(quadratic) parallelization won’t work well. So, we need both ef-
ficient indexing and parallelization. We propose a demonstration
of Spark-parSketch, a complete solution based on sketches / ran-
dom projections to efficiently perform both the parallel indexing of
large sets of time series and a similarity search on them. Because
our method is approximate, we explore the tradeoff between time
and precision. A video showing the dynamics of the demonstra-
tion can be found by the link http://parsketch.gforge.inria.fr/video/
parSketchdemo_720p.mov.
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1 INTRODUCTION

Time series arise in many application domains such as finance,
agronomy, health, earth monitoring, weather forecasting, to name
a few. Because of advances in sensor technology, such applications
may produce millions to trillions of time series,requiring fast ana-
lytical and summarizing techniques.

Usually, indexing is at the core of major time series management
solutions, as well as analytical tasks (e.g., classification, clustering,
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pattern discovery, visual analytics, and others) because indexes
enable fast execution of similarity queries, which constitute the
core operation of the domain. That core operation is what we want
to solve very fast, viz. given a time series, find similar time series
(e.g., all those having a correlation above a threshold).

Unfortunately, creating an index over billions of time series by
using traditional centralized approaches is highly time consuming.
For example, our experiments [16] show that iSAX2+ [2], a state of
the art index, may take at least one day with one billion time series,
or more, in a centralized environment.

In centralized systems, one of the most efficient ways to index
time series for the purpose of similarity search is to combine a
sketch approach [4] with grid structures. Random projection is
based on the idea of taking the inner product of each time series,
considered as a vector, with a set of random vectors whose entries
are +1 or -1 [4]. The resulting sequence of inner products is called
a sketch vector (or sketch for short). The goal is to filter pairs of time
series by comparing their much shorter sketches, discarding those
whose sketch distance is too far.

To avoid comparing the sketch of each time series of the database
with that of the searched time series, [4] uses grid structures on pairs
of sketch entries (e.g., the first and second entry in one grid, the third
and fourth in the second grid, and so on) to reduce the complexity
of search. Given the sketches s and s’ of two time series ¢t and t’,
the more grids in which s and s’ coincide, the greater the likelihood
that t and ¢’ are similar. In time series data mining, sketch-based
approaches have also been used to identify representative trends
[5, 10], maintain histograms [15], and to compute approximate
wavelet coefficients [7], etc.

An appealing opportunity for improving the index construc-
tion time is to take advantage of the computing power of dis-
tributed systems and parallel frameworks such as MapReduce [6] or
Spark [18]. All aspects of the sketch-based approach are paralleliz-
able: the computation of sketches, the creation of multiple grid
structures, and the computation of pairwise similarity. However, a
naive parallel implementation of existing techniques would under-
exploit the available computing power.

2 PARALLEL CORRELATION METHODS

Spark-parSketch [17] presents a parallel solution to construct a
sketch-based index over large sets of time series. Spark-parSketch
parallelizes every step of algorithm, thus exploiting each available
core.

This section reviews the sketch / random projection-based method
to index time series, with an additional attention to parallelism of
index construction both to increase speed and improve quality.
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Our method is based on the use of random vectors. The basic idea
is to multiply each time series (or in a sliding window context, each
window of a time series) with a set of random vectors. The result
of that operation is a "sketch" for each time series consisting of the
distance (or similarity) of the time series to each random vector.
Then two time series can be compared by comparing sketches.

The sketch approach we advocate is a kind of Locality Sensitive
Hashing [8], by which similar items are hashed to the same buckets
with high probability. In particular, the sketch approach is similar
in spirit to SimHash [3], in which the vectors of data items are
hashed based on their angles with random vectors.

Our goal (and contribution) is to construct a parallel index by
exploiting the sketch approach in a distributed environment for
both:

e better performance (fast index building, compared to ap-
proaches from the state of the art, like iSAX2+)
o high quality (precision and recall) for similarity search.

The sketch approach [1, 9, 12] provides a very nice guarantee:
with high probability a random mapping taking b points in R™ to
points in (Rd)ZbJr1 (the (2b+1)-fold cross-product of R? with itself)
approximately preserves distances (with higher fidelity the larger
b is).

In our version of this idea, given a point (a time series or a windo
of a time series) t € R™, we compute its dot product with N ran-
dom vectors r; € {1,—1}™. This results in N inner products called
the sketch (or random projection) of ¢;. Specifically, sketch(t;) =
(tj @ rq,tj @ rp, ..., tj ® r\y). We compute sketches for ¢4, ..., tj, using
the same random vectors ry, ..., rn. By the Johnson-Lindenstrauss
lemma [11], the distance [|sketch(t;) — sketch(t;)|| is a good app-
proximation of [|t; — tj||. Specifically, if ||sketch(t;) — sketch(t;)|
< ||sketch(ty) — sketch(tm)ll, then it’s very likely that ||t; — tj[| <
Ity — tmll.

In our approach, we use a set of grid structures to hold the time
series sketches. Each grid maintains the sketch values correspond-
ing to a specific set of random vectors over all time series. Let |g|
be the number of random vectors assigned to each grid, and N the
total number of random vectors, then the total number of grids is
b = N/|g|. The distance of time series in different grids may be
different. We consider two time series similar if they are similar in
a given (large) fraction of grids.

Example 1. Let’s consider two time series t1=(2, 2, 5, 2, 6, 5) and
t2=(2, 1, 6, 5, 5, 6). Suppose that we have generated four random
vectors as follows : r1=(1,-1, 1,-1, 1, 1), ro=(1, 1, 1, -1, -1, 1), r3=(-1, 1,
1,1,-1, 1) and r4=(1, 1, 1, -1, 1, 1). Then the sketches of ¢; and #2, i.e.
the inner products computed as described above, are respectively
s1=(14, 6, 6, 18) and s2=(13, 5, 11, 15). In this example, we create
two grids, Grid; and Gridy, as depicted in figure 1. Grid; is built
according to the sketches calculated with respect to vectors r; and
ry (where t1 has sketch values 14 and 6 and t; has sketch values 13
and 5). In other words, Grid; captures the values of the sketches
of t; and t2 on the first two dimensions (vectors). Gridz is built
according to vectors r3 and r4 (where t; has sketch values 6 and
18 and t; has sketch values 11 and 15). Thus, Gridy captures the
values of the sketches on the last two dimensions. We observe that
t1 and t are close to one another in Grid;. On the other hand, t;
and f; are far apart in Gridy.

x, 52 .
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Figure 1: Two series (s; and s2) may be similar in some di-
mensions (here, illustrated by Grid;) and dissimilar in other
dimensions (Gridz). The higher their similarity, the larger
the fraction of grids in which the series are close.

2.1 Partitioning Sketch Vectors

In the following, we use correlation and distance more or less
interchangeably because one can be computed from the other once
the data is normalized.

Multi-dimensional search structures don’t work well for more
than four dimensions in practice [14]. For this reason, as indicated
in Example 1, we adopt a first algorithmic framework that partitions
each sketch vector into subvectors and builds grid structures for
the subvectors as follows:

e Partition each sketch vector s of size N into groups of some
size |g|.

o The ith group of each sketch vector s is placed in the ith grid
structure (of dimension |g]).

e If two sketch vectors s; and sy are within distance ¢ X d
in more than a given fraction f of the groups, then the
corresponding time series are candidate highly correlated
time series and should be checked exactly.

For example, if each sketch vector is of length N = 40, we might
partition each one into ten groups of size |g| = 4. This would yield
10 grid structures. Suppose that the fraction f is 90%, then a time
series t1 is considered as similar to a searched time series ty, if they
are similar in at least nine grids.

3 INDEXING AND QUERYING TIME SERIES
WITH Spark-parSketch

Spark-parSketch! takes full advantage of parallel data processing,
both while constructing indexes and querying them for similarity
search.

3.1 Index construction

Time-series index construction on the input dataset D within dis-
tributed data processing frameworks proceeds as follows (Figure
2):

1) At the sketch computation stage the dot product of time series
t, where t € D, with the random transformation matrix R, where
each element r; ; € R is a random variable in {1, -1}, results in a
vector of much lower dimension: s; = t; e R.

!Spark-parSketch is implemented and available at https://github.com/lev-a/
spark-parsketch/
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Figure 2: Parallel index construction

At each node, sketch vectors Sp over the input set of time series
D are built locally and then partitioned into equal subvectors of
given size. Each subvector corresponds to a grid. Thus, each sketch
is assigned to a grid cell in each of the grids.

2) At the next stage grouping by grid cell is performed, which
requires data shuffling between computation nodes. As a result,
each grid cell is mapped to the list of time series identifiers assigned
to that cell.

3) We use a set of relational database instances to store the
resulting grids Gp, previously created and distributed at the nodes.

3.2 Query processing

Given a collection of queries Q, in the form of distributed time
series dataset, and a previously constructed index on a dataset D,
we consider the problem of finding time series that are similar to Q
in D. We perform such a search in the following steps (Figure 3):

1) The sketches of the time series queries Q are computed in
parallel Sp, using the same random matrix R, as for grid construc-
tion. The resulting sketches are then partitioned into sub-vectors
in parallel. Then the sub-vectors are sent to their appropriate grids
and placed in grid cells.

2) Then, the contents of the corresponding grid cells in the index,
previously stored as a collection of grids Gp, are retrieved from all
the database instances in parallel on each node. Thus, if a sub-vector
of a query time series g lands in the same grid cell as a database
time series d, then d is a possible match for q.

Two time series (a query and an indexed one) are considered
to be similar if they are assigned to the same grid cell in a large
user-tunable fraction of grids.

3) This requires global communication.

4) Because sketching is approximate, each candidate match be-
tween a query q and data vector d is checked by performing corre-
lations.

3.3 Architecture of Spark-parSketch

Figure 4 illustrates the basic architecture of Spark-parSketch. The
project is written in Scala on top of Apache Spark [18], a parallel
framework that aims at efficiently processing large datasets. The
main components of Spark-parSketch, i.e., Index Construction (IC)
and Query Processing (QP), are developed within Spark. Spark is
deployed on top of Hadoop Distributed File System (HDFS) [13] in
order to efficiently read input time series, query time series, as well
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Figure 3: Parallel query processing

as to store preliminary data and final results, and thus to overcome
the bottleneck of centralized data storing.

Spark-parSketch stores grids (the resulting indexes) to a dis-
tributed relational storage, setup as a number of PostgreSQL in-
stances. Each Spark worker connects to each of the databases
through JDBC and persists the contents of each grid cell as soon as
they are identified. This pipelined procedure avoids the in-memory
storage of large intermediate datasets, hence reduces the memory
consumption during grid construction, thus avoiding memory over-
flow at Spark workers. Moreover, the embedded feature of RDBMS
for indexation provides for more efficient query processing.

Spark
IC QP e QP Ic I QP
JDBC drv JDBC drv JDBC drv
RDB Store HDFS
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Figure 4: Spark-parSketch distributed architecture

4 DEMONSTRATION

This demonstration illustrates the quality/performance tradeoff of
Spark-parSketch. We present below the mutable and fixed initial
parameters, details concerning datasets and demonstration scenar-
ios.

4.1 Parameters and datasets

In this demonstration, some parameters are fixed to default val-
ues, while others can be configured by the demo user. The fixed
parameters are related to the sketch-based algorithm itself, e.g.,
dimension of grids, size of sketch, etc., while the configurable pa-
rameters include the size of grid cells that some query time series ¢
and database time series d must be both assigned to, for g and d to
be considered close enough.

Spark-parSketch was evaluated over a real dataset and a syn-
thetic one. The first one is a Seismic dataset which contains 40
million time series. For the purpose of experimentation, we gener-
ated synthetic input datasets, whose sizes/volumes vary between
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Figure 5: Users can vary the size of input dataset, size of
batch of queries and grid cell size. The demo will report back
the times of direct computation of correlations vs. sketch fil-
tering followed by computation of correlation. It also eval-
uates the quality of the sketch-based correlation as defined
to be correlation of the 10th time series found by sketches
divided by the 10th time series found by direct computation
of correlation.

50M to 300M time series. Each object of the synthetic dataset is
identified with an identifier ID and consists of 256 points. At each
time point, a random walk generator cumulatively adds to the value
of the previous time point a random number drawn from a Gauss-
ian distribution N(0,1). Thus the total size of the biggest synthetic
dataset is around 300 GB.

4.2 Scenarios

This part of the demo will center around Spark-parSketch perfor-
mance, in terms of response time and quality. The user can observe
the tool performance on a range of input datasets. Experiments
were conducted on a cluster? of 16 compute nodes with two 8 cores
Intel Xeon E5-2630 v3 CPUs, 128 GB RAM, 2x558GB capacity stor-
age per node. The cluster is running under Hadoop version 2.7,
Spark v. 2.1 and PostgreSQL v. 9.4 as a relational database system.

http://www.grid5000.fr

We compare the performance of Spark-parSketch with paral-
lelized Linear Search algorithm [17], a parallel direct computation
of correlation. Attendees will be able to vary configurable parame-
ters and then view the result in terms of performance and quality.

The demonstration GUI is divided into a sequence of screens.
First, the introductory screens explain the sketch-based method.
Next, the GUI enables the user to use drop-downs to modify a set of
parameters: size of input sets of time-series, size of batches of query
time series, grid cell size (affects only the output of Spark-parSketch)
and then to observe the difference in performance (Figure 5). A bar
chart compares time performance of the two approaches. Two line
charts depict the time series found both using direct correlation
and using sketches.

The demonstration GUI is available here: http://parsketch.gforge.
inria.fr/.

The demonstration video is available here: http://parsketch.gforge.
inria.fr/video/parSketchdemo_720p.mov.
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