D. Achlioptas, Database-friendly Random Projections: JohnsonLindenstrauss with Binary Coins, J. Comput. Syst. Sci, 2003.
DOI : 10.1016/s0022-0000(03)00025-4

URL : https://doi.org/10.1016/s0022-0000(03)00025-4

A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. J. Keogh, Beyond one billion time series: indexing and mining very large time series collections with i SAX2+, Knowl. Inf. Syst, vol.39, pp.123-151, 2014.
DOI : 10.1007/s10115-012-0606-6

M. S. Charikar, Similarity Estimation Techniques from Rounding Algorithms, Proceedings of the Thiry-fourth Annual ACM STOC, 2002.
DOI : 10.1145/509961.509965

URL : http://www.cs.princeton.edu/courses/archive/spring04/cos598B/bib/CharikarEstim.pdf

R. Cole, D. Shasha, and X. Zhao, Fast Window Correlations over Uncooperative Time Series, Proc. of the Elev. ACM SIGKDD, 2005.
DOI : 10.1145/1081870.1081966

G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan, Fast Mining of Massive Tabular Data via Approximate Distance Computations, Proc.of the 18th ICDE, 2002.

J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, Commun. ACM, vol.51, pp.107-113, 2008.

A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, Surfing Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries, Proc. of the 27th VLDB, 2001.

A. Gionis, P. Indyk, and R. Motwani, Similarity Search in High Dimensions via Hashing, Proc. of 25th VLDB, 1999.

P. Indyk, Stable Distributions, Pseudorandom Generators, Embeddings and Data Stream Computation, 41st An. Symp. on FOCS, 2000.
DOI : 10.1109/sfcs.2000.892082

P. Indyk, N. Koudas, and S. Muthukrishnan, Identifying Representative Trends in Massive Time Series Data Sets Using Sketches, Proc. of the 26th VLDB, 2000.

W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mapping into Hilbert space, Conf. in MAP, 1984.

E. Kushilevitz, R. Ostrovsky, and Y. Rabani, Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces, Proc. of the 30th Annual ACMSTOC, 1998.

J. Shafer, S. Rixner, and A. L. Cox, The Hadoop distributed filesystem: Balancing portability and performance, IEEE ISPASS, 2010.

D. Shasha and Y. Zhu, High Performance Discovery in Time series, Techniques and Case Studies, 2004.

N. Thaper and S. Guha, Dynamic Multidimensional Histograms, Proc. of the SIGMOD, 2002.

R. Djamel-edine-yagoubi and . Akbarinia, Florent Masseglia, and Themis Palpanas. 2017. DPiSAX: Massively Distributed Partitioned iSAX. In Int. Conf. on Data Mining (ICDM)

R. Djamel-edine-yagoubi, F. Akbarinia, D. E. Masseglia, and . Shasha, RadiusSketch: Massively Distributed Indexing of Time Series, IEEE Int. Conf. on Data Science and Advanced Analytics (DSAA), 2017.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark: Cluster Computing with Working Sets, Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, 2010.