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Abstract Consider the problem of finding the highly correlated pairs of time series
over a time window and then sliding that window to find the highly correlated pairs
over successive co-temporous windows such that each successive window starts only
a little time after the previous window. Doing this efficiently and in parallel could
help in applications such as sensor fusion, financial trading, or communications net-
work monitoring, to name a few. We have developed a parallel incremental random
vector/sketching approach to this problem (as explained in section 4) and compared
it with the state-of-the-art nearest neighbor method iSAX [7]. Whereas iSAX achieves
100% recall and precision for Euclidean distance, the sketching approach is, empirically,
at least 10 times faster and achieves 95% recall and 100% precision on real and simu-
lated data. For many applications this speedup is worth the minor reduction in recall.
Our method scales up to 100 million time series and scales linearly in its expensive
steps (but quadratic in the less expensive ones).

1 Introduction

An easy-to-understand motivating use case for finding sliding windows correlation
comes from finance. In that application, the time series consist of prices of trades
of different stocks (Figure 1). The problem is to find pairs of stocks whose return pro-
files look similar over the most recent time period (typically, a few seconds). A pair of
time series (e.g. Google and Apple prices) whose returns were similar before and have
since diverged, where say Google went up more than Apple, might present a trading
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Fig. 1: A pair of normalized time se-
ries representing stock prices. The two
series are highly correlated over the be-
ginning of the period, after which a di-
vergence can be observed.
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Fig. 2: Correlated signals from three
different seismic sensors may suggest
that they are all related to the same
seismic event.

opportunity: sell the one that has gone up relative to the other and buy the other one.
The return at t is the fractional change, (price(t)− price(t− 1))/price(t− 1).1

While prices are stable over time (e.g. a stock whose price is 100 will tend to stay
around 100), the returns resemble white noise. We call such time series “uncoopera-
tive”, because standard dimensionality-reduction techniques such as Fourier or Wavelet
Transforms either sacrifice too much accuracy or reduce the dimensionality too little
[11]. Random sketch-based methods and some other explicit encoding methods work
well for both cooperative and uncooperative time series. Moreover, the sketch-based
methods work nearly as well as Fourier/Wavelet methods for cooperative time series.
So, for the sake of generality, this paper uses the sketch method of Cole et al. [11], and
compares the result with the state-of-the-art explicit encoding method iSAX [7].

The need for speed comes from the increasing number of data sensors available
and the advantage of reacting quickly. An irony of improving technology is that sensor
speeds and numbers increase substantially faster than computational speed. For this
reason, linear or near linear-time algorithms become increasingly vital to give timely
responses in the face of the flood of data. In some applications, speed may be of greater
importance than completeness because the speed of response is of primary importance,
so a minor loss in recall is often acceptable as long as precision is high. In trading,
for example, there is only a fictitious monetary loss in missing an opportunity, but the
opportunities a system reports should be real and must be timely to be actionable.
For another example, consider a set of sensors spaced over several possible earthquake
zones. Temporal correlations of pairs of sensors over a time window may suggest that
these pairs are responding to the same seismic cause (Figure 2). Missing some correla-
tions is acceptable, because a major event will reveal many correlations so a recall of
90% or more is sufficient.

In this paper, we propose ParCorr, an efficient parallel solution for detecting similar
time series across sliding windows. ParCorr uses the sketch principle for representing
the time series. Our ParCorr solution includes the following contributions:

1 This is slightly simplified. Often, analysts consider the volume-weighted average price per
time unit. So if there are 1000 shares traded at 100 and 1 million shares traded at 110 in a
millisecond, then the volume-weighted average price during that millisecond is very close to
110. We compute the returns based on these volume-weighted prices.
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– A simple parallel approach for the incremental computation of the sketches in
sliding windows that also incorporates window normalization. This approach avoids
the need for renormalizing the input and recomputing the sketches from scratch,
after modifications in the content of the sliding window.

– A partitioning approach that projects sketch vectors of time series into subvectors
and builds a distributed grid structure for the subvectors in parallel. Each subvector
projection can be processed in parallel.

– An efficient algorithm for the parallel detection of correlated time series candidates
from the distributed grids. In our algorithm, we minimize both the size and the
number of messages needed for candidate detection.

Experiments on ParCorr in a distributed environment using real and synthetics datasets
show both the high efficiency and almost linear scalability of the proposed solution
compared to the state of the art.

The rest of the paper is organized as follows. In Section 2, we formally define
the sliding window correlation problem, and in Section 3, we discuss related work. In
Section 4, we propose our parallel solution for detecting correlated time series across
sliding windows. Section 5 reports the results of our experimental evaluation, and
Section 6 concludes.

2 Problem Definition

A time series ts is a sequence of values ts = {v1, ..., vm}. We assume that every time
series has a value at every time point p = 1, 2, ...,mA streaming time series is a po-
tentially unending series of values in time order. A data stream, for our purposes, is
a set of streaming time series. Our method normalizes incrementally each time series
window to have zero mean and unit standard deviation. Correlation over windows from
the same or different series has many variants. This paper focuses on the synchronous
variant (in which we are concerned with co-temporous windows), defined as follows:

Given a data stream of Ns streaming time series, a start time ps, and a window
size w, find, for each time window W of size w, all pairs of streaming time series ts1
and ts2 such that ts1 during time window W is highly correlated (over 0.7 typically)
with ts2 during the same time window.

Euclidean distance is the target metric of the state-of-the-art iSAX algorithm. In
addition, the Euclidean distance is related to Pearson correlation as follows:

D2(x̂, ŷ) = 2×m× (1− corr(x, y)) (1)

Here x̂ and ŷ are obtained from the raw time series by computing x̂ = x−avg(x)
σx

,

where σx =
√∑m

i=1(xi − avg(x))2. m is the length of the time series. So, we offer
parallel algorithms for both sliding window Euclidean and correlation metrics in this
paper.

3 Related Work Regarding Time Series Similarity

In this paper, we address the problem of all-pair parallel correlation detection across
sliding windows of time series. The problem has been studied across data streams using
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centralized approaches [24,23,32,29,28,27,11,26]. Most of them focus on reducing the
computation time of the pairwise distance computation. For example in [24], Mueen et
al. propose efficient algorithms based on the Discrete Fourier Transformation (DFT),
to reduce the end-to-end response time of an all-pair correlation query. As Cole et al.
discuss in [11], this works well when the time series are cooperative (i.e., where the
low frequency Fourier coefficients dominate).

The problem of indexing and querying time series using centralized solutions has
been widely studied in the literature, e.g. [4,5,12,31,7]. For instance, in [4], Assent et al.
propose the TS-tree, an index structure for efficient retrieval and similarity search over
time series. In [31], Shieh et al. propose the multiresolution symbolic representation
called indexable Symbolic Aggregate approXimation (iSAX) [7] which is based on the
SAX representation. The advantage of iSAX over SAX is that it allows the comparison
of words with different cardinalities, and even different cardinalities within a single
word. iSAX can be used to create efficient indices over very large databases.

In our work, we use an approach based on incremental random sketches [11]. In the
literature, several techniques have been used to perform dimensionality reduction on
the size of time series. Examples of such techniques that can significantly reduce the
time and space required for the index are: singular value decomposition (SVD) [12], the
discrete Fourier transformation (DFT) [3], the discrete wavelets transformation (DWT)
[9], the piecewise aggregate approximation (PAA) [21], and the adaptive piecewise
constant approximation (APCA) [8]. We compare with iSAX [7] because it does not
require time series to be cooperative (though it is more efficient when the time series
is slowly changing).

Recently, the matrix profile structure [34,37,33,36] has been proposed for all-pair
similarity detection in very long time series. Given a subsequence of size m, and two
time series A and B, the problem is to find for each subsequence of size m in A
the most similar (correlated) subsequence in the time series B. The authors proposed
efficient algorithms for addressing this problem in a single processor and also on GPU-
equiped machines. However, our problem differs because we are interested in similarity
detection over windows of millions of time series, not on subsequences of two very long
time series. Quantitatively, the matrix profile SCRIMP algorithm2 takes 10 seconds
for the motifs on a time series of size one million to converge (which it does after only
0.1% of its full execution time). Thus, we may find approximate nearest neighbors
across all subsequences (almost one million), where each subsequence is of size 500.
If we were to apply the matrix profile approach for the frame of one window in our
setting (one million series, each of size 500), that would require concatenating all series
into a single very long one (of size 500 million) and making million similarity searches
against it. To do that, the MASS algorithm [25] cleverly makes use of convolutions to
do one similarity search in O(n × log n) time, or around 80 seconds for our volume
of data on quite powerful hardware. But even if we assume perfect parallelization and
convergence at 0.1% of the full execution time, that would take hours to complete. So,
while the matrix profile techniques are intriguing, they solve a different problem and
applying those to our problem would result in a slower algorithm.

An interesting method for clustering and segmenting multivariate time series data
was recently presented by Hallac et al. in [17]. The method analyses a set of streaming
variables - typically tens of observations on different features of the same object. Sliding
windows of some size w are then assigned to clusters. Each cluster is characterized by a

2 http://www.cs.ucr.edu/~eamonn/MatrixProfile.html
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correlation network that encodes the interdependencies between different observations.
The goal is to achieve a segmentation that is longer than w to find repeated long-range
patterns in the data that represent particular behaviors of the object. This method
efficiently exploits correlations across several time series observations; however, the
problem it addresses is quite different from our objective, where we want to discover
high correlations across millions of parallel time series.

In [16], Guo et al. propose an approach that uses a
δ–Hypercube structure for correlation discovery over streaming time series. Let w be
the size of the sliding window, the proposed approach creates w-dimensional orthogo-
nal regular hypercubes, where each hypercube keeps a pointer to each of its neighbors.
When constructed, the hypercubes allow the fast discovery of similar time series, since
when two time series are similar, their hypercubes will be close. The authors propose
a naive algorithm in which the number of neighboring hypercubes is exponential in
the size, w, of the sliding window (i.e., increases faster than 2w). That clearly does
not scale. However they then propose a series of clever grouping and centroid-style ap-
proaches to prune the search, resulting in an algorithm called AEGIS. The complexity
analysis they present is understandably qualitative (section 5.1 of their paper), because
the performance depends on how well the data grouping works. When they compare
AEGIS with the naive method they get a factor of 30 improvement over the naive
method in communication cost and about 1.5 in time. They run their experiments on
up to 36,000 time series on which AEGIS takes 3 to 10 seconds. Our algorithm on simi-
lar clustering hardware scales out to 100 million time series taking under 2000 seconds,
thus yielding a lower cost per time series. So, we do not compare experimentally with
AEGIS, though we think some of the grouping ideas of AEGIS could be an avenue for
future work.

Sometimes one wants to find clusters of unusual events in time series, e.g. bursts of
activity or bursts of unusually high values. In such settings, tiling algorithms [15,18,13]
apply. Our problem is complementary because we are finding correlations between time
series or portions of time series, but are agnostic to the level of interest of individual
time points. However, our method could be used to post-process temporal regions that
tiling indicates are of interest.

To the best of our knowledge, in the literature there is no solution for parallel corre-
lation detection over sliding windows of streams containing many millions of continuous
time series.

4 Algorithmic Approach

Following the method of Cole et al. [11], our basic approach to find similar pairs of
sliding windows in time series (whether Euclidean distance or Pearson correlation, for
starters) is to compute the dot product of each normalized time series over a window
size w with a set of random vectors. That is, for each time series ti and window size w
and time period k..(k + w − 1), we compute the dot product of ti[k..k + w − 1] with
r random (+1| − 1) vectors of size w. The r dot products thus computed constitute
the “sketch” of ti at time period k..(k + w − 1). Next we compare the sketches of the
various time series to see which ones are close in the sketch space (if w >> r, which
is often the case, this is cheaper than working directly on the time series) and then
identify the close ones.
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The theoretical underpinning of the use of sketches is given by the
Johnson-Lindenstrauss lemma [20].

Lemma 1 Given a collection C of n time series each of length w, for any two time

series −→x ,−→y ∈ C, if ε < 1/2 and r =
8 log n

ε2
, then

(1− ε) ≤ ‖
−→s (−→x )−−→s (−→y ) ‖2

‖ −→x −−→y ‖2
≤ (1 + ε)

holds with probability 1/2, where −→s (−→x ) is the sketch of −→x of at least r dimensions.

The Johnson-Lindenstrauss lemma implies that the distance ‖sketch(ti)−sketch(tj)‖
is a good appproximation of ‖ti−tj‖ provided the dimensionality of the sketches (r) is
large enough. Specifically, if ‖sketch(ti)−sketch(tj)‖ < ‖sketch(tk)−sketch(tm)‖,
then it’s likely that ‖ti−tj‖ < ‖tk−tm‖, because the ratio between the sketch distance
and the real distance is close to one.

The sketch approach, as developed by Kushilevitz et al. [22], Indyk et al. [19],
and Achlioptas [2] makes use of these guarantees. Note that the sketch approach is
closely related to Locality Sensitive Hashing [14], by which similar items are hashed
to the same buckets with high probability. In particular, the sketch approach is very
similar in spirit to SimHash [10], in which the vectors of data items are hashed based
on their angles with random vectors. The major contribution of our paper consists of
combining an incremental strategy with a parallel mixing algorithm and an efficient
communication strategy.

4.1 The case of sliding windows

In the case of sliding windows, we want to find the most similar time series pairs at
jumps of a basic window b, e.g. for windows in time ranges 0 to w − 1 seconds, b to
b+ w − 1 seconds, 2b..2b+ w − 1, ... where b << w.

There are two main challenges:
1. If we compute the sketches from scratch at each basic window, we are doing

some redundant computation. For that reason, we call the recompute-from-scratch
approach the naive method. It would be better to compute the sketches incrementally
and in parallel. Moreover, if we normalize the entire window at each slide, that would
destroy the advantage of incemental update. Instead, we want to enhance the sketch
computation to yield values as if computed on normalized data.

2. When scaling this to a parallel system, we want to reduce communication costs
as much as possible. We need to develop good strategies for this as communication is
quadratic in the number of execution nodes, so constant coefficients matter.

4.2 Parallel incremental computation of sketches

To explain the incremental algorithm consider the example of Figure 3. The sketch for
random vector v1 is the dot product of the time series with v1, i.e., 1× (−1)+2× 1+
...+ 4× (−1) = 4.

Now if the basic window is of size 2, as illustrated by the “outdated” and “incoming”
boxes of Figure 3, then we add the next two values of the time series. In our example,
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Fig. 3: A streaming time series, two random vectors, and the sketches that correspond
to their dot product before and after the update on the data stream. The first sketch of
the time series is computed on the six first values, and the second sketch is computed
on the six last values. After the update, the “outdated” values are removed and the
“incoming” ones are added to the streaming time series, so the work is proportional to
the size of the basic window rather than the full window.

we add values (2, 1) and generate two more random +/- 1 numbers for each random
vector, in this case (−1,−1) for v1 and (−1, 1) for v2. To update the dot product for
v1 we subtract the contribution of the oldest two time points, viz. 1×(−1)+2×1 = 1,
and add the contribution of 2× (−1) + (1×−1) = −3 yielding a new sketch entry of
4− 1 + (−3) = 0.

In addition, we maintain and incrementally update the statistics (mean and stan-
dard deviation) of the current window. We then incorporate these statistics directly
into the incremental sketch updating as described below, so that the resulting sketch
values have the same values as if computed on normalized data. This enhancement
allows keeping the input data as is and avoids expensive renormalization as new data
arrives.

In general, the algorithm proceeds as following:

1. Partition time series among parallel sites. Replicate r random +1|-1 vectors each
of size w to all sites. These random vectors will later be updated in a replicated
fashion.

2. For each site,
(a) Initially, take the first w data points of each time series at that site and form the

dot product with all r random vectors. So each time series t will be represented
by r dot products. They constitute sketch(t).

(b) When data for the ith basic window of size b appears for all time series, extend
each random vector by a new random +1|-1 vector of size b. Then for each time
series t and random vector v, update the dot product s of t with v by:
∆s = −v[0..b−1] · t[(i−1)b−w...ib−w−1]+ v[w..w+ b−1] · t[(i−1)b..ib−1]

(c) To apply window normalization in the same step, we consider the means (µi
and µi−1) and standard deviations (σi and σi−1) of the current and previous
windows, whose values are maintained incrementally. Then we use the following
equation to update the current value (si) of the dot product of t with v with
respect to the previous one (si−1):
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σi × si = σi−1 × si−1 +∆s+ µi−1 ×Σv[0..w − 1]− µi ×Σv[b..w + b− 1]
This works because the sketches for the ith window should be computed on
(t − µi)/σi instead of on t. Note that the two sums in this equation are on
random +1|-1 vectors of size w, which can be computed just once per window
and reused to update the sketch of all time series. Thus, this enhanced formula
adds normalization to the incremental sketch updating at almost no additional
cost.

(d) Change the sketch(t) with all the updated dot products.

This step has time complexity proportional to the number of time series × size of
basic windows × the number of random vectors. It is perfectly parallelizable.

Step 1 calls for parallel updates of the local random vectors on each site. It is
mandatory that all the sites share the same random vectors. A possible approach
would be for the master node, after the completion of each new sliding window, to
generate new +1|-1 vectors having the basic window size, and send them to the sites.
This takes little time but is awkward to do in Spark, our implementation platform.
Our (admittedly hackish) approach is therefore to generate and send oversized random
vectors (say, twice the size of the sliding window) at setup time. A site then just has to
loop inside the (oversized) random vector, simulating an endless source of +1|-1 values
that are the same for all the sites. This deviation from perfect randomness has no effect
on the quality of the results in our experiments, though we would prefer the approach
where the master node generates new random vectors.

4.3 Parallel mixing

Once the sketch vectors have been constructed incrementally, the next step is to find
sketch vector pairs that are close to one another. Such pairs might then indicate that
their corresponding time series are highly correlated.

Multi-dimensional search structures do not work well for more than four dimensions
in practice [30]. For this reason, as indicated in the following example, we adopt a
framework that partitions each sketch vector into subvectors and builds grid structures
for the subvectors.

We first describe the steps of the algorithm and then explain how it works by an
example.

Algorithm:

1. Partition the sketch vectors, which all have length r, into groups of size k (e.g. if r
is 60 and k is 2, then the partition would be 0,1, 2,3, 4,5, ..., 58,59 and we would
take indexes 0 and 1 of each sketch vector and put it in the first partition. So each
partition would consist of n size 2 mini-vectors, where n is the number of time
series.).

2. Each site computes a grid and puts time series identifiers in grid cell (Table 2). So,
for each site s,
(a) for each time series t, place the identifier of t in a grid cell corresponding to

sketch(t)[Is], where Is are the indexes assigned to site s.
(b) Next form a partition of the time series identifiers such that each member of

the partition corresponds to a non-empty grid cell. So, two time series t1 and
t2 will fall into the same partition if sketch(t1)[Is] maps to the same grid cell
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as sketch(t2)[Is]. Denote the partitioning induced by this grid search on site s
as partitioning(s).

(c) Each element of the partition p in partitioning(s) represents a set of time series.
If we sort them by their id, then p can represent ts_p_1, ts_p_2, ....

3. If two time series are in the same grid cells in a fraction f of the grids, then they
are considered “close”. (The parameter f is determined by a calibration step that
in turn depends on the desired correlation threshold, as we will explain in the
experimental section.) We start by constructing “candidate clusters of time series”
based on each grid.

4. Send each candidate cluster of time series identifier to every node corresponding to
the time series in that cluster (Table 3). Call the mapping function between time
series ids and nodes ts_to_node(), to be defined as the “opt” strategy in the next
subsection.3

5. At each destination node, two time series are candidates for explicit analysis if they
are “close”, i.e., they are in the same grid cell for some fraction f of the grids (Table
3). If so, compute the Pearson correlation on all such candidates.

Example 1. Suppose we have seven time series with sketch values as follows:

sketch(ts1) = (11, 12, 23, 24, 15, 16)
sketch(ts2) = (11, 12, 13, 14, 15, 16)
sketch(ts3) = (21, 22, 13, 14, 25, 26)
sketch(ts4) = (21, 22, 13, 14, 25, 26)
sketch(ts5) = (11, 12, 33, 34, 25, 26)
sketch(ts6) = (31, 32, 33, 34, 15, 16)
sketch(ts7) = (21, 22, 33, 34, 15, 16)

First, we partition these into pairs and send the 1st and 2nd values of each sketch
vector to site 1 (Table 1) where this will be formed into a grid (and the time series
identifiers will be placed in cells (i,j), e.g., (31,32)). Analogously, we send the 3rd and
4th values of each sketch to site 2, and the 5th and 6th values to site 3, where the
second and third grids will be formed. In the first grid, ts1, ts2, and ts5 map to the
same grid cell; ts6 is by itself; and ts3, ts4, and ts7 all map to the same cell (Table
2). Thus, in grid 1 we have three partitions of time series identifiers. If two time series
are in the same partition, then they are close, so they are candidates for a detailed
correlation calculation.

Now, we construct a mapping ts_to_node that maps time series identifiers to nodes
(for now, think of each node as a single computational site, but one could imagine
placing many nodes on a single site or spreading a node among many sites). For this
example, let us say ts_to_node is the identity function. So we send the relevant parts
of the partition ts1, ts2, ts5 to nodes 1, 2, and 5. Similarly, we send the relevant parts
of ts3, ts4, and ts7 to nodes 3, 4, and 7. And so on (see Table 3). Assuming the “opt”
communication strategy (see next subsection), the relevant part of a partition with
respect to a time series t consists of t itself and the time series with identifiers higher
than t. We call that a “candidate cluster of time series”. We ignore clusters with just
one element, as pairs cannot be derived out of them.

3 For this discussion, we assume that ts_to_node is 1 to 1. If not, then if a node has say
the time series groups corresponding to i1, i2, and i3, then keep those groups separate.
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Table 1: Step 1 of the algorithm: sketch partitioning. Each sketch vector is partitioned
into three pairs. The ith pair of the sketch vector for each time series s goes to a grid
i. The values of the ith pair determine where in that grid the identifer s is placed.

sketch subvectors
[0 1] [2 3] [4 5]

sketch(ts1)
sketch(ts2)
sketch(ts3)
sketch(ts4)
sketch(ts5)
sketch(ts6)
sketch(ts7)

(11, 12)
(11, 12)
(21, 22)
(21, 22)
(11, 12)
(31, 32)
(21, 22)

(23, 24)
(13, 14)
(13, 14)
(13, 14)
(33, 34)
(33, 34)
(33, 34)

(15, 16)
(15, 16)
(25, 26)
(25, 26)
(25, 26)
(15, 16)
(15, 16)

assigned to grid / at site
1 2 3

Table 2: Step 2 of the algorithm: grid construction. Time series placed in the same grid
cells are grouped in partitions.

grid cell time series IDs

1
(11, 12) ts1, ts2, ts5
(21, 22) ts3, ts4, ts7
(31, 32) ts6

2
(13, 14) ts2, ts3, ts4
(23, 24) ts1
(33, 34) ts5, ts6, ts7

3 (15, 16) ts1, ts2, ts6, ts7
(25, 26) ts3, ts4, ts5

Table 3: Steps 4 and 5 of the algorithm: finding frequently collocated pairs (in the
example, at least 2 out of 3 grids).

node TS clusters candidate pairs
f ≥ 2/3

ts_to_node(ts1)
ts1, ts2, ts5
ts1, ts2, ts6, ts7

ts1, ts2

ts_to_node(ts2)
ts2, ts5
ts2, ts3, ts4
ts2, ts6, ts7

ts_to_node(ts3)
ts3, ts4, ts7
ts3, ts4
ts3, ts4, ts5

ts3, ts4

ts_to_node(ts4)
ts4, ts7
ts4, ts5

ts_to_node(ts5) ts5, ts6, ts7

ts_to_node(ts6)
ts6, ts7
ts6, ts7

ts6, ts7

As mentioned above, we require that some fraction f of the grids should put two
time series in the same grid cell for us to be willing to consider that pair of time series
to be worth checking in detail. For this example, set f to 2/3 (Figure 4).

Each node takes care of those time series that map to that node. So for example,
node 1 shows that ts1 and ts2 satisfy the requirement. Node 2 shows nothing new
concerning ts2. Node 3 shows that ts3 and ts4 satisfy the requirement. Node 4 and
node 5 show nothing new concerning ts4 and ts5 respectively. Node 6 shows that ts6
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Fig. 4: Two series (s1 and s2) may be similar in some dimensions (here, illustrated
by Grid1) and dissimilar in other dimensions (Grid2). If the series are close in a
large fraction of the grids, they are likely to be similar. So, if that fraction exceeds
some threshold f (2/3 in the toy example), then the algorithm performs an explicit
correlation calculation.

and ts7 satisfy the requirement. Node 7 shows nothing new (in fact the last node will
never show anything new, so it does not need to be considered). All those that satisfy
the requirement can be tested for direct correlation. In this example, that would entail
computing correlations on the last windows of length w of ts1 and ts2; ts3 and ts4;
and ts6 and ts7 (Table 3).

4.4 Communication strategies for detecting correlated candidates

Step 4 of the above algorithm requires the communication of information about each
pair (ti, tj) to one node of the system where its grid score (i.e., , the number of grids
in which the two time series are in the same cell) is computed. This communication
may be done using different strategies, which in turn can have a large impact on the
performance of our approach. This should come as no surprise: parallel approaches
often require an optimization of communication. We compare three strategies for com-
municating the pairs of each grid cell:

– All pairs communication (basic): In this strategy, for each cell c that contains
|count(c)| time series, all pairs (ti, tj) are generated and sent to a reducer whose
address is based on i and j. This ensures that all information about a pair will be
sent to one reducer where its grid score can be compared with threshold f . This
is the straightforward approach and will be denoted as “basic” in the rest of this
paper.

– All time series to each responsible reducer (semi-opt): In this strategy,
for each time series t there is a reducer rt that is responsible for detecting the
candidate time series that are correlated to t. Given a grid cell c, for each time
series identifier t ∈ contents(c), all time series identifiers of contents(c) are sent to
rt. If, among the time series that reducer rt receives, the number of occurrences
of a time series t′ is more than the threshold f , then the pair (t, t′) is considered
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to be close and therefore will undergo detailed correlation analysis. This is the
semi-optimized (semi-opt in the rest of this paper) strategy.

– Part of time series to each responsible reducer (opt): In this strategy (em-
bodied in step 4 of the algorithm of the previous sub-section), as in the previous
strategy, for each time series t there is a reducer rt that is responsible for detecting
the time series that are potentially correlated to t. But here, only some of time
series of the cell are sent to rt. Let’s assume a total order on the ids of the time
series, say the identifiers are related as follows: t1 < t2 < . . . < tn. Given a grid cell
contents(c) = {t1, . . . , ts}, for each time series identifier t ∈ contents(c), the time
series with ids greater than that of t are sent to rt. The idea behind this strategy is
that for a potential candidate pair (ti, tj), we need only to count its occurrences in
the reducer corresponding to the lower identifier of the pair, not in both of them.
As we will see below, this strategy requires the least amount of communication and
is denoted “opt” in the rest of this paper.

To illustrate the different strategies in the context of our example, let us consider cell
(15, 16) of grid 3 (see Table 2), which contains four time series identifiers. To handle
its contents, the “basic” strategy would emit all the 6 pairs, i.e., 12 ids in 6 messages
in total. The “opt” strategy, by contrast, would emit a total of 9 ids in three messages,
as per step 4 of the algorithm (Table 3). Thus, the “opt” uses less communication, but
the “basic” strategy allows pairs to be emitted as soon as a new time series is assigned
to a grid cell. Thus, the “basic” strategy waits less at the cost of more data exchange.

Generalizing from the example, we analyze the communication cost of the three
strategies in terms of the size and the number of messages to be communicated for each
cell. In the “basic” strategy, for the contents of each cell contents(c) = {t1, . . . , ts}, all
pairs (ti, tj) are generated and sent to the reducers. Thus, the number of messages for
the cell c is equal to count(c)× (count(c)− 1)/2. The size of each message is 2, so the
size of data transferred for cell c is count(c)×(count(c)−1). Note that in a distributed
system, the number of messages is the principal contributor to communication cost of
the algorithms. Thus, this approach suffers from a high communication cost, as the
number of messages for a cell c is O(count(c)2).

In the “semi-opt” strategy, for each cell c, the node containing each grid commu-
nicates (count(c)− 1) time series to the node that must compute the grid score. This
means that the number of sent messages is count(c), and the total size of the commu-
nicated data is count(c)× count(c)−1 time series ids per grid cell. In this strategy the
number of messages is O(count(c)), which is much better than the basic strategy.

In the “opt” strategy, for each cell contents(c) = {t1, . . . , ts}, we communicate
count(c) messages per grid cell, i.e., one message to each node that is responsible for
a time series in contents(c). The size of the message depends on the id of the time
series. Let t1, . . . , ts be the order of the time series ids. Then, we send {t2, . . . , ts} to
rt1 , {t3, . . . , ts} to rt2 , etc. Therefore the total size of communicated data for cell c is
(count(c)− 1)+ (count(c)− 2)+ . . . +1 = count(c)× (count(c)− 1)/2. This strategy
sends the same number of messages as “semi-opt” (i.e., O(count(c))) for each cell, but
the size of communicated data is smaller. Our experiments illustrate the benefits of
this reduction in size.

4.5 Complexity analysis of parallel mixing

Let us analyze the time and space needed by our approach to perform parallel mixing.
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The time of Step 1 is proportional to the number of time series times the number of
random vectors (because the number of random vectors equals the size of each sketch
vector). Note that it is independent of the size of the window. This step is completely
parallelizable (because there is no communication cost) at the level of nodes and linear
in the number of time series. Step 2 (inserting into grids) is also linear in the number
of time series times the number of random vectors, but is cheaper than Step 1 because
of smaller constant factors. The communication cost is minimal, because the sketches
are so much smaller than the size of the windows.

The dominant time of our approach is that of Steps 3 and 4 in which the responsible
node of each grid constructs the candidate clusters of time series, and sends them to the
corresponding node based on ts_to_node. If ts_to_node is many to one, then even
in the worst case the number of messages is proportional to the number of destination
nodes and the total message traffic from a node is O(n2 × idsize), where n is the
number of time series and idsize is the size of an id. That is a very pessimistic worst
case because it corresponds to all time series mapping to the same grid cell in every
grid. As we will see in the experimental section, the total traffic per node is linear in
the number of time series in practice. Because time series ids are under 32 bits, the
total traffic is light.

The last step, i.e., 5, is proportional to the size of the output, because a large
fraction of pairs that pass the sketch-filtering step in fact meet the correlation threshold.
We will show this when we discuss the precision and recall of the approach.

The bulk of the space required for our approach is the space needed for keeping
the grids for indexing the sliding windows. This space depends on the number of grids
and the number of time series. The number of grids itself depends on the size of the
sketches in the sliding window, and the group size (number of dimensions in each grid).
Let g be the group size, s be the sketch vector size, and n the number of time series.
Then, the number of grids required for indexing the sliding window data is s

g , where s
is the sketch vector size and g the group size. In each grid, we need to keep the id of
each time series in its corresponding cell. Thus, the total space required for storing the
grids is O(n × idsize × s

g ), where idsize is the size of an id. Notice that in practice,
the size of our grid-based index is much less than the space required for keeping the
time series in the sliding windows. For example, suppose the group size is 2, and the
sketch vector size is 32 (for a sliding window of size 256). Then, the space required to
store all grids is equivalent to 16×n identifiers, which is less than the space needed to
store n time series of size 256.

So, in practice, the entire procedure requires work that is the sum of (i) (formation
of sketch vectors): n×b×r, where n is the number of time series, b is the basic window
size, and r is the number of random vectors; (ii) (parallel mixing, grid computation):
n × r; (iii) (parallel mixing, candidate identification) for each grid cell, nc2 × idsize,
where nc is the number of time series assigned to the grid cell and idsize is the size of
an id; (iv) (for verification of candidate pairs): cands×w, where w is the sliding window
size and cands is the number of frequently collocated pairs. This work, except for the
communication step (which depends on the communication infrastructure), is entirely
parallelizable. Which term dominates depends on how high the correlation threshold
is. For very high thresholds (the user is interested only in highly correlated pairs), part
iv will be negligible, iii will be small, and so i and ii will dominate. If the threshold is
low (not normally an interesting case) the algorithm could be nearly as expensive as
comparing every pair of time series.
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5 Experiments

In this section, we report experimental results that show the quality and the perfor-
mance of our parallel incremental sketching approach, illustrating performance, scala-
bility, recall, and precision. We compare our work with iSAX and show vastly improved
speed at some cost in recall.

The parallel experimental evaluation was conducted on a cluster of 32 machines,
with operating system Linux x86_64 kernel 3.10.0, each machine having 64 Gigabytes
of main memory, an Intel Xeon CPU with 8 cores and a 256 Gigabytes hard disk.

We implemented the approaches on top of Apache-Spark 1.6.2 [35], using the Java
programming language. 4

Data streams are simulated by distributing the data beforehand and using syn-
chronized sliding windows on each site. This setup allowed us to better evaluate the
performance gains of our approach without depending on the specific characteristics
or optimization of any dedicated streaming environment (e.g. Spark streaming, Flink,
Storm, etc.).

5.1 Comparisons

We compare ParCorr to:

– Parallel Linear Search. This is the straightforward comparison that compares
each time series to all the other ones, computing a Pearson correlation. In a second
step, this approach sorts correlations in decreasing order and keeping the top-
correlated ones. The approach is implemented in parallel (each computing node
compares the series it contains to all the series of the other nodes).

– iSAX [7]. This index allows processing similarity queries using both an exact and
an approximate approach. iSAX shows an improvement over Parallel Linear Search:
when a computing node receives a time series to be compared to its local time series,
rather than applying a linear search it will use a local iSAX index as a filter to
identify the most similar time series.

In the data stream context, these algorithms are applied from scratch, after each
update (each basic window-sized move of the sliding window). For iSAX, the local
indexes have to be built again after each update.

5.2 Datasets

We carried out our experiments on synthetic, seismic and financial datasets.
Synthetic dataset: Each time series in our synthetic dataset consists of 2000 values.

At each time point, the generator draws a random number from a Gaussian distribution
N(0,1), then adds the value of the last number to the new number. The number of time
series varies from one million to 100 million depending on the experiment. This type
of random walk generator has been widely used in the past [3,12,4,31,6,7,38].

Seismic dataset: The real world data represents seismic time series collected from
the IRIS Seismic Data Access repository [1] at various earthquake zones. After prepro-
cessing, the seismic dataset contains 5 million time series of 2000 values each.

4 Code and datasets available for free download at http://parcorr.gforge.inria.fr

http://parcorr.gforge.inria.fr
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To detect seismic events, there are three main types of algorithms: energy detectors,
array detectors and matched filter detectors. The latter is a new kind of detector,
where a representative time series is used as a template (i.e., a “matched filter”) and
correlated against a continuous data stream to detect new occurrences of that same
signal. However, such filters require a large number of templates, making indexing
an appealing approach. A time series at a given sensor functions like a geophysical
fingerprint for earthquakes. A seismic signal that closely matches a previous observation
can be used as evidence that the newly observed event must have occurred very close
to the event that generated the first observation. Moreover, if the signals are similar
we can assume that the characteristics of the earthquakes are similar. There are many
examples where almost identical signals produced by different earthquakes have been
observed. This is typically the case during seismic crises that can last days or months,
while similar signals can be recorded even if years apart. Detecting such correlations is
a small variant of our problem, where all time series are compared with a few templates.
Here we address the harder problem of finding all correlations among the set of time
series. This might be useful in an application in which we want to detect, in a real time
fashion, where similar seismic events are occurring.

Financial dataset: The bulk historical finance data was downloaded using the Yahoo
Finance API5 for over 40000 stock symbols for the period from Jan 2010 to Mar 2018.
After preprocessing, the financial dataset contains 2000 price returns on end-of-day
quotes for each stock symbol.

5.3 Parameters

Table 4 shows the default parameters used for each experiment, unless otherwise spec-
ified. A typical application might have a large ratio between the sliding window size
and the basic window size, where the basic window indicates the time interval between
the recalculation of similarity. ParCorr does better relative to the other algorithms
with a smaller basic window size of 10 for example, but a larger number like 50 is
more reasonable for high frequency measurements, where recomputing statistics would
entail too much overhead. The iSAX word length, leaf capacity, basic cardinality, and
maximum cardinality were chosen to be optimal for iSAX [7]. All histograms in the
figures have error bars (usually so small as to be invisible) that go from a minimum
value to a maximum value with the histogram height representing the mean. These
statistics were taken from runs on all the 76 windows (the number of sliding windows
of size 500 with a step of 20 over a total of 2000 values).

We calibrate the fraction f (needed for detecting candidate items in the grids) by
using a small sample database. We increase f until reaching the desired recall (e.g.,
0.95) on the small sample, and then we use the found fraction (0.7 in the case) in our
experiments on big datasets.

5.4 Recall and Precision Measures

To understand these concepts in our applications, consider the correlation problem: we
want to find all pairs of time series that have at least a correlation of some specified

5 http://finance.yahoo.com
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Table 4: Default parameters

Parameters Value
Sliding Window Size 500
Basic Window Size 20
iSAX Word Length 8
Leaf Capacity Threshold 1,000
Basic Cardinality 2
Maximum Cardinality 512
Number of Machines 32
Correlation Threshold 0.7
Fraction of Grids f 0.7

threshold during a given window. Call that set Strue In that context, the recall of a
method that finds a set Smethod is |(Strue ∩ Smethod)|/|Strue| and the precision is
|(Strue ∩ Smethod)|/|Smethod|. This would also be true for Euclidean distances. These
are completely standard uses of these terms applied to pairs and similarity metrics.

We achieve 100% precision by explicitly computing (step 5 of the algorithm) the
actual correlation of each candidate pair extracted from the grids (steps 1-4). For this
reason, we tune the parameters of the method to achieve high recall, sometimes at the
cost of very low precision of the candidates at step 4. Even a candidate precision of less
than 1% is acceptable, because explicitly verifying 100 times the number of actually
correlated pairs is still orders of magnitude faster than examining all pairs. As this
tuning is done for a particular correlation threshold, the candidate precision varies.
In our experiments it ranges from 1.6% (for correlation threshold of 0.7) to 9.8% (for
correlation threshold of 0.9).

In our experiments, the default correlation threshold for Pearson is 0.7. We have
also tried 0.8 and 0.9. With a Pearson threshold of 0.8, the sketch recall was over 96%
and the speedup compared with iSAX was a factor of 17.56. With a Pearson threshold
of 0.9, the sketch recall was over 95.7% and the speedup compared with iSAX was
a factor of 18. Given any Pearson correlation, the threshold for Euclidean distance is
computed by using formula 1.

5.5 Output Examples
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Fig. 5: Correlated pair of seismic sensor
signals detected by our method.
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Fig. 6: Example of two uncorrelated
seismic sensor signals.



ParCorr: Identifying Similar Time Series Pairs across Sliding Windows 17

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Fig. 7: Return profiles of two data stocks for 2000 dates. In this example, price returns
are highly correlated over the first several windows of 500 values, but not thereafter.

Here we present examples of useful findings of our method on the datasets from
the two real use cases. For the seismic use case, our algorithm discovered that the two
sensors in Figure 5 are highly correlated, but made no such assertion about the ones in
Figure 6. For the finance use case, as we apply our method on sliding windows of length
500 over a longer period, we discover a correlation of price returns of the two stocks
on Figure 7 over the first several windows. For subsequent windows, this correlation
drops, which can be interpreted by the application as a trading opportunity.

5.6 Communication Strategies

Before presenting the results of our approach in detail, we evaluate here the impact
of the communication strategy to detect correlated pairs. This corresponds to the
discussion and analysis given in Section 4.4. We conducted this experiment on 5 million
time series, with a basic window of 32 and a sliding window of 256. As expected and
illustrated by Figure 8, our optimized strategy gives the best performance (response
time), but the size of the gain is surprising. Therefore, in the experiments presented
below, we use this optimized strategy.

5.7 Results

Figure 9 shows that ParCorr is orders of magnitude faster for parallel correlation than
the iSAX methods for the random walk dataset, though its time increases as the basic
window size increases. For instance, with a basic window of 20, ParCorr takes at most
160 seconds to process a sliding window, while iSAX Approximate needs 1990 seconds.
We attribute this advantage to two factors: the calculation of sketches is incremental
and the parallelization of the algorithm is natural. These results also hold for the
seismic dataset as can be seen in Figure 10. For the much smaller financial dataset
(Figure 11), ParCorr is still faster than iSAX, although less so.

Figure 12 shows that ParCorr scales well to large datasets containing up to 100
million time series. iSAX Approximate is consistently about 50% faster than iSAX
exact. Our competitors (Parallel linear search, iSAX Approximate/Exact) do not scale
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Fig. 8: Execution time of step 4 of the algorithm for each of the communication strate-
gies introduced in Section 4.4. The algorithms are run on a cluster of 32 nodes and
5 million time series (basic window of 32 and sliding window of 256). The optimized
strategy gives the best response time.
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Fig. 9: Execution time for the calculation of the correlations for each sliding window
as a function of basic window size for the random walk dataset. The algorithms are
run on a cluster of 32 nodes and 5 million time series. The time for ParCorr increases
as the basic window size increases, because updating the sketch vector takes slightly
longer. All parameters other than basic window size are set to their values from Table
4.
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Fig. 10: Execution time for the calcu-
lation of the correlations for each slid-
ing window for the seismic dataset. The
algorithms are run on a cluster of 32
nodes and 5 million time series. All pa-
rameters are set to their values from
Table 4.
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Fig. 11: Execution time for the calcula-
tion of the correlations for each sliding
window for the financial dataset. The
algorithms are run on a cluster of 32
nodes and 40K time series. All param-
eters are set to their values from Table
4.
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Fig. 12: Execution time for the calculation of the correlations for each sliding window
as a function of dataset size for the random walk dataset. The algorithms are run on
a cluster of 32 nodes. All parameters are set to their values from Table 4. Note that
ParCorr scales to larger datasets nearly linearly and the times remain practical. The
other methods exceeded the measurement window.

since they cannot handle more than 5 million time series due to the fact that both
memory usage and communication costs grow too fast.

Figure 13 shows that both iSAX and ParCorr enjoy a roughly linear speedup,
whereas Figure 14 shows that ParCorr is orders of magnitude faster in absolute time
at all degrees of parallelization. ParCorr needs at most 598 seconds on 8 nodes (169
seconds on 32 nodes) while iSAX Approximate needs at most 13460 seconds (9784
seconds on 32 nodes).

Figure 15 shows that ParCorr’s performance (using Spark) is comparable to iSAX
(running natively without Spark) on a single node. ParCorr shows a small advantage
but not as much as in a parallel setting, because Spark entails some overhead that
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Fig. 13: SpeedUp: All algorithms en-
joy linear speedup with roughly the
same slope as the number of process-
ing nodes increase. All parameters are
set to their values from Table 4.
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Fig. 14: Execution time for the calcula-
tion of the correlations for each sliding
window as a function of the number of
processing nodes for the random walk
dataset. The algorithms are run on 5
million time series. All parameters are
set to their values from Table 4.
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Fig. 15: Execution time for each sliding
window on a single node for the random
walk dataset. The dataset is 1 million
time series. The SPARK overhead ap-
plies to ParCorr but not to iSAX. All
parameters are set to their values from
Table 4.
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Fig. 16: Execution time for each sliding
window on a single node for the seismic
dataset. The dataset is 1 million time
series. The SPARK overhead applies to
ParCorr but not to iSAX. All parame-
ters are set to their values from Table
4.

iSAX does not incur. These results are consistent with the results for the seismic and
financial data as shown in Figures 16 and 17.

Figure 18 shows the high precision of ParCorr and iSAX. ParCorr verifies all the
candidate pairs that the sketch filter produces. iSAX Exact incorporates a verification
step as well. These results hold also for seismic and financial data as seen in Figures
20 and 22.

Figure 19 shows that iSAX Exact gives perfect recall because of its bounding box
guarantee. ParCorr gives no such guarantee, so for applications that require 100%
recall, iSAX Exact should be used. Empirically, ParCorr yields a recall of over 90%, as
shown in Figures 21 and 23.
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Fig. 17: Execution time for each sliding window on a single node for the finan-
cial dataset. The dataset is 40K time series. The SPARK overhead applies to
ParCorr but not to iSAX. All parameters are set to their values from Table 4.
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Fig. 18: Let Peuc and Pcorr be the sets
of pairs of time series whose final w val-
ues fall within the threshold in the case
of Euclidean distance and Pearson re-
spectively. The precision is the fraction
of the set of pairs found by each algo-
rithm that belong to Peuc or Pcorr, re-
spectively. ParCorr has 100% precision
because it checks candidate pairs that
are produced by the sketch algorithm.
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Fig. 19: Let Peuc and Pcorr be defined
as in the caption of Figure 18. The re-
call is the fraction of Peuc or Pcorr,
respectively, that is found by each al-
gorithm. Note that iSAX Exact gives
higher recall than ParCorr.

The experiments on real and synthetic data show that ParCorr is fast, scales well,
guarantees 100% precision, and achieves very high recall. This reduction in recall is
acceptable for many applications, especially given the high gain in response time.

6 Conclusion

Finding similar pairs of time series on sliding windows is useful for many applications.
Methods to do so for hundreds of millions of time series in a highly efficient and scalable
fashion is the contribution of this paper. Compared with the previous state-of-the-art
iSAX, our solution is far faster and at least as scalable while showing only very little
loss in recall. For many applications, where scalability is mandatory, this is highly
beneficial.
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Fig. 20: For the seismic dataset, iSAX
Exact and ParCorr both achieve 100%
precision for Euclidean. ParCorr also
achieves 100% precision for Pearson
correlation.
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Fig. 21: For the seismic dataset, iSAX
Exact achieves perfect recall. ParCorr
achieves over 90% for both Euclidean
and Pearson correlation.
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Fig. 22: For the financial dataset, iSAX
Exact and ParCorr both achieve 100%
precision for Euclidean. ParCorr also
achieves 100% precision for Pearson
correlation.
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Fig. 23: For the financial dataset, iSAX
Exact achieves perfect recall. ParCorr
achieves over 90% for both Euclidean
and Pearson correlation.

Future work includes:

1. Improving the recall perhaps by expanding the grid search to neighboring cells.
2. Extending this work to cases where we want to discover delayed correlations (where

a window between t1 and t1+w may be similar to a window between t2 and t2+w)
in addition to co-temporous correlations. This is operationally straightforward to
do by keeping the points representing previously treated time series in the grid
structures, but it does require adjustments because the normalization transforma-
tion may change.

3. Allowing the window size to adapt to changes in data to find particularly highly
correlated windows of different sizes; here there may be helpful analogies from tiling
and from MASS.

4. Computing the statistical significance of correlations, taking into account multiple
testing and the overlap of the windows.
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