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Abstract: This paper proposes a new control strategy to the problem
of trajectory tracking of SCARA robotic manipulator system by using a
fractional order model reference adaptive controller (FMRAC) for sufficiently
smooth trajectories. Over the few last years the idea of introducing fractional
calculus and systems in adaptive control has found a great interest, for the
benefits one can win in the performances given by such systems. The main
contribution of this paper, is to show that the proposed fractional adaptive
controller is able to reduce the delay time and the overshoot existing in
classical control approach. Simulation results illustrate the effectiveness
of the proposed control approach comparatively to the classical integer
order one.
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1 Introduction

Modern industry depends increasingly on robotic manipulators for their ability of
improving the product quality and increasing the production efficiency. Industrial tasks
needing more and more accuracy in trajectory tracking involved a great research effort
on motion control systems design (Borenstein and Koren, 1987). Adaptive control
techniques have been intensively used for robotic systems as the problem of controlling
the motion of rigid-link manipulators which require precise knowledge of the complete
manipulator dynamic model for implementation suffer from the lack of accuracy of joint
velocity measurements (Colbaugh et al., 1996; Pagilla and Tomizuka, 2001; Alonge
et al., 2003; Yildirim, 2005; Yanling, 2015).

Model reference adaptive control (MRAC) remains one of the most popular
approaches of adaptive control, regarding its simplicity of implementation and its high
efficiency (Tung et al., 2000; Cortesão, 2009). In this adaptive system, the desired
performance is specified by a chosen reference model. The difference between the plant
output and the reference model output is used to adjust the controller parameters. Its
ability to deal with unknown or slowly varying plants attracted many researchers, who
tried to increase the MRAC control scheme robustness in order to better deal with
industrial application problems in presence of noises and disturbances. Various modified
approaches were proposed for this aim (Chien et al., 1996; Makoudi and Radouane,
1996).

In this paper we propose a fractional order MRAC approach (Ladaci and Charef,
2006; Bensafia and Ladaci, 2011) for trajectory tracking of a robot manipulator. The
proposed controller introduces in classical MRAC scheme a fractional order systems as
referential dynamics in order to improve the global control system behaviour. Since a
decade and the pioneering works on FMRAC design (Hadjili and Abida, 1994), many
variants of FMRAC control scheme have been developed (Vinagre et al., 2002; Ladaci
et al., 2009; Shi et al., 2014; Wei et al., 2015).

This control approach has been applied to different types of processes such as a robot
arm (Ladaci and Charef, 2002), a DC motor (Ladaci and Charef, 2006), a hydraulic
driven flight motion simulator (Ma et al., 2009), an isotope separation plant (Dumitrache
et al., 2012), an automatic voltage regulator (Aguila-Camacho and Duarte-Mermoud,
2013).

In this paper the trajectory tracking control of a SCARA type robot is considered.
SCARA manipulators are widely used in industrial factories and academic laboratories,
gathering various research works for different control strategies (Garg, 1991; Whitcomb
et al., 1993; Visioli and Legnani, 2002; Roudbari, 2010).

Some fractional order control schemes have been already proposed for the problem
of robotic manipulators control for trajectory tracking: Delavari et al. (2010) proposed
a fractional adaptive PID controller for a robot manipulator showing that the trajectory
of the robot converges to the desired one asymptotically. Marcos et al. (2008) studied
the fractional chaotic dynamics of robots with kinematical redundancy. Whereas, Dumlu
and Erenturk (2002) introduced a fractional-order PIλDµ controller to determine the
control action for 3-degrees-of-freedom parallel manipulator and were able to improve
the results obtained with the classical PID controller.

The main contribution of this work is the use the fractional model reference adaptive
control (FMRAC) to determine the control action for trajectory tracking of a SCARA
type manipulator. This control application is a major challenge as the trajectory tracking
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control of industrial parallel mechanisms involves high speed, high acceleration, and
high accuracy.

This paper is structured as follows: Section 2 is an background on MRAC and
MIT rule approach. Section 3 presents fractional order systems and their approximation
methods with rational transfer functions. The FMRAC with application time varying
reference trajectory tracking in robotics are given in Section 4. Section 5 presents
the simulation results of the proposed fractional adaptive controller for SCARA robot.
Finally, some concluding remarks with future work are presented in Section 6.

2 Background on MRAC: description and limitations

2.1 MRAC description

The parallel structure (Figure 1) is the most famous MRAC structure, called the method
of the output error; this approach involves plant model identification (Johnson et al.,
1984; Landau, 1979).

Figure 1 Parallel structure of MRAC
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Adjustment

mechanism

PlantController

yuuc
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Consider an single input, single output system, which can be a model of continuous
time or discrete-time model:

y(t) =
B

A
u(t) (1)

where u is the control signal and y is the output signal. The symbols A and B
denote polynomials in the differential operator p. It is assumed that the degree level
deg(A) ≥ deg(B), the system is causal.

We assume that the performance specifications are given in terms of a reference
model of the form,

ym(t) =
Bm

Am
uc(t) (2)
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where uc is the reference signal and ym is the desired model output signal. Am and Bm

are polynomials in the differential operator p.
The general linear control law represented in Figure 2, is described as:

Ru = Tuc − Sy (3)

where R, S, and T are polynomials. This control law represents a negative feedback
with the transfer operator −S/R and a feedforward with the transfer operator T/R. It
thus has two degrees of freedom.

Figure 2 Closed-loop system with a linear regulator

Regulator Process
uc u y

Ru = Tuc − Sy B

A

The gradient approach of MRAC is based on the assumption that the parameters
change more slowly than the other variables in the system. This assumption, which
admits a quasi-stationary treatment, is essential for the computation of the sensitivity
derivatives that are needed in the adaptation (Makoudi and Radouane, 1996; Åström
and Wittenmark, 1995).

Let e denote the error between the system output y and the reference output ym,
and let θ denote the parameters’ vector to be updated. By using the criterion:

J(θ) =
1

2
e2 (4)

the adjustment rule for changing the parameters in the direction of the negative gradient
of J is,

dθ

dt
= −γ

δJ

δθ
= −γe

δe

δθ
(5)

The derivative δe
δθ , i.e., the sensitivity derivative of the system, can be evaluated under

the assumption that θ is constant (Landau, 1979).
The control law is given by the following equation,

u = θTφ (6)

where φ is the regression vector or measurement vector such that,

φ = − δe

δθ
(7)
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2.2 Limitations

Let us study a simulation example to illustrate the limitations of this control scheme in
case of a time varying reference.

Consider the system described by the following equation,

G(s) =
y(s)

u(s)
=

2s+ 8

s2 − 3s− 2
(8)

The referential model is defined by:

Gm(s) =
ym(s)

uc(s)
=

1

0.2s+ 1
(9)

The control objective is to minimise the error:

e = y − ym (10)

The recurrence equation of the system described above which is obtained after the
discretisation (with the sampling period T = 0.04 sec.) is given by:

y(k + 2) = 2.131y(k + 1)− 1.127y(k) + 0.09171u(k + 1)− 0.07811u(k) (11)

The recurrence equation of the reference model (9) which is obtained after the
discretisation (T = 0.04) is given by:

ym(k + 1) = 0.8187ym(k) + 0.1813uc(k) (12)

Let k, l and m be respectively the degree of the polynomials R, S and T , such that
Åström and Wittenmark (1995):

k = degR = degAm + degB − degA = 1 + 1− 2 = 0 (13)
l = degS = degR = 0

m = degT = degBm = 0

Therefore, the vector of regulation parameters is:

θ = (s0 t0) (14)

Let us define the regression vector φ as follows,

φT = −
[
δe

δr1

δe

δr2
...

δe

δrk

δe

δs0

δe

δs1
...

δe

δsl

δe

δt0

δe

δt1
...

δe

δtm

]
(15)

=
b0

AoAm

[
sk−1u...u sly...y − smuc...− uc

]
=

b0
AoAm

[y − uc]
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such that b0 = 1 and the Ao the observer polynomial is chosen as Ao = s+ 1; thus,

φT =
1

(s+ 1)(0.2s+ 1)
[y − uc] (16)

which is equivalent in the discrete time using the process sampling period
T = 0.04 sec. to,

φT (k) =
0.003696 z + 0.003412

z2 − 1.78 z + 0.7866
[y(k) − uc(k)]

giving the following regression,

φT (k + 2) = 1.78 φT (k + 1)− 0.7866 φT (k) (17)
+ [0.003696 y(k + 1) + 0.003412 y(k)

− 0.003696 uc(k + 1)− 0.003412 uc(k)]

Using the command law of equation (6), we obtain the system output response shown
in Figure 3.

Figure 3 Reference trajectory ym and output trajectory y using the classical MRAC approach
(see online version for colours)

From Figure 3, we remark that the output of the system follows the referential one with
the overshoot D = 1.25 and the delay time td = 0.21 s, this characteristic presents the
major limitation of the MRAC approach in the tracking control strategy.

Besides, as robot systems are strongly nonlinear, the only way to apply this control
strategy is to consider sufficiently smooth or slowly varying referential trajectories.
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3 Fractional order systems

3.1 Fractional calculus

Fractional calculus is a subdivision of calculus theory which generalises the derivative or
integral of a function to non-integer order (Oustaloup, 1995). The number of applications
where fractional calculus has been used grows rapidly mainly for the reason that
these mathematical phenomena allow to describe a real object more accurately than
the classical methods. Approximation methods of fractional derivative and integral to
rational functions permitted to use very easily fractional order systems in wide areas
of applications such as control theory (Sabatier et al., 2003; Ladaci et al., 2008, 2010),
economical systems (Dadras and Momeni, 2010), renewable energy (Meĺicio et al.,
2010; Neçaibia et al., 2015), vehicle motion systems (Neçaibia et al., 2015b), Spacecraft
attitude control (Manabe, 2002), etc.

The generalised fundamental operator which includes the differentiation and
integration is given as:

aD
µ
t =


dµ

dtµ R(µ) > 0
1 R(µ) = 0∫ t

a
(dτ)−µ R(µ) < 0

(18)

where

• a: lower limit of integration.

• t: upper limit of integration.

• µ: order of fractional differentiation or integration. µ with negative value indicates
integration while µ with positive value indicates differentiation.

The theory of fractional-order derivative was developed mainly in the 19th century.
There are several definitions of fractional order derivative. Two important and widely
applied definitions are Riemann-Liouville definition and Grünwald-Letnikov definition
which is perhaps the best known due to its most suitability for the realisation of discrete
control algorithms (Podlubny, 1999).

The Grünwald-Letnikov definition is expresses as:

aD
µ
t f(t) = lim

h→0
h−µ

t−a
h∑

r=0

(−1)r
Γ(µ+ 1)

r!Γ(µ− r + 1)
f(t− rh) (19)

where the binomial coefficients (r > 0) are given by:(
µ
0

)
= 1,

(
µ
r

)
=

µ(µ− 1) . . . (µ− r + 1)

r!
(20)

The Riemann-Liouville definition is expresses as:

aD
µ
t f(t) =

1

Γ(η − µ)

dη

dtη

[ ∫ t

a

f(τ)

(t− τ)µ−η+1
dτ

]
(21)
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where:

Γ(x) =

∫ a

t

yµ−1e−ydy (22)

Γ(.) is the Euler’s Gamma function.
For a wide class of functions which appear in real physical and engineering

applications, the Riemann-Liouville and the Grünwald-Letnikov definitions are
equivalent.

3.2 Approximation methods of a fractional order transfer function

Many approximations methods ave been developed in the fractional calculus literature.
The most popular are those of Charef Charef et al. (1992) called the singularity function
method and Oustaloup’s method (Oustaloup et al., 2000). This second approach is a
generalised differential action which covers the frequency space, based on a recursive
distribution of an infinite number of zeros and negative real poles (to ensure phase
behaviour minimum). As part of a realist synthesis (practice) based on a finite number
of zeros and poles, it should reduce the differential behaviour of a generalised bounded
frequency range, chosen according to the needs of the application.
The method is based on the function approximation from:

H(s) = sα, α ∈ R (23)

By a rational function:

Gf (s) = K
N∏

k=1

s+ ω
′

k

s+ ωk
(24)

where the poles, zeros, and gain are evaluated from:

ω
′

k = ωb.ω
(2k−1−γ)/N
u , ωk = ωb.ω

(2k−1+γ)/N
u , K = ωγ

h (25)

where ωu is the unity frequencies’ gain and the central frequency of a band of
frequencies distributed geometrically. We have ωu =

√
ωh.ωb, where ωh and ωb are

respectively the upper and lower frequencies, γ is the order of derivative, and N is the
order of the filter.

4 Fractional model reference adaptive control

The proposed global control scheme for trajectory tracking control of robot manipulator
is based on a position-feedback as illustrated in Figure 4.

It is composed of three parts:

• the robot

• the linearised dynamics expressed in articular space

• the fractional order model reference controller.
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Figure 4 Global control scheme for robot manipulator: FMRAC approach
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Figure 4 Global control scheme for robot manipulator: FMRAC approach.

4.1 Dynamic model of the SCARA robot

This dynamic model can be written in the following matrix form Amiri et al. (2009):

B(q)q̈ + C(q, q̇)q̇ +G(q) = τ (26)

where

• B(q) ∈ R3 ×R3 is the inertia matrix

• C(q, q̇) ∈ R3 is the matrix of the centrifugal and Coriolis terms

• G(q) ∈ R3 is the vector of gravitational forces

• τ ∈ R3 is the vector of control inputs (torques generated by the actuators)

• q =
(
q1
q2
q3

)
∈ R3 is the vector of articular positions

• q̇ =

(
q̇1
q̇2
q̇3

)
∈ R3 is the vector of articular velocities

• q̈ =

(
q̈1
q̈2
q̈3

)
∈ R3 is the vector of articular accelerations.

4.2 Linearised model of the SCARA robot

The linearisation model of the robot with a nonlinear feedback is given by the following
equivalent transfer function:

G(s) =
1

s2 + kds+ kp
(27)
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where s is the complex variable of the transfer function, kp is the position gain and kd
the velocity gain.

4.3 Fractional order reference model

The reference model is used to specify the desired performance and to monitor the state
of the robot. It is chosen and adjusted in practice according to the operation conditions
and the environment (Feng et al., 1994). For the present study we will propose a
fractional model reference given by:

Gmf (s) =
ω2

sα(s2 + 2ωξs+ ω2)
(28)

with α ∈ [0 1].

5 Application: trajectory tracking in SCARA robot

5.1 Experimental configuration

This dynamic model can be written in the matrix form (26):

B(q)q̈ + C(q, q̇)q̇ +G(q) = τ

The Dynamical parameters of the SCARA robot are summarised in Table 1.

Table 1 Parameters of SCARA robot

Segment Segment Segment Segment Segment
0 1 2 3

Mass (kg) m0 = 19 : 5 m1 = 8 m2 = 6 m3 = 0 : 5

Length (m) d0 = 0 : 65 d1 = 0 : 4 d2 = 0 : 3 d3 = 0 : 3

Inertia (kg m2) I0 = 1 : 0.298 I1 = 0 : 16 I2 = 0 : 0.675 I3 = 0 : 0.056

The reference trajectory is set as follows:

q1 = q2 = q3 =
10π

180
sin(2πt) (29)

The integer order model reference (α = 1) is given by:

Gm(s) =
ω2

s(s2 + 2ωξs+ ω2)

with ω = 20, ξ = 1.
The fractional model reference is given by (28):

Gmf (s) =
ω2

sα(s2 + 2ωξs+ ω2)
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with ω = 20, ξ = 1 and α = 0.3.
The parameters of the linearised model of the robot are: kp = 2, 500 and kd = 500.
The reference models are discretised using a sampling period T = 0.04 sec.
Now if we reconsider the plant and reference models (1) and (2) in discrete time we

have,

A(z)y(k) = B(z)u(k) (30)

and

Am(z)ym(k) = Bm(z)uc(k) (31)

We will denote by θ(k) a vector containing the unknown controller parameters, and by
φ(k) the regression vector (7) discretised with the sampling constant T .

Using a simple approximation of the adaptation rule (5) in its normalised form, we
get

θ(k + 1) = θ(k)− Tγ (y(k)− ym(k))φ(k)

ϵ+ φ(k)Tφ(k)
(32)

where ϵ is a positive real.
The adaptive control law (6) is given by,

u(k + 1) = θT (k + 1)φ(k) (33)

5.2 Numerical simulations

This section presents simulation results of the proposed architecture based on the
linearising feedback and the FMRAC controller.

The parameter vector θ is initiaised as:

θ0 = [0.0 235.2 1771.4 1771.4]T .

The output response and the corresponding torques of the SCARA robot using the
classical MRAC controller with the above model and control parameters are shown in
Figure 5 and Figure 6 respectively.

From Figure 5, we remark that the system output follows the referential one with an
overshoot D = 0.035 and a delay time td = 0.14 s, this characteristic presents the most
limitation of the MRAC approach in trajectory tracking control.

In order to reduce the delay time between the trajectory of the SCARA robot and
the reference trajectory (29), let us use the fractional Model Reference defined above.

The output response of the robot and the corresponding torques using the FMRAC
controller for α = 0.7 are shown in Figure 7 and Figure 8 respectively.

From Figure 7, we remark that the output of the system follows the referential one
with very small oscillations comparatively to the integer order case and a reduced delay
time of td = 0.0293 s with an overshoot D = 0.019, thus, the system achieved a better
asymptotic tracking using a fractional order reference model of order α = 0.7.
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Figure 5 Articular reference trajectory and robot trajectory using the classical MRAC
approach (see online version for colours)

Figure 6 Control torques for the MRAC controller (see online version for colours)
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Figure 7 Articular reference trajectory and robot trajectory using the proposed FMRAC
approach with α = 0.7 (see online version for colours)

Figure 8 Control torques for the FMRAC controller with α = 0.7 (see online version
for colours)
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In order to search for the ’optimal’ value of the fractional order α we measured the
time delay and the overshoot of the system reference position tracking response for
different values of α ∈ [0 1]. The comparative simulation results presented in Table 2,
show that the system behaviour is improved for the majority of the fractional order
values comparatively to the classical (α = 1) MRAC response, and the minimal criteria
are obtained for α = 0.3, as we obtain td = 0.0052 s and D = 0.012.

Table 2 Comparative performance versus the model’s fractional order

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

td 0.028 0.022 0.0052 0.021 0.027 0.0128 0.0293 0.0055 0.0277 0.14
D 0.019 0.032 0.0120 0.030 0.019 0.0550 0.019 0.0118 0.0310 0.035

The SCARA robot response for the best fractional order reference model (α = 0.3), is
presented in Figure 10 for the trajectory position tracking, Figure 9 for the articular
speeds and Figure 11 for the input control torques.

The present study for minimising the lag between the adaptive system output and
the time varying referential trajectory can be considered as a stability analysis of the
robot system under FMRAC control as stabilisation problems can sometimes refer to
the weak aims (Sragovich, 2006).The introduction of a fractional order model reference
has indeed improved the stability and convergence of the position errors.

Figure 9 Best robot trajectory tracking using the proposed FMRAC approach with α = 0.3
(see online version for colours)
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Figure 10 Articular speeds using the proposed FMRAC approach with α = 0.3
(see online version for colours)

Figure 11 Control torques for the FMRAC controller with α = 0.3 (see online version
for colours)
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6 Conclusions

In this paper, the problem tackled was the time lag observed when a system tracks a
varying trajectory under a MRAC. The proposed solution consists in introducing the
fractional reference model in the MRAC strategy in order to eliminate the delay time
and achieve a better asymptotic tracking. The idea was to get benefit from the high
performance quality of fractional order systems confirmed in many precedent research
works. The simulations results on a SCARA type robot manipulator show the best
performances obtained by using the proposed FMRAC approach.
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fractionnaire d’un bras de robot (in French) (Fractional order model reference adaptive
contol of a robot arm)’, Revue Communication Sciences & Technologie, COST, Vol. 1,
pp.50–52.

Ladaci, S. and Charef, A. (2006) ‘On fractional adaptive control’, Nonlinear Dynamics, Vol. 43,
No. 4, pp.365-378.

Ladaci, S., Loiseau, J.J. and Charef, A. (2008) ‘Fractional order adaptive high gain controllers
for a class of linear systems’, Commun. Nonlinear Sci. Numer. Simul., Vol. 13, No. 4,
pp.707–714.

Ladaci, S., Charef, A. and Loiseau, J.J. (2009) ‘Robust fractional adaptive control based on
the strictly positive realness condition’, Int. J. Appl. Math. Comput. Sci., Vol. 19, No. 1,
pp.69–76.

Ladaci, S., Loiseau, J.J. and Charef, A. (2010) ‘Adaptive internal model control with fractional
order parameter’, Int. J. Adapt. Control Signal Process, Vol. 24, pp.944–960.

Landau, Y.D. (1979) Adaptive Control: The Model Reference Approach, Marcel Dekker,
New York.

Ma, J., Yao, Y. and Liu, D. (2009) ‘Fractional order model reference adaptive control for a
hydraulic driven flight motion simulator’, Proceedings of 41st Southeastern Symposium on
System Theory, University of Tennessee Space Institute Tullahoma, TN, USA, 15–17 March,
pp.340–343.

Makoudi, M. and Radouane, L. (2000) ‘A robust model reference adaptive control for
non-minimum phase systems with unknown or time-varying delay’, Automatica, Vol. 36,
pp.1057–1065.

Manabe, S. (2002) ‘A suggestion of fractional-order controller for flexible’, Nonlinear Dynamics,
Vol. 29, pp.251–268.

Marcos, M.G., Duarte, F.B.M. and Machado, J.A.T. (2008) ‘Fractional dynamics in the trajectory
control of redundant manipulators’, Commun. Nonlinear Sci. Numer. Simul., Vol. 13,
pp.1836–1844.
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