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Abstract. Given a connected graph G = (V, E), a vertex v ∈ V is said to
be a branch vertex if d(v) > 2, where d(v) denotes the degree of vertex v.
The Minimum Branch Vertices Spanning Tree (MBVST) problem is to
�nd a spanning tree of G with the minimum number of branch vertices.
This problem has been extensively studied in the literature and has well-
developed applications notably related to routing in optical networks.
In this paper, we propose a generalization of this problem, where we
begin by introducing the notion of a k-branch vertex, which is a vertex
with degree strictly greater than k + 2, and the goal is to determine a
spanning tree of G with the minimum number of k-branch vertices (k-
MBVST problem). In the context of optical networks, the parameter k
can be seen as the limiting capacity of optical splitters to split the input
light signal to k sub-trees. Proofs of NP-hardness and non-inclusion in
the APX class of the k-MBVST problem are established for a generic
value of k, and then an ILP formulation of the k-MBVST problem based
on single commodity �ow balance constraints is derived. Computational
results based on randomly generated graphs show that the number of
k-branch vertices included in the spanning tree increases with the size of
the vertex set V, but decreases with k as well as graph density. We also
show that when k ≥ 4, the number of k-branch vertices in the optimal
solution is close to zero, regardless of the size and the density of the
underlying graph.

Keywords: Spanning Tree, Minimization of Branch Vertices, Integer
Linear Programming, MBVST, k-MBVST, Optical Networks.



1 Introduction

Given a connected graph G = (V, E), a vertex v ∈ V is de�ned to be a branch ver-
tex if its degree (denoted d(v)) is strictly greater than two, i.e., d(v) > 2 for any
branch vertex. The Minimum Branch Vertices Spanning Tree (MBVST) prob-
lem is to �nd a spanning tree of graph G with the minimum number of branch
vertices. This NP-hard and non-APX problem [GHSV02] has been well-studied
in the literature and Cerrulli et al. [CGI09] were the �rst to formulate this prob-
lem as an integer linear program (ILP), wherein they used single commodity
�ow balance constraints to guarantee connectivity. In [CCGG13], Carabbs et
al. provided two alternative ILP formulations based on multi-commodity �ow
balance constraints and the well-known cycle eliminating Miller-Tucker-Zemlin
constraints, respectively. They also determined lower and upper bounds for the
MBVST using the Lagrangian relaxation method. In [Mar15], Marin presented
a branch-and-cut algorithm based on an enforced integer programming formula-
tion for the MBVST problem. In [CCR14], Cerrone et al. determined a uni�ed
memetic algorithm for three related problems, namely the MBVST; the prob-
lem of minimizing the degree sum of branch vertices (MDST); and the minimum
leaves problem.

Recently, Merabet et al. proved in [MDM13b] that the set of optimal solutions
for MBVST and the set of optimal solutions for MDST are disjoint. They also
proposed two variants of these problems, where speci�cally in [MDM13a], a more
�exible graph structure, namely the so-called hierarchy is proposed. A hierarchy,
which can be seen as a generalization of trees, is de�ned as a homomorphism of
a tree in a graph [Mol08], and as minimizing the number of branch vertices in a
hierarchy has no practical relevance, the authors determined the minimum cost
spanning hierarchy such that the number of branch vertices is less than or equal
to a given integer r.

The most widespread application of such MBVST problems arises in Wavelength-
Division Multiplexing (WDM), which is an e�ective technique to exploit the
available bandwidth of optical �bers to meet the explosive growth of bandwidth
demand across the Internet [HGCT02]. Now, a multicast technique consists of si-
multaneously transmitting information from one source to multiple destinations
in a bandwidth e�cient way (duplicating the information only when required).
From a computational viewpoint, multicast routing protocols in WDM networks
are mainly based on light-trees [SM99], which require intermediate nodes to have
the ability to split and direct the input signal to multiple outputs as and when
necessary. A node which has the ability to replicate an input signal on any wave-
length to any subset of output �bers is referred to as a Multicast-Capable (MC)
node [MZQ98]. (A light-splitting switch has to be placed in the optical device
to perform such a task at an MC node.) On the other hand, a node which has
the ability to tap into a signal and forward it to only one output is called a
Multicast-Incapable (MI) node. As light-splitter switches are rather expensive
devices, it is imperative to minimize the number of MC nodes in the light-tree,



and hence this problem lends itself to being expressed as the MBVST problem
(see Gargano et al. in [GHSV02]).

Extending this, if a light signal is split into k copies (at an MC node), then the
signal power of each resultant copy is reduced by, at least, a factor of 1/k of the
original signal power [MJ00]. If k is too large, then the information cannot be
read at the destinations due to the signal strength dropping below the minimum
threshold value, and therefore, k functions as a tolerance parameter.

De�nition 1. A k-branch vertex is a vertex with degree strictly greater than
k + 2.

Therefore, given a k-branch vertex, it is useful to look for a light-tree in the
WDM network with the minimum number of k-branch vertices, where k is �xed
as the tolerance parameter. If the light-tree contains some k-branch vertices, an
optical ampli�er must be installed near each k-branch vertex to guarantee the
e�ciency of the broadcast/multicast.

De�nition 2. Let G = (V, E) be a graph. The k-MBVST problem consists of
�nding a spanning tree T of G such that the number of k-branch vertices in T is
minimized.

The remainder of this paper is organized as fellows. In Section 2, proofs of
NP-hardness and non-inclusion in the APX class of the k-MBVST problem are
established for any generic value of k. Then, an ILP formulation of this problem
based on single commodity �ow balance constraints is derived in Section 3,
and �nally Section 4 records some preliminary computational results along with
associated insights and conclusions.

2 Proofs of NP-hardness and negative approximability

In a Hamiltonian graph, it is evident that �nding a 0-MBVST is equivalent
to �nding a Hamiltonian path in G. Thus, the k-MBVST is NP-complete in
this case. Furthermore, the classical MBVST problem is NP-complete, even on
non-Hamiltonian graphs [GHSV02], and moreover, it is a particular case of the
k-MBVST problem corresponding to k = 0. Therefore, the 0-MBVST is at least
as di�cult as the MBVST even in this case.

In the following discussion, we prove that the k-MBVST problem is NP-hard for
any generic k > 0. Towards this end, denote by sk(G) the smallest number of
k-branch vertices in any spanning tree of G.

Theorem 1. Let r be a �xed non-negative integer. It is NP-complete to decide
whether a given graph G satis�es sk(G) ≤ r whatever the value of k.

Proof. � Case 1 : r = 0, let G = (V, E) be a given connected graph. Construct
a new graph Ḡ by linking k leaves to each vertex v ∈ V. Deciding whether Ḡ
contains a spanning tree with no k-branch vertex is equivalent to determining
whether G is Hamiltonian or not.



(a) Graph G
k leaves

(b) Graph Ḡ

Fig. 1. Reduction from the Hamiltonian problem to the 0-MBVST (k = 5)

� Case 2 : r ≥ 1, let G = (V, E) be a given connected graph. Construct a
graph Ḡ by replicating r · (k + 1) times the graph G and add a chain C of
size r + 2. Choose an arbitrary vertex v ∈ V and link every internal vertex
of C to k + 1 distinct replications of G from their corresponding vertices
(duplicates) v. Moreover, link k leaves to each vertex of each duplication
of G. In any spanning tree of Ḡ, the k vertices of the complete graph are
necessarily k-branch vertices. Thus, the graph Ḡ will contain a spanning tree
with sk(Ḡ) = r if and only if G admits a Hamiltonian path starting from v.

(a) Graph G

: Chain C

v

: Leaves

v

v v

(b) Graph Ḡ

Fig. 2. Construction of the graph Ḡ for k = 1 and r = 2.

Hence, proved.



In the following discussion, we show that the k-MBVST problem is not in
the APX class for any generic k > 0. We prove this result by applying an
AP-reduction (f, g, ρ) from the Minimum Set Cover problem (MSC) to the k-
MBVST problem. Consider an instance of the MSC problem given by a ground
set U = {x1, x2, ..., xn}, and a collection of m subsets S = {Si}mi=1 , such that
m⋃
i=1

Si ≡ U . A solution to the MSC problem aims to �nd a minimum number

of subsets whose union contains each element of U . This MSC problem is NP-
complete and is not in the APX class [GPMS+99].

Theorem 2. The k-MBVST problem is not in APX for any value of k.

Proof. Let X = (U ,S) be a given instance of the MSC problem. We now con-
struct the graph G underlying an instance of the k-MBVST problem such that a
feasible solution for the k-MBVST problem exists if and only if the instance X
contains a feasible solution for the MSC problem. This construction procedure is
described next. De�ne G = f(x, r) = f(x) by adding a vertex vi corresponding
to each element xi ∈ U . Similarly, add a vertex sj for each subset Si ∈ U . If
xi ∈ Sj , then connect sj and vi by an edge. Add a vertex z and link it to each
vertex xi. Moreover, link k − 2 leaves to each vertex vi and link k − 1 leaves to
z (Figure 3).

This construction ensures that if an optimal solution for the MSC problem in
X contains n subsets then the optimal solution for the k-MBVST in G contains
n+ 1 k-branch vertices. Moreover, if an optimal solution for the k-MBVST in G
contains n k-branch vertices then an optimal solution for the MSC problem in
X contains exactly n − 1 subsets. An additional but necessary criterion of the
AP-reduction process is that the graph construction must be done in a polyno-
mial time. Clearly, the polynomial time computation of the graph G is trivial.

Let c∗(f(x, r)) be the value of the optimum solution of the instance f(x, r) and
let c(f(x, r), y) denote the value of a solution y. Let c∗(x) be the value of the
optimum solution for an instance x. Finally, let c(x, g(x, y, r)) be the value of a
solution g(x, y, r). Then, suppose that

r ≥ c(f(x, r), y)

c∗(f(x, r))
. (1)

Our mapping yields that c∗(x) = c∗(f(x, r)) − 1 and that c(x, g(x, y, r)) =
c(f(x, r), y) − 1. Hence, for some r > 1 and �xed ρ = 2, it is su�cient for
us to show that

1 + 2(r − 1) ≥ c(f(x, r), y)− 1

c(f(x, r))− 1
. (2)

Using inequality (1), it is enough to prove that

(r − 1)(c∗(f(x, r))− 2) ≥ 0. (3)



Since every spanning tree of G has at least two k-branch vertices (z and at least
one of si), the inequality (3) is trivially true for r > 1.

Thus, the above de�ned (f, g, 2) is an AP-reduction from the MSC problem to
the k-MBVST problem. Hence proved.

Theorem 3. If an optimization problem P1 is AP-reducible to an optimization
problem P2 and P2 6∈ APX, then P1 6∈ APX [GPMS+99].

It follows from theorems 2 and 3 that the k-MBVST problem does not belong
to the APX class.

z

z1 z4z3z2

u3u2u1 u4 u5 u6 u7 u8 u9 u12u11u10 u15u14u13 u16u17u18

s2

s1

s3 s4

s5

s6

v4v3v1 v2 v5 v6 v7 v9

Fig. 3. Reduction of the Minimum Set Cover problem to the k-MBVST prob-
lem with k = 5, U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and S = {{v1}, {v1, v2, v3, v4},
{v2, v4, v5}, {v4, v5, v7}, {v4, v6, v7, v9}, {v9}}.

Having proved the NP-completeness and non-inclusion in the APX class of the
k-MBVST problem, in the following section, we turn our attention to deriving
an integer linear programming formulation of this problem.

3 An ILP formulation of the k-MBVST problem

The formulation of the k-MBVST problem as an integer linear program (ILP)
derived in this paper is predicated on the single balance commodity �ow formu-
lation proposed in [CGI09]. The basic construct underlying this formulation is
as follows. In order to de�ne a spanning tree T of G, we can send from a source
vertex s ∈ V, one unit of �ow to every other vertex v ∈ V\{s}. As this �ow needs
to be directed, the given graph G has to be transformed into a symmetrically
oriented graph Gd = (V, Ed), where each edge {u, v} ∈ E now corresponds to two



arcs (u, v) and (v, u) in Ed. For each arc (u, v) ∈ Ed, we de�ne an integer variable
f(u,v) representing the (directed) �ow going from u to v. Furthermore, de�ne a
binary decision variable x(u,v), which equals 1 if f(u,v) or f(v,u) carry a non-zero
�ow, and 0 otherwise. Finally, for each v ∈ V, we have a decision variable yv
that equals to 1, if v is a k-branch vertex in the spanning tree, and 0 otherwise.
We are now ready to formally present the k-MBVST problem as follows.

The objective of our problem is to minimize the number of k-branch vertices
belonging to the spanning tree of G, which can be expressed as follows.

Objective function:

Minimize
∑
v∈V

yv (4a)

Spanning tree constraints:∑
u∈V:

(u,v)∈Ed

x(u,v) = 1, ∀v ∈ V \ {s} (4b)

∑
(u,v)∈Ed

x(u,v) = |V| − 1. (4c)

As a vertex with more than one parent creates a cycle, constraint (4b) ensures
that each vertex except the source has exactly one predecessor. Next, as the
number of edges in any spanning tree must be equal to |V| − 1, constraint (4c)
ensures that exactly |V| − 1 arcs are selected in the optimal solution. Note that
these two constraints are necessary but are not su�cient to generate a spanning
tree as tree connectivity is not yet guaranteed. To obtain connectedness, addi-
tional �ow balance-based constraints are incorporated, and these are described
next.

Connectivity constraints:∑
(s,v)∈Ed

f(s,v) −
∑

(v,s)∈Ed
f(v,s) = |V| − 1 (4d)

∑
u∈V:

(u,v)∈Ed

f(v,u) −
∑
u∈V:

(u,v)∈Ed

f(u,v) = −1, ∀v ∈ V \ {s} (4e)

x(u,v) ≤ f(u,v) ≤ (|V| − 1) · x(u,v), ∀(u, v) ∈ Ed. (4f)

Constraint (4d) states that the �ow emitted by the source is equal to |V|−1 and
constraint (4e) ensures that each vertex except the source "consumes" one and
only one unit of �ow, which in turn also guarantees that each vertex is reachable
from the source s. Constraint (4f) allows each arc to carry non-zero �ow if and
only if it is used in the optimal spanning tree, and the value of this �ow cannot
exceed the total �ow emitted from the source vertex.



Degree constraints:∑
u∈V:

(v,u)∈Ed

x(v,u) +
∑
u∈V:

(u,v)∈Ed

x(u,v) − (k + 2) ≤ d(v) · yv, ∀v ∈ V (4g)

Constraint (4g) imposes vertex v to be a k-branch vertex if and only if its degree
is strictly greater than k + 2 in the spanning tree. Note that while the above
constraint merely sets the value of yv to be greater than or equal to zero if
d(v) ≤ k + 2, nevertheless, the objective function (which minimizes the sum of
the yv-variables) drives the value of yv ≡ 0 at optimality.

4 Computational Results

In this section, we describe the computational results obtained by applying the
proposed single commodity �ow formulation for the k-MBVST problem on a set
of instances, synthetically generated based on the parameters originally proposed
in [CCGG13]. We considered nine di�erent values for the number of vertices
given by: |V| = {50, 100, 200, 300, 400, 500, 600, 700, 800}. The number of edges
is generated according to the following formula:

b(|V| − 1) + i× 1.5× d
√
|V|ec, with i ∈ {1, 2, 3}. (5)

For each value of the parameter k ∈ {0, 1, 2, 3, 4, 5}, we randomly generated 30
instances for each choice of |V| and i. In order to obtain a signi�cant number
of branch vertices, the instances generated using (5) are typically sparse graphs.
The time limit was set to be 3600 seconds for each instance. All of our compu-
tations were performed on an Intel i7 6820HQ 2.7Ghz (with 8 Cores) Windows
workstation with 16GB RAM, using C++ as the modeling environment and
Cplex 12.7 as the underlying ILP solver.

Table 1 displays the optimum number of k-branch vertices (averaged over all
solved instances), the CPU time (seconds), and the number of instances of each
type that were successfully solved to optimality (within the speci�ed time limit).
From the numerical results recorded in Table 1, it can be observed that the com-
putational time increases along with an increase in the size of the graph and with
higher graph density, as the number of decision variables in the ILP are directly
correlated to the size and density of the graph. Moreover, as the size of the in-
stance increases, constraint (4f) no longer remains tight, and furthermore, the
number of branch vertices reduce in higher density instances (i = 2 and i = 3)
because the propensity of the graph to be Hamiltonian is also reduced in such
cases. Finally, the number of branch vertices increases (almost linearly) with
instance size, and this phenomenon is ampli�ed by the fact that the edge gener-
ation scheme used in our work makes the density decrease with instance size.

Figure 4 displays the number of k-branch vertices as a function of the parameters
k and |V| for each value of i. As noted before, the number of k-branch vertices



increases as the size of the vertex set increases, but decreases with k as well as
with i. When k ≥ 4, the number of k-branch vertices is close to zero regardless
of the value of |V| and i.

k=0

Instances i = 1 i = 2 i = 3
|V| Sol Time # Inst Sol Time # Inst Sol Time # Inst

50 8.00 0.22 30 3.80 0.60 30 2.50 0.62 30

100 18.00 0.39 30 12.30 1.11 30 7.60 5.44 30

200 38.40 1.14 30 28.90 5.21 30 20.70 18.31 30

300 59.90 1.91 30 49.40 9.73 30 37.90 42.76 30

400 80.60 4.06 30 67.40 15.15 30 53.80 50.98 30

500 102.60 4.32 30 86.60 19.69 30 74.10 446.47 30

600 130.50 5.93 30 107.70 21.81 30 91.22 289.46 29

700 149.80 6.68 30 131.70 40.04 30 113.44 275.39 29

800 175.20 8.73 30 149.80 43.79 30 131.00 188.82 30

k=1

50 1.50 0.10 30 0.00 0.21 30 0.00 0.25 30

100 4.60 0.31 30 1.00 0.46 30 0.50 0.82 30

200 12.60 0.58 30 5.30 1.80 30 2.67 3.73 27

300 20.20 1.72 30 10.70 8.32 30 4.88 9.35 24

400 28.10 3.21 30 17.70 12.19 30 9.50 21.20 25

500 41.00 4.78 30 24.67 16.92 27 14.00 42.85 27

600 49.00 6.16 30 31.89 22.37 27 20.43 108.02 21

700 61.20 8.11 30 38.90 23.84 30 31.00 77.04 6

800 68.70 8.99 30 46.60 40.74 30 34.60 150.90 12

k=2

50 0.30 0.07 30 0.00 0.12 30 0.00 0.17 30

100 0.70 0.16 30 0.10 0.31 30 0.00 0.49 30

200 3.00 0.49 30 0.50 1.45 30 0.33 1.68 27

300 4.90 0.94 30 1.80 3.56 30 0.71 6.19 21

400 9.80 2.09 30 2.67 7.36 27 1.22 15.07 27

500 12.00 2.29 30 4.63 12.04 24 2.50 25.04 30

600 16.20 4.23 30 6.33 24.68 18 3.25 32.69 12

700 20.00 5.56 30 9.75 19.19 12 5.00 118.11 6

800 24.70 5.62 30 12.00 23.90 9 4.33 57.01 9

k=3

50 0.10 0.07 30 0.00 0.10 30 0.00 0.13 30

100 0.10 0.15 30 0.10 0.17 30 0.00 0.27 30

200 0.60 0.32 30 0.10 0.93 30 0.00 1.56 30

300 1.10 0.79 30 0.50 1.63 30 0.10 3.98 30

400 1.40 1.32 30 1.00 4.42 24 0.40 10.80 30

500 3.50 1.62 30 1.38 9.50 24 0.13 22.14 24

600 4.56 3.00 27 2.00 5.59 7 1.00 30.55 21

700 6.20 4.18 30 1.40 53.08 15 0.33 69.49 9

800 7.30 3.04 30 2.14 21.57 20 2.50 57.01 6

k=4

50 0.00 0.05 30 0.00 0.09 30 0.00 0.12 30

100 0.00 0.08 30 0.00 0.13 30 0.00 0.23 30

200 0.00 0.18 30 0.00 0.54 30 0.00 0.35 30

300 0.50 0.32 30 0.14 0.98 21 0.00 1.88 27

400 0.60 0.54 30 0.00 09.12 21 0.00 2.41 24

500 0.40 0.51 30 0.13 5.00 24 0.00 24.68 18

600 1.60 1.15 30 0.20 8.65 15 0.25 50.22 12

700 1.30 2.63 30 0.67 15.77 9 0.00 86.80 9

800 1.80 3.59 30 0.33 16.36 18 0.40 14.20 15

k=5

50 0.00 0.05 30 0.00 0.08 30 0.00 0.10 30

100 0.00 0.09 30 0.00 0.15 30 0.00 0.14 30

200 0.00 0.11 30 0.00 0.42 30 0.00 0.50 30

300 0.00 0.20 30 0.00 1.12 24 0.00 1.08 30

400 0.30 0.34 30 0.00 21.68 24 0.00 4.76 24

500 0.10 0.29 30 0.00 80.04 21 0.00 45.24 18

600 0.30 0.64 30 0.00 6.34 15 0.00 40.58 15

700 0.00 1.83 21 0.00 16.95 8 0.00 42.75 8

800 0.11 2.39 27 0.00 10.39 21 0.00 49.27 6

Table 1. Solution value, running time and number of solved instances regarding |V|, k
and i.
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Fig. 4. Variation of sk(G) regarding |V|, k and i.



5 Conclusion

In this paper, we propose a generalization of the well-known MBVST problem
by introducing the notion of a k-branch vertex, which is a vertex with degree
strictly greater than k+ 2. Our new parametrized problem (k-MBVST) aims to
�nd a spanning tree of G with the minimum number of k-branch vertices. For
any non-negative integer r, we proved that it is NP-complete to decide whether
a graph can be spanned by a tree with at most r k-branch vertices, irrespective
of the value of k. Furthermore, we also established that the k-MBVST is hard
to approximate by proving its non-inclusion in the APX class. We also proposed
an integer linear programming formulation based on a single commodity �ow
balance constraints. Tests on sparse random graphs allowed us to evaluate the
number of k-branch vertices in the optimal solution as well as the computational
time required to determine the optimum objective function value with respect
to the value of k, the graph size, and the graph density. Our results indicate that
the number of k-branch vertices increases with graph size but decreases with k
as well as with graph density. It was also observed that when k ≥ 4, the number
of k-branch vertices is close to zero, and is independent of the size and density
of the graph.
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