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Abstract— With the development of cloud computing, the
growth in information technology has led to serious security
issues. For this reason, a lot of multimedia files are stored in
encrypted forms. Methods of reversible data hiding in encrypted
images (RDHEI) have been designed to provide authentication
and integrity in the encrypted domain. The original image is
firstly encrypted to ensure confidentiality, by making the content
unreadable. A secret message is then embedded in the encrypted
image, without the need of the encryption key or any access to
the clear content. The challenge lies in finding the best trade-
off between embedding capacity and quality of the reconstructed
image. In 2008, Puech ef al. suggested using the AES algorithm to
encrypt an original image and to embed one bit in each block of
16 pixels (payload = 0.0625 bpp) [12]. During the decryption
phase, the original image is reconstructed by measuring the
standard deviation into each block. In this paper, we propose
an improvement to this method, by performing an adaptive local
entropy measurement. We can achieve a larger payload without
altering the recovered image quality. Our obtained results are
very good and better than most of the modern state-of-the-art
methods, whilst offering an improved security level with the use
of the AES algorithm, defined as the encryption standard by the
NIST.

Keywords— Multimedia security, reversible data hiding, image
encryption, image recovery, statistical analysis.

I. INTRODUCTION

Reversible data hiding (RDH) is particularly suitable for
authentication and data enrichment. In a RDH scheme, a
secret message is concealed in a cover image, without altering
its global meaning. After the message extraction, it is also
possible to reconstruct losslessly the original image. In the
state of the art, three general strategies have been proposed:
lossless compression [5], [3], difference expansion (DE) [17]
and histogram shifting (HS) [11], [6]. The first RDH methods
used lossless compression. The idea is to losslessly compress
a part of the cover image and to reversibly embed a secret
message in the released part. Based on the original scheme
by Fridrich et al. [5], Celik et al. proposed to compress the
least significant bit (LSB) planes [3] and to use unaltered bit-
planes as side information. However, the efficiency of this kind
of method is limited. Indeed, since there is few redundancy in
the LSB planes, it is not possible to have a high embedding
capacity — also called payload. Tian suggested to use the Haar
transform to design a technique based on difference expansion
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[17]. He suggested computing the difference between a pixel
and its neighbors to determine where information had to be
concealed. In their paper [24], Zhang and Wang proposed to
exploit the set of modification direction for a pixel (EMD).
In techniques based on histogram modification, the histogram
of the image is built according to grey-level values [11], [16]
or by using statistical data [6]. Today, methods tend to use
a combination of these different schemes. In order to exploit
the correlation between a pixel and its adjacent neighbors, a
prediction error (PE) analysis can be performed [8]. These
methods achieve a better performance in comparison to pre-
vious ones.

Some applications, like in the medical or military world,
require a high security level. By randomizing an original
content of the original image, encryption provides visual
confidentiality. Cryptosystems can be divided into two groups,
depending if a stream cipher or a block cipher is used
[18]. They can be symmetric — when the same secret key
is used during the encryption and decryption (AES, DES)
or asymmetric — when they involve both public and private
keys. Moreover, encryption can be selective, when only certain
details are hidden in the encrypted image [13], or full when
the global meaning of the image is kept secret [10].

Encrypted image analysis and processing have received a
lot of attention within the scientific and business communities
in the last few years, in particular due to the development
of cloud computing [4]. Methods of reversible data hiding in
encrypted images (RDHEI) have been designed to combine
image encryption and RDH. In a RDHEI scheme, image
encryption is executed in the first place and it is possible to
insert a secret message in an encrypted image without knowing
the original content of the image or secret key. Many methods
have been recently designed in order to achieve the best trade-
off between payload and quality of the reconstructed image.
The space to embed the message may be vacated after [22],
[19] or before [9], [20] the encryption phase. Furthermore,
encryption and data hiding can be joint, when data extraction
and image reconstruction are completed at the same time,
or separately. Recently, Cao et al. proposed a sparse coding
technique [2]. They managed to vacate a large space to hide
bits of the secret message by exploiting the local correlation
between pixels. Qian and Zhang suggested compressing some



bits of the MSB planes to release room for additional data
[14]. Zhang et al. designed a system based on public key
cryptography with probabilistic and homomorphic properties,
allowing to recover losslessly the original image [23]. Other
methods managed to remove the embedded message and to
recover the original image by completing a statistical analysis
of each block of the encrypted image to determine if it is
decrypted or still encrypted. Zhang proposed to exploit the
spatial correlation in natural images. By measuring the fluctu-
ation of each block, the embedded data is fully extracted and
the original image is perfectly reconstructed [21]. Hong et al.
improved this technique by considering the local complexity
for each pixel during the encryption step [7]. Puech er al
suggested analyzing the local standard deviation into blocks of
the marked encrypted image, in order to recover their original
version without any errors during the decryption step [12].
Although this method is effective, the embedding capacity is
quite low, because only one bit is concealed in each block
(payload = 0.0625 bpp).

In this paper, we propose an improvement to the method by
Puech et al. [12]. As in the previous method, the original image
is firstly encrypted with AES cryptosystem in ECB mode to
ensure image content confidentiality. However, we are able to
embed a much larger amount of information in the encrypted
image, without degrading the reconstructed image quality. In
fact, we suggest to adapt the Shannon entropy measurement in
order to be able to perform a significant local analysis. During
the reconstruction phase, we use this statistical metric instead
of standard deviation to losslessly recover each block of 4 x 4
pixels from the original image.

The rest of this paper is organized as follows. Section II
describes our RDHEI method based on local entropy analysis.
Experimental results are provided in Section III. Finally, the
conclusion is drawn and future work is proposed in Section I'V.

II. PROPOSED METHOD

In this section, we first introduce the concept of adaptive
local entropy. After that, we present our joint reversible data
hiding method in encrypted images based on this statistical
measurement. The encoding phase includes two classic steps:
image encryption with a secret key K., and secret message
embedding using a data hiding key K,,. The overview of this
encoding method is presented in Fig. 1. For the decoding
scheme, if the recipient has only the data hiding key K,
they can extract the secret message. However, to reconstruct an
original image, they have to know both the encryption key K.
and the watermarking key K,,, because image decryption and
message extraction are executed at the same time, as shown in
Fig. 2. During this phase, they perform a local entropy analysis
to recover original image blocks.

A. Adaptive local entropy analysis

The notion of entropy was introduced by Shannon in
1948 [15]. This statistical metric measures the expected value
of information contained in a message. Despite its popularity

in image processing and information theory, none of the pre-
vious methods of reversible data hiding in encrypted domain
use Shannon entropy during the image reconstruction phase.
In fact, due to the sparsity of the sample when a small block
size is considered, direct use of entropy is difficult.

Let B be a block of £ pixels in an image encoded on [ grey-
levels o, with the associated probability p(c;). Local entropy
(i.e. inside block B) is increased by the minimal value between
its block size k and the number of grey-levels I:

-1
H i (B) = — ZP(%’) log, (p(;)),

i=0
1 1
< —mi :
< —min (k,1) min (k,1) logy <min (k,l)) ’
< log,(min (k,1)) bpp. (1)

If the block size is larger than the number of grey-levels, like
in a full image, maximal entropy value corresponds to uniform
distribution, i.e. equiprobability between all the grey-levels.
Otherwise, if there are more grey-levels in an image than
pixels in a block, the maximal entropy value is reached when
each pixel value is different. In this case, the pixel sample is
sparse, because some grey-level values are not present in block
B. For this reason, entropy measurement may be erroneous:
a block relatively homogeneous may seem pseudo-randomly
generated, with regards to its entropy value.

To solve this problem, we propose to adapt, by quantizing
the image histogram for the entropy measurement in order to
decrease the value of [. Actually, the idea is to find the best
trade-off between block size k and the number of grey-levels
[ in an image.

B. Image encryption

In the proposed method, the original image I is first
encrypted, block by block, to obtain the encrypted image
I.. Each original block X; of 128 bits, which corresponds
to k = 16 grey-level pixels, is encrypted using the AES
encryption algorithm E,_(-) in ECB mode with the secret
key K. (128 bits) producing the encrypted block Y;:

Y; = Bk, (Xi), 2

As the AES encryption function is efficient, the local
entropy value measured into each encrypted block Y; must
be close to the maximal entropy value and larger than the
entropy value measured in the clear domain:

Hoy(Xi) < Hy (Y5). 3)

C. Data embedding

During the data hiding step, in each encrypted block, we
replace p bits of Y; with bits of the secret message to obtain
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Fig. 2. Overview of the decoding method.

marked encrypted blocks Y,,, of the marked encrypted image
Iew:

Y, = DHkg,, (Y3), “4)

where DHp,  (-) is the data hiding function involving the
secret key K, different to the secret key K. used during
the encryption phase.

K, is used as a seed of a pseudo-random generator to get
a list of positions pos in the encrypted block Y; to insert
bits of the to-be-embedded message, depending on a given
embedding rate. Without the key K, it is impossible to guess
where the bits of the secret message are hidden, especially as
the set of positions is different for each block.

D. Data extraction and image recovery

During the reconstruction phase, there are two possible
schemes. If the recipient only has the data hiding key, they
can extract the secret message easily. With the help of K,
they generate the pseudo-random sequence corresponding to
the position of the embedded bits and read them to recover
the hidden message. If they have both keys, they can obtain
the secret message and reconstruct the original image. After
message extraction, each encrypted block Y,,. is still marked.
If they directly decrypt the marked encrypted image, they
obtain an image which can be very different to the original
one, especially when the embedding rate is high. For this
reason, they have to perform the proposed adaptive local
entropy analysis in each block to jointly remove the message
and decrypt the encrypted content. The detailed method is
presented in Algorithm 1. With the help of the data hiding key,
the location pos of all the potential erroneous bits is known.
For each of them, it is necessary to test two possible values
(0 or 1): if p bits in the block were altered, there are also 2P
possible configurations. In other words, the higher the payload,
the more the algorithm complexity is important. For each
combination ¢, the recipient has to decrypt the current block
Y, with encryption key K. and to measure local entropy

Wi (pos,c)

value by adapting the number of grey-levels, as explained

previously in Section IL.A. At the end of the process, the
decrypted block with smaller entropy value is considered as
the expected original one.

Algorithm 1: Image reconstruction algorithm.

Data: Marked encrypted image I.., of size m X n pixels,

Block size k, number of grey-levels [,

Secret keys K. and K,

Number p of embedded pixels into each block
Result: Reconstructed image I of size m X n pixels
foreach Y., € I.., Y., of size k = 16 pixels do
Hpin 4+ logy(min (k,1));

/* Minimal entropy initialization
X, DKE (Ywi);
/* Clear block X; initialization
/* Dk, is the decryption function
pos <— potential erroneous bits location, using K
for c+ 0to 27 — 1 do
/* Search of the combination which
minimizes the entropy value
if Hpin < H(k,l)(DKe (Y )) then

Wi (pos,c)

Hmin — H(k,l)(DKg (K"i(pos,c)));
X; DKC (Yw

*/

*/
*/

*/

i(pos,c) /)

Note that the number of error cases (i.e. blocks which
are not deciphered well because there exists at least one
combination with a smaller entropy than the true one, in
the clear domain) is quite high using zero-order entropy,
by considering a reduced number of grey-levels during the
entropy measurement. In order to obtain better results, it is
possible to perform entropy measurement on the distance map
of an image. The idea is to exploit the correlation between
neighboring pixels in the clear domain. In fact, in the clear
domain, values of adjacent pixels are very close, which is not
the case in the encrypted domain. Even if there is a contour
in a block in clear, this frontier delimits two relatively ho-
mogeneous regions. To compute the distance map D from an
image X, we have to compute the absolute difference between
a pixel z and its predictor pred(x), computed according to the



values of its neighbors:
Vd € D,d = d(z,pred(z)) = |x — pred(z)|, ®)

Note that the predictor pred(z) can be one of the neighbors of
x (left, top or left-top pixel) or a combination of these values
(for example, the average value), in order to take into account
the different directions.

As with zero-order entropy, during the reconstruction of
each block of an image, we try all possible configurations
and search the minimal entropy of the distance map value.

III. EXPERIMENTAL RESULTS

We applied our method on the Crowd image of
512 x 512 pixels, illustrated in Fig. 3. Fig. 4 and Fig. 5 show
the obtained results with a payload of 0.0625 bpp — when one
bit of the message by block is embedded — and 0.5 bpp —
when eight bits by block are embedded — respectively. The
original image is firstly encrypted using the AES algorithm
in ECB mode, with encryption key K.. After that, the secret
message is concealed in the encrypted image, according to data
hiding key K,,. Note that the higher the payload, the more it
is possible to embed a larger amount of information. For the
local entropy measurements, we use zero-order entropy and
distance map entropy, with 256 grey-levels and 8 grey-levels.
Indeed, we also performed an analysis on 1,000 images from
the BOWS-2 database [1] in order to find the optimal number
of grey-levels to consider during the entropy calculation,
according to the block size. Results have shown that, for blocks
of 4 x 4 pixels, best results are achieved with 8 grey-levels.
On average, there is only 0.1066% of possible errors with
zero-order entropy and 0.0379%, with distance map entropy.

Fig. 3. Original Crowd image.

Fig. 4.a and Fig. 5.a present marked encrypted images.
Note that, even with a large payload, we cannot distinguish
any information from the original content of the image. In
fact, marked encrypted images are pseudo-randomly gener-
ated: entropy of these images is very high and close to the
maximal value of log, (min(512 x 512, 256)) bpp. As shown
in Fig. 4.b and Fig. 5.b, if we directly decrypt the marked
encrypted images without correction, there are many erroneous
blocks in the reconstructed images. In Fig. 4.b, as only one
bit is concealed into each block, approximately half of the
blocks are perfectly reconstructed (PSNR = 11.28 dB, SSIM =
0.124). On the other hand, in Fig. 5.b, the reconstructed image

looks like the marked encrypted one: only one block out of
256 may be correctly recovered (PSNR = 8.23 dB, SSIM =
0.003). Since the number of possible combinations by block
during the reconstruction phase is equal to 2% = 256 bits.
Fig. 4.c-d and Fig. 5.c-d are the reconstructed images when
selecting the combination which allows us to have the smaller
entropy value among all the possible combinations, in each
block of 4 x4 = 16 pixels. If we do not perform a quantization
from the image, the number of grey-levels [, equals to 256,
is too high in comparison to its block size. In this case,
grey-level distribution is sparse. Due to this problem, local
entropy measurement can be erroneous. Indeed, as illustrated
in Fig. 4.c and Fig. 5.c, many blocks are badly reconstructed.
For a small payload of 0.0625 bpp, PSNR value between the
original image and the reconstructed one is equal to 22.76 dB
and SSIM is equal to 0.885. For a large payload of 0.5 bpp,
PSNR is equal to 14.88 dB and SSIM is equal to 0.499.

(a) Marked encrypted image. (b) Directly reconstructed im-
age (PSNR =11.28 dB, SSIM

=0.124).

(d) Reconstructed image us-
ing zero-order entropy with
I = 8 grey-levels (PSNR =
38.57 dB, SSIM = 0.885).

(c) Reconstructed image us-
ing zero-order entropy with
I = 256 grey-levels (PSNR =
22.76 dB, SSIM = 0.885).

(e) Reconstructed image us-
ing distance map entropy with
| = 256 grey-levels (PSNR =
31.85 dB, SSIM = 0.988).

(f) Reconstructed image us-
ing distance map entropy with
| = 8 grey-levels (PSNR —
400 dB, SSIM = 1).

Fig. 4. Application of our new RDHEI method based on local entropy
measurement with a payload of 0.0625 bpp, with two values of grey-levels
and two types of entropy (zero-order and distance map).



Conversely, in Fig. 4.d and Fig. 5.d, if we consider a
number of grey-levels smaller than the block size during
entropy measurement (! = 8), almost all blocks are correctly
decrypted, but some errors still remain (PSNR = 38.58 dB,
SSIM = 0.998 for a payload of 0.0625 bpp, and PSNR =
23.67 dB, SSIM = 0.927 for a payload of 0.5 bpp). As
displayed in Fig. 4.e-f and Fig. 5.e-f, the use of distance map
entropy allows us to obtain better results. As we exploit the
correlation between neighboring pixels in the clear domain,
the number of erroneous blocks is significantly reduced. Best
performances are achieved by using distance map entropy and
quantization (Fig. 4.f and Fig. 5.f). With a small payload
of 0.0625 bpp, the original image is perfectly reconstructed
(PSNR — 400 dB, SSIM = 1). With a high capacity, even if
the reconstructed image is not exactly the same as the original
one, its quality is very high, which is indicated by a PSNR
equal to 44.41 dB and a SSIM equal to 0.999.

(a) Marked encrypted image. (b) Directly reconstructed im-
age (PSNR = 8.23 dB, SSIM

= 0.003).

(c) Reconstructed image us-
ing zero-order entropy with
I = 256 grey-levels (PSNR =
14.88 dB, SSIM = 0.499).

(e) Reconstructed image us-
ing distance map entropy with
| = 256 grey-levels (PSNR =
20.41 dB, SSIM = 0.825).

(d) Reconstructed image us-
ing zero-order entropy with
I = 8 grey-levels (PSNR =
23.67 dB, SSIM = 0.927).

(f) Reconstructed image us-
ing distance map entropy with
I = 8 grey-levels (PSNR =
44.41 dB, SSIM = 0.999).

Fig. 5. Application of our new RDHEI method based on local entropy
measurement with a payload of 0.5 bpp, with two numbers of grey-levels
and two types of entropy (zero-order and distance map).

In order to better visualize the influence of the type of
entropy and necessity to perform a quantization for the mea-
surement, we plot the percentage of errors (Fig. 6.a) and the
PSNR value (Fig. 6.b) between the original Crowd image
(Fig. 3) and the reconstructed image, by using zero-order
entropy / distance map entropy and without quantization / with
8 grey-levels. We consider different payloads (from 0.0625 bpp
to 0.5 bpp) during this experimentation. As shown previously,
we can see that the percentage of errors using distance map
entropy and 8 grey-levels is equal to zero (from 0.0625 bpp
to 0.1875 bpp) or close to this value. For small payloads,
the reconstructed image is exactly the same as the original
one (PSNR — +o0 dB, SSIM = 1). In other cases, PSNR
and SSIM values are high (PSNR larger than 40 dB and
SSIM close to 1), which indicates high reconstructed image
quality. Note that these very good results are not possible with
zero-order entropy and without quantization, regardless of the
embedding capacity. In particular, if we use zero-order entropy
without quantization, more than a quarter of the blocks are
badly reconstructed and PSNR is smaller than 20 dB.

02 03
aaaaaa d (opp)

(b) PSNR value.

03
Payload (bpp)

(a) Percentage of errors.

Fig. 6. Reconstructed Crowd image quality as a function of the payload, the
type of entropy (zero-order and distance map) and the considered number of
grey-levels (I = 256 and [ = 8).

We also made some comparisons between our proposed
method using the best settings (distance map entropy and
8 grey-levels), and the method of Puech er al. [12] and two
recent approaches: Cao et al’s [2] and Zhang et al.’s [23].
We used well-known images like Lena, Airplane, Man and
Crowd. Firstly, we can observe that in all cases, our method
succeeds in obtaining better results than the original method
of Puech et al.. Indeed, our method is fully reversible for
small payloads, as indicated by a PSNR value which tends to
infinity, while the method of Puech et al. does not allow to
have a PSNR value greater than approximately 40 d B. We can
also see that it achieves a better performance than the method
of Zhang et al. in terms of reconstructed image quality, even
with large payloads. Moreover, our results are better than those
obtained by Cao et al. for small payloads and comparable for
larger ones.
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Fig. 7. Performance comparisons between our proposed approach and similar
state-of-the-art methods for four test images.

IV. CONCLUSION

In this paper, we proposed a new reversible data hiding
method in encrypted images based on an adaptive local
Shannon entropy analysis. During the reconstruction phase,
we performed an entropy analysis in each block of 4 x 4
pixels. Indeed, entropy value of a block of pixels in a clear
image is smaller than the value in the encrypted domain.
For this reason, it is possible to recover the original pixel
values by comparing entropy values for different possible
pixel configurations. As we have small block sizes, pixel
sample is sparse and we have to quantize the number of grey-
levels for entropy measurement in order to make it significant.
Thanks to this practical tip, we achieved a very good trade-off
between embedding capacity and reconstructed image quality,
which enables us to considerably improve on the previous
method [12]. Moreover, we obtain better results than most of
the state-of-the-art methods while offering a higher security
level. Future work on this method includes improving image
recovery. Indeed, in some cases, even if the global meaning is
conserved, we fail to perfectly reconstruct all the pixel blocks
of the original image. For this reason, we are interested in
using joint entropy between image pixel values and distance
map information in order to reduce the number of error cases.
However, in our method, the original image characteristics can
be analyzed before encryption in order to use a payload value
allowing perfect reversibility.
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