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Abstract
Given a graph G, we define bcg(G) as the minimum k for which G can be contracted to the
uniformly triangulated grid Γk. A graph class G has the SQGC property if every graph G ∈ G
has treewidth O(bcg(G)c) for some 1 ≤ c < 2. The SQGC property is important for algo-
rithm design as it defines the applicability horizon of a series of meta-algorithmic results, in the
framework of bidimensionality theory, related to fast parameterized algorithms, kernelization,
and approximation schemes. These results apply to a wide family of problems, namely problems
that are contraction-bidimensional. Our main combinatorial result reveals a general family of
graph classes that satisfy the SQGC property and includes bounded-degree string graphs. This
considerably extends the applicability of bidimensionality theory for several intersection graph
classes of 2-dimensional geometrical objects.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory.

Keywords and phrases Grid exlusion theorem, Bidimensionality, Geometric intersection graphs,
String Graphs.
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1 Introduction
Treewidth is one of most well-studied parameters in graph algorithms. It serves as a measure
of how close a graph is to the topological structure of a tree (see Section 2 for the formal
definition). Gavril is the first to introduce the concept in [28] but it obtained its name in the
second paper of the Graph Minors series of Robertson and Seymour in [36]. Treewidth has
extensively used in graph algorithm design due to the fact that a wide class of intractable
problems in graphs becomes tractable when restricted on graphs of bounded treewidth [1,4,5].
Before we present some key combinatorial properties of treewidth, we need some definitions.

1.1 Graph contractions and minors
Our first aim is the define some parameterized versions of the contraction relation on graphs.
Given a non-negative integer c, two graphs H and G, and a surjection σ : V (G)→ V (H) we
write H ≤cσ G if

for every x ∈ V (H), the graph G[σ−1(x)] is a non-empty graph of diameter at most c and
for every x, y ∈ V (H), {x, y} ∈ E(H) ⇐⇒ G[σ−1(x) ∪ σ−1(y)] is connected.
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We say that H is a c-diameter contraction of G if there exists a surjection σ : V (G)→ V (H)
such that H ≤cσ G and we write this H ≤c G. Moreover, if σ is such that for every x ∈ V (G),
|σ−1(x)| ≤ c+ 1, then we say that H is a c-size contraction of G, and we write H ≤(c) G.

1.2 Combinatorics of treewdith
One of the most celebrated structural results on treewidth is the following:
I Proposition 1. There is a function f : N → N such that every graph excluding a
(k × k)-grid as a minor has treewidth at most f(k).
A proof of Proposition 1 appeared for the first time by Robertson and Seymour in [37].
Other proofs, with better bounds to the function f , appeared in [38] and later in [17] (see
also [31, 33]). Currently, the best bound for f is due to Chuzhoy, who proved in [3] that
f(k) = k19 · logO(1) k. On the other side, it is possible to show that Proposition 1 is not
correct when f(k) = O(k2 · log k) (see [41]).

The potential of Proposition 1 on graph algorithms has been capitalized by the theory
of bidimensionality that was introduced in [9] and has been further developed in [8, 12,
13, 15, 16, 21–23, 25, 27, 30]. This theory offered general techniques for designing efficient
fixed-parameter algorithms and approximation schemes for NP-hard graph problems in broad
classes of graphs (see [7, 10,11,14,20]). In order to present the result of this paper we first
give a brief presentation of this theory and of its applicability.

1.3 Optimization parameters and bidimensionality
A graph parameter is a function p mapping graphs to non-negative integers. We say that p is a
minimization graph parameter if p(G) = min{k | ∃S ⊆ V (G) : |S| ≤ k and φ(G,S) = true},
where φ is a some predicate on G and S. Similarly, we say that p is a maximization
graph parameter if in the above definition we replace min by max and ≤ by ≥ respectivelly.
Minimization or maximization parameters are briefly called optimization parameters.

Given two graphs G and H, if there exists an integer c such that H ≤c G, then we say
that H is a contraction of G, and we write H ≤ G. Moreover, if there exists a subgraph G′
of G such that H ≤ G′, we say that H is a minor of G and we write this H � G. A graph
parameter p is minor-closed (resp. contraction-closed) when H � G⇒ p(H) ≤ p(G) (resp.
H ≤ G⇒ p(H) ≤ p(G)). We can now give the two following definitions:

p is minor-bidimensional if
p is minor-closed, and
∃k0 ∈ N : ∀k ≥ k0,

p(�k)
k2 ≥ δ

p is contraction-bidimensional if
p is contraction-closed, and
∃k0 ∈ N : ∀k ≥ k0,

p(Γk)
k2 ≥ δ

for some δ > 0. In the above definitions, we use �k for the (k×k)-grid and Γk for the uniformly
triangulated (k × k)-grid (see Figure 1). If p is a minimization (resp. maximization) graph
parameter, we denote by Πp the problem that, given a graph G and a non-negative integer
k, asks whether p(G) ≤ k (resp. p(G) ≥ k). We say that a problem is minor/contraction-
bidimensional if it is Πp for some bidimensional optimization parameter p.

A (non excaustive) list of minor-bidimensional problems is: Vertex Cover, Feedback
Vertex Set, Longest Cycle, Longest Path, Cycle Packing, Path Packing, Dia-
mond Hitting Set, Minimum Maximal Matching, Face Cover, and Max Bounded
Degree Connected Subgraph. Some problems that are contraction-bidimensional (but
not minor-bidimensional) are Connected Vertex Cover, Dominating Set, Connected
Dominating Set, Connected Feedback Vertex Set, Induced Matching, Induced
Cycle Packing, Cycle Domination, Connected Cycle Domination, d-Scattered
Set, Induced Path Packing, r-Center, connected r-Center, Connected Diamond
Hitting Set, Unweighted TSP Tour.
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1.4 Subquadratic grid minor/contraction property

Figure 1 The graph Γ9.

In order to present the meta-algorithmic potential of
bidimensionality theory we need to define some property
on graph classes that defines the horizon of its appli-
cability. Let G be a graph class. We say that G has
the subquadratic grid minor property (SQGM property
for short) if there exist a constant 1 ≤ c < 2 such that
every graph G ∈ G which excludes �t as a minor, for
some integer t, has treewidth O(tc). In other words, this
property holds for G if Proposition 1 can be proven for
a sub-quadratic f on the graphs of G.

Similarly, we say that G has the subquadratic grid
contraction property (SQGC property for short) if there
exist a constant 1 ≤ c < 2 such that every graph G ∈ G
which excludes Γt as a contraction, for some integer t, has treewidth O(tc). For brevity we
say that G ∈ SQGM(c) (resp. G ∈ SQGC(c)) if G has the SQGM (resp SQGC) property for c.
Notice that SQGC(c) ⊆ SQGM(c) for every 1 ≤ c < 2.

1.5 Algorithmic implications
The meta-algorithmic consequences of bidimensionality theory are summarised as follows.
Let G ∈ SQGM(c), for 1 ≤ c < 2, and let p be a minor-bidimensional-optimization parameter.
[A] As it was observed in [9], the problem Πp can be solved in 2o(k) · nO(1) steps on G, given
that the computation of p can be done in 2tw(G) · nO(1) steps (here tw(G) is the treewidth
of the input graph G). This last condition can be implied by a purely meta-algorithmic
condition that is based on some variant of Modal Logic [35]. There is a wealth of results
that yield the last condition for various optimization problems either in classes satisfying the
SQGM propety [18,18,19,39,40] or to general graphs [2, 6, 24].
[B] As it was shown in [25] (see also [26]), when the predicate φ can be expressed in Counting
Monadic Second Order Logic (CMSOL) and p satisfies some additional combinatorial property
called separability, then the problem Πp admits a linear kernel, that is a polynomial-time
algorithm that transforms (G, k) to an equivalent instance (G′, k′) of Πp where G′ has size
O(k) and k′ ≤ k.
[C] It was proved in [22], that the problem of computing p(G) for G ∈ G admits a Efficient
Polynomial Approximation Scheme (EPTAS) — that is an ε-approximation algorithm running
in f( 1

ε ) · nO(1) steps — given that G is hereditary and p satisfies the separability property
and some reducibility property (related to CMSOL expresibility).

SQGM

Algorithmic applications

Subexponential FPT

Kernelization

EPTAS

[A]

[B]

[C]

Minor bidimensional Contraction bidimensional

SQGC
Condition on the class G of the instances of Π

Condition on problem Π

Figure 2 The applicability of bidimensionality theory.
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All above results have their counterparts for contraction-bidimensional problems with
the difference that one should instead demand that G ∈ SQGC(c). Clearly, the applicability
of all above results is delimited by the SQGM/SQGC property. This is schematically
depicted in Figure 2, where the green-triangles triangles indicate the applicability of minor-
bidimensionality and the red triangle indicate the applicability of contraction-bidimensionality.
The aforementioned Ω(k2 · log k) lower bound to the function f of Proposition 1, indicates
that SQGM(c) does not contain all graphs (given that c < 2). The emerging direction of
research is to detect the most general classes in SQGC(c) and SQGC(c). We denote by GH the
class of graphs that exclude H as a minor. Concerning the SQGM property, the following
result was proven in [14].
I Proposition 2. For every graph H, GH ∈ SQGM(1).

A graph H is an apex graph if it contains a vertex whose removal from H results to a
planar graph. For for the SQGC property, the following counterpart of Proposition 2 was
proven in [21].
I Proposition 3. For every apex graph H, GH ∈ SQGC(1).

Notice that both above results concern graph classes that are defined by excluding some
graph as a minor. For such graphs, Proposition 3 is indeed optimal. To see this, consider
Kh-minor free graphs where h ≥ 6 (these graphs are not apex graphs). Such classes do not
satisfy the SQGC property: take Γk, add a new vertex, and make it adjacent, with all its
vertices. The resulting graph excludes Γk as a contraction and has treewidth > k.

1.6 String graphs
An important step extending the applicability of bidimensionality theory further than H-
minor free graphs, was done in [23]. Unit disk graphs are intersections graphs of unit disks
in the plane and map graphs are intersection graphs of face boundaries of planar graph
embeddings. We denote by Ud the set of unit disk graphs (resp. of Md map graphs) of
maximum degree d. The following was proved in [23].
I Proposition 4. For every positive integer d, Ud ∈ SQGM(1) andMd ∈ SQGM(1).
Proposition 4 was further extended for intersection graphs of more general geometric objects
(in 2 dimensions) in [30]. To explain the results of [30] we need to define a more general
model of intersection graphs.

Let L = {L1, . . . , Lk} be a collection of lines in the plane. We say that L is normal if
there is no point belonging to more than two lines. The intersection graph GL of L, is the
graph whose vertex set is L and where, for each i, j where 1 ≤ i < j ≤ k, the edge {Li, Lj}
has multiplicity |L1 ∩ L2|. We denote by Sd the set containing every graph GL where L is a
normal collection of lines in the plane and where each vertex of GL has edge-degree at most
d. i.e., is incident to at most d edges. We call Sd string graphs with edge-degree bounded by d.
It is easy to observe that Ud ∪Md ⊆ Sf(d) for some quadratic function f . Moreover, apart
from the classes considered in [23], Sd includes a much wider variety of classes of intersection
graphs [30]. As an example, consider Cd,α as the class of all graphs that are intersection
graphs of α-convex 2-dimensional bodies1 in the plane and have degree at most d. In [30],
it was proven that Cd,α ⊆ Sc where c depends (polynomially) on d and c (see [34] for other
examples of classes included in Sd).

1 We call a set of points in the plane a 2-dimensional body if it is homeomorphic to the closed disk
{(x, y) | x2 + y2 ≤ 1}. A 2-dimensional body B is a α-convex if every two points can be the extremes of
a line L consisting of α straight lines and where L ⊆ B.
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Given a class of graph G and two integers c1 and c2, we define G(c1,c2) as the set
containing every graph H such that there exist a graph G ∈ G and a graph J that satisfy
G ≤(c1) J and H ≤c2 J . Keep in mind that G(c1,c2) and G(c2,c1) are different graph classes.
We also denote by P the class of all planar graphs. Using this notation, the two combinatorial
results in [30] can be rewritten as follows:
I Proposition 5. Let c1 and c2 be two positive integers. If G ∈ SQGC(c) for some 1 ≤ c < 2,
then G(c1,c2) ∈ SQGM(c).
I Proposition 6. For every d ∈ N, Sd ⊆ P(1,d).

Proposition 2, combined with Proposition 5, provided the wider, so far, framework on the
applicability of minor-bidimensionality: SQGM(1) contains G(c1,c2)

H for every apex graph H
and positive integers c1, c2. As P ∈ SQGC(1) (by, e.g., Proposition 3), Propositions 5 and 6
directly classifies in SQGM(1) the graph class Sd, and therefore a large family of bounded
degree intersection graphs (including Ud andMd). As a result of this, the applicability of
bidimensionality theory for minor-bidimensional problems has been extended to much wider
families (not necessarily minor-closed) of graph classes of geometric nature.

1.7 Our contrubution
Notice that Proposition 5 exhibits some apparent “lack of symmetry” as the assumption
is “qualitatively stronger” than the conclusion. This does not permit the application of
bidimensionality for contraction-bidimensional parameters on classes further than those of
apex-minor free graphs. In other words, the results in [30] covered, for the case of Sd, the
green triangles in Figure 2 but left the red triangles open. The main result of this paper is
to fill this gap by proving the following extension of Proposition 5:

I Theorem 1. Let c1 and c2 be two positive integers. If G ∈ SQGC(c) for some 1 ≤ c < 2,
then G(c1,c2) ∈ SQGC(c).

Combining Proposition 3 and Theorem 1 we extend the applicability horizon of contraction-
bidimensionality further than apex-minor free graphs: SQGC(1) contains G(c1,c2)

H for every
apex graph H and positive integers c1, c2. As a special case of this, we have that Sd ∈ SQGC(1).
Therefore, on Sd, the results described in Subsection 1.5 apply for contraction-bidimensional
problems as well (such as those enumerated in the end of Subsection 1.3).

This paper is organized as follows. In Section 2, we give the necessary definitions and
some preliminary results. Section 3 is dedicated to the proof of Theorem 1. We should stress
that this proof is quite different than the one of Proposition 5 in [30]. Finally, Section 4
contains some discussion and open problems.

2 Definitions and preliminaries
All graphs in this paper are undirected, loop-less, and may have multiple edges. If a graph
has no multiple edges, we call it simple. Given a graph G, we denote by V (G) its vertex
set and by E(G) its edge set. Let x be a vertex or an edge of a graph G and likewise for y;
their distance in G, denoted by distG(x, y), is the smallest number of vertices of a path in
G that contains them both. Moreover if G is a graph and x ∈ V (G), we denote by N c

G(x)
the set {y | y ∈ V (G), distG(x, y) ≤ c+ 1}. For any set of vertices S ⊆ V (G), we denote by
G[S] the subgraph of G induced by the vertices from S. If G[S] is connected, then we say
that S is a connected vertex set of G. We define the diameter of a connected subset S as
the maximum pairwise distance between any two vertices of S. The edge-degree of a vertex
v ∈ V (G) is the number of edges that are incident to it (multi-edges contribute with their
multiplicity to this number).

IPEC 2017
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For our proofs, we also need the graph Γ̂k that is the variant of Γk, depicted in Figure 3.
Notice that Γk and Γ̂k are both triangulated plane graphs, i.e., all their faces are triangles.
In Γ̂k, we refer to the vertex a (as in Figure 3) as the apex vertex of Γ̂k. (We avoid the formal
definitions of �k, Γk, Γ̂k in this extended abstract – see [21] for a more precise formalism.)
In each of these graphs we denote the vertices of the underlying grid by their coordinates
(i, j) ∈ [0, k − 1]2 agreeing that the upper-left corner is the vertex (0, 0).

2.1 Treewidth

a

Figure 3 The uniformly triangu-
lated grid Γ̂9.

A tree-decomposition of a graph G, is a pair (T,X ),
where T is a tree and X = {Xt : t ∈ V (T )} is a family
of subsets of V (G), called bags, such that the following
three properties are satisfied:
•

⋃
t∈V (T )Xt = V (G),

• for every edge e ∈ E(G) there exists t ∈ V (T ) such
that e ⊆ Xt, and
• ∀v ∈ V (G), the set Tv = {t ∈ V (T ) | v ∈ Xt} is a
connected vertex set of T .

The width of a tree-decomposition is the cardinality
of the maximum size bag minus 1 and the treewidth
of a graph G is the minimum width over all the tree-
decompositions of G. We denote the treewidth of G by
tw(G).

I Lemma 2. Let G be a graph and let H be a c-size contraction of G. Then tw(G) ≤
(c+ 1) · (tw(H) + 1)− 1.

The proof of Lemma 2 is in Section A in the Appendix.

3 Proof of Theorem 1
Let H and G be graphs and c be a non-negative integer. If H ≤cσ G, then we say that H is
a σ-contraction of G, and denote this by H ≤σ G.

Before we proceed the the proof of Theorem 1 we make first the following three observations.
(In all statements, we assume that G and H are two graphs and σ : V (G)→ V (H) such that
H is a σ-contraction of G.)

I Observation 1. Let S be a connected subset of V (H). Then the set
⋃
x∈S σ

−1(x) is
connected in G.

I Observation 2. Let S1 ⊆ S2 ⊆ V (H). Then σ−1(S1) ⊆ σ−1(S2) ⊆ V (G).

I Observation 3. Let S be a connected subset of V (G). Then the diameter of σ(S) in H is
at most the diameter of S in G.

Given a graph G and S1, S2 ⊆ V (G) we say that S1 and S2 touch if either S1 ∩ S2 6= ∅ or
there is an edge of G with one endpoint in S1 and the other in S2.

We say that a collection R of paths of a graph is internally disjoint if none of the internal
vertices, i.e., none of the vertex of degree 2, of some path in R is a vertex of some other path
in R. Let A be a collection of subsets of V (G). We say that A is a connected packing of G if
its elements are connected and pairwise disjoint. If additionally A is a partition of V (G),
then we say that A is a connected partition of G and if, additionally, all its elements have
diameter bounded by some integer c, then we say that A is a c-diameter partition of G.
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3.1 Λ-state configurations.
Let G be a graph. Let Λ = (W, E) be a graph whose vertex set is a connected packing of G,
i.e., its vertices are connected subsets of V (G). A Λ-state configuration of a graph G is a
quadruple S = (X , α,R, β) where
1. X is a connected packing of G,
2. α is a bijection from W to X such that for every W ∈ W, W ⊆ α(W ),
3. R is a collection of internally disjoint paths of G, and
4. β is a bijection from E to R such that if {W1,W2} ∈ E then the endpoints of β({W1,W1})

are in W1 and W2 and V (β({W1,W2})) ⊆ α(W1) ∪ α(W2).
A Λ-state configuration S = (X , α,R, β) of G is complete if X is a partition of V (G). We
refer to the elements of X as the states of S and to the elements of R as the freeways of S.
We define indep(S) = V (G) \

⋃
X∈X X. Note that if S is a Λ-state configuration of G, S is

complete if and only if indep(S) = ∅.
Let A be a c-diameter partition of G. We refer to the sets of A as the A-clouds of G. We

define frontA(S) as the set of all A-clouds of G that are not subsets of some X ∈ X . Given a
A-cloud C and a state X of S we say that C shadows X if C ∩X 6= ∅. The coverage covS(C)
of an A-cloud C of G is the number of states of S that are shadowed by C. A Λ-state
configuration S = (X , α,R, β) of G is A-normal if its satisfies the following conditions:

(A) If a A-cloud C intersects some W ∈ W, then C ⊆ α(W ).
(B) If a A-cloud over S intersects the vertex set of at least two freeways of S, then it shadows

at most one state of S.
We define costA(S) =

∑
C∈frontA(S) covS(C). Given S1 ⊆ S2 ⊆ V (G) where S1 is connected,

we define ccG(S2, S1) as the (unique) connected component of G[S2] that contains S1.

3.2 Triangulated grids inside triangulated grids
I Lemma 3. Let G and H be graphs and c, k be non-negative integers such that H ≤c G
and Γk ≤ G. Then Γk′ ≤ H where k′ = b k−1

2c+1c − 1.

Proof. Let k∗ = 1 + (2c+ 1) · (k′ + 1) and observe that k∗ ≤ k, therefore Γk∗ ≤ Γk ≤ G. For
simplicity we use Γ = Γk∗ . Let φ : V (G)→ V (H) such thatH ≤cφ G and let σ : V (G)→ V (Γ)
such that Γ ≤σ G. We define A = {φ−1(a) | a ∈ V (H)}. Notice that A is a c-diameter
partition of G.

For each (i, j) ∈ J0, k′ + 1K2
, we define bi,j to be the vertex of Γ with coordinate

(i(2c + 1), j(2c + 1)). We set Qin = {bi,j | (i, j) ∈ J1, k′K2} and Qout = {bi,j | (i, j) ∈
J0, k′ + 1K2} \Qin. Let also Q = Qin ∪{bout} were bout is a new element that does not belong
in Qin. Here bout can be seen as a vertex that “represents” all vertices in Qout.

Let q, p be two different elements of Q. We say that q and p are linked if they both belong
in Qin and their distance in Γ is 2c + 1 or one of them is bout and the other is bi,j where
i ∈ {1, k′} or j ∈ {1, k′}.

For each q ∈ Qin, we define Wq = σ−1(q). Wq is connected by the definition of σ. In
case q = bout we define Wq =

⋃
q′∈Qout

σ−1(q′). Note that as Qout is a connected set of Γ,
then, by Observation 1, Wbout is connected in G. We also define W = {Wq | q ∈ Q}. Given
some q ∈ Q we call Wq the q-capital of G and a subset S of V (G) is a capital of G if it is the
q-capital for some q ∈ Q. Notice that W is a connected packing of V (G).

Let q ∈ Q. If q ∈ Qin then we set Nq = N c
Γ(q). If q = bout, then we set Nq =⋃

q′∈Qout
N c

Γ(q′). Note that for every q ∈ Q, Nq ⊆ V (Γ). For every q ∈ Q, we define
Xq = σ−1(Nq). Note that Xq ⊆ V (G). We also set X = {Xq | q ∈ Q}. Let q and p we two
linked elements of Q. If both q and p belong to Qin, and therefore are vertices of Γ, then we
define Zp,q as the unique shortest path between them in Γ. If p = bout and q ∈ Qin, then

IPEC 2017
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Figure 4 A visualization of the proof of Lemma 3. In this whole graph Γk, we initialize our
reaserch of Γ̂k′ such that every internal red hexagon will become a vertex of Γ̂k′ and correspond
to a state and the border, also circle by a red line will become the vertex bout. The blue edges
correspond to the freeways. Red cycles correspond to the boundaries of the starting countries. Blue
paths between big-black vertices are the freeways. Big-black vertices are the capitals.

we know that q = bi,j where i ∈ {1, k′} or j ∈ {1, k′}. In this case we define Zp,q as any
shortest path in Γ between bi,j and the vertices in Qout. In both cases, we define Pp,q by
picking some path between Wp and Wq in G[σ−1(V (Zp,q))] such that |V (Pp,q)∩Wq| = 1 and
|V (Pp,q) ∩Wp| = 1.

Let E = {{Wp,Wq} | p and q are linked} and let Λ = (W, E). Notice that Λ is isomorphic
to Γ̂k′ and consider the isomorphism that correspond each vertex q = bi,j , i, j ∈ J1, k′K2 to
the vertex with coordinates (i, j). Moreover bout corresponds to the apex vertex of Γ̂k′ .

Let α : W → X such that for every q ∈ Q, α(Wq) = Xq. Let also R = {Pp,q |
p, q ∈ Q, p and q are linked}. We define β : E → R such that if q and p are linked, then
β(Wq,Wp) = Pp,q. We use notation S = (X , α,R, β).
I Claim 1. S is an A-normal Λ-state configuration of G.
The proof of the Claim 1 is in Section B of the Appendix.

We define bellow three ways to transform a Λ-state configuration of G. In each of them,
S = (X , α,R, β) is an A-normal Λ-state configuration of G and C is an A-cloud in frontA(S).

1. The expansion procedure applies when C intersects at least two freeways of S. Let X be
the state of S shadowed by C (this state is unique because of property (B) of A-normality).
We define (X ′, α′,R′, β′) = expand(S, C) such that
X ′ = X \ {X} ∪ {X ∪ C},
for each W ∈ W, α′(W ) = X ′ where X ′ is the unique set of X ′ such that W ⊆ X ′,
R′ = R, and β′ = β.

2. The clash procedure applies when C intersects exactly one freeway P of S. Let X1, X2 be
the two states of S that intersect this freeway. Notice that P = β(α−1(X1), α−1(X2)), as
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it is the only freeway with vertices in X1 and X2. Assume that (C ∩ V (P )) ∩X1 6= ∅
(if, not, then swap the roles of X1 and X2). We define (X ′, α′,R′, β′) = clash(S, C) as
follows:
X ′ = {X1 ∪C} ∪

⋃
X∈X\{X1}{ccG(X \C,α−1(X))} (notice that α−1(X) ⊆ X \C, for

every X ∈ X , because of property (A) of A-normality),
for each W ∈ W, α′(W ) = X ′ where X ′ is the unique set of X ′ such that W ⊆ X ′,
R′ = R \ {P} ∪ {P ′}, where P ′ = P1 ∪ P ∗ ∪ P2 is defined as follows: let si be the
first vertex of C that we meet while traversing P when starting from its endpoint that
belongs in Wi and let Pi the subpath of P that we traversed that way, for i ∈ {1, 2}.
We define P ∗ by taking any path between s1 and s2 inside G[C], and
β′ = β \ {({W1,W2}, P )} ∪ {{W1,W2}, P ′}.

3: The annex procedure applies when C intersects no freeway of S and touches some country
X ∈ X . We define (X ′, α′,R′, β′) = anex(S, C) such that
X ′ = {X1 ∪C} ∪

⋃
X∈X\{X1}{ccG(X \C,α−1(X))} (notice that α−1(X) ⊆ X \C, for

every X ∈ X , because of property (A) of A-normality),
for each W ∈ W, α′(W ) = X ′ where X ′ is the unique set of X ′ such that W ⊆ X ′,
R′ = R, and β′ = β.

I Claim 2. Let S = (X , α,R, β) be an A-normal Λ-state configuration of G, and C ∈
frontA(S). Let S ′ = action(S, C) where action ∈ {expand, clash, anex}. Then S ′ is an A-
normal Λ-state configuration of G where cost(S ′,A) ≤ cost(S,A). Moreover, if covS(C) ≥ 1,
then cost(S ′,A) < cost(S,A) and if covS(C) = 0 (which may be the case only when
action = anex), then |indep(S ′)| < |indep(S)|.
The proof of the Claim 2 is in Section C of the Appendix.

To continue with the proof of Lemma 3 we explain how to transform the A-normal
Λ-state configuration S of G to a complete one. This is done in two phases. First, as long
as there is an A-cloud C ∈ front(S) where covS(C) ≥ 1, we apply one of the above three
procedures depending on the number of freeways intersected by C. We again use S to denote
the A-normal Λ-state configuration of G that is created in the end of this first phase. Notice
that, as there is no A-cloud with covS(C) ≥ 1, then costA(S) = 0. The second phase is the
application of anex(S, C), as long as some C ∈ frontA(S) is touching some of the countries
of S. We claim that this procedure will be applied as long as there are vertices in indep(S).
Indeed, if this is the case, the set frontA(S) is non-empty and by the connectivity of G, there
is always a C ∈ frontA(S) that is touching some country of S. Therefore, as costA(S) = 0
(by Claim 2), procedure anex(S, C) will be applied again.

By Claim 2, |indep(S)| is strictly decreasing during the second phase. We again use S for
the final outcome of this second phase. We have that indep(S) = ∅ and we conclude that S
is a complete A-normal Λ-state configuration of G such that |frontA(S)| = 0.

We are now going to create a graph isomorphic to Λ only by doing contractions in G. For
this we use S, a complete A-normal Λ-state configuration of G such that |frontA(S)| = 0,
obtained as describe before. We contract in G every country of S into a unique vertex. This
can be done because the countries of S are connected. Let G′ be the resulting graph. By
construction of S, G′ is a contraction of H. Because of Condition 4 of Λ-state configuration,
every freeway of S becomes an edge in G′. This implies that there is a graph isomorphic to
Λ that is a subgraph of G′. So Γ̂k′ is isomorphic to a subgraph of G′ with the same number
of vertices. Let see Γ̂k′ as a subgraph of G′ and let e be an edge of G′ that is not an edge of
Γ̂k′ . As e is an edge of G′, this implies that in G, there is two states of S such that there is
no freeway between them but still an edge. This is not possible by construction of S. We
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deduce that G′ is isomorphic to Γ̂k′ . Moreover, as |frontA(S)| = 0, then every cloud is a
subset of a country. This implies that G′ is also a contraction of H. By contracting in G′
the edge corresponding to {a, (k′ − 1, k′ − 1)} in Γ̂k′ , we obtain that Γk′ is a contraction of
H. Lemma 3 follows. J

3.3 Proof of the main result
Lemmata 2 and 3 are the basic ingredients for the proof of Theorem 1. The proof can be
found in Section D of the Appendix.

4 Conclusions and open problems
The main combinatorial result of this paper is that, for every d, the class Sd of string graphs
with multi-degree at most d has the SQGC property for c = 1. This means that, for fixed
d, if a graph in Sd excludes as a contraction the uniformly triangulated grid Γk, then its
treewidth is bounded by a linear function of k. Recall that string graphs are intersection
graphs of lines in the plane. It is easy to extend our results for intersection graphs of lines
in some orientable (or non-orientable) surface of genus γ. Let Sd,γ be the corresponding
class. To prove that Sd,γ ∈ SQGC(1) we need first to extend Proposition 6 for Sd,γ (which is
not hard) and then use Theorem 1 and the fact that the class of graphs of bounded genus
belongs in SQGC(1) (see e.g., [16]).

Of course, the main general question is to detect wide graph classes with the SQGM/SQGC
property. In this direction, some insisting open issues are the following:

Is the bound on the degree (or multi-degree) necessary? Are there classes of inter-
section graphs with unbounded or “almost bounded” maximum degree that have the
SQGM/SQGC property?
All so far known results classify graph classes in SQGM(1) or SQGC(1). Are there (interesting)
graph classes in SQGM(c) or SQGC(c) for some 1 < c < 2 that do not belong in SQGM(1) or
SQGC(1) respectively? An easy (but trivial) example of such a class is the class Qd of the
q-dimensional grids, i.e., the cartesian products of q ≥ 2 equal length paths. It is easy to
see that the maximum k for which an n-vertex graph G ∈ Qq contains a (k × k)-grid as
a minor is k = Θ(n 1

2 ). On the other size, it can also be proven that tw(G) = Θ(n
q−1

q ).
These two facts together imply that Qq ∈ SQGM(2 − 2

q ) while Qq 6∈ SQGM(2 − 2
q − ε) for

every ε > 0.
Usually the graph classes in SQGC(1) are characterised by some “flatness” property. For
instance, see the results in [29,32,32] for H-minor free graphs, where H is an apex graph.
Can SQGC(1) be useful as an intuitive definition of the “flatness” concept? Does this have
some geometric interpretation?
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A Proof of Lemma 2

Proof. By definition, since H is a c-size contraction of G, there is a mapping between each
vertex of H and a connected set of at most c edges in G, so that by contracting these edge
sets we obtain H from G. The endpoints of these edges form disjoint connected sets in
G, implying a partition of the vertices of G into connected sets {Vx | x ∈ V (H)}, where
|Vx| ≤ c+ 1 for any vertex x ∈ V (H).

Consider now a tree decomposition (T,X ) of H. We claim that the pair (T,X ′), where
X ′t :=

⋃
x∈Xt

Vx for t ∈ T is a tree decomposition of G. Clearly all vertices of G are included
in some bag, since all vertices of H did. Every edge of G with both endpoints in the same
part of the partition is in a bag, as each of these vertex sets is placed as a whole in the same
bag. If e is an edge of G with endpoints in different parts of the partition, say Vx and Vy,
then this implies that {x, y} ∈ E(H). Thus, there is a node t of T for which x, y ∈ Xt and
therefore e ⊆ X ′t. Moreover, the continuity property remains unaffected, since for any vertex
x ∈ V (H) each vertex in Vx induces the same subtree in T that x did. J

B Proof of Claim 1

Proof of Claim 1. We first see that S is a Λ-state configuration of G. Condition 1 follows
by the definition of Xq and Observation 1. Condition 2 follows directly by the definitions
of Wq and Xq. For Condition 3, we first observe that, by the construction of Γ and the
definition of Zp,q, for any two pairs p, q and p′, q′ of pairwise linked elements of Q, the paths
Zp,q and Zp′,q′ are internally vertex disjoined paths of Γ. It implies that Pp,q and Pp′,q′ can
intersect each other only on the vertices of Wp ∪Wq ∪Wp′ ∪Wq′ . But Pp,q (resp. Pp′,q′),
by construction contains only two vertices of Wp ∪Wq ∪Wp′ ∪Wq′ that are the extremities
of Pp,q, (resp. Pp′,q′). So Pp,q and Pp′,q′ are internally vertex disjoined, as required. For
Condition 4, assume that {Wp,Wq} ∈ E . The fact that the endpoints of β({Wp,Wq}) are in
Wp and Wq follows directly by the definition of β({Wp,Wq}) = Pp,q. It remains to prove
that V (β({Wp,Wq})) ⊆ α(Wp) ∪ α(Wq) or equivalently, that V (Pp,q) ⊆ Xp ∪Xq. Observe
that, if both p, q ∈ Qin, then every vertex in the shortest path Zp,q should be within distance
c from either p or q. Similarly, if p ∈ Qin and q = bout, then every vertex in the shortest path
Zp,q should be within distance c from either p or some vertex in Qout. So for every p, q ∈ Q,
with p 6= q, Zp,q ⊆ Np ∪ Nq. By Observation 2, every vertex in σ−1(V (Zp,q)) belongs to
Xp ∪Xq and the required follows as V (Pp,q) ⊆ σ−1(V (Zp,q)). This completes the proof that
S is a Λ-state configuration of G.

We now prove that S is A-normal. Recall that A be a c-diameter partition of G. Let
C be a A-cloud and let C ′ = σ(C) be a subset of V (Γ). As C is of diameter at most c,
then, from Observation 3, C ′ is also of diameter at most c. Notice that if C intersects some
member W of W , then C ′ = σ(C) also intersects σ(W ), therefore C ′ intersects some element
of Qin ∪ Qout. Assume C ′ contains p ∈ Qin ∪ Qout, then C ′ ⊆ Np. From Observation 1,
C ⊆ Xp = α(Wp), therefore C satisfies Condition (A).

By construction, the distance in Γ between two elements of Qin is either 2c+ 1 or at least
4c+ 2. The distance in Γ between on elements of Qin and any element of Qout is a multiple
of 2c+ 1. This implies that if p, q ∈ Q, p 6= q, Np ∩ C ′ 6= ∅, and Nq ∩ C ′ 6= ∅, then p and q
are linked.

By construction, if p and q are linked, then for every r ∈ Q and every u ∈ Zp,q,
distΓ(r, u) ≥ min(distΓ(r, p),distG(r, q)), where for every x ∈ Qin, the quantity distΓ(x, bout)
is interpreted as min{distΓ(x, q′) | q′ ∈ Qout}. This implies that if C ′ intersects Zp,q for
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some p, q ∈ Q, then for every r ∈ Q \ {p, q}, then C ′ does not intersect Nr. We will use this
fact in the next paragraph towards completing the proof of Condition (B).

We now claim that if C ′ intersects two distinct paths in {Zp,q | (p, q) ∈ Q2, p 6= q}, then
C ′ intersects at most one of the sets in {Nq′ | q′ ∈ Q}. Let Zp,q and Zp′,q′ be two distinct
paths intersected by C ′. We argue first that p, q, p′, q′ cannot be all different. Indeed, if this
is the case, as C ′ intersects Zp,q then C ′ cannot intersect Np′ or Nq′ as p′, q′ 6∈ {p, q}. As
Zp′,q′ ⊆ Nq′ ∪ Np′ , we have a contradiction. Assume now that p = p′ and q 6= q′. As C ′
intersects Zp,q, then it does not intersect Nr for any r ∈ Q \ {p, q}, and as it intersects Zp,q′ ,
then it does not intersect Nr for any r ∈ Q \ {p, q′}. We obtain that C ′ intersects at most
one of the sets in {Nr | r ∈ Q} that is Np. By definition of the states, we obtain that C
shadows at most one state that is Xp. That completes the proof of condition (B). �

C Proof of Claim 2

Proof of Claim 2. We first show that S ′ is an A-normal Λ-state configuration of G. In
each case, the construction of S ′ makes sure that X ′ is a connected packing of G and that
the countries are updated in a way that their capitals remain inside them. Moreover, the
highways are updated so to remain internally disjoint and inside the corresponding updated
countries. We next prove that S ′ is A-normal. Condition (A) is invariant as the cloud we
take into consideration cannot intersect any W ∈ W and a cloud intersecting some capital
W ∈ W cannot be disconnected from W . It now remains to prove condition (B). Because
of Condition 4 of the definition of a Λ-state configuration, if a cloud C intersects a freeway,
then it shadows at least one state. Now assume that a cloud C intersects two freeways in S ′,
then by construction of S ′, it also intersects at least the two same freeways in S. This along
with the fact that S satisfies Condition (B), implies that S ′ satisfies condition (B) as well, as
required.

Notice that, for any cloud C∗ ∈ A \ {C}, if C∗ does not intersect a state X in S, then
the corresponding state X ′ in S ′, i.e., the state X ′ = α′(α−1(X)), also does not intersect C∗.
This means that cost(S ′,A) ≤ cost(S,A).

Notice now that by the construction of S ′, C is not in frontA(S ′). In the case where
covS(C) ≥ 1 we have that cost(S ′,A) < cost(S,A).

Notice that the case where covS(C) = 0 happens only when action = anex and there is
an edge with one endpoint in C and one in some country X∗ of S that does not intersect C.
Moreover ccG(X \ C,α−1(X)) = X, for every state X of S. This implies that indep(S ′) ⊆
indep(S). As C ⊆ indep(S) and C ∩ indep(S ′) = ∅, we conclude that |indep(S ′)| < |indep(S)|
as required. �

D Appendix

Proof of Theorem 1. Given a graph G, we define bcg(G) as the minimum k for which G
can be contracted to the uniformly triangulated grid Γk. Let λ, c, c1, and c2 be integers. It
is enough to prove that there exists an integer λ′ = O(λ · c1 · (c2)c) such that for every graph
class G ∈ SQGC(c),

∀G ∈ G tw(G) ≤ λ · (bcg(G))c ⇒
∀G ∈ G(c1,c2) tw(G) ≤ λ′ · (bcg(G))c.

Let G ∈ SQGC(c) be a class of graph such that ∀G ∈ G tw(G) ≤ λ · (bcg(G))c. Let
H ∈ G(c1,c2) and let G and J be two graphs such that G ∈ G, G ≤(c1) J , and H ≤c2 J . G
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and J exist by definition of G(c1,c2).

By definition of H and J , tw(H) ≤ tw(J).
By Lemma 2, tw(J) ≤ (c1 + 1)(tw(G) + 1)− 1.
By definition of G, tw(G) ≤ λ · bcg(G)c.
By Lemma 3, bcg(G) ≤ (2c2 + 1)(bcg(H) + 2) + 1.

If we combine these four statements, we obtain that

tw(H) ≤ (c1 + 1)(λ · [(2c2 + 1)(bcg(H) + 2) + 1]c + 1)− 1.

As the formula is independent of the graph class, the Theorem 1 follows. J
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