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Abstract
A partial complement of the graph G is a graph obtained from graph G by complementing edges
of some of its induced subgraphs. We study the following algorithmic question: for a given
graph G and graph class G, is it possible to partially complement G to G? We show that this
problem can be solved in polynomial time for various classes of graphs like bipartite, degenerate,
or cographs. We complement these results by proving that the problem is NP-complete when G
is the class of r-regular graphs.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

One of the most important questions in Graph Theory concerns the efficiency of recognition
of a graph class G. For example, how fast we can decide whether a graph is chordal,
2-connected, triangle-free, of bounded treewidth, bipartite, 3-colorable, or excludes some
fixed graph as a minor? In particular, the recent developments in parameterized algorithms
are driven by the problems of recognizing of graph classes which do not differ up to small
“small disturbance” from graph classes recognizable in polynomial time. The amount of
disturbance is quantified in “atomic” operations required for modifying an input graph into
the “well-behaving” graph class G. The standard operations could be edge/vertex deletions,
additions or edge contractions. Many problems in graph algorithms fall into this graph
modification category: is it possible to add at most k edges to make a graph 2-edge connected
or to make it chordal? Or is it possible to delete at most k vertices such that the resulting
graph has no edges or contains no cycles?

A rich subclass of modification problems concerns edge editing problems. Here the
“atomic” operation is the change of adjacency, i.e. for a pair of vertices u, v, we can either
add an edge uv or delete edge uv. For example, the Cluster Editing problem asks to
transform an input graph into a cluster graph, that is a disjoint union of cliques, by at most
k adjacency relations.

The complement of a graph G is a graph H on the same vertices such that two distinct
vertices of H are adjacent if and only if they are not adjacent in G. In this paper we study
the partial complement of a graph, which was introduced by Kamiński, Lozin, and Milanič
in [9] in their study of the clique-width of a graph.

The partial complement of a graph is a graph obtained from graph G by complementing
edges of some of its induced subgraphs. More formally, for a graph G and S ⊆ V (G), we
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define G⊕ S as the graph with the vertex set V (G) whose edge set is defined as follows: a
pair of distinct vertices u, v is an edge of G⊕ S if and only if one of the following holds:

either uv ∈ E(G) and at least one vertex from {u, v} does not belong to S, or
u, v ∈ S and uv 6∈ E(G).

Thus when set S consists only of two vertices {u, v}, then the operation changes the adjacency
between u and v, and for larger set S, G⊕ S changes the adjacency relations for all pairs of
vertices of S.

Finally, we say that a graph H is a partial complement of the graph G if H is isomorphic
to G⊕S for some S ⊆ V (G). For a graph class G and graph G, we say that there is a partial
complement of G to G if for some S ⊆ V (G), we have G⊕ S ∈ G.

Let G be a graph class. We consider the following generic algorithmic problem.

Partial Complement to G (PCG)
Input: A simple undirected graph G.
Question: Is there a partial complement of G to G?

In other words, how difficult is it to recognize the class G ⊕S, which is the class of graphs
such that each graph in this class can be partially complemented into G? In this paper we
show that there are many well-known graph classes G such that G ⊕ S are recognizable in
polynomial time. We show that

Partial Complement to G is solvable in time O(f(n) ·n4 +n6) when G is a triangle-free
graph class recognizable in time f(n). For example, this implies that when G is the class
of bipartite graphs, the class G ⊕ S is recognizable in polynomial time.
Partial Complement to G is solvable in time f(n) · nO(1) when G is a d-degenerate
graph class recognizable in time f(n). Thus when G is the class of planar graphs, class of
cubic graphs, class of graph of bounded treewidth, or class of H-minor free graphs, then
the class G ⊕ S is recognizable in polynomial time.
Partial Complement to G is solvable in polynomial time when G is a class of bounded
clique-width expressible in monadic second-order logic (with no edge set quantification).
Therefore, if G is the class of P4-free graphs, class G ⊕ S is recognizable in polynomial
time.
Partial Complement to G is solvable in polynomial time when G can be described
by a 2× 2 M -partition matrix. This implies in particular, that G ⊕ S is recognizable in
polynomial time, where G is the class of split graphs.

Nevertheless, there are cases when the problem is NP-hard. In particular, we prove that this
holds when G is the class of r-regular graphs.

2 Partial complementation to triangle-free graph classes

A triangle is a complete graph on three vertices. Many graph classes does not allow the
triangle as a subgraph, for instance trees, forests, or graphs with large girth. In this paper
we show that partial complementation to triangle-free graphs can be decided in polynomial
time.

More precisely, we show that if a graph class G can be recognized in polynomial time and
it is triangle-free, then we can also solve Partial Complement to G in polynomial time.

Our algorithm is constructive, and returns a solution S ⊆ V (G), that is a set S such that
G⊕ S is in G. We say that a solution hits an edge uv (or a non-edge uv), if both u and v
are contained in S.

Our algorithm considers each of the following cases.
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(i) There is a solution S of size at most two.
(ii) There is a solution S containing two vertices that are non-adjacent in G.
(iii) There is a solution S such that it form a clique of size at least 3 in G.
(iv) G is a no-instance.

Case (i) can be resolved in polynomial time by brute-force, and thus we start from
analyzing the structure of a solution in Case (ii). We need the following observation.
I Observation 1. Let G be a class of triangle-free graphs and let G be an instance of Partial
Complement to G, where S ⊆ V (G) is a valid solution. Then

a) G[S] does not contain an independent set of size 3, and
b) for every triangle {u, v, w} ⊆ V (G), at least two vertices are in S.

Because all non-edges between vertices in G[S] become edges in G⊕S and vice versa, whereas
all (non-) edges with an endpoint outside S remain untouched, we see that the observation
holds.

Let us recall that a graph G is a split graph if its vertex set can partitioned into
V (G) = C ∪ I, where C is a clique and I is an independent set. Let us note that the
vertex set of a split graph can have several split partitions, i.e. partitions into a clique and
independent set. However, the number of split partitions of an n-vertex split graphs is at
most n. The analysis of Case (ii) is based on the following lemma.

I Lemma 1. Let G be a class of triangle-free graphs and let G be an instance of Partial
Complement to G. Let S ⊆ V (G) be a valid solution which is not a clique, and let u, v ∈ S
be distinct vertices such that uv /∈ E(G). Then

a) the entire solution S is a subset of the union of the closed neighborhoods of u and v, that
is S ⊆ NG[u] ∪NG[v];

b) every common neighbor of u and v must be contained in the solution S, that is NG(u) ∩
NG(v) ⊆ S;

c) the graph G[N(u) \N(v)] is a split graph. Moreover, (N(u) \N(v)) ∩ S is a clique and
(N(u) \N(v)) \ S is an independent set.

Proof. We will prove each point separately, and in order.

a) Assume for the sake of contradiction that the solution S contains a vertex w /∈ NG[u] ∪
NG[v]. But then {u, v, w} is an independent set in G, which contradicts item a) of
Observation 1.

b) Assume for the sake of contradiction that the solution S does not contain a vertex
w ∈ NG(u)∩NG(v). Then the edges uw and vw will both be present in G⊕ S, as well as
the edge uv. Together, these form a triangle.

c) We first claim that the solution S is a vertex cover for G[N(u) \N(v)]. If it was not, then
there would exist an edge u1u2 of G[N(u) \N(v)] such that both endpoints u1, u2 6∈ S,
yet u1, u2 would form a triangle with u in G⊕ S, which would be a contradiction. Hence
(N(u) \N(v)) \S is an independent set. Secondly, we claim that (N(u) \N(v))∩S forms
a clique. If not, then there would exist u1, u2 ∈ (N(u) \N(v)) ∩ S which are nonadjacent.
In this case {u1, u2, v} is an independent set, which contradicts item a) of Observation 1.
Taken together, these claims imply the last item of the lemma.

J

We now move on to examine the structure of a solution for the third case, when there exists
a solution which is a clique of size at least three.
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I Lemma 2. Let G be a class of triangle-free graphs and let G be an instance of Partial
Complement to G. Let S ⊆ V (G) be a solution such that |S| ≥ 3 and G[S] is a clique. Let
u, v ∈ S be distinct. Then

a) the solution S is contained in their common neighborhood, that is S ⊆ NG[u]∩NG[v], and
b) the graph G[NG[u] ∩NG[v]] is a split graph where (NG[u] ∩NG[v]) \ S is an independent

set.

Proof. We prove each point separately, and in order.

a) Assume for the sake of contradiction that the solution S contains a vertex w which is not
in the neighborhood of both u and v. This contradicts that S is a clique.

b) We claim that S is a vertex cover of G[NG[u] ∩ NG[v]]. Because S is also a clique,
the statement of the lemma will then follow immediately. Assume for the sake of
contradiction that S is not a vertex cover. Then there exist an uncovered edge w1w2,
where w1, w2 ∈ NG[u] ∩ NG[v], and also w1, w2 /∈ S. Since {u,w1, w2} form a triangle,
we have by b) of Observation 1 that at least two of these vertices are in S. That is a
contradiction, so our claim holds.

J

We now have everything in place to present the algorithm.
I Algorithm 1 (Partial Complement to G where G is triangle-free).
Input: An instance G of PCG where G is a triangle-free graph class recognizable in time
f(n) for some function f .
Output: A set S ⊆ V (G) such that G⊕ S is in G, or a correct report that no such set exists.

1. By brute force, check if there is a solution of size at most 2. If yes, return this solution.
2. For every non-edge uv of G:

a. If either G[N(u) \NG(v)] or G[NG(u) \NG(v)] is not a split graph, skip this iteration
and try the next non-edge.

b. Let (Iu, Cu) and (Iv, Cv) denote a split partition of G[NG(u) \NG(v)] and G[NG(v) \
NG(u)] respectively. For each pair of split partitions (Iu, Cu), (Iv, Cv):
i. Construct solution candidate S′ := {u, v} ∪ (NG(u) ∩NG(v)) ∪ Cu ∪ Cv
ii. If G⊕ S′ is a member of G, return S′

3. Find a triangle {x, y, z} of G
4. For each edge in the triangle uv ∈ {xy, xz, yz}:

a. If G[NG(u) ∩NG(v)] is not a split graph, skip this iteration and try the next edge.
b. For each possible split partition (I, C) of G[NG(u) ∩NG(v)]:

i. Construct solution candidate S′ := {u, v} ∪ C
ii. If G⊕ S′ is a member of G, return S′

5. Return ‘None’

I Theorem 3. Let G be a class of triangle-free graphs such that deciding whether an n-vertex
graph is in G is recognizable in time f(n) for some function f . Then Partial Complement
to G is solvable in time O(n6 + n4 · f(n)).

Proof. We will prove that Algorithm 1 is correct, and that its running time is O(n4 · (n2 +
f(n))). We begin by proving correctness. Step 1 is trivially correct. After Step 1 we can
assume that any valid solution has size at least three, and we have handled Case (i) when
there exists a solution of size at most two. We have the three cases left to consider: (ii)
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There exists a solution which hits a non-edge, (iii) there is a solution S such that in G⊕ S
vertices of S form a clique of size at least 3, and (iv) no solution exists.

In the case that there exists a solution S hitting a non-edge uv, we will at some point guess
this non-edge in Step 2 of the algorithm. By Lemma 1, we have that both G[NG(u) \NG(v)]
and G[NG(u) \NG(v)] are split graphs, so we do not miss the solution S in Step 2a. Since
we try every possible combinations of split partitions in Step 2b, we will by Lemma 1 at
some point construct S′ correctly such that S′ = S.

In the case that there exist only solutions which hits exactly a clique, we first find some
triangle {x, y, z} of G. It must exist, since a solution S is a clique of size at least three. By
Observation 1b, at least two vertices of the triangle must be in the S. At some point in step
4 we guess these vertices correctly. By Lemma 2b we know that G[NG(u) ∩NG(v)] is a split
graph, so we will not miss S in Step 4a. Since we try every split partition in Step 4b, we will
by Lemma 2 at some point construct S′ correctly such that S′ = S.

Lastly, in the case that there is no solution, we know that there neither exists a solution
of size at most two, nor a solution which hits a non-edge, nor a solution which hits a clique of
size at least three. Since these three cases exhaust the possibilities, we can correctly report
that there is no solution when none was found in the previous steps.

For the runtime, we start by observing that Step 1 takes time O(n2 · f(n)). The sub-
procedure of Step 2 is performed O(n2) times, where step 2a takes time O(n logn). The
sub-procedure of Step 2b takes time at most O(n2 + f(n)), and it is performed at most
O(n2) times. In total, Step 2 will use no longer than O(n4 · (n2 + f(n))) time. Step 3 is
trivially done in time O(n3). The sub-procedure of Step 4 is performed at most three times.
Step 4a is done in O(n logn) time, and step 4b is done in O(n · (n2 + f(n)) time, which also
becomes the asymptotic runtime of the entire step 4. The worst running time among these
steps is Step 2, and as such the runtime of Algorithm 1 is O(n4 · (n2 + f(n))). J

3 Complement to degenerate graphs

For d > 0, we say that a graph G is d-degenerate, if every induced (not necessarily proper)
subgraph of G has a vertex of degree at most d. For example, trees are 1-degenerate, while
planar graphs are 5-degenerate.

I Theorem 4. Let G be a class of d-degenerate graphs such that deciding whether an n-vertex
graph is in G is recognizable in time f(n) for some function f . Then Partial Complement
to G is solvable in time f(n) · n2O(d) .

Proof. Let G be an n-vertex graph. We are seeking for a vertex subset S of G such that
G⊕ S ∈ G.

We start from trying all vertex subsets of G of size at most 2d as a candidate for S. Thus,
in time O(n2d · f(n)) we either find a solution or conclude that a solution, if it exists, should
be of size more than 2d.

Now we assume that |S| > 2d. We try all subsets of V (G) of size 2d + 1. Then if G
can be complemented to G, at least one of these sets, say X, is a subset of S. In total, we
enumerate

(
n

2d+1
)
sets.

First we consider the set Y of all vertices in V (G) \X with at least d+ 1 neighbors in X.
The observation here is that most vertices from Y are in S. More precisely, if more than

α =
(
|X|
d+ 1

)
· d+ 1 =

(
2d+ 1
d+ 1

)
· d+ 1
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vertices of Y are not in S, then G ⊕ S contains a complete bipartite graph Gd+1,d+1 as a
subgraph, and hence G⊕S is not d-degenerate. Thus, we make at most

(
n
α

)
guesses on which

subset of Y is in S.
Similarly, when we consider the set Z of all vertices from V (G) \ X with at most d

neighbors in X, we have that at most α of vertices from Z could belong to S. Since
V (G) = X ∪ Y ∪ Z, if there is a solution S, it will be found in at least one from(

n

2d+ 1

)
· α2 = n2O(d)

of the guesses. Since for each set S we can check in time f(n) whether G ⊕ S ∈ G, this
concludes the proof. J

4 Complement to M-partition

Many graph classes can be defined by whether it is possible to partition the vertices of graphs
in the class such that certain internal and external edge requirements of the parts are met.
For instance, a complete bipartite graph is one which can be partitioned into two sets such
that every edge between the two sets is present (external requirement), and no edge exists
within any of the partitions (internal requirements). Other examples are split graphs and
k-colorable graphs. Feder et al. [6] formalized such partition properties of graph classes by
making use of a symmetric matrix over {0, 1, ?}, called an M -partition.

I Definition 5 (M -partition). For a k × k matrix M , we say that a graph G belongs to the
graph class GM if its vertices can be partitioned into k (possibly empty) sets X1, X2, . . . , Xk

such that, for every i ∈ [k], if

M [i, i] = 1, then Xi is a clique and if M [i, i] = 0, then Xi is an independent set, and
for every i, j ∈ [k], i 6= j,

if M [i, j] = 1, then every vertex of Xi is adjacent to all vertices of Xj ,
if M [i, j] = 0, then there is no edges between Xi and Xj .

Note that if M [i, j] = ?, then there is no restriction on the edges between vertices from Xi

and Xj .
For example, for matrix

M =
(

0 ?

? 0

)
the corresponding class of graphs is the class of bipartite graphs, while matrix

M =
(

0 ?

? 1

)
identifies the class of split graphs.

In this section we prove the following theorem.

I Theorem 6. Let G = GM be a graph class described by an M -partition matrix of size 2× 2.
Then Partial Complement to G is solvable in polynomial time.

In particular, Theorem 6 yields polynomial algorithms for Partial Complement to G
when G is the class of split graphs or (complete) bipartite graphs. The proof of our theorem
is based on the following beautiful dichotomy result of Feder et al. [6] on the recognition of
classes GM described by 4× 4 matrices.
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I Proposition 1 ([6, Corollary 6.3]). Suppose M is a symmetric matrix over {0, 1, ?} of size
k = 4. Then the recognition problem for GM is

NP-complete when M contains the matrix for 3-coloring or its complement, and no
diagonal entry is ?.
Polynomial time solvable otherwise.

I Lemma 7. Let M be a symmetric k × k matrix giving rise to the graph class GM = G.
Then there exists a 2k× 2k matrix M ′ such that for any input G to Partial Complement
to G, it is a yes-instance if an only if G belongs to GM ′ .

Proof. Given M , we construct a matrix M ′ in linear time. We let M ′ be a matrix of
dimension 2k× 2k, where entry M ′[i, j] is defined as M [d i2e, d

j
2e] if at least one of i, j is even,

and ¬M [ i+1
2 , j+1

2 ] if i, j are both odd. Here, ¬1 = 0, ¬0 = 1, and ¬? = ?. For example, for
matrix

M =
(

0 ?

? 1

)
the above construction results in

M ′ =


1 0 ? ?

0 0 ? ?

? ? 0 1
? ? 1 1

 .

We prove the two directions separately.
( =⇒ ) Assume there is a partial complementation G⊕ S into GM . Let X1, X2, . . . , Xk

be an M -partition of G⊕ S. We define partition X ′1, X ′2, . . . , X ′2k of G as follows. For every
vertex v ∈ Xi, 1 ≤ i ≤ k, we assign v to X ′2i−1 if v ∈ S and to X ′2i otherwise.

We now show that every edge of G respects the requirements of M ′. Let uv ∈ E(G) be
an edge, and let u ∈ Xi and v ∈ Xj . If at least one vertex from {u, v}, say v is not in S,
then uv is also an edge in G⊕ S, thus M [i, j] 6= 0. Since v 6∈ S, it belongs to set v ∈ X ′2j .
Vertex u is assigned to set X ′`, where ` is either 2i or 2i− 1, depending whether u belongs to
S or not. But because 2j is even irrespectively of `, M ′[`, 2j] = M [i, j] 6= 0.

Now consider the case when both u, v ∈ S. Then the edge does not persist after the
partial complementation by S, and thus M [i, j] 6= 1. We further know that u is assigned to
X ′2i−1 and v to X ′2j−1. Both 2i− 1 and 2j − 1 are odd, and by the construction of M ′, we
have that M ′[2i− 1, 2j − 1] 6= 0, and again the edge uv respects M ′. An analogous argument
shows that also all non-edges respect M ′.

(⇐= ) Assume that there is a partition X ′1, X ′2, . . . , X ′2k of G according to M ′. Let the
set S consist of all vertices in odd-indexed parts of the partition. We now show that G⊕ S
can be partitioned according to M . We define partition X1, X2, . . . , Xk by assigning each
vertex u ∈ X ′i to Xd i

2 e
. It remains to show that X1, X2, . . . , Xk is an M -partition of G⊕ S.

Let u ∈ Xi, v ∈ Xj . Suppose first that uv ∈ E(G⊕ S). If at least one of u, v is not in
S, we assume without loss of generality that v /∈ S. Then uv ∈ E(G) and v ∈ X ′2j . For
vertex u ∈ X ′`, irrespectively, whether ` is 2i or 2i− 1, we have that M ′[`, 2j] = M [i, j] 6= 0.
But then M [i, j] 6= 0. Otherwise we have u, v ∈ S. Then uv is a non-edge in G, and thus
M ′[2i− 1, 2j − 1] 6= 1. But by the construction of M ′, we have that M [i, j] 6= 0, and there is
no violation of M . An analogous argument shows that if u and v are not adjacent in G⊕ S,
it holds that M [i, j] 6= 1. Thus X1, X2, . . . , Xk is an M -partition of G⊕ S, which concludes
the proof. J



XX:8 Partial complementation of graphs

Now we are ready to prove Theorem 6.

Proof of Theorem 6. For a given matrixM , we use Lemma 7 to construct a matrixM ′. Let
us note that by the construction of matrix M ′, for every 2× 2 matrix M we have that matrix
M ′ has at most two 1’s and at most two 0’s along the diagonal. Then by Proposition 1,
the recognition of whether G admits M ′-partition is in P. Thus by Lemma 7, Partial
Complement to G is solvable in polynomial time J

5 Partial complementation to graph classes of bounded clique-width

We show that Partial Complement to G can be solved in polynomial time when G has
bounded clique-width and can be expressed by an MSO1 property. Definitions of clique-
width, k-expressions and MSO1 are found in the appendix. We will use the following result
of Hliněný and Oum [8].

I Proposition 2 ([8]). There is an algorithm that for every integer k and graph G in time
O(|V (G)|3) either computes a (2k+1 − 1) expression for a graph G or correctly concludes
that the clique-width of G is more than k.

Note that the algorithm of Hliněný and Oum only approximates the clique-width but
does not provide an algorithm to construct an optimal k-expression tree for a graph G of
clique-width at most k. But this approximation is usually sufficient for algorithmic purposes.

Courcelle, Makowsky and Rotics [2] proved that every graph property that can be
expressed in MSO1 can be recognized in linear time for graphs of bounded clique-width
when given a k-expression.

I Proposition 3 ([2, Theorem 4]). Let G be a class of graphs of clique-width at most k such
that for each graph G ∈ G, a corresponding k-expression can be found in O(f(n,m)) time.
Then every MSO1 property on G can be recognized in time O(f(n,m)).

The nice property of graphs with bounded clique-width is that their partial complemen-
tation is also bounded. In particular, Kamiński, Lozin, and Milanič in [9] observed that if G
is a graph of clique-width k, then any partial complementation of G is of clique-width at
most g(k) for some computable function g. For completeness, we provide a more accurate
upper bound and sketch the proof (in the appendix).

I Lemma 8 (∗). Let G be a graph, S ⊆ V (G). Then cwd(G⊕ S) ≤ 3cwd(G).

For a class of graphs G we denote by G(1) the class of graphs obtained from graphs in G
by applying a partial complementation.

I Lemma 9. Let ϕ be an MSO1 property describing the graph class G. Then there exists
an MSO1 property φ describing the graph class G(1) of size |φ| ∈ O(|ϕ|).

Proof. We will construct φ from ϕ in the following way: We start by prepending ∃S ⊆ V (G).
Then for each assessment of the existence of an edge in ϕ, say uv ∈ E(G), replace that
term with ((u /∈ S ∨ v /∈ S) ∧ uv ∈ E(G)) ∨ (u ∈ S ∧ v ∈ S ∧ uv /∈ E(G)). Symmetrically,
for each assessment of of the non-existence of an edge uv /∈ E(G), replace that term with
((u /∈ S ∨ v /∈ S) ∧ uv /∈ E(G)) ∨ (u ∈ S ∧ v ∈ S ∧ uv ∈ E(G)).

We observe that if ϕ is satisfiable for some graph G, then for every S ⊆ V (G), the partial
complementation G⊕ S will yield a satisfying assignment to φ. Conversely, if φ is satisfiable
for a graph G, then there exist some S such that ϕ is satisfied for G⊕ S. For the size, we
note that each existence check for edges blows up by a constant factor. J
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We are ready to prove the main result of this section.

I Theorem 10. Let G be a graph class of bounded clique-width which can be expressed in
MSO1. Then Partial Complement to G is solvable in polynomial time.

Proof. Let G be a graph class of clique-width at most k which can be expressed by an MSO1
formula ϕ. Let G be an n-vertex input graph. We apply Proposition 2 for G and in time
O(n3) either obtain a (23k+1 − 1) expression for G or conclude that the clique-width of G is
more than 3k. In the latter case, by Lemma 8, G cannot be partially complemented to G.

We then obtain an MSO1 formula φ from Lemma 9, and apply Proposition 3, which
works in time f(k, φ) · n for some function f . In total, the runtime of the algorithm is
f(k, φ) · n+ n3. J

We remark that if clique-width expression is provided along with the input graphs, and G
can be expressed in MSO1, then there is a linear time algorithm for Partial Complement
to G. This follows directly from Lemma 9 and Proposition 3.

Theorem 10 implies that for every class of graphs G of bounded clique-width characterized
by a finite set of finite forbidden induced subgraphs, e. g. P4-free graphs (also known as
cographs) or classes of graphs discussed in [1], the Partial Complement to G problem is
solvable in polynomial time. However, Theorem 10 does not imply that Partial Comple-
ment to G is solvable in polynomial time for G being of clique-width at most k. This is
because such a class G cannot be described by MSO1. Interestingly, for the related class
G of graphs of bounded rank-width (see [3] for the definition) at most k, the result of Oum
and Courcelle [4] combined with Theorem 10 implies that Partial Complement to G is
solvable in polynomial time.

6 Hardness of partial complementation to r-regular graphs

Let us remind that a graph G is r-regular if all its vertices are of degree r. We consider the
following restricted version of Partial Complement to G.

Partial Complement to r-Regular (PCrR)
Input: A simple undirected graph G, a positive integer r.
Question: Does there exists a vertex set S ⊆ V (G) such that G⊕ S is r-regular?

In this section, we show that Partial Complement to r-Regular is NP-complete by a
reduction from Clique in r-regular Graph.

Clique in r-regular Graph (KrR)
Input: A simple undirected graph G which is r-regular, a positive integer k.
Question: Does G contain a clique on k vertices?

We will need the following well-known proposition.
I Proposition 4 ([7]). Clique in r-regular Graph is NP-complete.

I Theorem 11. Partial Complement to r-Regular is NP-complete.

Proof. We begin by defining a gadget which we will use in the reduction. For integers r > k

such that r− k is even, we build the graph gdgk,r as follows. Initially, we let gdgk,r consist
of one clique on k − 1 vertices, as well as k − 1 distinct copies of Kr,r. These are all the
vertices of the gadget, which is a total of (k − 1) + 2r · (k − 1) vertices. We denote the
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Figure 1 The graph gdgk,r is built of k parts, namely a clique Kk−1, and k−1 complete bipartite
graphs K1

r,r, . . . , Kk−1
r,r with some rewiring.

vertices of the clique c1, c2, . . . , ck−1, and we let the complete bipartite graphs be denoted by
K1
r,r,K

2
r,r, . . . ,K

k−1
r,r . For a bipartite graph Ki

r,r, let the vertices of the two parts be denoted
by ai1, ai2, . . . , air and bi1, bi2, . . . , bir respectively.

We will now do some rewiring of the edges to complete the construction of gdgk,r. Recall
that r− k is even and positive. For each vertex ci of the clique, add one edge from ci to each
of ai1, ai2, . . . , air−k

2
. Similarly, add an edge from ci to each of bi1, bi2, . . . , bir−k

2
. Now remove

the edges ai1bi1, ai2bi2, . . . , air−k
2
bir−k

2
. Once this is done for every i ∈ [k − 1], the construction

is complete. See Figure 1.
We observe the following property of vertices aij , bij , and ci of gdgk,r.

I Observation 2. For every i ∈ [k − 1] and j ∈ [r], it holds that the degrees of aij and bij in
gdgk,r are both exactly r, whereas the degree of ci is r − 1.
We are now ready to prove that Clique in r-regular Graph is many-one reducible to
Partial Complement to r-Regular.
I Algorithm 2 (Reduction KrR to PCrR).
Input: An instance (G, k) of KrR.
Output: An instance (G′, r) of PCrR such that it is a yes-instance if and only if (G, k) is a
yes-instance of KrR.

1. If k < 7 or k ≥ r, solve the instance of KrR by brute force. If it is a yes-instance, return a
trivial yes-instance to PCrR, if it is a no-instance, return a trivial no-instance to PCrR.

2. If r−k is odd, modify G by taking two copies of G which are joined by a perfect matching
between corresponding vertices. Then r increase by one, whereas k remains the same.

3. Construct the graph G′ by taking the disjoint union of G and the gadget gdgk,r. Here, r
denotes the regularity of G after step 2 is performed. Return (G′, r).

Let n = |V (G)|. We observe that the number of vertices in the returned instance is at most
2n+ (k − 1) + 2r · (k − 1), which is O(n2). The running time of the algorithm is O(n7) and
thus is polynomial.

The correction of the reduction follows from the following two lemmata.

I Lemma 12. Let (G, k) be the input of Algorithm 2, and let (G′, r) be the returned result.
If (G, k) is a yes-instance to Clique in r-regular Graph, then (G′, r) is a yes-instance
of Partial Complement to r-Regular.

Proof. Let C ⊆ V (G) be a clique of size k in G. If the clique is found in step 1, then (G′, r)
is a trivial yes-instance, so the claim holds. Thus, we can assume that the graph G′ was
constructed in step 3. If G was altered in step 2, we let C be the clique in one of the two
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copies that was created. Let S ⊆ V (G′) consist of the vertices of C as well as the vertices of
the clique Kk−1 of the gadget gdgk,r. We claim that S is a valid solution to (G′, r).

We show that G′ ⊕ S is r-regular. Any vertex not in S will have the same number of
neighbors as it had in G′. Since the only vertices that weren’t originally of degree r were
those in the clique Kk−1, all vertices outside S also have degree r in G′ ⊕ S. What remains
is to examine the degrees of vertices of C and of Kk−1.

Let ci be a vertex of Kk−1 in G′. Then ci lost its k − 2 neighbors from Kk−1, gained k
neighbors from C, and kept r − k neighbors in Ki

r,r. We see that its new neighborhood has
size k + r − k = r.

Let u ∈ C be a vertex of the clique from G. Then u lost k − 1 neighbors from C, gained
k− 1 neighbors from Kk−1, and kept r− (k− 1) neighbors from G−C. In total, u will have
r− (k− 1) + (k− 1) = r neighbors in G′ ⊕ S. Since every vertex of G′ ⊕ S has degree r, it is
r-regular, and thus (G′, r) is a yes-instance. J

I Lemma 13 (∗). Let (G, k) be the input of Algorithm 2, and let (G′, r) be the returned
result. If (G′, r) is a yes-instance to Partial Complement to r-Regular, then (G, k) is
a yes-instance of Clique in r-regular Graph.

Proof of Lemma 13 is found in the appendix. Lemmata 12 and 13 together with
Proposition 4 conclude the proof of NP-hardness. Membership in NP is trivial, so NP-
completeness holds. J

We remark that if r is a constant not given with the input, the problem becomes polynomial
time solvable by Theorem 4.

7 Conclusion and open problems

In this paper we initiated the study of Partial Complement to G. Many interesting
questions remain open. In particular, what is the complexity of the problem when G is

the class of chordal graphs,
the class of interval graphs,
the class of graph excluding a path P5 as an induced subgraph,
the class graphs with max degree ≤ r, or
the class of graphs with min degree ≥ r
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A Appendix

Clique-width

Let G be a graph and k be a positive integer. A k-graph is a graph whose vertices are labeled
by integers from {1, 2, . . . , k}. We call the k-graph consisting of exactly one vertex labeled
by some integer from {1, 2, . . . , k} an initial k-graph. The clique-width of G, denoted by
cwd(G), is the smallest integer k such that G can be constructed by means of repeated
application of the following four operations on k-graphs: (1) introduce: construction of an
initial k-graph labeled by i and denoted by i(v) (that is, i(v) is a k-graph with v as a single
vertex and label i), (2) disjoint union (denoted by ∪̇), (3) relabel: changing all labels i to j
(denoted by ρi→j), and (4) join: connecting all vertices labeled by i with all vertices labeled
by j by edges (denoted by ηi,j). Using the symbols of these operations, we can construct
well-formed expressions. An expression is called k-expression for G if the graph produced
by performing these operations, in the order defined by the expression, is isomorphic to G
when labels are removed, and the clique-width of G is the minimum k such that there is a
k-expression for G.

For integer k, we say that a graph class G is of clique-with at most k, if the clique-width
of every graph in G is at most k. We also say that a graph class G is of bounded clique-width,
if there is a k such that G is of clique-with at most k.

Monadic Second Order Logic.

MSO1 is the sublogic of MSO2 (Monadic Second Order Logic) without quantifications over
edge subsets. More precisely, The syntax of MSO1 of graphs includes the logical connectives
∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges and sets of vertices, the quantifiers ∀, ∃ that can
be applied to these variables, and the following five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;
2. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is

that the edge d is incident with the vertex u;
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3. adj(u, v), where u and v are vertex variables and the interpretation is that u and v are
adjacent;

4. equality of variables representing vertices, edges, sets of vertices, and sets of edges.

We refer [5] for more information on MSO1 and MSO2.

Missing proofs

Proof of Lemma 8. Let cwd(G) = k. To show the bound, it is more convenient to use
expression trees instead of k-expressions. An expression tree of a graph G is a rooted tree T
with nodes of four types i, ∪̇, η and ρ:

Introduce nodes i(v) are leaves of T corresponding to initial i-graphs with vertices v
labeled by i.
Union node ∪̇ stands for a disjoint union of graphs associated with its children.
Relabel node ρi→j has one child and is associated with the k-graph obtained by applying
of the relabeling operation to the graph corresponding to its child.
Join node ηi,j has one child and is associated with the k-graph resulting by applying the
join operation to the graph corresponding to its child.
The graph G is isomorphic to the graph associated with the root of T (with all labels
removed).

The width of the tree T is the number of different labels appearing in T . If G is of clique-width
k, then by parsing the corresponding k-expression, one can construct an expression tree of
width k and, vise versa, given an expression tree of width k, it is straightforward to construct
a k-expression. Throughout the proof we call the elements of V (T ) nodes to distinguish them
from the vertices of G. Given a node x of an expression tree, Tx denotes the subtree of T
rooted in x and the graph Gx represents the k-graph formed by Tx.

An expression tree T is irredundant if for any join node ηi,j , the vertices labeled by i
and j are not adjacent in the graph associated with its child. It was shown by Courcelle
and Olariu [3] that every expression tree T of G can be transformed into an irredundant
expression tree T ′ of the same width in time linear in the size of T .

Let T be an irredundant expression tree of G with the width k rooted in r. We construct
the expression tree T ′ for G′ = G⊕ S by modifying T .

Recall that the vertices of the graphs Gx for x ∈ V (T ) are labeled 1, . . . , k. We introduce
three groups of distinct labels α1, . . . , αk, β1, . . . , βk and γ1, . . . , γk. The labels α1, . . . , αk and
β1, . . . , βk correspond the the labels 1, . . . , k for the vertices in S and V (G) \ S respectively.
The labels γ1, . . . , γk are auxiliary. Then for every node x of T we construct T ′x using Tx
starting the process from the leaves. We denote by G′x the k-graph corresponding to the root
x of T ′x.

For every introduce node i(v), we construct an introduce node αi(v) if v ∈ S and an
introduce node βi(v) if v /∈ S. Let x be a non-leaf node of T and assume that we already
constructed the modified expression trees of the children of x.

Let x be a union node ∪̇ of T and let y and z be its children.
We construct k relabel nodes ραi,γi

for i ∈ {1, . . . , k} that form a path, make one end-node
of the path adjacent to y in T ′y and make the other end-node denoted by y′ the root of T ′y′
constructed from T ′y. Notice that in the corresponding graph G′y′ all the vertices of S are
now labeled by γ1, . . . , γk instead of α1, . . . , αk.

Next, we construct a union node ∪̇ denoted by x(1) with the children y′ and z. This way
we construct the disjoint union of G′y′ and G′z.
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Notice that the vertices that are labeled by the same label in Gy and Gz are not adjacent
in G. Respectively, we should make the vertices of V (Gx) ∩ S and V (Gy) ∩ S with the same
label adjacent in G′. We achieve it by adding k join nodes ηαi,γi

for i ∈ {1, . . . , k}, forming
a path out of them and making one end-node of the path adjacent to x(1). We declare the
other end-node of the path denoted by x(2) the new root.

Observe now that for the set of vertices Yi of Gy labeled i and the set of vertices Zj of
Gz labeled by j where i, j ∈ {1, . . . , k} are distinct, it holds that the vertices of Yi and Zj
are either pairwise adjacent in G or pairwise nonadjacent. Respectively, on this stage of
construction we ensure that if the vertices of Yi are not adjacent to the vertices of Zj , then
the vertices of Yi ∩ S and Zj ∩ S are made adjacent in G′. To do it, for every two distinct
i, j ∈ {1, . . . , k} such that the vertices of Yi and Zj are not adjacent in G, construct a new
join node ηγi,αj

and form a path with all these nodes whose one end-node is adjacent to
x(2) and the other end-node x(3) is the new root (we assume that x(3) = x(2) if have no new
constricted nodes).

Finally, we add k relabel nodes ργi,αi for i ∈ {1, . . . , k} that form a path, make one
end-node of the path adjacent to x(3) and make the other end-node denoted by x the root of
the obtained T ′x. Clearly, all the vertices of S in G′x are labeled by α1, . . . , αk.

Let x be a relabel node ρi→j of T and let y be its child. We construct two relabel nodes
ραi→αj

and ρβi→βj
denoted by x and x′ respectively. We make x′ the child of x and we

make the root y of T ′y the child of x′.
Now, let x be a join node ηi→j of T and let y be its child. Recall that T is irredundant,

that is, the vertices labeled by i and j in Gy are not adjacent. Clearly, we should avoid
making adjacent the vertices in S in the construction of G′. We do it by constructing three
new join nodes ηαi→βj

, ηαj→βi
and ηβi→βj

denoted by x, x′, x′′ respectively. We make x′ the
child of x, x′′ the child of x′ and the node y of T ′y is made the child of x′′.

This completes the description of the construction of T ′. Using standard inductive
arguments, it is straightforward to verify that G′ is isomorphic to the graph associated with
the root of T ′, that is, cwd(G′) ≤ 3k. J

Proof of Lemma 13. Let S ⊆ V (G′) be a solution witnessing that (G′, r) is a yes-instance.
If (G′, r) was the trivial yes-instance returned in step 1 of Algorithm 2, the statement trivially
holds. Going forward we may thus assume (G′, r) was returned in step 3, and that k ≥ 7.

Because G′ ⊕ S is r-regular, it must be the case that every vertex of Kk−1 is in S, since
by construction these are the vertices which do not have degree r in G′.

We claim that |S| = 2k − 1, and moreover, that no neighbor of Kk−1 is in S. To show
this, we let p = |S \Kk−1|, and proceed to show that p = k. Towards this end, consider
a vertex ci ∈ Kk−1. This vertex has some number of neighbors in S \ Kk−1, denoted
xi = |NG′(ci) ∩ (S \ Kk−1)|. We know that ci has r neighbors in G′ ⊕ S. Let us count
them: Some neighbors are preserved by the partial complementation, namely r − k − xi of
its neighbors found in Ki

r,r. Some neighbors are gained, namely p− xi of the vertices in S.
Thus, we have that r = r− k− xi + p− xi. The r’s cancel, and we get 0 = p− k− 2xi. This
is true for every i ∈ [k − 1], so we simply denote the number by x = xi, and get p = k + 2x.

Towards the claim, it remains to show that x = 0. Because the neighborhoods of distinct
ci and cj are disjoint outside Kk−1, we get that p ≥ (k − 1) · x. We substitute p, and get

k + 2x ≥ (k − 1) · x

k ≥ (k − 3) · x
k

k − 3 ≥ x
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Recalling that k ≥ 7, we have that x is either 1 or 0. Assume for the sake of contradiction
that x = 1. Then without loss of generality, each ci has some neighbor aij which is in S. Since
aij had degree r in G′, it must hold that aij has equally many neighbors as non-neighbors in
S. At most one of aij ’s neighbors is outside of Ki

r,r, this means that at least |S|−3
2 vertices of

Ki
r,r are in S. Because k ≥ 7 and the Ki

r,r’s are completely disjoint for different values of
i ∈ [k − 1], we get that

|S| ≥ |S| − 3
2 · (k − 1) ≥ |S| − 3

2 · 6

|S| ≥ 3 · |S| − 9

9 ≥ 2 · |S|

Seeing that |S| ≥ k− 1 ≥ 6, this is a contradiction. Thus, x must be 0, so p = k+ 2x = k

and the claim holds.
We now show that S \Kk−1 is a clique in G′. Assume for the sake of contradiction it is

not, and let u, v ∈ S \Kk−1 be vertices such that uv /∈ E(G′). Consider the vertex u. By the
above claim we know that u does not have a neighbor in Kk−1. It will thus gain at least k
edges going to Kk−1∪{v}, and lose at most k−2 edges going to S \ (Kk−1∪{u, v}). Because
u was of degree r in G′ yet gained more edges than it lost by the partial complementation,
its degree is strictly greater than r in G⊕ S. This is a contradiction, hence S \Kk−1 is a
clique in G′.

Because k ≥ 3, the clique S \Kk−1 can not be contained in the gadget gdgk,r nor span
across both copies of G created in step 2 of the reduction (if that step was applied). It must
therefore be contained in the original G. Thus, G has a clique of size k, and (G, k) is a
yes-instance of Clique in r-regular Graph. J
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