A. Blanché, K. Dabrowski, M. Johnson, V. Vadim, D. Lozin et al., Clique-width for graph classes closed under complementation. CoRR, abs/1705.07681, 2017.

B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, vol.33, pp.125-150, 2000.

B. Courcelle and S. Olariu, Upper bounds to the clique width of graphs, Discrete Applied Mathematics, vol.101, issue.1-3, pp.77-114, 2000.

B. Courcelle and S. Oum, Vertex-minors, monadic second-order logic, and a conjecture by seese, J. Combinatorial Theory Ser. B, vol.97, issue.1, pp.91-126, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00334147

P. Bruno-courcelle and D. Engelfriet, Graph Structure and Monadic SecondOrder Logic: A Language-Theoretic Approach, 2012.

T. Feder, P. Hell, S. Klein, and R. Motwani, List partitions, SIAM Journal on Discrete Mathematics, vol.16, issue.3, pp.449-478, 2003.

R. Michael, D. S. Garey, and . Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, 1979.

, Petr Hlinený and Sang-il Oum. Finding branch-decompositions and rank-decompositions, SIAM J. Computing, vol.38, issue.3, pp.1012-1032, 2008.

M. Kami?ski, V. Vadim, M. Lozin, and . Milani?, Recent developments on graphs of bounded clique-width, Second Workshop on Graph Classes, Optimization, and Width Parameters, vol.157, pp.2747-2761, 2009.

, ? U where u is a vertex variable and U is a vertex set variable

F. V. Fomin, P. A. Golovach, T. J. Strømme, D. M. Thilikos, and X. X. , , p.13

, where u and v are vertex variables and the interpretation is that u and v are adjacent

, equality of variables representing vertices, edges, sets of vertices, and sets of edges