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Abstract—Accurate evaluation of Ultra Low Power Systems
on Chip (ULP SoC) is a huge challenge for designers and
developers. In embedded applications, especially for Internet
of Things end-node devices, ULP SoCs have to interact with
their environment and need self-management. For this kind of
applications, modelling a complete SoC, including processor(s),
memories, all the peripherals components, their interaction and
low-power policies, can be very complex in terms of developments
and benchmarking. In order to cope with this challenge, an
approach is to implement the desired system on FPGA with
a monitoring infrastructure dedicated to fast and accurate
performance evaluation. In this paper, we propose a set of
different tools used during the evaluation step that can also
be easily implemented on the final product and used by the
system itself for self-assessment to enable adaptive behaviour.
Illustrated by a simple architecture implemented on an FPGA-
based platform, this method brings flexible, cycle accurate, fast
and reliable performance evaluation and self-evaluation, with the
possibility to use the platform for low-cost prototyping.

Index Terms—FPGA, Cortex-M0, performance evaluation, cy-
cle accurate, self-monitoring

I. INTRODUCTION AND RELATED WORKS

Nowadays, embedded systems are widely used in various
domains, and many applications set constraints for designers
and developers in terms of performance, energy consumption
and security. The permanent need of a smaller, energy effi-
cient SoCs leads to explore new technologies, architectures
and techniques at every levels of the development of these
systems. To perform good design space exploration with these
new technologies and methodologies, it is very important to
make fine-grained accurate evaluations of these new designs.
However, most of the current available tools for design space
exploration target high performances systems.

There are different methods and tools used for performance
evaluation: RTL simulation, Instruction Set Simulator (ISS),
Cycle Accurate Model (CAM), hardware evaluation. RTL
simulation allows following each signal of a design and so
to make a fine-grained evaluation of it, unfortunately, this
method is slow. ISS is faster than RTL simulation, but it only
reproduces the design in a functional way: it is not accurate
[1] and not exempt from bugs. CAM is a good solution
for software evaluation of processors. It is faster than RTL
simulation and more accurate than ISS. However, there are
still some issues by using these tools: it requires that a current
CAM exists for the targeted processor (for example, ARM

does not provide a CAM for its Cortex-M0 processor yet), and
some signals that could be useful for design space exploration
are not available at the CAM output. When performing design
simulation, the more accurate the solution is, the slower it is
[2]. Moreover, in an embedded application context (especially
for IoT applications), the final product has to interact with
its environment (directly or via other components) and these
interactions may be hard to reproduce by software simulation.

Some of the processors designed for ULP SoCs include
trace modules. They are powerful tools used for code analysis
and optimization. Trace tools are accurate and are able to
stream out executed instructions, which can be used for activ-
ity analysis. [3] shows how to use the embedded trace module
of a Cortex-M4 based product to retrieve accurate performance
data and check the accuracy of an emulator. However, every
processor does not always include such tools, and even if
the processor vendor offers this option, the manufacturer may
include it or not. In addition, these tools are centred on the
processor and dedicated to software purposes.

When looking at high performance processors, some of
them include a Performance Monitoring Unit (PMU) used for
performance analysis. A PMU includes a set of counters that
can be programmed to capture events. The counters values
are then read by software to make a performance analysis [4].
If PMUs are great tools for software optimization, they can
also be used for adaptive behaviours. [5] demonstrates how it
is also possible to create a power monitor by using a PMU
and a power model of the processor. However, the number
of hardware counters is limited and the available events are
centred on the processor.

Another way to perform evaluation of a design is to im-
plement it on FPGA including monitoring probes: [6] shows
an implementation of a PMU in an FPGA-based LEON3
platform, but the presented solution is also centred on the
processor.

Using an FPGA-based platform, every signal of the imple-
mented design is reachable, like RTL simulation but while
running at higher speed. Monitoring tools can be designed
and dedicated to the studied parts, and custom modules can be
added in the design. Also, a lot of ULP processors run at a low
frequency (generally below 200 MHz), so it is possible to run
applications at real time and enable interactions with external
products (like sensors or radio modules for IoT applications).
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That is why we decided to use an FPGA for design space
exploration of ULP SoC.

The work we present in this paper is part of a project
that aims the exploration of new technologies for ULP SoC.
Section II introduces our design space exploration flow using
an FPGA-based platform. To illustrate our work, we have
implemented a ARM Cortex-M0 based architecture, presented
in Section III, which includes an activity monitor that will
capture the events related to the system memory. In Section IV
we show how this activity monitor is controlled by software
to obtain data about a selected portion of code. Finally, we
present in Section V an example of energy consumption esti-
mation of a 28-nm FDSOI SRAM with the EEMBC CoreMark
and a set of encryption algorithms.

II. EVALUATION FLOW

Fig. 1 presents the exploration flow used in this work.
The specifications of the final system define the software and
hardware needs. From the hardware definition, we create an
RTL design of the desired system that will run on an FPGA-
based platform. Simulations are done for unitary validations
to ensure that the behaviour of each block matches the one
desired.

Power consumption models are generated from hardware
simulation results and/or real hardware implementation mea-
surements. As some events are more representative of the
energy consumption of a hardware block than others, they
will be captured by a dedicated activity monitor included in
the system. The energy consumption is then estimated from the
report of this activity monitor and power consumption models
of each studied block. The signals that will be captured by
the monitor are identified and selected regarding their function
and their correlation with the energy consumption. They can
be identified by using data mining methods.

As the activity monitor is included in the system, the
models can be integrated in the application code to enable
self-evaluation by the device itself, and then provide adaptive
behaviours.

III. ARCHITECTURE OVERVIEW

The benchmarks used for this evaluation (presented in
Section V) do not need any specific hardware features other
than a CPU and a memory (for code and data), that is why
the system implemented on the FPGA board is simple.

As the ARM Cortex-M processors are widely used in ULP
SoC, we decided to use one as the processor of our system
so we can use existing products as references for performance
evaluation comparison. In addition, Cortex-M0 and Cortex-M3
are available with the ARM DesignStart program.

The architecture used here in Fig. 2 is composed of the
ARM DesignStart Cortex-M0 r1p0 processor, a 2 kB ROM
(containing a bootloader code), a 128 kB RAM (used for code
and data), some peripherals for Input/Output control and serial
communication (UART), a Reset and Clock control block
and the minimal AMBA3 AHB-Lite single-master system

Fig. 1. Evaluation flow

Fig. 2. Block diagram of the architecture

configuration as described in [7]: a default slave, an address
decoder and a bus multiplexor.

The peripheral called Monitor is used to report events and
will serve as basis for the design exploration flow.

A. ARM Cortex-M0 processor

The Cortex-M0 is a 3-stage, 32-bit RISC processor which
implements the ARMv6-M ISA. It includes a single AHB-Lite
interface, 32 interruption lines (r1p0 only), 1 Non-Maskable
Interrupt (NMI) and a single-cycle multiplier (r1p0 only).



Fig. 3. Monitor block diagram

The ARM DesignStart Cortex-M0 r1p0 is a fixed con-
figuration of the Cortex-M0 processor, it is delivered as a
netlist synthesizable on FPGA. However, this version does not
include debug modules nor low power mode.

B. Activity Monitor

The activity monitor is a set of counters used to capture
events. Its architecture is based on the principle of PMU, as
described in Fig. 3.

The activity monitor is designed to capture the following
events related to the memory:

• Number of cycles
• Number of executed instructions
• Number of instruction fetches
• Number of RAM read accesses
• Number of RAM write accesses
The activity monitor is connected to the AHB-Lite bus

system, and can be accessed by the processor as a peripheral.
By connecting it to the main bus, it is possible to start, stop
and reset the counters by software using a control register.
Activity monitoring can be performed for a selected portion
of code without adding external control hardware.

For cycle counting, a simple counter, always enabled, is
used. The instruction counter is incremented each time the
program counter (PC) changes. The RAM counters are in-
cremented when a valid RAM access is detected. As it uses
the same physical bus as the RAM, the Activity Monitor use
its own bus interface to detect RAM operations (Instruction
fetches, data reads and writes with different sizes). If the
monitor was on a different bus (which could have been the
case in a multi-master architecture), the corresponding RAM
bus interface signals would have been simply routed to the
monitor.

RAM accesses can be detected when the following logic
condition is respected:

RAMAccess = HSEL[RAM ] ·HREADY ·HTRANS[1]

Where HSEL[RAM] is the select line assigned to the RAM
(active high), HREADY, when high, indicates that the previous

Fig. 4. AHB-Lite read and write sequences. Cycle (1): address phase A.
Cycle (2): data phase A, address phase B. Cycle (3): data phase B

transfer is completed, and HTRANS[1] indicates a transfer
request when high.

There are counters used for each RAM transfer type:
instruction fetch counter, data read counter, and data write
counters. To determine the type of a transfer, the monitor
look at two signals: HPROT[0], indicating if the transfer
is an instruction fetch (low) or a data transfer (high), and
HWRITE, which indicates the transfer direction (read when
low, write when high). Fig. 4 shows an example of the AHB-
Lite protocol, with a read transfer followed by a write transfer.

An instruction fetch occurs when the following logic con-
dition is respected:

RAMFetch = RAMAccess ·HPROT [0] ·HWRITE

A RAM read access is defined by:

RAMRead = RAMAccess ·HPROT [0] ·HWRITE

A RAM write access is defined by:

RAMWrite = RAMAccess ·HPROT [0] ·HWRITE

As the Cortex-M0 supports 8, 16 and 32-bit write opera-
tions, 3 counters can be used. The HSIZE[2:0] vector indicate
the size of the transfer.

RAM8bitWrite = RAMWrite · (HSIZE = “000”)
RAM16bitWrite = RAMWrite · (HSIZE = “001”)
RAM32bitWrite = RAMWrite · (HSIZE = “010”)

The other values of HSIZE, from “011” (64-bit transfer) to
“111” (1024-bit transfer) are allowed by the protocol, but are
not supported by this system.

Each counter is 32-bit wide. The size of the counters
depends on the desired use. 32-bit counters will overflow after
86 seconds at 50 MHz (ARM gives 50 MHz as the maximum
frequency supported by the Cortex-M0 processor).

C. Extra peripherals

Some extra peripherals were added to the system: Reset and
Clock management, Input/Output control blocks (General Pur-
pose Inputs and Outputs (GPIO) and Peripheral Pin Selection



Fig. 5. Memory mapping

(PPS)) and serial interfaces (UART) to allow communications
between the system and a computer.

More peripherals could be added to create a full prototyping
platform (Timers, Inter-Integrated Circuit bus (I2C), Serial
Peripheral Interface (SPI) for example).

D. Memory organization

To make accessible and manageable the monitor by the
software, the monitor is connected to the system bus with
a standard AHB-Lite interface, and is viewed as a classic
peripheral. A memory region is assigned to the monitor to
access the control register and the counters value.

To simplify application code loading on the board, a boot-
loader code is present in a small ROM in the FPGA. The boot
memory region at address 0000 0000h is remapped to ROM
or RAM regarding a configuration register of the Reset and
Clock Control peripheral (RSTCLK).

IV. SOFTWARE INTERFACE

The memory mapping of the system is presented in Fig. 5.
The bootloader code inside ROM is used for loading the
application code without extra hardware nor regenerating the
bitstream. The application code is sent to the platform by the
computer with a software written in Python. The bootloader
code changes the memory mapping after writing the appli-
cation code inside the memory and then performs a software
reset. The boot memory mapping is selected by using the Reset
and Clock Control block.

If a hardware reset occurs when the application is running,
the system will restart with the bootloader code. If a code was
previously loaded, it restarts with this code after 1 second if
no new code is sent to the bootloader.

When running, the application code initializes the platform,
runs code and performs monitoring by using the activity

Fig. 6. Basic system initialization and run sequence

monitor. Then, it retrieves the monitor’s counter values and
can share them or process the results.

Fig. 6 shows the basic sequence to perform activity moni-
toring on a portion of code.

As previously described in Section III, the software can
control the activity monitor by writing into its control register,
like the others peripherals. However, depending the imple-
mentation and the software optimization, this operation may
add few extra cycles, instructions and RAM accesses to the
counters.

V. EXPERIMENTAL RESULTS

A. Resources

The system presented in Section III is not a very complex
one. The Cortex-M0 is the most important part of this design
(in term of size) and this is still a small processor. The Cortex-
M0 also set the (theoretical) maximum frequency to 50 MHz.

We choose a small, low-cost FPGA-based circuit, large
enough for our system and its future evolutions, and which can
easily be put on breadboards or on printed circuits to create
a low-cost prototyping platform for ULP embedded devices:
the Digilent Cmod A7.

The Digilent Cmod A7 is a small, 48-pin DIP form factor
board built around a Xilinx Artix-7 FPGA. The Cmod A7 35T
use a Xilinx XC7A35T-1CPG236C FPGA, which has 20 800
LUTs, 41 600 Flip-Flops, 225 kB of RAM and 1 MSPS ADC.
The board includes a USB-JTAG programming circuit, a USB-
UART bridge, a 12 MHz clock source, a 512 kB CSRAM and
a 4 MB Quad-SPI Flash. As it uses a single USB port for both
FPGA programming and UART bridge, no extra hardware is
required for communication.



Synthesis is done using Vivado 2017.4 Synthesis tool, with
Vivado default pre-set. Implementation is also done is done
using Vivado 2017.4 Implementation tool, still with Vivado
default pre-set. The Table I shows the resources utilization for
the whole implementation and the resources utilization of the
Cortex-M0 and the Activity Monitor.

TABLE I
RESOURCES UTILIZATION

Full system
Site Type Used Available Ratio
Slice LUTs 4 030 20 800 19.38 %

Slice registers 1 992 41 600 4.79 %

Block RAM Tile 32.5 50 65.00 %

Cortex-M0
Site Type Used Available Ratio
Slice LUTs 2 997 20 800 14.41 %

Slice registers 890 41 600 2.14 %

Block RAM Tile 0 50 0.00 %

Activity Monitor
Site Type Used Available Ratio
Slice LUTs 200 20 800 0.96 %

Slice registers 306 41 600 0.74 %

Block RAM Tile 0 50 0.00 %

B. Hardware reference

To validate the designed system and to ensure that future
evaluations using this platform are reliable, a comparison to
a commercial circuit was made. The STM32F072 Nucleo-64
board from STMicroelectronics is used as hardware reference.
The STM32F072RBT6 microcontroller of this board includes
a Cortex-M0, a 128 kB Flash and a 16 kB RAM.

For this microcontroller, the Flash memory has no wait state
under 24 MHz [8]. Above 24 MHz, the Flash is not able to
provide data on time and one latency cycle must be added to
ensure that timings constraints are respected. As this wait state
will have an impact on time execution, the test will be done
at a frequency where the Flash memory can be read as fast as
the RAM (12 MHz for this test). Even if some accelerators are
available to fetch code from Flash faster, wait states may still
be inserted during branches and constant data reads. Another
way to avoid this issue is to execute code directly from RAM.

For timing measurement, an internal timer is used. It is con-
figured to provide time without generating interrupts during
the code execution, but the measure may be impacted when
retrieving time (at the beginning and the end of the test code),
as the timers do not have the same implementation on the
STM32F072 and our system on FPGA.

C. Runtime verification

Both platforms (Cmod A7 and STM32F072 Nucle-64) run
the test applications at 12 MHz. Both codes are compiled
with gcc-arm-none-eabi 6.3.1 build 20170620 compiler, with
optimization flag -O3. Some code is added before and after
each test code to initialize the platforms and send information.

Four application codes were tested to validate the imple-
mentation of the system: EEMBC CoreMark, and software
implementation of AES, GIFT ([9]) and PRESENT ([10])
encryption algorithms. For EEMBC CoreMark, ARM recom-
mends a minimum execution time of 30 seconds [11] to obtain
valid results, which can be reached with 700 iterations in this
configuration.

Table II presents the results for each test code.

TABLE II
RUNTIME RESULTS

Settings
Platform Cmod A7-35T STM32F072 Nucleo-64

Hardware XC7A35T-1CPG236C STM32F072RBT6

CPU DesignStart Cortex-M0 Cortex-M0

Frequency 12 MHz 12 MHz

Compiler GCC 6.3.1 20170620 GCC 6.3.1 20170620

Flags -O3 -O3

Code location RAM Flash

CoreMark
Iterations 700 700

Runtime (ms) 31 740 31 740

CoreMark 22.054 22.054

CoreMark/MHz 1.838 1.838

AES - 128-bit key, 128-bit data, 11 rounds
Iterations 10 000 10 000

Runtime (ms) 7 278 7 278

GIFT - 128-bit key, 64-bit data, 28 rounds
Iterations 1 000 1 000

Runtime (ms) 4 262 4 262

PRESENT - 128-bit key, 128-bit data, 31 rounds
Iterations 1 000 1 000

Runtime (ms) 4 870 4 870

Both platforms run each software (CoreMark, AES, GIFT
and PRESENT) in the same time, In addition they have the
same score of 1.838 CoreMark/MHz. This test validates that
the Cortex-M0 based system is correctly implemented on the
Cmod A7 board.

D. Activity Monitor reports

The activity monitor starts after system initialization, just
before starting test code iterations (when calling the start time
function for CoreMark code), and stops after the last iteration
(when calling the stop time function for CoreMark code). As
example, Table III shows the results obtained after returning
from the CoreMark main function.

The following formula verifies that the number of cycles
matches the execution time:

NumberOfCycles/Frequency = RunTimeInSecs
380883509/12000000 = 31.740292

In this report, the number of instruction is not equal to the
number of cycles (44.9 % more cycles). This is due to multi-
cycles instructions (loads, stores, branches...).



TABLE III
REPORT FOR COREMARK

Value after 700 iterations Average for 1 iteration
Cycles 380 883 509 544 119

Instructions 262 804 036 375 434

Fetches 176 819 289 252 599

Reads 44 484 235 63 549

Writes (total) 12 839 653 18 342

8-bit Writes 243 600 348

16-bit Writes 504 791 721

32-bit Writes 12 091 262 17 273

The Cortex-M0 uses mostly 16-bit instructions from the
Thumb 2 ISA, and uses few 32-bit instructions. In addition,
when a branch occurs, the previously fetched code waiting to
be executed is lost. That is why the number of fetches does not
match the half of the number of executed instructions (as there
are mostly 16-bit instructions, 2 instructions can be fetched in
one read).

These results also show that a cycle accurate model which
takes account of all penalties (wait states, multi-cycles in-
structions, code fetched lost after branches, etc...) is required
for accurate performance evaluation (of a Cortex-M0 based
system in this case).

We can now use these results to make a comparison of the
different encryption algorithms (Fig. 7). For example, Fig. 8
shows an energy consumption estimation of the memory, using
values of a 16 kB SRAM in 28-nm FDSOI from [12].

Fig. 7. Results for software implementation of AES, GIFT and PRESENT
(average for 1 iteration)

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have presented an FPGA-based platform
for fast, real-time, accurate and low cost evaluation of ULP
SoC. We have demonstrated, on CoreMark and ciphers bench-
marks, that this approach was fully reliable for the given
purpose as the obtained results are comparable to commercial
products: the performance assessment is done in real-time with
an accuracy close to 100 %. Furthermore, the activity monitor
can be exploited for architecture optimization and exploration

Fig. 8. Memory energy consumption repartition (average for 1 iteration)

purposes, as demonstrated with RAM energy consumption
estimations. By allowing interactivity with its environment,
the platform used here can serve as a controller for embedded
system prototyping. If the activity monitor we presented is
designed for RAM evaluation, it can be easily customized
and adapted as wished. The flexibility provided by the FPGA
makes possible to capture events that could not be available in
a software model, with an accuracy similar to RTL simulations
but with real time execution.
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