N
N

N

HAL

open science

Model-Free Control of the Inertia Wheel Inverted
Pendulum with real-time Experiments
Ahmed Chemori

» To cite this version:

Ahmed Chemori. Model-Free Control of the Inertia Wheel Inverted Pendulum with real-time Exper-
iments. The Inverted Pendulum in Control Theory and Robotics: From Theory to New Innovations,

Chapter 5, pp.119-134, 2017, 978-1-78561-320-3. 10.1049/PBCE111E_ch5 . lirmm-01891582

HAL Id: lirmm-01891582
https://hal-lirmm.ccsd.cnrs.fr /lirmm-01891582
Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-01891582
https://hal.archives-ouvertes.fr

Chapter 5

Model-Free Control of the Inertia Wheel
Inverted Pendulum with real-time Experiments

Ahmed CHEMORI

5.1 Introduction

The inertia wheel inverted pendulum belongs to the class of underactuated mechan-
ical systems [12] [10] [22]. These systems are characterized by less control inputs
than degrees of freedom, meaning that they have at least one unactuated general-
ized coordinate. Underactuation in these systems has two main sources, the first one
is intentionally, i.e. decided in the design stage to minimize the cost, the weight,
consumption, etc. The second is non-intentionally, where a fully actuated mechani-
cal system can become underactuated after the deficiency of one or more actuators.
Underactuated mechanical systems are characterized by a high nonlinear coupling
between actuated and unactuated coordinates [7], and an internal dynamics which is
often unstable (i.e. non minimum phase Systems [2]). In the real world many ex-
amples of such systems exist, they include, among others, Inverted pendulums [21]
[18], under-actuated robot manipulators [6], gymnast robots [31] [23], undersea ve-
hicles [17], aircrafts [26], and some mobile robots [20].

The inertia wheel inverted pendulum [34] is a benchmark for nonlinear control of
underactuated mechanical systems. I has attracted the attention of many researchers
within control community. Indeed, different control solution have been proposed in
the literature these last decades. In [1], strong damping force on the inertia wheel
is taken into account in the design of the controller. The stabilization is achieved
via nested saturation based controller. [19] solves the limit cycles generation prob-
lem on the inertia wheel pendulum using virtual holonomic constraints. Real-time
experiments were carried out showing the robustness of the proposed approach. In
[27], collocated partial feedback linearization was performed to exhibit the nonlinear
core subsystem which is stabilized using an implicit control. The remaining subsys-
tem is stabilized using multiple sliding mode control technique. In our previous
work [4] [5], non-collocated partial feedback linearization is used; this gives rise to
an unstable internal dynamics, which is stabilized using trajectory optimization and
model-based error estimation. In [36] a generalized predictive controller is proposed
for the stabilization of the inertia wheel inverted pendulum. In [9], the proposed
control solution deals with external disturbance rejection in passivity based control
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2 Model-Free Control of the Inertia Wheel Inverted Pendulum

of the inertia wheel inverted pendulum. All the above mentioned techniques require
knowledge of the system dynamics and parameters, furthermore only [19] [4] [3]
[36] [9] present real-time experiments as a validation on a prototype of the inertia
wheel inverted pendulum.

In this chapter, we propose to design a control scheme based on model-free tech-
nique to deal with underactuation in stable limit cycle generation. In order to achieve
stable limit cycles on both coordinates of the inertia wheel inverted pendulum, we
first design a family of p-parameterized periodic trajectories for the pendulum’s an-
gle. Those trajectories are then tracked using the control input thanks to a classical
model-free controller [15] [8]. Since the system is underactuated and non-minimum
phase, a second controller is needed to update the parameter p of the above trajec-
tories in order to deal with the convergence of the internal dynamics of the system.
To achieve this control, we propose a second model-free controller using actuated
coordinate (inertia wheel) as output and trajectories’ parameter p as control input.
Note that this control scheme can be easily applied to the stabilization case by care-
fully choosing appropriate trajectories. Numerical simulations as well as real-time
experiments are presented to show the effectiveness of the proposed control scheme
and its ability for external disturbances rejection.

The rest of this chapter is organised as follow. In Section 5.2 the experimental plat-
form of the inertia wheel inverted pendulum is presented, with a description of its
main components. Then, the proposed control solution is described in section 5.3
for the general case of underactuated mechanical systems. Section 5.4 is devoted
to the application of the proposed control scheme to the case of inertia wheel in-
verted pendulum. Numerical simulations are introduced in section 5.5, where a first
validation of the proposed control solution is illustrated. In section 5.6, real-time
experimental results are presented and discussed. Finally section 5.7 is devoted to
some concluding remarks.

5.2 Description of the system: Inertia wheel inverted pendulum

The testbed of the inertia wheel inverted pendulum system is shown in Figure 5.1,
with its different components. It consists of three main parts:

e the mechanical part,
e the electronic part, and

e the computer (control PC).

These three main parts will be described in the following.
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Figure 5.1: View of the testbed of the inertia wheel inverted pendulum system

5.2.1 Description of the mechanical part of the system

The mechanical part of the inertia wheel inverted pendulum is shown in Figure 5.2,
which consists of an inverted pendulum equipped with an actuated rotating wheel.
The joint between the pendulum body and the frame is unactuated whereas the joint
between the pendulum body and the wheel is actuated by a Maxon EC-powermax 30
DC motor.

inclinometer

pendulum body

inertia wheel
active joint

passive joint

frame

Figure 5.2: View of the mechanical part of the inertia wheel inverted pendulum

The pendulum angle g,, (with respect to the vertical) is constrained to remain within
the interval [—10°,410°] due to mechanical stops (cf. Figure 5.2).
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5.2.2 Description of the electronic part of the system

The actuator of the system is a Maxon EC-powermax 30 DC motor, equipped with
an integrated incremental encoder allowing the measurement in real-time of the iner-
tia wheel angular position. To measure the angle of the pendulum with respect to the
vertical, the system is equipped with an inclinometer FAS-G of Micro strain. The
electronic part of the testbed includes also a MAGMA driver to control the DC motor
with a power up to to 200 W, a DC power supply and an I/O interface card. These
components are visible on Figure 5.1 of the testbed.

5.2.3 Description of the control PC and software

As illustrated in Figure 5.1, the whole system is controlled with a computer equipped
with a 2.4 GHz microprocessor. The control software is implemented using C++ lan-
guage, and the whole system is running under Ardence RTX (Real-Time Extension
for Windows) operating system. The computer is the heart of the control system, it
is connected to the I/O interface card to communicate with the physical system.

5.3 A Proposed control solution for underactuated systems

In this section, the proposed control scheme is detailed. The main idea is to develop
a control architecture based on model-free control for tracking of reference periodic
trajectories while keeping stable the internal dynamics of underactuated mechanical
systems.

5.3.1 Brief background on model-free control

Model-free control strategy has been initially proposed in [15, 8] resulting in a break-
through in nonlinear control. This technique is based on previous results on fast esti-
mation and identification of nonlinear signals [16, 24]. The control scheme is based
on local linear approximation of the controlled system dynamics which is valid for
a small time window. This approximation is updated in an online fashion thanks to
a fast estimator. The control law proposed consists in a PID controller augmented
with compensating terms provided by online estimation of the system dynamics. The
overall controller is also called i-PID (standing for intelligent PID). Comparison of
such a controller with classical PID controller can be found in [11]. The main ad-
vantage of this control strategy is that it doesn’t require neither prior knowledge of
the system dynamics, nor complex parameters tuning. Consequently, it can be easily
applied to controller unknown systems. Some efforts have been made for two par-
ticular cases of underactuated systems: the ball and beam [14] (where the dynamics
of the beam has not been taken into account) and the Planar Vertical Take Off and
Landing (PVTOL) aircraft [28] where the addressed control problem is limited to
stabilization.
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For the sake of simplicity, we present in the following model-free control for a
Single-Input Single-Output (SISO) nonlinear systems.

5.3.1.1 Nonlinear dynamics

Consider a nonlinear system with unknown dynamics. The input-output behavior of
the a system can be expressed in the following general form as an ordinary differen-
tial equation (ODE):

E(y,y,...7y(a)7u,u,...7u<b)):0 (5.1)

Given that this finite dimensional ODE is smooth enough, it can be approximated for
a short time-window by the following simplified model:

YW =F+au (5.2)

The derivation order v and the constant parameter o € R can be arbitrarily choosen
by the designer. In model-free control litterature, v is generally choosen to be 1
or 2. The non-physical constant & is a design parameter. F € IR captures all the
unknown nonlinearities in the input-ouput behavior and can be compensated in the
control law. Since equation (5.2) is valid for a short time window, it must be updated
at each sample time. Therefore, the value of F is updated from the measurement of
u and yV) in the following manner:

[F(k)]e = ™) (k)]e — ou(k — 1) (5.3)

where [F (k)] is the estimated value of F at sample time k which will be used for the
computation of the control input u(k). [y(*)(k)], is the estimated value of the v-th
derivative of the output y at discret time k and u(k — 1) is the control input previously
applied at discret time k — 1. The value of F' can be initialized to O at initial time
k=0.

5.3.1.2 The control law

Given numerical knowledge of F' (based on estimation) expressed by equation (5.14),
the control input may cancel the unknown nonlinearities and add compensating terms
corresponding to a closed-loop tracking of a given reference trajectory y*(¢) using
a conventional PID controller resulting in an inteligent-PID (often referred to as i-
PID):

1

where y*("> is the v-th derivative of the reference trajectory y*. K, K;, K, are the
PID feedback gains, e = y* —y is the output tracking error, and ¢ is its first time-
derivative. The tuning of the PID feedback gains can be performed using poles
placement techniques since all nonlinearities are supposed to be canceled. It is no
longer necessary to perform complex system identification [13, 14]. If v = 1 the PID
controller reduces to a PI controller since the first derivative of output y is taken into
account in the estimation of F in equation (5.14).
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5.3.2  Proposed control solution

In our case, we are interested in tracking of periodic reference trajectories for sta-
ble limit cycles generation on under-actuated mechanical systems (mainly known
as nonlinear and non-minimum phase) and particularly the inertia wheel inverted
pendulum. In order to simplify our presentation of the control problem as well as
the proposed solution, let as focus on 1-input 2-degree of freedom underactuated
mechanical systems (these are the minimum dimensions for a system to be underac-
tuated) without loss of generality. The dynamics of such systems takes the following
lagrangian matrix form [29, 33]:

M(q)G+H(q,q) +G(q) = Ru (5.5

where M € R?>*? is the inertia matrix of the system, g € R? is the vector of general-
ized coordinates. ¢, § € R? are respectively their first and second time-derivatives.
H € R? is a vector of centrifugal and Coriolis forces and G € R? is a vector of grav-
itational terms. u € R is the control input and R € R?>*! is a matrix distributing the
effects of u on the generalized coordinates of the system. Consider the following
partition ¢ = [q4,qna)” of the vector of generalized coordinates, where g, is the actu-
ated coordinate and gy, is the unactuated one, then equation (5.5) may be rewritten
as:

m1(q)da +mi2(q)ina+h1(q,4) +81(q) = u (5.6)
m21(q)Ga +m22(q)Gna +h2(q,q) +82(9) = 0 5.7
with :

M— {mn m12:| . H= {hl] . G= [81]
my1 My hy 82
We suppose that the state of the system is the vector [¢4 Gna da Gna]” -

Our goal is to generate stable limit cycles on both actuated and unactuated coordi-
nates of the underactuated mechanical system described by equations (5.6)-(5.7).

5.3.2.1 Basic principle of the proposed control scheme

A family of p-parameterized t-periodic reference trajectories ¢’,(p, 7,t) should be
defined for the unactuated coordinate. Those trajectories should have the same
boundary conditions for all p values, allowing the controller to switch from one
trajectory to another while keeping the overall trajectory smooth. Thanks to the
dynamic coupling existing between the actuated and unactuated coordinates of the
system, it is possible to control the unactuated coordinate using the control input
u (i.e. the torque on the actuated coordinate) which allows those trajectories to be
tracked on the unactuated coordinate ¢,, using the control input u.

Indeed, the dynamics (5.6)-(5.7) can be rewritten in a form with a relation between
unactuated coordinate and control input [30]. First, equation (5.6) is solved for ¢, 1.

Ga = mfll (_m12QI1a —hi—g1+ M) . (5.8

'for clarity reasons the dependency in g and ¢ of the involved terms is omitted in the adopted notation.
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Injecting this solution in equation (5.7) leads to:
Ming + 2 +3, = —may mﬂlu (5.9)

— -1 7 —1 - —1
where ny = mpp — mphty | mp2, h2 = h2 —maimy, hl and & =82 —ma1m 41.

Based on the resulting dynamics (5.9), involving a relationship between gy, and u,
a model-free controller can then be designed to perform the tracking of reference
trajectories on unactuated coordinate g,, using the control input . However, since
the internal dynamics of the system is unstable (the inertia wheel is a non-minimum
phase underactuated mechanical system), even a perfect tracking of these trajecto-
ries cannot guarantee the stability of the internal dynamics of the system (i.e. the
inertia wheel dynamics). Consequently a second controller is needed to manage the
stability of the system’s internal dynamics.

Indeed, the closed-loop system dynamics can be obtained by substituting u in equa-
tion (5.6) by its value taken from equation (5.7). This requires the invertibility of
—mzlml_ll and particularly of my;. This invertibility constraint is also known as
Strong Inertial Coupling [35]. The resulting internal dynamics is then the following:

Ga M Mmo2Gna +mp hy +mp, g2 = 0. (5.10)

Note that g, depends on the control input u and therefore on the reference param-
eterized trajectory and its design parameter p. This second controller therefore will
acts on the reference trajectory’s parameter p (this parameter is considered as the
control input to be generated by this second controller) in the aim of keeping the
stability of the internal dynamics of the system (i.e. the actuated coordinate is con-
sidered as the output to be controlled). In other words a periodic parameterized
reference trajectory is tracked on the unactuated coordinate by the first controller,
and at the end of each period the second controller chooses the new trajectory pa-
rameter p in order to stabilize the actuated coordinate. The chosen parameter p is
used in the reference trajectory of the forthcoming cycle. The overall control scheme
is illustrated in the block-diagram of Figure 5.3.

5.3.2.2 Cyclic reference trajectories generation

The proposed control framework needs a trajectory generator to provide parameter-
ized reference trajectories ¢ ,(p, T,t) to be tracked on the unactuated coordinate of
the system. The proposed trajectories must fulfil some necessary conditions. First of
all, they have to be continuous, time-derivable and periodic in order to generate limit
cycles. This consideration leads to design oscillatory shaped trajectories which are
split up in half period, where we will use symmetry to generate the whole cycle. The
parametrization of these trajectories must allow the controller to update the parame-
ter p (which corresponds to the time at which the trajectory g}, crosses zero) during
tracking while the overall trajectory remains smooth. This leads to some initial and
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» Stabilizing
Model-free =
Controller
Traje¢tory v e Mrl;?gllilgie u Controlled |y |
Gengrator Controller System
y

Figure 5.3: Schematic view of the proposed dual model-free controller. The con-
trolled system has as output y and as input u. The reference output trajectories y* are
generated given a parameter p, and tracked by the first model-free controller (called
also tracking controller) based on the evaluation of the error ¢ = y* —y. The pa-
rameter p is updated at each period by the second model-free controller (called also
stabilizing controller).

final conditions of each half period part. That is for a given period T and amplitude
2A:

Gna(P,7,0) = G0 (P, T,7) = A
Vpe P, § Galp:T,5)=—A (5.11)
q:;a(l% 770) = q;u(pv T, %) = QZa(P>T>T) =0
for some domain & C R (choosen to keep an oscillatory shape). We propose to use
a six-degree polynomial function parameterized with p such that:

Vpe 2, qp,(p,T,t=p)=0 (5.12)

Figure 5.4 shows normalized reference trajectories (for T =2 and A = 1) for different
values of the parameter p during half a period.

The domain & is restricted to interval [pyin, Pmax] guaranteeing an oscillatory shape
trajectory. It is worth to note, due to the symmetry property of half period trajectory

parts, Pmin = 1 — Pmax-

5.3.2.3 The dual model-free controller

Consider the design of a model-free tracking controller (the first controller in the con-
trol framework of Figure 5.3). The first step is to consider the unactuated coordinate
nonlinear dynamics (5.9) to be replaced by a local model according to model-free
control principle:

Gna =F1+01u (5.13)
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0.5
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Figure 5.4: Examples of normalized reference trajectories during a half-period for
different values of p, the period 7 is 2sec and the amplitude 2A is 2.

where the constant parameter ¢ is a control design parameter. The term Fj is sup-
posed to capture the nonlinearities in the unactuated coordinate dynamics and is
updated at each sample time according to the following equation:

[F1 (k)]e = [dna(k)]e — ctu(k — 1) (5.14)
where the notation [.], states for the estimated value.

The tracking controller is obtained using numerically computed value of Fj in (5.14)
using the first model-free controller (i-PID) as follows:

1
u= P <—F1 +ij;a(p,f,l)+Kple+Ki1 /€+Kd1é> (5.15)
1

where the feedback gains K1, Kj1, K41 can be chosen using poles placement tech-
nique based on the assumption that the system’s nonlinearities are compensated by
the term F;. The unactuated coordinate g, should follow therefore the desired peri-
odic trajectory ¢, (p, T,1).

The parameter p in the tracking control input (5.15), is constant over half a period,
ie. Vr e [k (k+1)5[, k € N and is updated at the end of each half period, i.e. at
time k3, k € IN by a second model-free controller to be designed.

For that purpose let us consider now the dynamics of the actuated coordinate of the
system. This dynamics may be approximated by the following local discrete-time
model:

Avg=F+ opp (5.16)

where Arv, = Gu(k3) — ga((k—1)3) is the variation of the velocity of the actuated
joint (inertia wheel) v, = ¢, measured between half periods and the constant o is
a control design parameter. According the basic principle of model-free control the
value of F, is updated at the end of each half cycle (r = k5 for k € IN) as follows:

T

(P05l = [Beda k5l — a2p((k—1)3) (5.17)
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Note that continuous dynamics of the actuated coordinate within the half cycle r =
[k3 (k+1)3%] is not taken into account in this local model. The idea is that we only
aim at limit cycle generation on this coordinate, therefore it is only required that its
evolution should be periodic. In other words, the aim of the second controller is to
bring the actuated coordinate as close as possible to a fixed desired state (qu ,q’l‘f )
at the end of each half period, ensuring a certain periodicity of its evolution, lead-
ing therefore to limit cycles generation. The resulting second model-free controller
should updates the trajectory parameter p according to the following control law:

1 . .
p= OTQ (Fz +Kp2(615 —qa4) +Kn /(C]j —qq) +Kd2(q§1 — qa)) (5.18)
where K5, Kip, Ky are the PID feedback gains. It is worth to note that since the

desired state for actuated coordinate (qj , qj ) is constant, the (Azq,)? term should be
zero and is then omitted.

5.4 Application: the inertia wheel inverted pendulum system

The testbed of the inertia wheel inverted pendulum is presented in section 5.2. The
basis of its mechanical structure is illustrated in figure 5.5.

Figure 5.5: Principle schematic view of the inertia wheel inverted pendulum: the
joint between the frame and the beam is unactuated (passive joint), while the one
between the beam and the inertia wheel is actuated (active joint).

The actuator produces an angular acceleration of the rotating inertia wheel which
generates, thanks to the dynamic coupling between coordinates, a torque acting on



Model-Free Control of the Inertia Wheel Inverted Pendulum 11

Table 5.1: Description of dynamic parameters of the inertia wheel inverted pendulum

Parameter | Description |  Value | Unit |
mi body mass 3.228 kg
my wheel mass 0.86422 kg
I body inertia 3.042x 1072 | kgm?
b wheel inertia 7.986 x 10~% | kg m?
I body CoM position | 6.354 x 10~% m
A wheel CoM position | 52 x 1073 m

the pendulum’s passive joint; therefore this passive joint can be controlled through
the acceleration of the inertia wheel. The goal of the proposed control solution (as
introduced in section 5.3) is to generate stable limit cycles on both coordinates (actu-
ated and unactuated) using only one control input (namely the torque applied to the
inertia wheel). The idea is to control the angular position g,, of the pendulum with
respect to the vertical by the first controller (tracking controller in Figure 5.3) while
the angular velocity of the inertia wheel (system’s internal dynamics) is controlled
by the second controller (stabilizing controller in Figure 5.3).

5.4.1 Dynamic modelling of the system

The mechanical structure of the inertia wheel inverted pendulum is sketched in Fig-
ure 5.5. The nonlinear dynamic model [4] of the plant is obtained using Lagrange
formulation [32], and is given by:

(I] Jrlz) Gna +1hda 7Wg singpq =0 (5.19)
b (Gina +Ga) = u (5.20)

where I, I, are respectively the moments of inertia of the beam and the wheel. u
is the torque generated by the motor acting on the inertia wheel. ml = myly +myl>
with m; and m, being the masses of the pendulum and the inertia wheel. [y, I
are distances from origin O (cf. Figure 5.5) to the gravity centers of the pendulum
and the rotating mass (respectively). This model has the general form (5.6)-(5.7)
of dynamics of underactuated mechanical systems. The dynamic parameters of the
inertia wheel inverted pendulum system are summarized in Table 5.1.

5.5 Numerical simulations

Reference trajectories are generated for the unactuated coordinate g,, as presented in
section 5.3.2.2. The trajectories amplitude is 2A = 6° and period is T = 2 5. Numer-
ical simulations have been performed using MATLAB/SIMULINK software of Math-
Works. It is worth noting that the dynamic model (5.19)-(5.20) is used to simulate
the dynamic behavior of the system, it is not used in the controller design.

The following design parameters were used in the implemented control scheme:
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a; = —100, ap = 50, the feedback gains of the first controller (tracking controller)
are as follows: K1 = 200, K;; = 0 and K;; = 100. The feedback gains of the second
second controller (stabilizing controller) are given by: K, = Kjp =0 and Kz, = 1.
The sampling frequency is set to 150 Hz which is a reasonable value for real-time
implementation. The desired state for the inertia wheel velocity (controlled by the
second controller) is set to ¢ = 0.

The obtained simulation results are depicted in Figure 5.6. It is worth to note that a
disturbing torque of intensity 0.5 Nm is applied to the pendulum beam at time t = 15
seconds.

The convergence to a stable limit cycle can clearly be observed on the phase portrait
of the pendulum angle ¢,,. The controller reacts immediately to the disturbance
as we can see a spike in the control signal (cf. Figure 5.6-(e)). This disturbance
induces a deviation from the reference trajectories of the pendulum angle position
and velocity which is immediately compensated. Despite the big deviation of the
inertia wheel velocity oscillations at the beginning of the simulation due to non zero
initial conditions and just after the disturbance, the second controller successfully
brings back the inertia wheel velocity trajectory to a periodic trajectory. Indeed, the
internal dynamics of the systems converges also to a stable limit cycle. To check
the admissibility of the scenario to be implemented on the real system, the motor
power admissibility is depicted in Figure 5.6-(g), where it can be seen clearly that
the trajectories are inside the admissible region.

5.6 Real-Time experiments

Real-time experiments are achieved thanks to the experimental testbed described in
section 5.2. It is worth to note that the control design parameters used for these ex-
periments are different from those used in numerical simulation. The first controller
parameters are chosen as oy = —150, K;,; =70, K;; = 0 and K41 = 12. For the
Second controller the following parameters are used a = 70, K> = 0, Kj» = 0 and
K 4> = 1. Noise filtering was performed through the use of an alpha-beta filter [25] to
correctly estimate the pendulum acceleration used in equation (5.14). The following
two experimental scenarios have been considered:

e control in nominal case,

e external disturbance rejection.

5.6.1 Scenario 1: Control in nominal case

In this first scenario, no external disturbances have been considered. The obtained
results for this scenario are depicted in Figure 5.7. The experiment was started by
an initial angular position corresponding to a pendulum body at the mechanical stop,
introducing an initial position error of 0.125 rad (i.e. 7.16°). Despite this initial error,
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(a) pendulum position g, [rad] (b) pendulum velocity (c) phase portrait of the pendu-
real position (solid line) and de- ¢, [rad-s™!] real velocity Ium (g, [rad], ¢uq [rad-s1]).
sired position (dashed line). (solid line) and desired velocity
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(d) inertia wheel velocity (e)controlinputu [N-m]versus (f) evolution of parameter
Gq [rad-s71]. time. pl-l
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transient

(g) Motor rotationnal speed [rpm]
vs Absolute motor torque [N-m]

Figure 5.6: Simulation results. A punctual external disturbance is introduced as a
torque applied at time # = 15 s to the pendulum beam.
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(a) pendulum position g,, real (b) pendulum velocity ¢,, real (c) phase portrait of the pendu-
position (solid line) and desired velocity (solid line) and desired lum (¢nq, Gna)-
position (dashed line). velocity (dashed line).
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(d) inertia wheel velocity ¢,.  (e) control input u versus time.  (f) evolution of parameter p.

steady state
transient

005

(g) Check of power admissible-
region of the actuator.

Figure 5.7: Real-time experimental results in nominal case, without external distur-
bances.

the controller was able to steer rapidly the system towards the periodic reference
trajectory as it can be observed on Figure 5.7-(a). The convergence to a stable limit
cycle is clearly visible in Figure 5.7-(c). The control inputs are shown in Figure 5.7-
(e) for the first controller and in Figure 5.7-(f) for the second one. The motor power
admissibility is illustrated through the plot of Figure 5.7-(g) showing the evolution
of the motor speed (absolute value) versus the its torque (absolute value).

5.6.2 Scenario 2: External disturbance rejection

In this experiment, external disturbances are introduced by pushing the pendulum
body in a punctual manner as illustrated in Figure 5.8.
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Figure 5.8: Illustration of the external disturbance action applied on the pendulum
body during experiments

Tow external disturbances have been introduced at approximately t; = 12 s and t, =
23 5. The obtained experimental results are plotted in Figure 5.9.

Noise in Measurement is observable on all plots, particularly amplified on the pen-
dulum velocity ¢,, in Figure 5.9(b). Despite this fact, the first controller was able to
track the reference trajectory on the pendulum (cf. Figure 5.9(a)). The effect of the
introduced external disturbances can clearly be observed on the pendulum trajecto-
ries in Figure 5.9(a), and the control input in Figure 5.9(e). The tracking controller
brings back rapidly the pendulum position and velocity to their respective reference
trajectories. The convergence to a stable limit cycle is clearly visible on the phase
portrait of the pendulum shown on Figure 5.9(c). The evolution the inertia wheel
velocity is depicted in Figure 5.9(d). Indeed, The introduced disturbances induce a
shift in the inertia wheel velocity trajectory cycle. However, thanks to the second
controller reaction, which is observable in Figure 5.9(f), the inertia wheel velocity
converges back to the limit cycle in few periods. The absolute value of motor velocity
versus the generated torque are displayed in Figure 5.9(g) to check the admissible-
region of the actuator. Notice that the obtained trajectory remains, throughout the
experiments, within the admissible region of the actuator’s power.

5.7 Conclusion

This chapter deals with the control problem of the inertia wheel inverted pendulum.
This benchmark belongs to the class of underactuated mechanical systems. The
proposed control solution, based on model-free control technique, includes two con-
trollers to deal with stable limit cycle generation. The first controller (called tracking
controller) is used to control the angular position of the pendulum (unactuated coor-
dinate), while the angular velocity of the inertia wheel (actuated coordinate) is con-
trolled by the second controller (called stabilizing controller). Indeed, to stabilize
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Figure 5.9: Real-time experimental results. Two external disturbances have been
introduced at approximately #; = 12 s and #, = 23 s on the pendulum body.
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the resulting internal dynamics of the system, a family of p-parameterized periodic
trajectories is generated and tracked by the first controller, while their parameter p
is on-line updated by the second controller in the aim of improving the behavior the
internal dynamics (i.e. convergence to a stable limit cycle). To validate the proposed
control scheme, numerical simulations as well as real-time experiments are intro-
duced. They show the effectiveness of the proposed control scheme as well as its
ability to reject external disturbances. Future work may include the extension of the
proposed control scheme to endow it with an automatic adaptive tuning of the pa-
rameters of the controllers, as well as its generalization to the case of underactuated
systems with more than one degree of underactuation.
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