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Chapter 8

Finite-time stabilization of underactuated
mechanical systems in the presence of

uncertainties: application to the cart–pole system
Jawhar Ghommam1, Ahmed Chemori2, and Faiçal Mnif 3

8.1 Introduction

Underactuated mechanical systems [13,14,28] are those systems with less control
inputs than generalized coordinates (called also degrees of freedom), i.e. they have
unactuated generalized coordinates. For such systems, the unactuated generalized
coordinates may indirectly be controlled by the actuated coordinates through the
dynamic coupling, inherent to these systems [8]. This coupling is often nonlinear,
resulting in generally nonintegrable dynamic constraints and therefore second-order
nonholonomic.

Many examples of such systems exist, and mainly in robotics. They include,
among others, Inverted pendulums [16,26,27], underactuated robot manipulators [6],
gymnast robots and particularly the acrobot [42] and the pendubot [32], undersea
vehicles [15], PVTOL (Planar Vertical Takeoff and Landing) aircrafts [36] and mobile
robots [18].

Underactuation in these mechanical systems is generally introduced intentionally
at the design level to reduce the manufacturing cost, the weight and/or failure rate; con-
sequently, the obtained systems may be able to perform complex tasks with a reduced
number of actuators. The source of underactuation may also be unintentionally due
to failure of one or more actuators in a fully actuated system.

Underactuated systems may require new approaches/techniques to design effec-
tive control strategies; therefore, they constitute a good framework for nonlinear
control problems regarding both theoretical and practical aspects. For these reasons,
they are attracting more and more attention of researchers from nonlinear control
community as well as from many research fields in robotics.

In the literature, many research efforts have been made in control aspects
[31–33,40,42–44], giving rise to multiple control solutions; however, control problem
of such systems is still open.
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For instance in [9], a technique of pseudolinearization using spline functions is
proposed to control the acrobot underactuated system. In [43], a design technique
combining partial feedback linearization and Lyapunov methods based on satura-
tion functions, switching and energy shaping has been proposed. In [44], the author
discuss a survey on some existing results such as geometric nonlinear control and
passivity-based control for stabilization and tracking control of such systems. Three
control algorithms have been proposed in [31] for an underactuated two-link robot,
namely an optimal LQ controller, a partial feedback-linearizing regulator and a slid-
ing mode controller. In [32], the testbed is also a two-link underactuated robot but
the actuator is located at the base (in contrast to the one proposed in [31] where
the actuator is located at the joint between the two links), and the authors propose
a method based on partial feedback linearization [41], nilpotent approximation and
an iterative stabilization procedure. Roughly speaking, they propose an open-loop
controller able to steer the system closer to the desired equilibrium point in finite
time, and apply it iteratively, which provides a robust exponential convergence to the
equilibrium. In [33], the authors propose to study the nonlinear behavior of the same
robot proposed in [32] through a graphical tool based on Poincaré map. The study
in [40] concerns underactuated mechanical systems with several actuated degrees of
freedom and a single unactuated degree of freedom, where a discontinuous nonlinear
feedback controller is proposed, allowing the closed-loop equilibrium at the origin
to be globally attractive. In [46], a generalized predictive controller has been pro-
posed, based on the linearized dynamics of the system. In [10], a nonlinear predictive
controller is proposed for both stabilization and stable-limit cycle generation with an
application to the ECP 505 inverted pendulum. In [45], a technique based on switch-
ing and saturation control is proposed. In [11], a passivity-based approach has been
proposed to control the inertia wheel inverted pendulum. In [17], the technique of
virtual holonomic constraints has been proposed with an application to the pendubot
for generation of periodic motions, and to the Inertia Wheel Pendulum in [16]. In [3],
the proposed control techniques are based on partial feedback linearization, combined
with the optimization of the reference trajectories to stabilize the internal dynamics
of the system. In [4] and [5], a dual-model-free control technique is proposed. The
control architecture includes two model-free controllers, the first one is used to track
the reference trajectories on the actuated degrees of freedom of the system, whereas
the second one is used to stabilize the internal dynamics. In [26], a technique based on
Riccati and nonlinear control is proposed for inverted pendulums. Output feedback
control with an extended high gain observer was recently proposed in [29].

To deal with model uncertainties, a time-scale approach along with the Lyapunov
design has been proposed in [39]. The authors in [35] used a sliding mode technique
for the cart–pole system to stabilize the system in presence of disturbances. Model
uncertainties however have not been tackled in this work. In [1], disturbances and
model uncertainties have been fully considered in a technique that involves a back-
stepping procedure combined with sliding mode, applied to the inverted pendulum
system after the system was converted into a normal form. Integral sliding mode
control was also applied in [47] to deal with uncertainties in the two-wheeled mobile
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inverted pendulum. The control law being designed is based on the linearized system
dynamics which resulted in a small region of attraction for the equilibrium. The prob-
lem becomes more challenging when ever nonparametric uncertainties and unknown
time-varying disturbances are considered in the design of effective and robust control
law for the underactuated system.

AQ1

An important research issue which has attracted the attention of the control com-
munity is the finite-time convergence and finite-time stabilization [2,7,19–21,24], that
ensures faster convergence rate, better disturbance rejection and robustness against
uncertainty. Although myriad approaches have been proposed in the literature that
tackle the problem of finite-time stabilization, they are not effective in dealing with
time-varying and state-depending uncertainties. Few attempts have been concentrated
in the design of adaptive schemes [22,23] to resolve the problem of state dependent
and time-varying uncertainties. However, the adaptive scheme has only been applied
to a class of p-normal forms [12]. To the best of the authors’knowledge, few have dealt
with finite-time stabilization of underactuated systems subject to time-varying and
state-dependent uncertainties. This chapter focuses on the design of a novel nonlinear
controller for a class of underactuated system; we would like to introduce a new strat-
egy that addresses an adaptive robust finite-time stabilization law derived from adding
a power integrator (API) [37] technique to a class of single input dynamics described
as a normal form system [34]. The idea is to generate coordinate transformations that
decouple the underactuated dynamics into an upper-triangular form allowing for only
one control input governing the whole system to be designed, whereby a continuous
finite-time stabilizing control law is derived from the API technique, and an adaptive
compensator is proposed to compensate for the matched and unmatched uncertainties
collected throughout the steps of the design. As a consequence, the resulting control
law is able to stabilize the underactuated mechanical system in a finite time.

The reminder of this chapter is organized as follows. Section 8.2 discusses the
Lagrangian model of mechanical underactuated systems and the coordinate trans-
formation that transforms this model into a normal-form representation. Section 8.3
formulates the finite-time stabilization problem for the nth-order underactuated sys-
tem. Section 8.4 gives a background on finite-time stability and provides some useful
lemmas needed throughout the paper. The control design is developed in Section
8.5. Simulation results with an application to the cart–pole system are presented and
discussed in Section 8.6. Finally, Section 8.7 draws a conclusion for this chapter.

8.2 Dynamic modeling of underactuated mechanical systems:
Lagrangian formalism

The Lagrangian formalism is one among the powerful mathematical tools based on
the vibrational method to model a large class of mechanical systems. Underactuated
mechanical systems are branches of this class. They can be modeled using the Euler–
Lagrange equations. Let Q be an n-dimensional configuration manifold, and q ∈ Q is a
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vector of generalized coordinates. The Euler–Lagrange equations for any mechanical
system of n degrees of freedom (DOF) are given by [34]

d

dt

∂L(q, q̇)

∂ q̇
− ∂L(q, q̇)

∂q
= B(q)u (8.1)

where u ∈ R
m and B(q) is the external forces matrix. L(q, q̇) is the Lagrangian asso-

ciated to the mechanical system and expressed by the difference between kinetic and
potential energies:

L(q, q̇) = K − V = 1

2
q̇�M (q)q̇ − V (q) (8.2)

where K is the kinetic energy, V (q) denotes the potential energy and M (q) = M �(q) ∈
R

n×n is a positive definite inertia matrix. Let mik ∈ R
+ denote the entries of the inertia

matrix M with i = 1, . . . , n and k = 1, . . . , n. Based on (8.1) and (8.2), the equations
of motion can be deduced as follows:

∑

k

mik (q)q̈k +
∑

i,k

��
ik (q)q̇iq̇k + gi(q) = e�

� B(q)u, � = 1, . . . , n (8.3)

where e� is the �th standard basis in Rn, gi = ∂qiV (q), and ��
ik (q) is the Christoffel

symbol defined by

��
ik (q) = 1

2

(
∂m�k (q)

∂qi
+ ∂m�i(q)

∂qk
− ∂mik (q)

∂q�

)
(8.4)

In a matrix form, (8.3) can be rewritten as

M (q)q̈ + C(q, q̇)q̇ + G(q) = B(q)u (8.5)

The term C(q, q̇) includes two distinct terms, in particular, the first term qiq̇k involves
the centrifugal forces (i = k), and the second is the Coriolis forces for (i �= k), and
G(q) represents the gravity vector. It is interesting to point out that the mechanical
system described by (8.5) satisfies the skew symmetric property of the matrix Ṁ (q) −
2C(q, q̇).

It is important to distinguish two categories of mechanical systems governed by
the equation of motion (8.5). A mechanical system described by (8.5) is said to be fully
actuated if m = n, which is equivalent to say that the matrix B(q) ∈ Rn×m is invertible.
In other words, it can be roughly inferred that the mechanical system is fully actuated,
if the number of actuators is equal to the dimension of its configuration manifold.
On the other hand, if m < n, the mechanical system is said to be underactuated,
which is equivalent to have fewer independent inputs than the number of degree of
freedom to be controlled. This implies that the matrix B(q) becomes noninvertible
and consequently the underactuated mechanical system as opposed to fully actuated
systems is not exact feedback linearizable. Because the number of inputs is less than
the number of degree of freedom, the controllability of the mechanical underactuated
system is not always satisfied. In this chapter, however, we will assume that the
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considered mechanical systems are controllable. Furthermore, we suppose that the
equation of motion (8.5) can be rearranged so that the matrix B(q) can be written as:

B(q) =
[

0(n−m)×m

Im

]
(8.6)

where the first n − m equations of (8.5) represent the unactuated dynamics while the
last m equations are the actuated dynamics. The generalized coordinates q can further
be partitioned as follows:

q =
[

qu

qa

]
(8.7)

where qu ∈ R
(n−m) is the vector of unactuated configuration variables, and qa ∈ R

m

is the vector of actuated configuration variables. Then, it is straightforward to rewrite
the equation of motion (8.5) as follows:

[
m11(q) m12(q)
m21(q) m22(q)

] [
q̈u

q̈a

]
+
[

c11(q) c12(q)
c21(q) c22(q)

] [
q̇u

q̇a

]
+
[

g1(q)
g2(q)

]
=
[

0
u2

]
(8.8)

The partitioned equation of motion (8.8) can also be represented in component form
as follows:

m11(q)q̈u + m12(q)q̈a + h1(q, q̇) = 0 (8.9)

m21(q)q̈u + m22(q)q̈a + h2(q, q̇) = u2 (8.10)

where h1(q, q̇) = c11(q)q̇u + c12(q)q̇a + g1(q) and h2(q, q̇) = c21(q)q̇u + c22(q)q̇a +
g2(q). It is worth to notice that there is no control input in (8.9); therefore, it is
not possible to feedback linearize the system (8.9) and (8.10). It is however possible
to partially feedback linearize the system using a change of control. The procedure of
linearization of the actuated dynamics is called collocated partial linearization which
is credited to Spong [44] and consists in finding a global invertible change of control
of the form u2 = α(q)v + β(q, q̇) that partially linearizes the dynamics (8.8) such
as, after partial linearization, the new control v appears in the nonlinear-subsystem
dynamics as well as in the linearized subsystem dynamics as follows:

q̈u = f 1(q, q̇) + g1(q, q̇)v (8.11)

q̈a = v (8.12)

It can be observed that the unactuated part (8.11) is still complex, while the actuated
part (8.12) is linearized into a double-integrator dynamics. The new control input v
is present in both subsystems, which largely increases the difficulty in the control
design. The author in [34] introduced a global change of coordinates that decouples
these two subsystems and transforms the dynamics of the system into a cascaded form
called the normal form, where the control input of the original actuated subsystem
does not appear in the unactuated subsystem. This significantly simplifies the control
design for the underactuated mechanical system. However, with this approach, there
is an inherent requirement that the model parameters of the mechanical system must
be perfectly known to be able to design controller for the transformed normal form.
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Due to lack of knowledge on the system parameters and the inability to measure
the whole system state, the controller has to cope with these uncertainties. This
situation justifies the need for the development of a global transformation that decou-
ples the underactuated mechanical system without passing by the partial feedback
linearization of the system.

Consider the dynamic (8.9), resolve for q̈u, it gives

q̈u = −m11(q)−1(m12(q)q̈a + h1(q, q̇)) (8.13)

Substituting (8.13) into (8.10), after some manipulation, we obtain

q̈a = f 3(q, q̇) + b3(q)u2 (8.14)

Again substituting the resulting dynamics (8.14) into the dynamics of (8.10), then
solving for q̈u leads to the following dynamics:

q̈u = f 4(q, q̇) + b4(q)u2 (8.15)

where f 3(q, q̇) = (m22 − m21m−1
11 m12)−1[m21m−1

11 h1(q, q̇) − h2(q, q̇)] =, b3(q) = (m22 −
m21m−1

11 m12)−1, f 4(q, q̇) = −m−1
11 m12 f4(q, q̇ − m−1

11 h1(q, q̇)) and b4(q) = −m−1
11 m12b3(q).

Regrouping the dynamic (8.14) and (8.15), one can obtain a state space representation
of the system as follows:

ẋ1 = x2

ẋ2 = f 3(q, q̇) + b3(q)u2

ẋ3 = x4 (8.16)

ẋ4 = f 4(q, q̇) + b4(q)u2

where the state space vector x has been defined as [x1, x2, x3, x4]� = [qu, q̇u, qa, q̇a]�.
Note the structural difference between (8.12), (8.11) and (8.16) is that the actuated
dynamics in (8.12) is a double integrator, while in (8.16), the actuated dynamics has
some nonlinearities.

To decouple the nonlinear system represented by (8.16), we may use the global
transformation proposed in [34] as follows:

z1 = x1 −
∫ x3

0

b3(s)

b4(s)
ds,

z2 = x2 − b3(x)

b4(x)
,

z3 = x3 (8.17)

z4 = x4
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The equation dynamics in the Z-space is found by taking the time derivative of (8.17),
leading to

ż1 = z2 + b3(z)

b4(z)
z4 − d

dt

∫ z3

0

b3(s)

b4(s)
ds

ż2 = f3(z) − b3(z)

b4(z)
f4(z) − d

dt

(
b3(z)

b4(z)

)
z4

ż3 = z4 (8.18)

ż4 = f4(z) + b4(z)u2

Clearly, the dynamics of the underactuated system in Z-space, is in a special cascade
form with only one control input appearing in the last subsystem. To ease the represen-
tation, let us define d1(z) = b3(z)

b4(z) z4 − d
dt

∫ z3
0

b3(s)
b4(s) ds, d2(z) = −z3 + f3(z) − b3(z)

b4(z) f4(z) −
d
dt

(
b3(z)
b4(z)

)
z4, d3(z) = 0, then the system (8.18) can be rewritten as

ż1 = z2 + d1(z)

ż2 = z3 + d2(z)

ż3 = z4 + d3(z) (8.19)

ż4 = f4(z) + b4(z)u2

where d1(z), d2(z) and d3(z) are regarded as unmatched uncertainties to be compen-
sated by the control u2. In a similar manner, an nth-order underactuated system can
be represented in the state space form as

ẋ1 = x2

ẋ2 = f 3(q, q̇) + b3(q)u

ẋ3 = x4

ẋ4 = f 4(q, q̇) + b4(q)u

... (8.20)

ẋn−1 = xn

ẋn = f n(q, q̇) + bn(q)u

To decouple the nth order system (8.20), the global transformation as proposed in [34]
can be extended to nth order recursively as follows:

z1 = x1 −
∫ x3

0

b3(s)

b4(s)
ds,

z2 = x2 − b3(x)

b4(x)
,

z3 = x3 −
∫ x5

0

b4(s)

b5(s)
ds
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z4 = x4 − b4(x)

b5(x)

... (8.21)

zn−3 = xn−3 −
∫ xn−1

0

bn−2(s)

bn(s)
ds

zn−2 = xn−2 − bn−1(x)

bn(x)
zn−1 = xn−1

zn = xn

Hence, the system dynamics in Z-space can similarly be obtained, taking the time
derivative of (8.21), we have

ż1 = z2 + b3(z)

b4(z)
z4 − d

dt

∫ z3

0

b3(s)

b4(s)
ds

ż2 = f3(z) − b3(z)

b4(z)
f4 − d

dt

(
b3(z)

b4(z)

)
z4

ż3 = z4 + b4(z)

b6(z)
z6 − d

dt

∫ z5

0

b4(s)

b6(s)
ds

ż4 = f4(z) − b4(z)

b6(z)
f6(z) − d

dt

(
b4(z)

b6(z)

)
z6

... (8.22)

żn−3 = zn−2 + bn−2(z)

bn(z)
zn − d

dt

∫ zn−1

0

bn−2(s)

bn(s)
ds

żn−2 = fn−2(z) − bn−2(z)

bn(z)
fn − d

dt

(
bn−2(z)

bn(z)

)
zn

żn−1 = zn

żn = fn(z) + bn(z)u

Let us now define the following transformation:

d1(z) = b3(z)

b4(z)
z4 − d

dt

∫ z3

0

b3(s)

b4(s)
ds

d2(z) = −z3 + f3(z) − b3(z)

b4(z)
f4 − d

dt

(
b3(z)

b4(z)

)
z4

... (8.23)
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dn−3 = bn−2(z)

bn(z)
zn − d

dt

∫ zn−1

0

bn−2(s)

bn(s)
ds

dn−2 = −zn−1 + fn−2(z) − bn−2(z)

bn(z)
fn − d

dt

(
bn−2(z)

bn(z)

)
zn

dn−1 = 0

dn = fn(z)

The dynamics in (8.23) can be similarly written in a standard form like in (8.18) as
follows:

żi = zi+1 + di(z), 1 ≤ i ≤ n − 1

żn = bn(z)u + dn(z) (8.24)

y = h(z)

where di(z) ∈ R, i = 1, 2, . . . , n are regarded as matched and unmatched uncertain-
ties. It can be noticed that by construction, the variation bounds of the uncertainties
di(z), i = 1, . . . , n are not assumed to be known and also cannot be assumed linearly
parameterizable into a multiplication of a known regressor and a vector of unknown
constant parameters. Also for the simplicity of the control design, let us consider the
following two assumptions:

Assumption 8.1. The terms di(z), i = 1, . . . , n are all unknown functions, whose
bounds are also unknown.

Assumption 8.2. The uncertain control coefficient bn(z) is bounded as bmin ≤ bn(z) ≤
bmax. and bn(z) is sign-definite such that sign(bn(z)) = +1. Further, it is convenient
to assume that bn(z) �= 0.

8.3 Control problem formulation

In this chapter, we consider a class of underactuated systems of the form (8.20),
which can be transformed without partial feedback linearization and through the
global change of coordinates (8.21) into the cascaded form (8.24). Where z =
[z1, z2, . . . , zn]� ∈ �, where � is a compact set of R

n, u ∈ R is the control input
and di(z) ∈ R, i = 1, . . . , n − 1 are unmatched uncertainties, while dn is the matched
uncertainty. Under Assumptions 8.1 and 8.2, the idea is to design the controller
u such that the system state z tracks in finite time the desired trajectory z∗

d =
[z∗

1d , z∗
2d , . . . , z∗

nd]� ∈ �d where �d is a compact set of �. This means that for any
finite initial condition zi(0), i = 1, . . . , n, there exists a finite time T such that

lim
t→T

∣∣zi − z∗
id

∣∣ = 0, i = 1, . . . , n (8.25)

Remark 8.1. The control design satisfying the limit (8.25) guarantees stabilization
in finite time of the underactuated mechanical system of the form (8.20) to a desired
reference input xd . In most of the cases, stabilization around the origin of the first state
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x1 is desired. The reference input for the Z-subsystem z∗
1d = 0 implies stabilization of

the state variable x1 to zero.

8.4 Preliminaries

In this section, a review of some basic concepts and lemma related to the concept
of finite-time stability and the corresponding Lyapunov theorem are presented; they
will be useful for most of the stability analysis of this chapter.

8.4.1 Notions of finite stability

Theorem 8.1. [7]: Consider the non-Lipschitz continuous autonomous system ẋ =
f (x), f (0) ∈ R. Assume, there are C1 function V (x) defined on a neighborhood D ⊂ R

of the origin, and real numbers c > 0 and 0 < α < 1 such that

1. V (x) is positive definite on D
2. V̇ (x) + cV α ≤ 0, ∀x ∈ D

Then, the origin x is locally finite-time stable. If D = R, and V (x) is radially
unbounded, then the origin x = 0 is globally finite-time stable. Moreover, it can be
verified that the settling time being dependent on the initial state x(0) = x0 satisfies
Tx(x0) ≤ V (x0)1−α

c(1−α) for all x0 in some open neighborhood of the origin.

Lemma 8.1. [37] For any xi ∈ R, i = 1, . . . , n and 0 < p ≤ 1, the following inequal-
ity holds (|x1| + · · · + |xn|)p ≤ |x1|p + · · · + |xn|p ≤ n1−p(|x1| + · · · + |xn|)p. When
0 < p = p1

p2
≤ 1, where p1 and p2 are positive odd integers, then the following holds

|xp − yp| ≤ 21−p|x − y|p, for any x, y ∈ R.

Lemma 8.2. [37] For any x ∈ R, y ∈ R, c > 0, d > 0 and γ (x, y) > 0, a
real-valued function, the following holds: |x|c|y|d ≤ (cγ (x, y)/(c + d))|x|c+d +
(dγ (x, y)−c/d/(c + d))|y|c+d .

8.5 Proposed control design

The purpose of this section is to devise a control law that stabilizes the system
(8.24) in finite time. Given the fact that the Z-system (8.24) contains unmatched
uncertainty, traditional adaptive techniques like the backstepping technique [30] and
the multiple-surface sliding [38] cannot be used, because the variation bounds of
di, i = 1, . . . , n are not assumed to be known. To solve the problem of finite-time sta-
bilization with unmatched uncertainties, we propose a novel robust finite-time control
scheme whereby a continuous recursive finite-time stabilizing control law is derived
from the adding power integrator (API) technique [37] and an adaptive compensator.
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To develop the finite-time controller for (8.24), we first introduce the following
tracking error e1 and the virtual errors em, m = 2, . . . , n as follows:

e1 = z1 − z∗
1d (8.26)

and

em = z1/qm
m − z∗1/qm

md , m = 2, . . . , n (8.27)

where qm = (4�n + 3 − 2m)/(4�n + 1) > 0, (� ∈ Z+); z∗
m, m = 2, . . . , n is the virtual

control given by z∗
md = −βm−1eqm

m−1 with βm−1 being positive constant to be determined
later. One main feature for the use of the parameter � in the fraction power qm is that
it allows adjusting the control precision and finite-time convergence of the state
variables.

The design procedure consists in n steps, throughout the n − 1 steps, the virtual
controllers z∗

(m−1)d will be designed. Upon the completion of step n, the fast control
term as well the adaptive compensator are designed.

Step 1: Consider the following Lyapunov candidate function:

V1(z) = 1

1 + S
e1+S

1 (8.28)

where S = (4�n − 1)/(4�n + 1). The time derivative of (8.28) gives

V̇1(z) = eS
1 ė1

= eS
1 z∗

2 + eS
1 (z2 − z∗

2d) + eS
1 d1(z) (8.29)

By introducing the virtual control z∗
2d = −β1eS

1 , where β1 is a design parameter, V̇1(z)
rewrites:

V̇1(z) = −β1e2S
1 + eS

1 (z2 − z∗
2d) + eS

1 d1(z) (8.30)

Using Lemmas 8.1 and 8.2, the second term of (8.30) can be upper-bounded as
follows:

eS
1 (z2 − z∗

2d) ≤ 21−S |e2|S |e1|S ≤ 1

2
|e1|2S + C2|e2|2S (8.31)

where C2 is a positive constant. In light of (8.31), the time derivative of V1(z) can be
written as follows:

V̇1(z) ≤ −β1e2S
1 + 1

2
|e1|2S + C2|e2|2S + eS

1 d1(z) (8.32)

Step 2:According to [25], a C1 and positive definite Lyapunov candidate function
is constructed as

V2((z)) = V1(z) + W2(z1, z2) (8.33)

with

W2(z1, z2) =
∫ z2

z∗
2d

(
χ

1
q2 − z

∗ 1
q2

2d

)1+S−q2

dχ (8.34)
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then it is easy to show that the Lyapunov function candidate V2(z) is positive definite
and satisfies V2(z) ≤ max{ 1

1+S , 2}(e1+S
1 + e1+S

2 ). Note that the function W2(z1, z2) has
the following properties:

∂W2(.)

∂z2
= e1+S−q2

2 (8.35)

∂W2(.)

∂z1
= −(1 + S − q2)

∂z
∗ 1

q2
2d

∂z1

∫ z2

z∗
2d

(
χ

1
q2 − z

∗ 1
q2

2d

)S−q2

dχ

= −∂z
∗ 1

q2
2d

∂z1
(z2 − z∗

2d) (8.36)

Hence, the derivative of W2(.) can be computed as follows:

Ẇ2(.) = e2ż2 − ((z2 − z∗
2d)

∂z
∗ 1

q2
2d

∂z1
ż1)

= e2(z3 − z∗
3d) + e2z∗

3 + e2d2(z) − (z2 − z∗
2d)

∂z
∗ 1

q2
2d

∂z1
ż1 (8.37)

using the fact that
∣∣∣∣∣∣
(z2 − z∗

2d)
∂z

∗ 1
q2

2d

∂z1
ż1

∣∣∣∣∣∣
≤ 21−q2 eq2

2

∣∣∣∣∣∣
∂z

∗ 1
q2

2d

∂z1
z2

∣∣∣∣∣∣
+ 21−q2 eq2

2

∣∣∣∣∣∣
∂z

∗ 1
q2

2d

∂z1
d1(z)

∣∣∣∣∣∣
(8.38)

Let the first lumped unmatched uncertainty be τ1 = e2d2(z) + 21−q2β
1

q2
1 eq2

2 d1(z),
it is then straightforward to obtain

Ẇ2 ≤ e2(z3 − z∗
3d) + e2z∗

3d + 21−q2β
1

q2 eq2
2 |z2| + τ1 (8.39)

According to Lemma 8.1, the third term of the right hand side of (8.39) can be bounded
such that

|z2| ≤ |e2 + z
∗ 1

q2
2d |q2 ≤ |e2|q2 + β1|e1|q2 (8.40)

which implies that

|e|q2
2 21−q2β

1
q2 |z2| ≤ 21−q2β

1
q2 |e2|2q2 + 21−q2β

1+ 1
q2 |e2|q2 |e1|q2

≤ 22(1−q2)−1β
2(1+ 1

q2
)|e2|2q2 + 1

2
|e1|2q2 + 21−q2β

1
q2 |e2|2q2

= 1

2
|e1|2q2 + C̄2|e2|2q2 (8.41)

where C̄2 = 22(1−q2)β
2(1+ 1

q2
) + 21−q2β

1
q2 .

Combining (8.32), (8.39) and (8.41) yields the following:

V̇2(.) ≤ −(β1 − 1)|e1|2S + (C1 + C̄2)|e2|2S + e3z∗
3d + e2(z3 − z∗

3d) + τ1 (8.42)
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At this stage, it is worth to note that q3 = q2 − 2
4�n+1 , which implies that q3 =

1 + 2q2 = 1 + 2S. Therefore, by selecting β1 > n − 1 − κ , where κ > 0 is a design
parameter, and the virtual control z∗

3d = −β2zq3
2d with β2 ≥ n − 2 + κ + C2 + C̄2,

we obtain

V̇2 ≤ −(n − 2 + κ)|e1|2S − (n − 2 + κ)|e2|2S + e2(z3 − z∗
3d) + τ1 (8.43)

Step k (k:= 3 . . . n − 1): We proceed to the derivation of the virtual control by
using an inductive argument. Suppose at step k − 1, that there exists a C1 Lyapunov
candidate function Vk−1(z1, . . . , zk−1), positive definite and verifies

Vk−1(.) ≤ max{ 1

1 + S
, 2}

k−1∑

m=1

e1+S
m (8.44)

such that

V̇k−1(.) ≤ −(n − k + 1 + κ)
k−1∑

m=1

e2S
m + e1+S−qk−1

k−1 (zk − z∗
kd) +

k−2∑

m=1

τm (8.45)

Now let us claim that (8.44) and (8.45) hold as step k . To prove this claim, consider
the following Lypunov candidate function:

Vk (z1, . . . , zk ) = Vk−1(.) + Wk (z1, . . . , zk ) (8.46)

with

Wk (.) =
∫ zk

z∗
dk

(χ
1

qk − z
∗ 1

qk
dk )1+S−qk dχ (8.47)

From the previous step, it can be observed that Wk (.) has the following properties:

∂Wk (.)

∂zk
= e1+S−qk (8.48)

∂Wk (.)

∂zm
= −(1 + S − qk )

∂z
∗ 1

qk
dk

∂zm

∫ zk

z∗
dk

(χ
1

qk − z
1

qk
dk )S−qk dχ (8.49)

also, it is easy to show that Vk (.) is C1 and positive definite, which verifies Vk (.) =≤
max

{
1

1+S , 2
}∑k

m=1 e1+S
m . The time derivative of Vk (.) satisfies
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V̇k (.) ≤ −(n − k + 1 + κ)
k−1∑

m=1

e2S
m + e1+S−qk−1

k−1 (zk − z∗
dk ) + e1+S−qk

k zk+1

+ e1+S−qk
k dk (z) +

k−1∑

m=2

∂Wk (.)

∂zm
żm +

k−1∑

m=1

τm

≤ −(n − k + 1 + κ)
k−1∑

m=1

e2S
m + e1+S−qk−1

k−1 (zk − z∗
dk ) + e1+S−qk

k zk+1

+
k−1∑

m=2

∂Wk (.)

∂zm
zm+1 + [

e1+S−qk
k dk (z) +

k−1∑

m=2

∂Wk (.)

∂zm
dm(z)

]+
k−1∑

m=1

τm (8.50)

If the kth lumped unmatched uncertainty is defined as τk = e1+S−qk
k dk (z) +∑k−1

m=2
∂Wk (.)
∂zm

dm(z), then (8.50) rewrites:

V̇k (.) ≤ −(n − k + 1 + κ)
k−1∑

m=1

e2S
m + e1+S−qk−1

k−1 (zk − z∗
dk ) + e1+S−qk

k zk+1

+
k−1∑

m=2

∂Wk (.)

∂zm
zm+1 +

k∑

m=1

τm (8.51)

Next, we bound the second and the fourth terms of the right hand side of (8.51). First
according to Lemma 8.2, it holds that

|e1+S−qk−1
k−1 (zk − z∗

dk )| ≤ 21+S−qk−1 |ek−1|1+S−qk−1 |ek |qk

≤ |ek−1|2S

2
+ Ck |e2S

k | (8.52)

with Ck a positive constant. As for the fourth term, it is easy to obtain the following:
∣∣∣∣∣

k−1∑

m=2

∂Wk (.)

∂zm
zm+1

∣∣∣∣∣ ≤ (1 + S − qk )21−qk |ek |S
∣∣∣∣∣

k−1∑

m=2

∂z∗
dk

∂zm
zm+1

∣∣∣∣∣ (8.53)

To further bound the fourth term in (8.51), we need to conduct the analysis by inductive
argument and assume that at step k − 1, the following holds

∣∣∣∣∣

k−2∑

m=2

∂z∗
dk

∂zm
zm+1

∣∣∣∣∣ ≤
k−1∑

m=1

γ(k−1)meS
m (8.54)

where γ(k−1)m ≥ 0, then show the inequality also holds for k . Therefore, we have
∣∣∣∣∣

k−1∑

m=2

∂z∗
dk

∂zm
zm+1

∣∣∣∣∣ ≤
∣∣∣∣∣−β

1
qk

k−1

k−1∑

m=2

∂ek−1

∂zm
zm+1

∣∣∣∣∣

≤ β
1

qk
k−1

∣∣∣∣∣∣
z

1
qk

−1

k−1

qk−1
zk +

k−2∑

m=2

∂z
∗ 1

qk −1

k−1

∂zm
zm+1

∣∣∣∣∣∣
(8.55)
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In light of the definition of the tracking error, it is worth recalling that em = z
1

qm
m − z

∗ 1
qm

md

and z∗
m = −βm−1eqm

m−1, it can then be inferred that z
∗ 1

qm
m = −β

1
qm

m−1em−1, and therefore,
the following inequality holds

|zm| ≤ |em + z
∗ 1

qm
m |qm ≤ |em|qm + βm−1|em−1|qm (8.56)

Applying (8.56) to the inequality (8.55) and using the assumption of the inequality
(8.54) yields

∣∣∣∣∣

k−1∑

m=2

∂z∗
dk

∂zm
zm+1

∣∣∣∣∣ ≤ β
1

qk
k−1

[
1

qk−1

(
|ek−1|1−qk−1 + β

1
qk−1

−1

k−2 e1−qk−1
k−2

)(
|ek |qk

+ βk−1|ek−1|qk

)
+

k−2∑

m=2

∂z∗
dk

∂zm
zm+1

]

≤
k∑

m=1

γkm|em|S (8.57)

with γkm being a positive constant. Therefore,
∣∣∣∣∣

k−1∑

m=2

∂Wk (.)

∂zm
zm+1

∣∣∣∣∣ ≤ (1 + S − qk )21−qk |ek |S
(

k∑

m=1

γkm|em|S
)

≤ 1

2

k−1∑

m=1

e2S
m + C̄k |ek |2S (8.58)

with C̄k ≥ 0 being a positive constant.
Substituting (8.52) and (8.58) into (8.51) leads to AQ2

V̇k (.) ≤ −(n − k + 1 + κ)
k−1∑

m=1

e2S
m + (Ck + C̄k )|ek |2S + |ek−1|

2
+ 1

2

k−1∑

m=1

e2S
m

+
k∑

m=1

τk + e1+S−qk
k (zk+1 − zd(k+1))∗ + e1+S−qk

k z∗
k+1

≤ −(n − k + κ)
k−1∑

m=1

e2S
m + (Ck + C̄k )|ek |2S + e1+S−qk

k (zk+1 − z∗
d(k+1))

+ e1+S−qk
k z∗

k+1 +
k∑

m=1

τk (8.59)

By introducing the virtual control z∗
(k+1)d = −βkeqk+1

k with βk selected such that βk ≥
n − k + κ + Ck + C̄k > 0, we get
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V̇k (.) ≤ −(n − k + κ)
k∑

m=1

e2S
m + e1+S−qk

k (zk+1 − z∗
(k+1)d) +

k∑

m=1

τk (8.60)

Step n: This is the final stage of the design where the real control input appears in
the dynamics. For this step, consider the nth part of the Lyapunov candidate function

Vn(z1, . . . , zn) = Vn−1(.) + Wn(z1, . . . , zn) (8.61)

where

Wn(.) =
∫ zn

z∗
nd

(χ
1

qn − z
1

qn
n )1+S−qn dχ (8.62)

then, it is obvious to conclude that Vn(.) is C1, positive definite and satisfies Vn(.) ≤
max{ 1

1+S , 2}∑n
m=1 e1+S

m . Furthermore, let G̃ = G − Ĝ be the estimate error of the
matched and unmatched uncertainty, and G is the total lumped uncertainty to be
defined later. From the above inductive argument, one can conclude that

V̇n ≤ −κ

n−1∑

m=1

e2S
m + e1+S−qn

n żn + (Cn + C̄n)e2S
n +

n−1∑

m=1

τm

≤ −κ

n−1∑

m=1

e2S
m + e1+S−qn

n (bnu + dn(z)) + (Cn + C̄n)e2S
n

+ e1+S−qn
n

(
eqn−1−S

n

n−1∑

m=1

τm

)

≤ −κ

n−1∑

m=1

e2S
m + bne1+S−qn

n u + (Cn + C̄n)e2S
n + bne1+S−qn

n

(
dn(z)

bn

+ eqn−1−S
n

bn

n−1∑

m=1

τm

)
(8.63)

where Cn > 0 and C̄n > 0 are positive constants. The actual control law can therefore
be designed as follows:

u = −βneqn+1
n − Ĝsign(σ ) (8.64)

with the compensator being designed as follows:

˙̂G = |σ |, σ = e1+S−qn (8.65)

where Ĝ is the estimation of the total uncertainty function G defined as G =
dn(z)

bn
+ eqn−1−S

n
bn

∑n−1
m=1 τm, and βn is a positive design parameter chosen arbitrarily by

the designer.
The main result of this chapter can be summarized in the following theorem.
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Theorem 8.2
Consider the nth order underactuated system in the X -space represented by (8.20),
through the coordinate transformation (8.21) and under Assumptions 8.1 and 8.2,
the finite-time convergence objective specified in (8.25) is achieved by the control
input u consisting of (8.64) and the compensator (8.65) with the virtual control
z∗

md , m = 1, . . . , n being applied.

Proof. Consider the Lyapunov function V = Vn(.). Since bn
2 G̃2 is positive definite,

then V ≤ Vn(.) + bn
2 G̃2. Taking the derivative of V along (8.63), yields

V̇ ≤ V̇n − bnG̃ ˙̂G

≤ −κ

n−1∑

m=1

e2S
m + bne1+S−qn

n u + (Cn + C̄n)e2S
n + bne1+S−qn

n

(
dn(z)

bn

+ eqn−1−S
n

bn

n−1∑

m=1

τm

)
− bnG̃ ˙̂G

≤ −κ

n−1∑

m=1

e2S
m + bne1+S−qn

n u + (Cn + C̄n)e2S
n + bne1+S−qn

n G − bnG̃ ˙̂G (8.66)

Substituting the control law (8.64) and the update law (8.65) in (8.66) leads to

V̇ ≤ −κ

n−1∑

m=1

e2S
m − bnβne1+S−qn+qn+1

n + (Cn + C̄n)e2S
n − bnσ Ĝsign(σ )

+ bnσG − bnG ˙̂G

≤ −κ

n−1∑

m=1

e2S
m − (bnβn − Cn − C̄n)e2S

n + bn(Gσ − Ĝ|σ |) − bnG|σ | (8.67)

If βn is chosen such that βnbmax − Cn − C̄n > κ , it follows from (8.67) that AQ3

V̇ ≤ −κ

n∑

m=1

e2S
m (8.68)

Noting that V = Vn(.) ≤ max{ 1
1+S , 2}∑n

m=1 e1+S
m and using Lemma 8.1, we have

Vn(.)
2S

1+S ≤ max
{

1

1 + S
, 2
} n∑

m=1

e2S
m (8.69)

Let α := 2S
1+S , then it is easy to conclude that

dV (.)

dt
≤ μV α (8.70)
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with μ = κ

max{ 1
1+S ,2} . From (8.70), it is straightforward to conclude from Theorem 8.1

that the solutions of the closed-loop system consisting of (8.24) and the control input
(8.64) along with the compensator (8.65) are finite-time stable, and therefore, the
limit in (8.25) is satisfied. This completes the proof.

8.6 Numerical simulations: the case of the cart–pole system

The cart–pole inverted pendulum depicted schematically in Figure 8.1 consists of a
pole mounted on a cart by means of a pivot in such a way that the pole can freely swing
in the x–y plane. The equations of motion can be obtained by neglecting friction in
the pivot and by applying the Euler–Lagrange formulation. The system model can be
represented as follows [35]:

(M + m sin2 θ )ẍ − m sin θ (lθ̇2 − g cos θ ) = u (8.71)

(M + m sin2 θ )lθ̈ + mlθ̇ 2 sin θ cos θ − (M + m)g sin θ = − cos θ (u)

where M is the mass of the cart, m is the mass of the pendulum, l is half the length of
the pendulum, i.e., the distance from the pivot to the center of mass of the pendulum,
g is the acceleration due to gravity. The cart–pole system has two equilibrium points,
one of which is known as the stable vertically downward position where θ = π ,
and the other one being the unstable vertically upward position where θ = 0. F(t)
is the horizontal force being applied to the cart to swing the pendulum until it reaches
the desired unstable position where θ = 0, θ̇ = 0 and ẋ = 0. As can be seen from the
equations of motion (8.71), only one control u appears in both dynamic equations of
the cart–pole system; therefore, the whole system is underactuated. Meaning that it has
fewer control inputs than degrees of freedom. Let x = [x, ẋ, θ , θ̇ ]� = [x1, x2, x3, x4]� ∈
R

4, then the state space representation of the cart–pole system becomes

θ

u(t)

x(t)
M

m, l

Figure 8.1 Schematic view of the cart–pole inverted pendulum
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ẋ1 = x2

ẋ2 = f2(x) + b2(x)u

ẋ3 = x4 (8.72)

ẋ4 = f4(x) + b4(x)u

where f2(x) = mlx2
4 sin x3−mg sin x3 cos x3

M+m sin2 x3
, b2(x) = 1

M+m sin2 x3
, f4(x) =

(M+m)g sin x3−mlx2
4 sin x3 cos x3

Ml+ml sin2 x3
and b4(x) = − cos x3

Ml+ml sin2 x3
. The state space representation (8.72)

is in the form (8.20) with n = 4. The system can be readily transformed from the
X -space into Z-space using the coordinate transformation (8.21) as follows:

z1 = x1 −
∫ x3

0

b2(s)

b4(s)
ds = x1 + l ln( sec x3 + tan x3)

z2 = x2 − b2(x)

b4(x)
x4 = x2 + lx4 sec x3

z3 = x3 (8.73)

z4 = x4

with the change of coordinate (8.73), the system dynamics in the Z-space becomes

ż1 = z2 + d1(z)

ż2 = z3 + d2(z)

ż3 = z4 + d3(z) (8.74)

ż4 = b4(z)u + d4(z)

where d1(z) = d3(z) = 0 and

d2(z) = −z3 − lz2
4 sec z3 tan z3 + (M + m)g tan z3 − mg sin z3 cos z3

M + m sin2 z3

d4(z) = (M + m)g sin z3 − mlz2
4 sin z3 cos z3

Ml + ml sin2 z3
(8.75)

b4(z) = − cos z3

Ml + ml sin2 z3

The objective is then to control the transformed system (8.74) such that all states
z1, z2, z3 and z4 converge in finite time to zero regardless of the internal uncertainties
and external disturbances. For such system, the virtual controllers and the actual
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Figure 8.2 Trajectories of the cart position and pendulum angle versus time

control law are designed according to the development of Theorem 8.2 and are as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z∗
1d = 0, e1 = z

1
q1
1 − z

∗ 1
q1

1d

z∗
2d = −β1eq2

1 , e2 = z
1

q2
2 − z

∗ 1
q2

2d

z∗
3d = −β2eq3

2 , e3 = z
1

q2
3 − z

∗ 1
q2

3d

z∗
4d = −β3eq4

3 , e4 = z
1

q2
4 − z

∗ 1
q2

4d

(8.76)

and
{

u = −β4eq5
4 − Ĝsign(σ )

˙̂G = |σ |, σ = e1+S−q4
(8.77)

To demonstrate the performance of the proposed robust finite control law, we have
performed numerical simulations on MATLAB®/Simulink® framework, considering
the following system parameters m = 1 kg, M = 2 kg and l = 0.5 m. The initial
conditions are chosen as x = [1, 0, π

3 , 0]�, the desired state is xd = [0, 0, 0, 0]�. The
control gains are chosen to be κ = 10, β1 = 13, β2 = 12, β3 = 11 and β4 = 20. Dif-
ferent simulation scenarios have been considered. The first simulation scenario is
the control of uncertain cart–pole system without external disturbances. The second
one considers the case of an uncertain cart–pole system with the presence of external
disturbances.

1. Scenario 1: Uncertain cart–pole system without external disturbances
In this scenario, we assume that the system dynamics is completely unknown
except for the sign condition in Assumption 8.2. The obtained simulation results
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Figure 8.4 Evolution of the trajectories of Z-space state variables versus time

are shown in Figures 8.2–8.4. It is clear in Figure 8.2 how the cart displacement
and the pendulum angle converge in finite time to zero despite the uncertainties
present in the system dynamics. The control effort being deployed is shown
in Figure 8.3. Figure 8.4 shows the convergence to zero of the state variables
in the Z-space. Clearly, the algorithm performs well in the presence of model
parameters’ uncertainties.
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Figure 8.6 Evolution of the control effort accounting for disturbances

2. Scenario 2: Uncertain cart–pole system with external disturbances
In this simulation scenario, on top of the uncertainties that the system dynamics
contains, a periodic perturbation d(t) = sin (2t) is added as an external exci-
tation to the cart–pole system during the time interval t ∈ [20, 35] s in order
to test the robustness of the proposed control approach. The obtained simula-
tion results are depicted in Figures 8.5–8.7. From Figure 8.5, it can be noticed
that despite the existing uncertainties and the considered external disturbance,
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disturbances

the controller is able to steer the system to its desired values. The control effort
after the application of the disturbances is shown in Figure 8.6, clearly the
amplitude of the control input even with the external perturbation remains with
reasonable size. The convergence of the state variables in Z-space is shown in
Figure 8.7. From these figures, it can be seen that our control design is robust
to tolerate significant variation of the system parameters as well as the external
disturbances.

8.7 Conclusion

In this paper, the problem of global finite-time stabilization was addressed for the
control of a class of uncertain underactuated mechanical systems. By integrating a
fractional power feedback control method with a compensator, the uncertainties in
the system can be effectively handled and finite-time stabilization is achieved. Future
work is to extend the current design technique to a class of chained form systems
perturbed by external disturbances as well as experiments on the inertia wheel inverted
pendulum.
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