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Abstract

Existential rules, long known as tuple-generating dependencies in database the-
ory, have been intensively studied in the last decade as a powerful formalism to
represent ontological knowledge in the context of ontology-based query answer-
ing. A knowledge base is then composed of an instance that contains incomplete
data and a set of existential rules, and answers to queries are logically entailed
from the knowledge base. This brought again to light the fundamental chase tool,
and its different variants that have been proposed in the literature. It is well-known
that the problem of determining, given a chase variant and a set of existential rules,
whether the chase will halt on any instance, is undecidable. Hence, a crucial issue
is whether it becomes decidable for known subclasses of existential rules. In this
work, we consider linear existential rules, a simple yet important subclass of ex-
istential rules that generalizes inclusion dependencies. We show the decidability
of the all instance chase termination problem on linear rules for three main chase
variants, namely semi-oblivious, restricted and core chase. To obtain these results,
we introduce a novel approach based on so-called derivation trees and a single no-
tion of forbidden pattern. Besides the theoretical interest of a unified approach and
new proofs, we provide the first positive decidability results concerning the termi-
nation of the restricted chase, proving that chase termination on linear existential
rules is decidable for both versions of the problem: Does every fair chase sequence
terminate? Does some fair chase sequence terminate?

1 Introduction
The chase procedure is a fundamental tool for solving many issues involving tuple-
generating dependencies, such as data integration [Len02], data-exchange [FKMP05],
query answering using views [Hal01] or query answering on probabilistic databases
[OHK09]. In the last decade, tuple-generating dependencies raised a renewed interest
under the name of existential rules for the problem known as ontology-based query
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answering. In this context, the aim is to query a knowledge base (I,Σ), where I is
an instance and Σ is a set of existential rules (see e.g. the survey chapters [CGL09,
MT14]). In more classical database terms, this problem can be recast as querying
an instance I under incomplete data assumption, provided with a set of constraints
Σ, which are tuple-generating dependencies. The chase is a fundamental tool to solve
dependency-related problems as it allows one to compute a (possibly infinite) universal
model of (I,Σ), i.e., a model that can be homomorphically mapped to any other model
of (I,Σ). Hence, the answers to a conjunctive query (and more generally to any kind
of query closed by homomorphism) over (I,Σ) can be defined by considering solely
this universal model.

Several variants of the chase have been introduced, and we focus in this paper on the
main ones: semi-oblivious [Mar09] (aka skolem [Mar09]), restricted [BV81, FKMP05]
(aka standard [One12]) and core [DNR08]. It is well known that all of these produce
homomorphically equivalent results but terminate for increasingly larger subclasses of
existential rules.

Any chase variant starts from an instance and exhaustively performs a sequence
of rule applications according to a redundancy criterion which characterizes the variant
itself. The question of whether a chase variant terminates on all instances for a given set
of existential rules is known to be undecidable when there is no restriction on the kind
of rules [BLMS11, GM14]. A number of sufficient syntactic conditions for termination
have been proposed in the literature for the semi-oblivious chase (see e.g. [One12,
GHK+13, Roc16] for syntheses), as well as for the restricted chase [CDK17] (note
that the latter paper also defines a sufficient condition for non-termination). However,
only few positive results exist regarding the termination of the chase on specific classes
of rules. Decidability was shown for the semi-oblivious chase on guarded-based rules
(linear rules, and their extension to (weakly-)guarded rules) [CGP15]. Decidability of
the core chase termination on guarded rules for a fixed instance was shown in [Her12].

In this work, we provide new insights on the chase termination problem for linear
existential rules, a simple yet important subclass of guarded existential rules, which
generalizes inclusion dependencies [Fag81] and practical ontological languages [CGL12].
Precisely, the question of whether a chase variant terminates on all instances for a set
of linear existential rules is studied in two fashions:

• does every (fair) chase sequence terminate?

• does some (fair) chase sequence terminate?

It is well-known that these two questions have the same answer for the semi-oblivious
and the core chase variants, but not for the restricted chase. Indeed, this last one may
admit both terminating and non-terminating sequences over the same knowledge base.
We show that the termination problem is decidable for linear existential rules, whether
we consider any version of the problem and any chase variant.

We study chase termination by exploiting in a novel way a graph structure, namely
the derivation tree, which was originally introduced to solve the ontology-based (con-
junctive) query answering problem for the family of greedy-bounded treewidth sets of
existential rules [BMRT11, Tho13], a class that generalizes guarded-based rules and in
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particular linear rules. We first use derivation trees to show the decidability of the termi-
nation problem for the semi-oblivious and restricted chase variants, and then generalize
them to entailment trees to show the decidability of termination for the core chase. For
any chase variant we consider, we adopt the same high-level procedure: starting from
a finite set of canonical instances (representative of all possible instances), we build a
(set of) tree structures for each canonical instance, while forbidding the occurrence of a
specific pattern, we call unbounded-path witness. The built structures are finite thanks
to this forbidden pattern, and this allows us to decide if the chase terminates on the
associated canonical instance. By doing so, we obtain a uniform approach to study the
termination of several chase variants, that we believe to be of theoretical interest per
se. The derivation tree is moreover a simple structure and the algorithms built on it are
likely to lead to an effective implementation. Let us also point out that our approach is
constructive: if the chase terminates on a given instance, the algorithm that decides ter-
mination actually computes the result of the chase (or a superset of it in the case of the
core chase), otherwise it pinpoints a forbidden pattern responsible for non-termination.

Besides providing new theoretical tools to study chase termination, we obtain the
following results for linear existential rules:

• a new proof of the decidability of the semi-oblivious chase termination, building
on different objects than the previous proof provided in [CGP15]; we show that
our algorithm provides the same complexity upper-bound;

• the decidability of the restricted chase termination, for both versions of the prob-
lem, i.e., termination of all (fair) chase sequences and termination of some (fair)
chase sequence; to the best of our knowledge, these are the first positive results
on the decidability of the restricted chase termination;

• a new proof of the decidability of the core chase termination, with different ob-
jects than previous work reported in [Her12]; although this latter paper solves
the question of the core chase termination given a single instance, the results ac-
tually allow to infer the decidability of the all instance version of the problem,
by noticing that only a finite number of instances need to be considered (see the
next section).

The paper is organized as follows. After introducing some preliminary notions
(Section 2), we define the main components of our framework, namely derivation trees
and unbounded-path witnesses (Section 3). We build on these objects to prove the
decidability of the semi-oblivious and restricted chase termination (Section 4). Finally,
we generalize derivation-trees to entailment trees and use them to prove the decidability
of the core chase termination (Section 5). Detailed proofs are provided in the appendix.

2 Preliminaries
We consider a logical vocabulary composed of a finite set of predicates and an infinite
set of constants. An atom α has the form r(t1, . . . , tn) where r is a predicate of arity
n and the ti are terms (i.e., variables or constants). We denote by terms(α) (resp.
vars(α)) the set of terms (resp. variables) in α and extend the notations to a set of
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atoms. A ground atom does not contain any variable. It is convenient to identify the
existential closure of a conjunction of atoms with the set of these atoms. An instance
is a set of (non-necessarily ground) atoms, which is finite unless otherwise specified.
Abusing terminology, we will often see an instance as its isomorphic model.

Given two sets of atoms S and S′, a homomorphism from S′ to S is a substitution
π of vars(S′) by terms(S) such that π(S′) ⊆ S. It holds that S |= S′ (where |=
denotes classical logical entailment) iff there is a homomorphism from S′ to S. An
endomorphism of S is a homomorphism from S to itself. A set of atoms is a core if
it admits only injective endomorphisms. Any finite set of atoms is logically equivalent
to one of its subsets that is a core, and this core is unique up to isomomorphism (i.e.,
bijective variable renaming). Given sets of atoms S and S′ such that S ∩ S′ 6= ∅, we
say that S folds onto S′ if there is a homomorphism π from S to S′ such that π is
the identity on S ∩ S′. The homomorphism π is called a folding. In particular, it is
well-known that any set of atoms folds onto its core.

An existential rule (or simply rule) is of the form σ = ∀x∀y.[body(x,y) →
∃z.head(x, z)] where body(x,y) and head(x, z) are non-empty conjunctions of atoms
on variables, respectively called the body and the head of the rule, also denoted by
body(σ) and head(σ), and x,y and z are pairwise disjoint tuples of variables. The
variables of z are called existential variables. The variables of x form the frontier of
σ, which is also denoted by fr(σ). For brevity, we will omit universal quantifiers in the
examples. A knowledge base (KB) is of the form K = (I,Σ), where I is an instance
and Σ is a finite set of existential rules.

A rule σ = body(σ)→ head(σ) is applicable to an instance I if there is a homo-
morphism π from body(σ) to I . The pair (σ, π) is called a trigger for I . The result of
the application of σ according to π on I is the instance I ′ = I ∪ πs(head(σ)), where
πs (here s stands for safe) extends π by assigning a distinct fresh variable (also called
a null) to each existential variable. We also say that I ′ is obtained by firing the trigger
(σ, π) on I . By π|fr(σ) we denote the restriction of π to the domain fr(σ).

Definition 1 Derivation. A Σ-derivation (or simply derivation when Σ is clear
from the context) from an instance I = I0 to an instance In is a sequence
I0, (σ1, π1), I1 . . . , In−1, (σn, πn), In, such that for all 1 ≤ i ≤ n: σi ∈ Σ, (σi, πi)
is a trigger for Ii−1, Ii is obtained by firing (σi, πi) on Ii−1, and Ii 6= Ii−1. We may
also denote this derivation by the associated sequence of instances (I0, . . . , In) when
the triggers are not needed. The notion of derivation can be naturally extended to an
infinite sequence.

We briefly introduce below the main chase variants and refer to [One12] for a de-
tailed presentation.

The semi-oblivious chase prevents several applications of the same rule through the
same mapping of its frontier. Given a derivation from I0 to Ii, a trigger (σ, π) for Ii is
said to be active according to the semi-oblivious criterion, if there is no trigger (σj , πj)
in the derivation with σ = σj and π|fr(σ) = πj|fr(σj). The restricted chase performs
a rule application only if the added set of atoms is not redundant with respect to the
current instance. Given a derivation from I0 to Ii, a trigger (σ, π) for Ii is said to be
active according to the restricted criterion if π cannot be extended to a homomorphism
from (body(σ) ∪ head(σ)) to Ii (equivalently, πs(head(σ)) does not fold onto Ii). A
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semi-oblivious (resp. restricted) chase sequence of I with Σ is a possibly infinite Σ-
derivation from I such that each trigger (σi, πi) in the derivation is active according to
the semi-oblivious (resp. restricted) criterion.

Furthermore, a (possibly infinite) chase sequence is required to be fair, which
means that a possible rule application is not indefinitely delayed. Formally, if some
Ii in the derivation admits an active trigger (σ, π), then there is j > i such that, either
Ij is obtained by firing (σ, π) on Ij−1, or (σ, π) is not an active trigger anymore on Ij .
A terminating chase sequence is a finite fair sequence.

In its original definition [DNR08], the core chase proceeds in a breadth-first man-
ner, and, at each step, first fires in parallel all active triggers according to the restricted
chase criterion, then computes the core of the result. Alternatively, to bring the def-
inition of the core chase closer to the above definitions of the semi-oblivious and re-
stricted chases, one can define a core chase sequence as a possibly infinite sequence
I0, (σ1, π1), I1, . . ., alternating instances and triggers, such that each instance Ii is ob-
tained from Ii−1 by first firing the active trigger (σi, πi) according to the restricted
criterion, then computing the core of the result. An instance admits a terminating core
chase sequence in that sense if and only if the core chase as originally defined termi-
nates on that instance.

For the three chase variants, fair chase sequences compute a (possibly infinite)
universal model of the KB, but only the core chase stops if and only if the KB has a
finite universal model.

It is well-known that, for the semi-oblivious and the core chase, if there is a termi-
nating chase sequence from an instance I then all fair sequences from I are terminating.
This is not the case for the restricted chase, since the order in which rules are applied
has an impact on termination, as illustrated by Example 1.

Example 1. Let Σ = {σ1, σ2}, with σ1 = p(x, y) → ∃z p(y, z) and σ2 = p(x, y) →
p(y, y). Let I = p(a, b). The KB (I,Σ) has a finite universal model, for example,
I∗ = {p(a, b), p(b, b)}. The semi-oblivious chase does not terminate on I as σ1 is
applied indefinitely, while the core chase terminates after one breadth-first step and
returns I∗. The restricted chase has a terminating sequence, for example, (σ2, {x 7→
a, y 7→ b}), which yields I∗ as well, but it also has infinite fair sequences, for example,
the breadth-first sequence that applies σ1 before σ2 at each step.
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We study the following problems for the semi-oblivious, restricted and core chase
variants:

• (All instance) all sequence termination: Given a set of rules Σ, is it true that, for
any instance, all fair sequences are terminating?

• (All instance) one sequence termination: Given a set of rules Σ, is it true that,
for any instance, there is a terminating sequence?

Note that, according to the terminology of [GO18], these problems can be recast as
deciding whether, for a chase variant, a given set of rules belongs to the class CT∀∀ or
CT∀∃, respectively.

An existential rule is called linear if its body and its head are both composed of a
single atom (e.g., [CGL12]). Linear rules generalize inclusion dependencies [Fag81]
by allowing several occurrences of the same variable in an atom. They also generalize
positive inclusions in the description logic DL-LiteR (the formal basis of the web onto-
logical language OWL2 QL) [CDL+07], which can be seen as inclusion dependencies
restricted to unary and binary predicates.

Note that the restriction of existential rules to rules with a single head is often made
in the literature, considering that any existential rule with a complex head can be de-
composed into several rules with a single head, by introducing a fresh predicate for each
rule. However, while this translation preserves the termination of the semi-oblivious
chase, it is not the case for the restricted and the core chases. Hence, considering linear
rules with a complex head would require to extend the techniques developed in this
paper.

To simplify the presentation, we assume in the following that each rule frontier is
of size at least one. This assumption is made without loss of generality. 1

We first point out that the termination problem on linear rules can be recast by
considering solely instances that contain a single atom (as already remarked in several
contexts).

Proposition 1. Let Σ be a linear set of rules. The semi-oblivious (resp. restricted,
core) chase terminates on all instances if and only if it terminates on all singleton
instances.

We will furthermore rely on the following notion of the type of an atom.

Definition 2 Type of an atom. The type of an atom α = r(t1, . . . , tn), denoted by
type(α), is the pair (r,P) where P is the partition of {1, . . . , n} induced by term
equality (i.e., i and j are in the same class of P iff ti = tj).

Note that there are finitely (more specifically, exponentially) many types for a given
vocabulary.

If two atoms α and α′ have the same type, then there is a natural mapping from α to
α′, denoted by ϕα→α′ , and defined as follows: it is a bijective mapping from terms(α)

1For instance, it can always be ensured by adding a position to all predicates, which is filled by the same
fresh constant in the initial instance, and by a new frontier variable in each rule.
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to terms(α′), that maps the i-th term of α to the i-th term of α′. Note that ϕα→α′

may not be an isomorphism, as constants from α may not be mapped to themselves.
However, if (σ, π) is a trigger for {α}, then (σ, ϕα→α′ ◦ π) is a trigger for {α′}, as
there are no constants in the considered rules.

Together with Proposition 1, this implies that one can check all instance all se-
quence termination by checking all sequence termination on a finite set of instances,
called canonical instances: for each type, there is exactly one canonical instance that
has this type.

We will consider different kinds of tree structures, which have in common to be
trees of bags: these are rooted trees, whose nodes, called bags, are labeled by an atom.2

We define the following notations for any node B of a tree of bags T :

• atom(B) is the label of B;

• terms(B) = terms(atom(B)) is the set of terms of B;

• terms(B) is divided into two sets of terms, those generated in B, denoted by
generated(B), and those shared with its parent, denoted by shared(B); precisely,
terms(B) = shared(B) ∪ generated(B), shared(B) ∩ generated(B) = ∅, and if
B is the root of T , then generated(B) = terms(B) (hence shared(B) = ∅),
otherwise B has a parent Bp and generated(B) = terms(B)\ terms(Bp) (hence,
shared(B) = terms(Bp) ∩ terms(B)).

We denote by atoms(T ) the set of atoms that label the bags in T .
Finally, we recall some classical mathematical notions. A subsequence S′ of a se-

quence S is a sequence that can be obtained from S by deleting some (or no) elements
without changing the order of the remaining elements. The arity of a tree is the maxi-
mal number of children for a node. A prefix T ′ of a tree T is a tree that can be obtained
from T by repeatedly deleting some (or no) leaves of T .

3 Derivation Trees
A classical tool to reason about the chase is the so-called chase graph (see e.g., [CGL12]),
which is the directed graph consisting of all atoms that appear in the considered deriva-
tion, and with an arrow from a node n1 to a node n2 iff n2 is created by a rule ap-
plication on n1 and possibly other atoms. 3 In the specific case of KBs of the form
({α},Σ), where α is an atom and Σ is a set of linear rules, the chase graph is a tree.
We recall below its definition in this specific case, in order to emphasize its differences
with another tree, called derivation tree, on which we will actually rely.

Definition 3 Chase Graph for Linear Rules. Let I be a singleton instance, Σ be a
set of linear rules and I = I0, (σ1, π1), I1 . . . , In−1, (σn, πn), In be a semi-oblivious
Σ-derivation from I . The chase graph (also called chase tree) assigned to S is a tree of
bags built as follows:

2Furthermore the trees we will consider are decomposition trees of the associated set of atoms. That is
why we use the classical term of bag to denote a node.

3Note that the chase graph in [DNR08] is a different notion.
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Derivation Tree

Figure 1: Chase Graph and Derivation Tree of Example 2

• the set of bags is in bijection with In via the labeling function atom();

• the set of edges is in bijection with the set of triggers in S and is built as fol-
lows: for each trigger (σi, πi) in S, there is an edge (B,B′) with atom(B) =
πi(body(σi)) and atom(B′) = πsi (head(σi)).

Example 2. Let I = q(a) and Σ = {σ1, σ2} where σ1 = q(x)→ ∃y∃z∃t p(x, y, z, t)
and σ2 = p(x, y, z, t)→ p(x, z, t, y). Let S = I, (σ1, π1), I1, (σ2, π2), I3, (σ2, π3), I3
with π1 = {x 7→ a}, πs1(head(σ1)) = p(a, y0, z0, t0), π2 = {x 7→ a, y 7→ y0, z 7→
z0, t 7→ t0} and π3 = {x 7→ a, y 7→ z0, z 7→ t0, t 7→ y0}. The chase graph associated
with S is a path of four nodes as represented in Figure 1.

To check termination of a chase variant on a given KB ({α},Σ), the general idea
is to build a tree of bags associated with the chase on this KB in such a way that the
occurrence of some forbidden pattern indicates that a path of unbounded length can be
developed, hence the chase does not terminate. The forbidden pattern is composed of
two distinct nodes such that one is an ancestor of the other and, intuitively speaking,
these nodes “can be extended in similar ways”, which leads to an arbitrarily long path
that repeats the pattern.

Two atoms with the same type admit the same rule triggers, however, within a
derivation, the same rule applications cannot necessarily be performed on both of them
because of the presence of other atoms (this is true already for datalog rules, since the
same atom is never produced twice). Hence, on the one hand we will specialize the
notion of type, into that of a sharing type, and, on the other hand, adopt another tree
structure, called a derivation tree, in which two nodes with the same sharing type have
the required similar behavior.

Definition 4 Sharing type and Twins. Given a tree of bags, the sharing type of a bag
B is a pair (type(atom(B)), P ) where P is the set of positions in atom(B) in which a
term of shared(B) occurs. We denote the fact that two bags B and B′ have the same
sharing type by B ≡st B′. Furthermore, we say that two bags B and B′ are twins
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if they have the same sharing type, the same parent Bp and if the natural mapping
ϕatom(B)→atom(B′) is the identity on the terms of atom(Bp).

We can now specify the forbidden pattern that we will consider: it is a pair of two
distinct nodes with the same sharing type, such that one is an ancestor of the other.

Definition 5 Unbounded-Path Witness. An unbounded-path witness (UPW) in a
derivation tree is a pair of distinct bags (B,B′) such that B and B′ have the same
sharing type and B is an ancestor of B′.

As explained below on Example 2, the chase graph is not the appropriate tool to
use this forbidden pattern as a witness of chase non-termination.

Example 2 (cont’d). B1, B2 and B3 have the same classical type,
t = (p, {{1}, {2}, {3}, {4}}). The sharing type of B1 is (t, {1}), while B2 and B3

have the same sharing type (t, {1, 2, 3, 4}). B2 and B3 fulfill the condition of the
forbidden pattern, however it is easily checked that any derivation that extends this
derivation is finite.

Derivation trees were introduced as a tool to define the greedy bounded treewidth
set (gbts) family of existential rules [BMRT11, Tho13]. A derivation tree is associated
with a derivation, however it does not have the same structure as the chase graph. The
fundamental reason is that, when a rule σ is applied to an atom α via a homomorphism
π, the newly created bag is not necessarily attached in the tree as a child of the bag
labeled by α. Instead, it is attached as a child of the highest bag in the tree labeled by
an atom that contains π(fr(σ)), the image by π of the frontier of σ (note that π(fr(σ))
remains the set of terms shared between the new bag and its parent).

In the following definition, a derivation tree is not associated with any derivation,
but with a semi-oblivious derivation, which has the advantage of yielding trees with
bounded arity (Proposition 12 in the Appendix). This is appropriate to study the termi-
nation of the semi-oblivious chase, and later the restricted chase, as a restricted chase
sequence is a specific semi-oblivious chase sequence.

Definition 6 Derivation Tree. Let I = {α} be a singleton instance, Σ be a set of linear
rules, and S = I0, (σ1, π1), I1, . . . , (σn, πn), In be a semi-oblivious Σ-derivation. The
derivation tree assigned to S is a tree of bags T built as follows:

• the root of the tree, B0, is such that atom(B0) = α;

• for each trigger (σi, πi), 0 < i ≤ n, let Bi be the bag such that atom(Bi) =
πsi (head(σi)). Let j be smallest integer such that πi(fr(σi)) ⊆ terms(Bj): Bi
is added as a child to Bj .

By extension, we say that a derivation tree T is associated with α and Σ if there exists
a semi-oblivious Σ-derivation S from α such that T is assigned to S.

Example 2 (cont’d). The derivation tree associated with S is represented in Figure 1.
Bags have the same sharing types in the chase tree and in the derivation tree. However,
we can see here that they are not linked in the same way: B3 was a child of B2 in the
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chase tree, it becomes a child of B1 in the derivation tree. Hence, the forbidden pattern
cannot be found anymore in the tree.

Note that every non-root bag B shares a least one term with its parent (since the
rule frontiers are not empty), furthermore this term is generated in its parent (otherwise
B would have been added at a higher level in the tree).

4 Semi-Oblivious and Restricted Chase Termination
We now use derivation trees and sharing types to characterize the termination of the
semi-oblivous chase. The fundamental property of derivation trees that we exploit
is that, when two nodes have the same sharing type, the considered (semi-oblivious)
derivation can always be extended so that these nodes have the same number of chil-
dren, and in turn these children have the same sharing type. We first specify the notion
of bag copy.

Definition 7 Bag Copy. Let T , T ′ be two (possibly equal) trees of bags. Let B be
a bag of T and B′ be a bag of T ′ such that B ≡st B′. Let Bc be a child of B. A
copy of Bc under B′ is a bag B′c such that atom(B′c) = ϕs(atom(Bc)), where ϕs is a
substitution of terms(Bc) defined as follows:

• if t ∈ shared(Bc), then ϕs(t) = ϕatom(B)→atom(B′)(t), where ϕatom(B)→atom(B′)

is the natural mapping from atom(B) to atom(B′);

• if t ∈ generated(Bc), then ϕs(t) is a fresh new variable.

Let Te be obtained from a derivation tree T by adding a copy of a bag: strictly
speaking, Te may not be a derivation tree in the sense that there may be no derivation
to which it can be assigned (intuitively, some rule applications that would allow to
produce the copy may be missing). Rather, there is some derivation tree of which Te is
a prefix (intuitively, one can add bags to Te to obtain a derivation tree). That is why the
following proposition considers more generally prefixes of derivation trees.

Proposition 2. Let T be a prefix of a derivation tree, B and B′ be two bags of T
such that B ≡st B′, and Bc be a child of B. Then: (a) the tree obtained from T by
adding the copy B′c of Bc under B′ is a prefix of a derivation tree, and (b) it holds that
Bc ≡st B′c.

The size of a derivation tree without UPW is bounded, since its arity is bounded
(Proposition 12 in the Appendix) and its depth is bounded by the number of sharing
types. It remains to show that a derivation tree that contains a UPW can be extended to
an arbitrarily large derivation tree. We recall that similar property would not hold for
the chase tree, as witnessed by Example 2.

Proposition 3. There exists an arbitrary large derivation tree associated with α and
Σ if and only if there exists a derivation tree associated with α and Σ that contains an
unbounded-path witness.
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The previous proposition yields a characterization of the existence of an infinite
semi-oblivious derivation. At this point, one may notice that an infinite semi-oblivious
derivation is not necessarily fair. However, from this infinite derivation one can always
build a fair derivation by inserting missing triggers. Obviously, this operation has no
effect on the termination of the semi-oblivious chase. More precaution will be required
for the restricted chase.

One obtains an algorithm to decide termination of the semi-oblivious chase for a
given set of rules: for each canonical instance, build a semi-oblivious derivation and
the associated derivation tree by applying rules until a UPW is created (in which case
the answer is no) or all possible rule applications have been performed; if no instance
has returned a negative answer, the answer is yes.

Corollary 1. The all-sequence termination problem for the semi-oblivious chase on
linear rules is decidable.

This algorithm can be modified to run in polynomial space (which is optimal
[CGP15]), by guessing a canonical instance and a UPW of its derivation tree.

Proposition 4. The all-sequence termination problem for the semi-oblivious chase on
linear rules is in PSPACE.

We now consider the restricted chase. To this aim, we call restricted derivation tree
associated with α and Σ a derivation tree associated with a restricted Σ-derivation from
α. We first point out that Proposition 2 is not true anymore for a restricted derivation
tree, as the order in which rules are applied matters.

Example 3. Consider a restricted tree that contains bags B and B′ with the same
sharing type, labeled by atoms q(t, u) and q(v, w) respectively, where the second term
is generated. Consider the following rules (the same as in Example 1):
σ1 : q(x, y)→ ∃z q(y, z)
σ2 : q(x, y)→ q(y, y)
Assume B has a child Bc labeled by q(u, z0) obtained by an application of σ1, and B′

has a child B′1 labeled by q(w,w) obtained by an application of σ2. It is not possible
to extend this tree by copying Bc under B′. Indeed, the corresponding application of
σ1 does not comply with the restricted chase criterion: it would produce an atom of the
form q(w, z1) that folds into q(w,w).

We thus prove a weaker proposition by considering thatB′ is a leaf in the restricted
derivation tree.

Proposition 5. Let T be a prefix of a restricted derivation tree, B and B′ be two bags
of T such that B ≡st B′ and B′ is a leaf. Let Bc be a child of B. Then: (a) the
tree obtained from T by adding the copy B′c of Bc under B′ is a prefix of a restricted
derivation tree, and (b) it holds that Bc ≡st B′c.

Proof: Let S be the restricted derivation associated with T . Let Sc be the subsequence
of S that starts from B and produces the strict descendants of B. Obviously, any rule
application in Sc is performed on a descendant of B, hence we do not care about rule
applications that produce bags that are not descendants ofB. We prove the property by
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induction on the length of Sc. If Sc is empty, the property holds with Te = T . Assume
the property is true for 0 ≤ |Sc| ≤ k. Let |Sc| = k+ 1. By induction hypothesis, there
is an extension T ′ of T such that the subtree of B restricted to the first k elements of
Sc is ‘quasi-isomorphic’ to the subtree rooted inB′ (via a bijective substitution defined
by the natural mappings between sharing types, say φ) . Let (σ, π) be the last trigger of
Sc, and assume it applies to a bag Bd. In T ′, there is a bag B′d = φ(Bd). Hence, σ can
be applied to B′d with the homomorphism φ ◦ π. Any folding of the produced bag B′′

to a bag in T ′ necessarily maps B′′ to a bag in the subtree rooted in B′d (because B′d
and B′′ share a term generated in B′d, that only occurs in the subtree rooted in B′d and
remains invariant by the folding). Since Bd and B′d have quasi-isomorphic subtrees,
and (σ, π) satisfies the restricted chase criterion, so does (σ, φ ◦ π). Furthermore, the
quasi-isomorphism φ preserves the sharing types. Hence, B′d is added exactly like the
bag produced by (σ, π). We conclude that the property holds true at rank k + 1. �

The previous proposition allows us to obtain a variant of Proposition 3 adapted to
the restricted chase:

Proposition 6. There exists an arbitrary large restricted derivation tree associated
with α and Σ if and only if there exists a restricted derivation tree associated with α
and Σ that contains an unbounded-path witness.

It is less obvious than in the case of the semi-oblivious chase that the existence of
an infinite derivation entails the existence of an infinite fair derivation. However, this
property still holds:

Proposition 7. For linear rules, every (infinite) non-terminating restricted derivation
is a subsequence of a fair restricted derivation.

Similarly to Proposition 3 for the semi-oblivious chase, Proposition 6 provides an
algorithm to decide termination of the restricted chase. The difference is that it is not
sufficient to build a single derivation for a given canonical instance; instead, all pos-
sible restricted derivations from this instance have to be built (note that the associated
restricted derivation trees are finite for the same reasons as before, and there is obvi-
ously a finite number of them). Hence, we obtain:

Corollary 2. The all-sequence termination problem for the restricted chase on linear
rules is decidable.

A rough analysis of the proposed algorithm provides a CO-N2EXPTIME upper-
bound for the complexity of the problem, by guessing a derivation that is of length at
most double exponential, and checking whether there is a UPW in the corresponding
derivation tree.

Importantly, the previous algorithm is naturally able to consider solely some type of
restricted derivations, i.e., build only derivation trees associated with such derivations,
which is of theoretical but also of practical interest. Indeed, implementations of the
restricted chase often proceed by building breadth-first sequences (which are intrinsi-
cally fair), or variants of these. As witnessed by the next example, the termination of
all breadth-first sequences is a strictly weaker requirement than the termination of all
fair sequences, in the sense that the restricted chase terminates on more sets of rules.
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Figure 2: Finite versus Infinite Derivation Tree for Example 4

Example 4. Consider the following set of rules:
σ1 = p(x, y)→ q(y) σ2 = p(x, y)→ r(y, x)
σ3 = q(y)→ ∃z r(y, z) σ4 = r(x, y)→ ∃z p(y, z)
All breadth-first restricted derivations terminate, whatever the initial instance is. Re-
mark that every application of σ1 is followed by an application of σ2 in the same
breadth-first step, which prevents the application of σ3. However, there is a fair re-
stricted derivation that does not terminate (and this is even true for any instance).
Indeed, an application of σ2 can always be delayed, so that it comes too late to prevent
the application of σ3. See Figure 2: on the left, a finite derivation tree associated with
a breadth-first derivation from instance p(x, y); on the right, an infinite derivation tree
associated with a (non breadth-first) fair infinite derivation from the same instance.
The numbers on edges give the order in which bags are created.

We now prove the decidability of the one-sequence termination problem, building
on the same objects as before, but in a different way. Indeed, a (restricted) derivation
tree T that contains a UPW (B,B′) is a witness of the existence of an infinite (restricted
fair) derivation, but does not prove that every (restricted fair) derivation that extends T
is infinite. To decide, we will consider trees associated with a sharing type instead of a
type. A derivation tree associated with a sharing type T has a root bag whose sharing
type is T , and is built as for usual root bags, except that shared terms are taken into
account, i.e., triggers (σ, π) such that π(fr(σ)) ⊆ shared(T ) are simply ignored. The
algorithm proceeds as follows:

1. For each sharing type T , generate all restricted derivations trees associated with
T , stopping the construction of a tree when, for each leaf BL, either there is no
active trigger on atom(BL) or BL forms a UPW with one of its ancestors.

2. Mark all the sharing types that have at least one associated tree without UPW.

3. Propagate the marks until stability: if a sharing type T has at least one tree for
which all UPWs (B,B′) are such that the sharing type of B is marked, then
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mark T .

4. If all sharing types that correspond to instances (i.e., without shared terms) are
marked, return yes, otherwise return no.

Proposition 8. The previous algorithm terminates and returns yes if and only if there
is a terminating restricted sequence.

Proof:(Sketch) Termination follows from the finiteness of the set of sharing types and
the bound on the size of a tree. Concerning the correctness of the algorithm, we show
that a terminating restricted derivation cannot have a derivation tree that contains an
unmarked UPW, i.e., whose associated sharing type is not marked. By contradiction:
assume there is a terminating restricted derivation whose derivation tree contains an
unmarked UPW; consider such an unmarked UPW (B,B′) such that B′ is of maximal
depth in the tree. The subtree of B′ necessarily admits as prefix one of the restricted
derivation trees associated with the sharing type ofB′ built by the algorithm, otherwise
the derivation would not be fair. Moreover, since the sharing type of B′ is not marked,
this prefix contains an unmarked UPW. Hence, the tree contains an unmarked UPW
(B′′, B′′′) with B′′′ of depth strictly greater than the depth of B′, which contradicts
the hypothesis. �

Corollary 3. The one-sequence termination problem for the restricted chase on linear
rules is decidable.

By guessing a terminating restricted derivation, which must be of size at most dou-
ble exponential, and checking that the obtained instance is indeed a universal model, we
obtain a N2EXPTIME upper bound for the complexity of the one-sequence termination
problem.

We conclude this section by noting that the previous Example 4 may give the
(wrong) intuition that, given a set of rules, it is sufficient to consider breadth-first se-
quences to decide if there exists a terminating sequence. The following example shows
that it is not the case: here, no breadth-first sequence is terminating, while there exists
a terminating sequence for the given instance.

Example 5. Let Σ = {σ1, σ2, σ3} with σ1 = p(x, y) → ∃z p(y, z), σ2 = p(x, y) →
h(y), and σ3 = h(x) → p(x, x). In this case, for every instance, there is a ter-
minating restricted chase sequence, where the application of σ2 and σ3 prevents the
indefinite application of σ1. However, starting from I = {p(a, b)}, by applying rules in
a breadth-first fashion one obtains a non-terminating restricted chase sequence, since
σ1 and σ2 are always applied in parallel from the same atom, before applying σ3.

As for the all-sequence termination problem, the algorithm may restrict the deriva-
tions of interest to specific kinds.

5 Core Chase Termination
We now consider the termination of the core chase of linear rules. Keeping the same
approach, we prove that the finiteness of the core chase is equivalent to the existence
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Figure 3: Derivation tree and entailment tree for Example 6

of a finite tree of bags whose set of atoms is a minimal universal model. We call this
a (finite) complete core. To bound the size of a complete core, we show that it cannot
contain an unbounded-path witness. Note that in the binary case, it would be possible
to work again on derivation trees, but this is not true anymore for arbitrary arity. Indeed,
as shown in Example 6, there are linear sets of rules for which no derivation tree form
a complete core (while it holds for binary rules). We thus introduce a more general tree
structure, namely entailment trees.

Example 6. Let us consider the following rules:
s(x)→ ∃y∃z p(y, z, x) p(y, z, x)→ ∃v q(y, v, x)
q(y, v, x)→ p(y, v, x)

Let I = {s(a)}. The first rule applications yield a derivation tree T which is a
path of bags B0, B1, B2, B3 respectively labeled by the following atoms:
s(a), p(y0, z0, a), q(y0, v0, a) and p(y0, v0, a). T is represented on the left of Figure
3. Let A be this set of atoms. First, note that A is not a core: indeed it is equivalent
to its strict subset A′ defined by {B0, B2, B3} with a homomorphism π that maps
atom(B1) to atom(B3). Trivially, A′ is a core since it does not contain two atoms with
the same predicate. Second, note that any further rule application on T is redundant,
i.e., generates a set of atoms equivalent to A (and A′). Hence, A′ is a complete core,
however there is no derivation tree that corresponds to it. There is even no prefix of
a derivation tree that corresponds to it (which ruins the alternative idea of building a
prefix of a derivation tree that would be associated with a complete core). In particular,
note that {B0, B1, B2} is indeed a core, but it is not complete.

In the following definition of entailment tree, we use the notation α1 → α2, where
αi is an atom, to denote the rule ∀X(α1 → ∃Y α2) with X = vars(α1) and Y =
vars(α2) \X .

Definition 8 Entailment Tree. An entailment tree associated with α and Σ is a tree of
bags T such that:

1. Br, the root of T , is such that Σ |= α→ atom(Br) and Σ |= atom(Br)→ α;
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2. For any bag Bc child of a node B, the following holds: (i) terms(Bc) ∩
generated(B) 6= ∅ (ii) The terms in generated(Bc) are variables that do not
occur outside the subtree of T rooted in Bc (iii) Σ |= atom(B)→ atom(Bc).

3. there is no pair of twins.

Note that α is not necessarily the root of the entailment tree, as it may not belong
to the result of the core chase on α (hence Point 1).

First note that an entailment tree is independent from any derivation. The main
difference with a derivation tree is that it employs a more general parent-child relation-
ship, that relies on entailment rather than on rule application, hence the name entail-
ment tree. Intuitively, with respect to a derivation tree, one is allowed to move a bag B
higher in the tree, provided that it contains at least one term generated in its new parent
Bp; then, the terms of B that are not shared with Bp are freshly renamed. Finally,
since the problem of whether an atom is entailed by a linear existential rule knowledge
base is decidable (precisely PSPACE-complete [CGL09]), one can actually generate all
non-twin children of a bag and keep a tree with bounded arity.

Derivation trees are entailment trees, but not necessarily conversely. A crucial dis-
tinction between these two structures is the following statement, which does not hold
for derivation trees, as illustrated by Example 6.

Proposition 9. If the core chase associated with α and Σ is finite, then there exists an
entailment tree T such that the set of atoms associated with T is a complete core.

Example 6 (cont’d). The tree defined by the path of bags B0, B2, B3 is an entailment
tree, represented on the right of Figure 3, which defines a complete core.

Differently from the semi-oblivious case, we cannot conclude that the chase does
not terminate as soon as a UPW is built, because the associated atoms may later be
mapped to other atoms, which would remove the UPW. Instead, starting from the ini-
tial bag, we recursively add bags that do not generate a UPW (for instance, we can
recursively add all such non-twin children to a leaf). Once the process terminates (the
non-twin condition and the absence of UPW ensure that it does), we check that the
obtained set of atoms C is complete (i.e., is a model of the KB): for that, it suffices to
perform each possible rule application on C and check if the resulting set of atoms is
equivalent to C. See Algorithm 1. The set C may not be a core, but it is complete iff it
contains a complete core.

We now focus on the key properties of entailment trees associated with complete
cores. We first introduce the notion of redundant bags, which captures some cases
of bags that cannot appear in a finite core. As witnessed by Example 6, this is not
a characterization: B1 is not redundant (according to next Definition 9), but cannot
belong to a complete core.

Definition 9 Redundancy. Given an entailment tree, a bagBc child ofB is redundant
if there exists an atom β (that may not belong to the tree) with (i) Σ |= atom(B)→ β;
(ii) there is a homomorphism from atom(Bc) to β that is the identity on shared(Bc)
(iii) |terms(β) \ terms(B)| < |terms(Bc) \ terms(B)|.
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Note that Bc may be redundant even if the “cause” for redundancy, i.e., β, is not
in the tree yet. The role of this notion in the proofs is as follows: we show that if a
complete entailment tree contains a UPW then it contains a redundant bag, and that a
complete core cannot contain a redundant bag, hence a UPW. To prove this, we rely
on next Proposition 10, which is the counterpart for entailment trees of Proposition 2:
performing a bag copy from an entailment tree results in an entailment tree (the notion
of prefix is not needed, since a prefix of an entailment tree is an entailment tree) and
keeps the properties of the copied bag.

Proposition 10. Let B be a bag of an entailment tree T , B′ be a bag of an entailment
tree T ′ such that B ≡st B′. Let Bc be a child of B and B′c be a copy of Bc under B′.
Let T ′′ be the extension of T ′ where B′c is added as a child of B′. Then (i) T ′′ is an
entailment tree; (ii) Bc and B′c have the same sharing type;(iii) B′c is redundant if and
only if Bc is redundant.

In light of this, the copy of a bag can be naturally extended to the copy of the whole
subtree rooted in a bag, which is crucial element in the proof of next Proposition 11:

Proposition 11. A complete core cannot contain (i) a redundant bag (ii) an
unbounded-path witness.

Corollary 4. The all-sequence termination problem for the core chase on linear rules
is decidable.

Algorithm 1: Deciding core chase termination
Input : A set of linear rules
Output: true if and only if the core chase terminates on all instances

1 for each canonical atom α do
2 Let T be the entailment tree restricted to α;
3 while a bag B can be added to T respecting twin-free entailment tree

condition and without creating a UPW do
4 add B to T
5 if there is a rule σ applicable to atoms(T ) through π s.t.

atoms(T ) 6|= atoms(T ) ∪ πs(head(σ)) then
6 return false

7 return true

A rough complexity analysis of this algorithm yields a 2EXPTIME upper bound for
the termination problem. Indeed, the exponential number of (sharing) types yields a
bound on the number of canonical instances to be checked, the arity of the tree, as well
as the length of a path without UPW in the tree, and each edge can be generated with a
call to a PSPACE oracle.
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6 Concluding remarks
We have shown the decidability of chase termination over linear rules for three main
chase variants (semi-oblivious, restricted, core) following a novel approach based on
derivation trees, and their generalization to entailment trees, and a single notion of
forbidden pattern. As far as we know, these are the first decidability results for the
restricted chase, on both versions of the termination problem (i.e., all sequence and
one sequence termination). The simplicity of the structures and algorithms make them
subject to implementation.

We leave for future work the study of the precise complexity of the termination
problems. A straightforward analysis of the complexity of the algorithms that decide
the termination of the restricted and core chases yields upper bounds, however we
believe that a finer analysis of the properties of sharing types would provide tighter
upper bounds. Future work also includes the extension of the results to more complex
classes of existential rules: linear rules with a complex head, which is relevant for the
termination of the restricted and core chases, and more expressive classes from the
guarded family. Derivation trees were precisely defined to represent derivations with
guarded rules and their extensions (i.e., greedy bounded treewidth sets), hence they
seem to be a promising tool to study chase termination on that family.
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A Proofs for Section 2 (Preliminaries)
Proposition 1. Let Σ be a linear set of rules. The semi-oblivious (resp. restricted,
core) chase terminates on all instances if and only if it terminates on all singleton
instances.

Proof: Obviously, the fact that a chase variant does not halt on an atomic instance
implies the fact that it does not terminate on all instances. On the other direction, we
can easily see that if the chase does not halt on an instance then it will not halt on one of
its atoms. For a chase variant that does not terminate there exists an infinite derivation
whose associated chase graph is also infinite. As the arity of the nodes in the chase
graph is bounded by the size of the ruleset, the chase graph must contains an infinite
path starting from a node of the initial instance. Because the chase graph for linear
rules forms a tree it follows that this infinite path is created by a single atom of the
initial instance.

�

B Proofs for Section 3 (Derivation Trees)
Proposition 12. The arity of a derivation tree is bounded.

Proof: We first point out that a bag has a bounded number of twin children. Since we
consider semi-oblivious derivations, a bag Bp cannot have two twin children Bc1 and
Bc2 , created by applications of the same rule σ. Indeed, although these rule applica-
tions may map body(σ) to distinct atoms, the associated homomorphisms, say π1 and
π2, would have the same restriction to the rule frontier, i.e., π1|fr(σ) = π2|fr(σ). Hence,
all twin children of a bag come from applications of distinct rules. It follows that the
arity of a node is bounded by the number of atom types × the cardinal of the ruleset.
�

C Proofs for Section 4 (Semi-Oblivious and Restricted
Chase Termination)

Proposition 2. Let T be a prefix of a derivation tree, B and B′ be two bags of T
such that B ≡st B′, and Bc be a child of B. Then: (a) the tree obtained from T by
adding the copy B′c of Bc under B′ is a prefix of a derivation tree, and (b) it holds that
Bc ≡st B′c.

Proof: Let B and B′ be two atoms of T having the same sharing type. Let Bc be
a child of B created by a trigger (σ, π). By definition of derivation tree, π maps the
rule frontier fr(σ) to terms(B), without this being possible for the parent of B. Fur-
thermore, we know that π maps body(σ) to a (possibly strict) descendant of B. We
assume that T does not already contain the image of head(σ) via π, otherwise the the-
sis trivially holds. Let S be the derivation associated with T and α0, . . . , αk be the path
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of the chase-graph associated with S such that α0 = atom(B) and αk = atom(Bc),
whose sequence of associated rule applications is (σ1, π1), . . . , (σk, πk) = (σ, π). We
define π̂safe

i (t) = ϕatom(B)→atom(B′) ◦ πi(t) whenever πi(t) ∈ terms(B) and otherwise
π̂safe
i (t) to be a fresh new variable consistently used over the rule applications, that is,

such that πsafe
i (t) = πsafe

j (t) if and only if π̂safe
i (t) = π̂safe

j (t). Then, for all 1 ≤ i ≤ k,
we extend S by adding a trigger (σi, π̂i)

4 whenever π̂safe
i (head(σi)) is not an atom al-

ready produced by S thereby obtaining a new derivation S′. Let T ′ be an extension of
T where a bag labeled with the atom π̂safe

i (head(σi)) is added for each new trigger in
S′ and attached to the highest descendant ofB′ whose set of terms contains π̂i(fr(σi)).
Clearly, T ′ is a derivation tree associated with S′. We now show that T ′ contains a
node B′c which is a copy of Bc under B′. As B is the parent of Bc, the image of fr(σ)
via π contains at least one term which is generated in B (and in general only terms
generated by the ancestors of B). Therefore, because B and B′ have the same sharing
type, the image of fr(σ) via ϕatom(B)→atom(B′) ◦ π contains at least one term generated
in B′ (and in general only terms generated by the ancestors of B′). So, B′ is the only
possible parent of B′c in T ′. Moreover, it is easy to see that Bc ≡st B′c. Let T ′′ be
the extension of T with B′c under B′. It can be easily verified that T ′′ is a prefix of
the derivation tree T ′, in the sense that it is a tree of bags which can be obtained by
recursively removing some of the leaves of T ′, i.e., those corresponding to the triggers
in S′ \ S which are different from (σ, π).

�

Proposition 3. There exists an arbitrary large derivation tree associated with α and
Σ if and only if there exists a derivation tree associated with α and Σ that contains an
unbounded-path witness.

Proof: If there is no derivation tree having an unbounded-path witness, then the depth
of all derivation trees is upper bounded by the number of sharing types. As derivation
trees are of bounded arity, all derivation trees must be of bounded size.

If there is a derivation tree T having an unbounded-path witness (B,B′), we show
that there are arbitrary large derivation trees. We do so by contradiction. Let us assume
that (B,B′) is a UPW be two such bags such that B′ is of maximal depth among all
such pairs and among all trees, which by hypothesis are of bounded size. Let Bc be
the child of B that is on the shortest path from B to B′ (possibly Bc = B′). By
Proposition 2, B′ has a child B′c that has the same sharing type as Bc. By Proposition
2, B′ has a child B′c that has the same sharing type as Bc, either in the same tree, or in
an extension of this tree, which is in contradiction with the fact thatB′ was of maximal
depth. Hence there are arbitrary large derivation trees. �

Proposition 4. The all-sequence termination problem for the semi-oblivious chase on
linear rules is in PSPACE.

Proof: Let T be a derivation tree of root the canonical instance {α} that contains a
UPW (B,B′), where the sharing type of both bags is ST . We show that there exists a
semi-oblivious derivation of length at most exponential whose derivation tree has root

4π̂i is the restriction of π̂safe
i to the variables of the body of σi.
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{α} and that contains a UPW (Bs, B
′
s) where the sharing type of both bags is ST . First,

by Proposition 2, we conclude that it is not necessary to have twice the same sharing
type on the path from the root toB′ in the derivation tree. It is thus enough to show that
to generate a child Bc from its parent Bp, a derivation of length at most exponential is
necessary. Let us consider the chase graph of the derivation generating atom(Bc) from
atom(Bp). This chase graph can be assumed w.l.o.g. to be a path. It there are no pairs
of atoms having the same sharing type on this path, then the derivation is of length
at most exponential. Otherwise, we show that we can build a shorter semi-oblivious
derivation that generates atom(Bc). Let us thus assume that there is B and B′ such
that both have the same sharing type, and the terms of Bp that appear in B appear in
the same position in B′, and that B′ is on the path from B to Bc in the chase graph. A
derivation similar to that applicable after B′ is actually applicable to B, by Proposition
2. A copy of Bc under Bp is thus generated by this derivation, which proves our claim.

We now describe the algorithm. We guess the canonical instance and the sharing
type ST of the UPW. We then check that there is a descendant (not necessarily a child)
of that canonical instance that has sharing type ST . This can be done by guessing the
shortest derivation creating a bag of sharing type ST . It is only necessary to remember
the sharing type of the “current” bag, as we know that any bag created during a deriva-
tion is added as a descendant of the root. We then want to prove that a bag of sharing
type ST can have a (strict) descendant of sharing type ST . In contrast with the case
of the root, a trigger applied below a bag B does not necessarily create a bag that is as
well below B – it could be added higher up in the tree. We thus have to remember the
shared variables of B, and verify at each step that the shared variables of the currently
considered bag are not a subset of them. This leads to a PSPACE procedure. �

Proposition 6. There exists an arbitrary large restricted derivation tree associated
with α and Σ if and only if there exists a restricted derivation tree associated with α
and Σ that contains an unbounded-path witness.

Proof: If there is no restricted derivation tree with a UPW, then the size of any restricted
derivation tree is bounded since a restricted derivation tree is a derivation tree. We
prove the other direction by contradiction. Assume that the size of restricted derivation
trees is bounded whereas the forbidden pattern occurs in some of them. Consider a
restricted chase sequence S with associated restricted derivation tree T that contains a
UPW (B,B′) of maximal depth among all such pairs and all trees, and such that B′ is
a leaf (we can do the latter assumption since the prefix of any restricted derivation is a
restricted derivation).

Let Bc be the child of B that is on the shortest path from B to B′ (possibly Bc =
B′). By Proposition 5, there is a restricted derivation tree that extends T such that
B′ has a child B′c of the same sharing type as Bc, hence (Bc, B

′
c) is a UPW of depth

strictly greater than (B,B′), which contradicts the hypothesis. �

Proposition 7. For linear rules, every (infinite) non-terminating restricted derivation
is a subsequence of a fair restricted derivation.

Proof: Let S be a non-terminating restricted derivation. In particular, there exists a
least one infinite branch in the associated derivation tree. Let us consider the following
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derivation: when the node Bk of depth k on this branch has been generated, complete
the corresponding subsequence by trying to apply (i.e., while respecting the restricted
criterion) all currently applicable triggers that add a bag a depth at most k − 1. These
additional rule applications cannot prevent the creation of any bag that is below Bk in
the derivation tree. Indeed, let αc be an atom possibly created by a rule application,
whose bag would be attached as a child of a bag B; since αc shares a variable with
atom(B) that is generated in B, which thus only occurs in the subtree of B, the only
possibility for αc to fold into the current instance, is to be mapped to an atom in the
subtree of B. By construction, any possible rule application will be performed or
inhibited at some point, which implies that the derivation that we build in this fashion
is fair. �

D Proofs for Section 5 (Core Chase Termination)
Proposition 9. If the core chase associated with α and Σ is finite, then there exists an
entailment tree T such that the set of atoms associated with T is a complete core.

Proof: Let T be the derivation tree associated with a derivation containing a core C of
chase(α,Σ). Let ϕ be an idempotent homomorphism from the atoms of T to C. We
assign to each bag B of T a set of trees {T1, . . . , TnB

} such that:

1. each tree contains only elements of C;

2. the forest assigned to B contains exactly once the elements of C appearing in
the subtree rooted in B;

3. for each pair (Bp, Bc) of bags in some Ti such that Bp is a parent of Bc, Σ |=
atom(Bp)→ atom(Bc);

4. each Ti is a decomposition tree;

5. for each Ti, the root of Ti contains all the terms that belong both to Ti and to
C \ Ti;

6. each term t belonging to distinct Ti and Tj of the forest assigned with a bag B
also belongs to the parent of B.

Moreover, we will show that if ϕ(B) is a descendant of B (including B) in T , then
its associated forest is a tree.

• if B is a leaf, we consider two cases:

– B belongs to the core: we assign it a single tree, containing only a root
being itself. All conditions are trivial.

– B does not belong to the core: we assign it an empty forest, and all condi-
tions are trivial.

• if B is an internal node, let {T1, . . . , Tn} be the union of the forests assigned to
the children of B. We distinguish three cases:
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– B is in the core: we assign toB the tree T containingB as root, and having
as children the roots of {T1, . . . , Tn}.
∗ 1. 2.: holds by induction assumption, the fact that different Ti’s cover

disjoint subtrees of T , and the fact that B belongs to the core
∗ 3.: it is enough to check this for the pairs (root of T , root of
Ti). The root of T is an ancestor of root of Ti in T , hence Σ |=
atom(root(T ))→ atom(Bi), where Bi is the root of Ti

∗ 4. if t appears in T but in no Ti, it appears only in B and the connec-
tivity of the substructure containing t holds. If it belongs to some Ti
and to C \ Ti, it must belong to the root of Ti by assumption 6.. If t
belongs to C \ T , it belongs to B by connectivity of T . If t belongs
to another Tj , we distinguish two cases: Tj is in the same forest as Ti,
and then by induction assumption 7. on the child of B to which this
forest is associated, t belongs to B. Or Tj is in the forest of another
child of B, and then by connectivity property for t, it belongs to B.
Hence the connectivity property for t in T is fulfilled.

∗ 5. By connectivity of T , as B is the root of T
∗ 6. true as there is only one tree

– ϕ(B) 6= B but is a descendant of B. By induction assumption 2., there
exists exactly one tree among the trees associated with children of B con-
taining ϕ(B). Let assume w.l.o.g that it is T1, of root B1. We build the
following tree T : for all Ti 6= T1, we add to B1 a subtree by putting the
root of Ti under B1.

∗ 1. No added elements, hence by induction assumption 1.
∗ 2. No added elements, hence by induction assumption 2.
∗ 3. To check for pairs (B1,Bi), where Bi is the root of Ti. Σ |=

atom(B1) → atom(ϕ(B)), as ϕ(B) is a descendant of B1 in T1.
Moreover, Σ |= atom(ϕ(B)) → atom(Bi), as ϕ(B) is more specific
than B, and ϕ is the identity on shared terms.

∗ 4. for all term t appearing in a single tree, the connectivity property
holds by induction assumption 4.. Let t appearing in two trees. t
appears in the roots of both tree by 6., and must appear in B by con-
nectivity of T , hence in ϕ(B), and hence in B1 (by 6.). As B1 and the
roots of both trees are neighbor, this proves the result.

∗ 5. let t belonging to T and to C \ T . By connectivity of T , t belongs
to B, hence to ϕ(B) (because ϕ(t) = t). As t belongs both to T1 and
to C \ T1, t belongs to B1, and hence to the root of the assigned tree.

∗ 6. true as there is only one tree.

– ϕ(B) is not a descendant of B. We assign to B the union of the forests
associated to its children.

∗ 1.-5 By induction assumption
∗ 6. let t belonging to two trees T1 and T2. If T1 and T2 come from forest

associated to two different children, t belongs to B by connectivity
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of T . If T1 and T2 come from the same forest, t belongs to B by
induction assumption 7. Then t belongs to B. As t is in C, t belongs
to ϕ(B). By connectivity of T , it belongs to the parent of B, because
that parent is on the path from B to ϕ(B), which proves 6.

Finally, we check that the following property is satisfied: for any bag B, if B is in the
core, then a single tree with root B is assigned to it. If α is in the core, we have built
such a tree. It remains to obtain an entailment tree: for that, we have to bring up nodes
at the highest level with respect to shared terms. We may also have to say something
about ’generated’ if it still appear in the definition of an entailment tree. �

Proposition 10. Let B be a bag of an entailment tree T , B′ be a bag of an entailment
tree T ′ such that B ≡st B′. Let Bc be a child of B and B′c be a copy of Bc under B′.
Let T ′′ be the extension of T ′ where B′c is added as a child of B′. Then (i) T ′′ is an
entailment tree; (ii) Bc and B′c have the same sharing type;(iii) B′c is redundant if and
only if Bc is redundant.

Another important property of entailment trees (which is also satisfied by derivation
trees) is that its structure provides information on where a bag may be mapped by ϕ if
its parent is left invariant by ϕ.

Lemma 1. Let T be an entailment tree. Let ϕ be a homomorphism from the atoms of
T to themselves. Let Bp such that ϕ|terms(Bp) is the identity. Let Bc be a child of Bp.
Then ϕ(Bc) is in the subtree rooted in ϕ(Bp) = Bp.

Proof: Bc is a child of Bp thus there exists at least one term generated in Bp that is
a term of Bc. As ϕ is the identity on Bp, that term belongs as well to ϕ(atom(Bc)).
Thus ϕ(atom(Bc)) should also be in a bag that is in the subtree rooted in Bp. �

Proposition 13. A complete core cannot contain a redundant bag.

Proof: Let T be a complete entailment tree, and let B̂ be a bag that is redundant. We
prove that there exists a non-injective endomorphism of T , showing that T cannot be
a core. For any entailment tree Tp that is a prefix of T , we build T ′p and a mapping ϕ
from the terms of Tp to the terms of T ′p as follows:

• for any prefix of Tp that does not contain B̂, we define T ′p = Tp and ϕ the identity

• for the prefix that contains all nodes of T , including B̂, except the descendants
of B̂, we define T ′p as Tp to which we add a leaf (if necessary) to the parent of B̂
in T , which is the witness of the redundancy of B̂. We define ϕ as the identity
on any term that is not generated in B̂, and as its image by the ϕ witnessing the
redundancy pattern on terms generated in B̂.

• if we have defined T ′p for Tp, and we want to define ϕ for T ′n for Tn which is
Tp to which a leaf Bd has been added, we add where it belongs the bag ϕ(Bd),
where we extend ϕ to term generated in Bd by choosing fresh images.
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By construction, T ′ is an entailment tree, and ϕ is a homomorphism from T to T ′.
Moreover, ϕ is not injective: indeed, as B̂ is redundant, ϕ is not injective on the terms
of B̂.

As T is complete, there exists a homomorphism from T ′ to T . Hence the compo-
sition of the two homomorphisms is a homomorphism from T to itself, which is not
injective, as ϕ is not. Hence T is not a core. �

Proposition 14. A complete core cannot contain any unbounded-path witness.

Proof: We prove the result by contradiction. Let us assume that T is a complete core
containing an unbounded-path witness (B,B′). Let us choose (B,B′) such that B′ is
of maximal depth with respect to its branch, that is, there is no unbounded-path witness
(B′′′, B′′) with B′′ a strict descendant of B′.

Let Bc be the child of B on the path from B to B′. Let us denote by TBc the
subtree of T which is rooted at Bc and by TB′

c
a copy of TBc

under B′ whose root is
B′c. Then, let T ′ be the extension of T where TB′

c
is added as a child of B′. We want

to show that there exists a bag B′r child of B′ and a mapping from TB′
c

into TB′
r
, which

is the identity on the terms of T . More precisely, we want to show that for each B′d
descendant of B′c the following properties hold.

1. the image of B′d belongs to TB′
r

2. the image of a term generated in B′d is a term generated in a bag of TB′
r

We do so by induction on k the distance between B′d and B′c in T .

• If k = 0 then B′d = B′c. Because T is a complete core, there exists a homomor-
phism from the atoms of T ′ to those of T which is the identity on the terms of
T . We show that the image of B′c is a strict descendant of a child of B′. Note
first that no child of B′ in T can be a safe renaming of B′c. Indeed, by Proposi-
tion 10, Bc and B′c have the same sharing type and therefore B′c (as well as any
safe renaming of its generated terms) cannot be a child of B′ because the couple
(Bc, B

′
c) would form an unbounded-path witness with B′c strictly deeper than

B′. Then, if B′c maps to B′ then the couple (B′, B′c) is redundant and therefore
also (B,Bc) is redundant, by Proposition 10, which in turn implies that T is not
a core, because of Proposition 13. Finally, if B′c maps to any child of B′ then it
does so by specializing the sharing type ofB′c (as we showed that no safe renam-
ing of B′c can be a child of B′), which means that B′c is redundant. Therefore,
by Proposition 10, Bc is also redundant and hence, by Proposition 13, T is not a
core. This proves that the image of B′c is a strict descendant of some B′r child of
B′.

Now, to prove the second point, let t be a term generated in B′c and t′ its image.
It is easy to see that for entailment trees any term that belongs to two bags in
ancestor-descendant relationship also belongs to the bags on the shortest path
between them. Therefore, if t′ is generated by a strict ancestor of B′r then t′

belongs to the terms of B′. This means that starting from the sharing type of
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B′c one can build a strictly more specific sharing type where the position corre-
sponding to the generated term t becomes shared with B′. From this one can
find a node B′′c which is strictly more specific than B′c and that can be added as
a child of B′. This means that B′c is redundant and by Proposition 10 also Bc is
redundant, so T is not a core.

• Let us assume that both properties hold for all bags at distance k from B′c. We
want to show that they still holds for the bags at distance k + 1.

Let B′d be a node at distance k + 1 from B′c whose parent is B′δ . By definition,
B′d contains a term generated by B′δ and, by induction, we know that the image
of this term is generated in a bag of TB′

r
. Thus, it follows that the image of B′d

belongs to TB′
r

as required by the first point.

For the second point we reason by contradiction and show that when the property
does not hold then T admits a non-injective endomorphism and thus it is not a
core. We proceed with the following construction. Let TBr

be a copy of TB′
r

under B and T ′′ the extension of T where TBr
is added as a child of B. We

know by induction that there exists a homomorphism from T ′ to T mapping all
nodes at distance k + 1 from B′c to the subtree rooted at B′r. From this, we can
conclude that there exists a homomorphism from T(k+1) to T ′′, where T(k+1) is
the prefix of T which includes all nodes of T except for the descendants of Bc
that are at distance strictly greater than k+1 from it. Now, we further extend T ′′
by adding an image for all nodes which are at distance strictly greater than k+ 1
from Bc thereby obtaining a new entailment tree T ′′′. It follows that T can be
mapped to T ′′′. Beside, since T is complete there exists an homomorphism from
T ′′′ to T . So, by composing these two homomorphisms we get a homomorphism
from T to T .

We show that the homomorphism from T to T ′′′ is non-injective. Recall that
to construct T ′ the whole subtree rooted at B′c has been copied from the subtree
rooted atBc. Let us denote byBd the node at distance k+1 fromBc from which
B′d has been copied underB′δ . Let t be a term generated at position i in B′d. If its
image was generated by a strict ancestor ofB′r then this would also belong to the
terms of B′. By Proposition 10, Bd and B′d have the same sharing types, hence
the mapping from T(k+1) to T ′′ (and thus that from T to T ′′′) maps the generated
term at position i of Bd, we call s, to a distinct term in B, we call s′. Moreover,
the homomorphism is the identity on s′. Therefore, the homomorphism from T
to T ′′′ is non-injective as both s′ and s have the same image.

To finish the proof, we proceed with the following construction. Let T ∗ be an entail-
ment tree derived from T where i) the whole subtree rooted at B′r has been copied
under B and ii) the subtree rooted at Bc has been removed. Note that T ∗ is of size
strictly smaller than that of T because we added a bag for each descendant node of
B′r, which is a strict descendant of bag Bc, and that this last one has been removed.
Now, because TB′

c
maps to TB′

r
it follows that TBc

maps to TBr
and by extending this

homomorphism to the identity on all other terms we get that T can be mapped to T ∗.
Hence, T is not a core. �
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