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Chapter 1

ADAPTIVE CONTROL OF PARALLEL
MANIPULATORS: DESIGN AND REAL-TIME

EXPERIMENTS

M. Bennehar, A. Chemori, S. Krut and F. Pierrot∗
LIRMM, 161 rue Ada, 34095 Montpellier cedex 5, France

Abstract

In this chapter, we address a new control strategy for parallel manipulators based
on L1 adaptive control. This latter is known for its decoupled control and estimation
loops, enabling fast adaptation and guaranteed robustness. To improve the tracking
performance of parallel manipulators, we propose in this work to include the dynamic
model of the robot in the control loop of L1 adaptive control. The additional dynamics-
based term partially compensates for inherent nonlinear dynamics of the robot in order
to reduce the impact of uncertainties on the closed-loop system and enhance the overall
control performance. Real-time experiments, conducted on a 4-DOF fast parallel ma-
nipulator developed in our laboratory, demonstrate the effectiveness of the proposed
controller and its superiority compared to standard L1 adaptive control in terms of
tracking performance.

Keywords: Parallel manipulators, adaptive control, nonlinear system, dynamics.
∗E-mail address: {bennehar, chemori, krut, pierrot}@lirmm.fr



2 M. Bennehar et al.

1. Introduction

Adaptive control of parallel manipulators has been a decades-long area of research. It is a
very relevant control strategy when it comes to control such systems due to the abundance
of uncertainties and variations of their dynamics and the environment they interact with.
Undoubtedly, using model-based controllers with constant dynamic parameters (e.g. com-
puted torque [1], augmented PD [2], PD+ [3], etc.) significantly improves the overall per-
formance of parallel manipulators and enhance their tracking capabilities. However, such
control schemes are not endowed with automatic adjustment mechanisms (adaptation) to
cope with variations and uncertainties in the dynamics of the controlled system and, hence,
do not yield the expected performance. As a result, adaptive control seems to be a promis-
ing solution to account for such limitation by estimating and compensating the uncertainties
in real-time to provide improved tracking and enhanced closed-loop performance.

The first attempts to apply adaptive control to mechanical manipulators were based on
restrictive assumptions and hypotheses about their dynamics not necessarily reflecting the
real properties of these systems. For instance, the proposed controller in [4], which is based
on Model Reference Adaptive Control (MRAC), does not consider the coupling between the
joints. Such hypothesis is questionable since mechanical manipulators are known for their
coupled nonlinear dynamics. To relax this requirement, another MRAC-based controller
has been proposed in [5]. The full dynamics of the manipulator as well as the coupling
between the joints were explicitly considered and new adaptive laws were accordingly de-
rived. Unfortunately for this controller, the number of parameters to be estimated is high,
even for simple manipulators (11 parameters for the provided 3-DOF serial manipulator
example).

One major reason of the failure of MRAC-based controllers lies in the fact that the
nonlinear structure of the dynamics of the system is not taken into account. Considering
this weakness, many researchers have investigated alternative adaptive control architectures
inspired from non-adaptive model-based controllers. In [6], an adaptive version of the
computed torque scheme has been proposed. A stability analysis based on the Lyapunov
theory was conducted to derive the adaptation law that provided both the tracking of the
desired trajectories as well as the convergence of the estimated parameters. Nevertheless,
in this work, the control law showed two main limitations, namely the need of the measured
actual joint accelerations and the boundedness of the inverse of the estimated inertia matrix.
These two limitations were bypassed in [7] by online estimating the measured accelerations
while the former issue has been solved by following an approach inspired from robust
control theory. Similar adaptive approaches can be found in [8, 9].

Recently, a new control scheme called L1 adaptive control which seeks to revisit some
primary issues in MRAC has been proposed [10, 11]. This control approach, being itself
inspired from MRAC, includes a low-pass filtering technique that decouples the estima-
tion and control loops. This is of a tremendous importance since increasing the adaptation
gain in conventional adaptive control may hurt the robustness of the closed-loop system.
Indeed, control signals in MRAC may have undesired high frequencies lying outside the
control channel bandwidth. The low-pass filter in L1 adaptive control, which is designed
by using the L1 small gain theorem, is consequently introduced to remove these undesired
frequencies. The first validations of L1 adaptive control were through numerical simula-
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tions and real-time experiments mainly in aerial vehicles [12]. It was afterwards extended
to address more applications such as underwater vehicles [13], mechanical manipulators
[14], underactuated systems [15] and parallel manipulators [16]. One major advantage of
the L1 adaptive control is its being model-free; i.e. not requiring any knowledge about the
dynamics of the system. However, it would be interesting to include, if available, some
knowledge about the dynamics of the system in the control loop in order enhance its track-
ing performance and improve the overall closed-loop system.

This chapter focuses on the development of a new control scheme based on the L1

adaptive control. The nominal nonlinear dynamics of the system are included in the con-
trol loop in order to improve its performance. Specifically, the proposed controller has a
major advantage of improving the tracking performance which is crucial in most robotic
applications. In order to demonstrate our claims, real-time experiments are conducted on
Veloce; a 4-DOF parallel manipulator developed in our laboratory intended to be used for
high-speed pick-and-place applications. The remainder of this chapter is organized as fol-
lows. In section 2., we provide a brief state of the art on adaptive controllers proposed in the
literature for parallel manipulators. Section 3. is devoted to the modeling and description of
Veloce robot. In section 4., the control problem formulation and development of L1 adap-
tive control are provided. Section 6. is dedicated to the development of the new proposed
control scheme which is based on L1 adaptive control. Real-time experimental results are
presented and discussed in section 7. Finally, conclusions are drawn in section 8.

2. Overview on Adaptive Control of Parallel Manipulators

Adaptive controllers are those control schemes requiring a real-time adjustment (i.e. adap-
tation) of their parameters in the aim of finding their steady-state values. The development
of adaptive strategies is motivated by the abundance of uncertainties in the controlled sys-
tem and its environment that may deteriorate the control performance. Adaptive controllers
can be divided into two categories depending on their requirement of a dynamic model of
the robot; non-model-based and model-based strategies.

In what follows, we give a breif overview on the most prominent adaptive control
schemes fo parallel manipulators that can be found in the literature.

2.1. Non-model-based adaptive strategies

Strategies belonging to this class do not require the dynamic model of the robot nor its
structure to be known. Instead, they consider all the nonlinearities including those of the
dynamic model, uncertainties and possible disturbances, whose structure is unknown, as a
general disturbance term to be estimated in real-time. Then, the control law is designed
such that the effect of this disturbances is minimized.

2.1.1. MRAC-based startegies

The main idea of MRAC is to obtain a closed-loop system with adjustable controller pa-
rameters. These parameters have the ability of changing the behavior of the closed-loop
system. The time evolution of the adaptive parameters is adjusted by comparing the output
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Figure 1. Bloc diagram of the proposed MRAC-based control in [18]

of the controlled system and the desired one obtained from the reference model. The ulti-
mate goal is to make the behavior of the controlled system match a desired reference model
despite the eventual variations/uncertainties in the system or its environment [17].

While numerous MRAC-based control schemes for serial manipulators can be found
in the literature [19, 20], only few controllers were proposed for parallel ones. In [18],
an adaptive control scheme based on MRAC has been proposed to control a 6-DOF paral-
lel manipulator based on the Stewart platform prototype used to emulate space operations.
In this work, the control scheme consisted of a joint space PD feedback controller with
adjustable gains. The control scheme is further endowed with an adaptation mechanism
that controls the evolution of the adaptive feedback gains. The joint tracking error of each
axis was supposed to follow a desired user-defined reference second order linear system
characterized by its natural frequency and its damping ratio. Based on Lyapunov stability
analysis, the adaptation law stabilizing the error dynamics is derived. Experiments were
conducted on a Stewart-platform parallel manipulator to evaluate the performance of the
controller and its robustness towards sudden payload changes. Two case studies were con-
sidered; mainly, a vertical motion of the moving platform and a circular one. In both cases
the proposed MRAC-based strategy with adaptive gains outperforms the PD with constant
feedback gains. Figure 1 illustrates the block diagram summarizing the MRAC-based con-
troller proposed in [18].

2.1.2. Strategies based on artificial neural networks

Artificial Neural Networks (ANN) are known by their powerful universal approximation
features [21]. This is why they attracted a big deal of interest in various fields, and have been
applied almost everywhere, from identification to estimation and control. Artificial neural
networks learn from experience rather than programming, hence, they are typically used in
repetitive tasks. Several works can be found in the literature regarding the application of
neural networks in control of parallel manipulators [22]. However they remain relatively
few compared to what can be found for serial manipulators [23].
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Thanks to their learning ability, artificial neural networks are mostly used to approx-
imate the dynamics of the manipulator. Then, the learned dynamics can be included in
the control scheme to compensate for the uncertainties and disturbances. [24] proposed to
augment a decentralized Cartesian space PID controller with an artificial neural network
term. The main motivation of this work is to improve the tracking capabilities of a 2-DOF
redundantly actuated parallel manipulator. The provided simulation results demonstrated
the superiority of the augmented controller with respect to the original PID. The maximum
errors were significantly reduced since the additional neural network term accounted for the
nonlinear dynamics of the manipulator.

2.2. Model-based adaptive strategies

Model-based adaptive controllers explicitly include the dynamics of the robot in the control
loop. In contrast to their non-adaptive counterparts, the adaptive schemes adjust the pa-
rameters of the model-based loop in order to converge them their best steady-space values.
Consequently, if the dynamics of the manipulator is uncertain or time-varying, adaptive
controllers result in a better closed-loop performance.

2.2.1. Strategies based on computed torque

Computed-torque-based adaptive schemes are those controllers relying on the classical non-
adaptive computed torque controller. The control design starts by considering the ideal
non-adaptive controller that assumes perfect cancellation of the system nonlinearities. Due
to possible uncertainties and variations in the system dynamics, the compensation of the
nonlinearities of the system could not be as perfect as the non-adaptive controller assumes.
Then, an additional adaptive estimation loop is considered to account for these uncertain-
ties. The role of the adaptive loop is to estimate, in real-time, the system’s parameters and
the obtained estimation are used in the controller.

The typical example of a computed-torque-based adaptive controller is the one pro-
posed in [25]. The first step of the control design in this work is to consider a computed
torque control law with uncertain parameters. Then, the error equation resulting from the
application of this control law is obtained. Based on a thorough stability analysis using the
Lyapunov theory, an adaptive law for the parameters’ estimation is derived. The proposed
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Figure 2. Bloc diagram of adaptive computed torque control
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adaptive controller in conjunction with the adaptation law guarantee that the tracking errors
vanish and that the estimated parameters converge to their best steady-state values. The
block diagram depicted in Figure 2 clarifies the principle of such control strategy.

The computed-torque-based adaptive controller, proposed in [25], was mainly devel-
oped for serial manipulators. However, it is known that parallel manipulators share many
properties with their serial counterparts [26, 27]. Based on this fact, the controller in [25]
has been straightforwardly applied to PKMs in [28]. In this work, an adaptive Cartesian
space computed-torque-based scheme is applied to a 2-DOF redundantly actuated parallel
manipulator. Real-time experiments were carried out in order to highlight the benefits of
the adaptive controller compared to its non-adaptive version. The adaptive controller shows
a net superiority and allows to estimate the system dynamic parameters.

A main drawback of computed torque based adaptive controllers is their dependence on
the real acceleration of the robot [25]. This shortcoming is crucial from a practical point of
view since measuring actual accelerations is tedious.

2.2.2. Based on passivity of the system

Passivity-based controllers use the passivity property of the manipulator [7]. In contrast
with computed-torque-based ones, passivity-based controllers do not assume perfect can-
cellation of the system nonlinearities, even in the ideal case of perfect knowledge of the
manipulator’s parameters. Hence, they do not lead to a closed-loop linear error system.
However, based on the passivity property of the system, they result in a stable closed-loop
system.

[8] proposed a passivity-based adaptive controller that holds many advantageous fea-
tures. This controller can be assimilated to an adaptive version of PD control with computed
feedforward. Indeed, the proposed control law consists mainly in a PD feedback loop in ad-
dition to an adaptive feedforward term based on the dynamics of the robot and the desired
reference trajectories. The main advantage of this scheme is that it does not require the
joint acceleration measurement. Moreover, the compensation of the system’s nonlinearities
is based on desired quantities that can be computed offline. This means that the control
scheme does not require heavy computations. Furthermore, the use of the desired values
instead of the measured ones, which can be often noisy, may enhance the robustness of the
controller toward measurement noise.

In [29], the developed controller in [8] has been embraced for joint space control of a 6-
DOF parallel manipulator called the Hexaglide. The proposed adaptive controller as well as
a linear PD controller were implemented in real-time for a comparison purpose. It was not
surprising that the adaptive controller provided better tracking results since it compensates
for the nonlinear dynamics of the manipulator.

In [30], a Cartesian space control strategy called Dual-Space Adaptive Control is pro-
posed to control redundantly actuated parallel manipulators. The proposed controller in
this work share many similarities with the proposed control strategy in [29]. The main
difference is that the weighting gain of the position error with respect to the velocity error
is time-varying. The proposed controller was experimentally validated on the R4 parallel
manipulator [31]. Real-time experiments showed that the proposed Dual-Space adaptive
controller significantly improves the tracking performance and allows the tracking of ex-
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tremely fast trajectories (up to 100G of maximum acceleration).
Sadegh [32] proposed to extend the joint-space passivity based adaptive controller of

[33], mainly developed for serial manipulators, to Cartesian-space control of parallel manip-
ulators with actuation redundancy. Moreover, to deal with friction an additional control term
has been added to the conventional feedback and adaptive loops. Real-time experiments,
conducted on a 2-DOF redundantly actuated parallel manipulator, showed the superiority
of the proposed adaptive controller compared to the augmented PD controller in terms of
Cartesian tracking errors, at both low and high accelerations. Unfortunately, the evolution
of the estimated parameters was not shown in this work to see if they really converge to
their steady-state values.

3. Modeling of Delta-like Parallel Robots: Application to Veloce

Veloce is a 4-DOF Delta-like [34] fully actuated parallel manipulator having four identical
kinematic chains [35]. Each kinematic chain can be seen as serial arrangement of the actua-
tor, a rear-arm and a forearm. Its articulated moving platform illustrated in Figure 3, which
is connected to the fixed-base through the kinematic chains, can perform three spatial trans-
lations and one rotation around the vertical axis. The rotation is obtained via the relative
motion of the upper and lower parts of the moving platform. The four actuators responsible
for the movement of the mechanical structure are all lying on the same plane. The CAD of
Veloce is illustrated in Figure 4.

Figure 3. Articulated moving platform of Veloce

3.1. Inverse kinematics model

The inverse kinematics problem consists in finding the actuated joint vector q =
[q1, q2, q3, q4]

T ∈ R4 corresponding to a specific pose X = [x, y, z, s]T of the moving
platform of Veloce. Figures 5 and 6 in addition to Table 1 summarize the various geometric
parameters involved in the establishment of the inverse kinematic model of Veloce. The
actuated joints locations are represented by points Ai, i = 1, . . . , 4, whose coordinates are
given in the fixed Cartesian frame O − xyz by:

Ai = rb [cos(αi), sin(αi), 0]
T , (1)
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Figure 4. CAD view of Veloce 4-DOF parallel manipulator

where αi = (i− 1)π/2, i = 1, . . . , 4, is the orientation of the ith actuator axis with
respect to the fixed Cartesian frame. The locations of the centers of passive ball joints are
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Figure 5. Geometric parameters of Veloce robot: top view
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Figure 6. Geometric parameters of Veloce robot: side view

represented by points Bi and Ci which are expressed in the base frame O − xyz by:

Bi =Ai + L [cos(αi) cos(qi), sin(αi) cos(qi), sin(qi)] , (2)

Ci = [rp cos(αi) + x, rp sin(αi) + y, z] . (3)

To facilitate the subsequent mathematical development, a frame Pi − uiviz is attached
to each actuator, where the vectors ui and vi are given by:

ui = [cos(αi), sin(αi), 0]
T , (4)

vi = [− sin(αi), cos(αi), 0]
T , (5)

where vi is always directed towards the ith actuator’s axis. The inverse kinematics solution
of Veloce robot can be obtained by finding the intersection of a circle and a sphere which
represents the coordinates of the passive joints Bi = [xBi , 0, zBi ]

T in the corresponding
Ai − uiviz frame [36, 37]. Notice that in this frame, the Bi points always satisfy yBi = 0.

Table 1. Geometric parameters of Veloce robot

Parameter Description Value
Li Rear-arm length 200 mm
li Forearm length 530 mm
rb Base radius 135 mm
rp Moving Platform radius 48 mm
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From the motion of one rear-arm, we can write the equation of a circle in the corre-
sponding Ai − uiz plane of center Ai = [0, 0] and of radius L as follows:

x2Bi
+ z2Bi

= L2 (6)

The movements of one forearm can be described by a sphere of center Ci and radius l.
In the Ai − uiviz frame, we can write the following equation:

(xBi − xCi)
2 + y2Ci

+ (zBi − zCi)
2 = l2 (7)

Subtracting (6) from (7) yields:

2xCixBi + 2zCizBi = l2 − L2 + x2Ci
+ y2Ci

+ z2Ci
(8)

Solving (8) for zBi yields:

zBi =
Si − 2xCi

2zCi

, (9)

with Si , l2 − L2 + x2Ci
+ y2Ci

+ z2Ci
. Substituting (9) in (6) yields:

4
(
z2Ci

+ x2Ci

)
x2Bi

− 4SixCixBi + (S2
i − 4z2Ci

L2) = 0 (10)

Solving for xBi results in:

xBi =

SixCi ±
√

(SixCi)
2 −

(
z2Ci

+ x2Ci

)
(S2

i − 4z2Ci
L2)

2
(
z2Ci

+ x2Ci

) (11)

Equations (11) and (9) result in the coordinates of the intersection of a circle and a
sphere. For geometrical reasons, only the largest xBi is kept. Once the coordinates of the
points Bi are found, the corresponding actuated joint value can be obtained by:

qi = atan2 (zBi , xBi) (12)

Applying (12) to each of the four kinematic chains results in the solution of the inverse
kinematic model of Veloce.

3.2. Jacobian matrix

The Jacobian matrix J(q,X) ∈ R4×4 of Veloce relates its moving platform’s velocity
vector Ẋ = [ẋ, ẏ, ż, ṡ] to the actuated joints velocity vector q̇ = [q̇1, q̇2, q̇3, q̇4] such that:

Ẋ = Jq̇ (13)

Note that q and X are related through the inverse kinematic model. The Jacobian matrix
J can be obtained based on the following kinematic relationship:

‖BiCi‖2 − l2 = 0, (14)



Adaptive Control of Parallel Manipulators 11

which means that the length of each forearm remains constant independently of the robot’s
configuration. Differentiating (14) and rearranging the terms results in:

JxẊ = Jq q̇, (15)

where Jq and Jx are given as follows:

Jq = diag
(
l1w

T
1 s1, . . . , lnw

T
n sn

)
, (16)

Jx = [s1 . . . sn]
T , (17)

where

wi = ti × vi (18)

ti =
AiBi

Li
(19)

si =
BiCi

li
(20)

Finally, the Jacobian matrix can be written as follows:

J =

[
l1w

T
1 s1
s1

. . .
liw

T
i si
si

]
(21)

3.3. Inverse dynamic model

In this section, a brief description of the simplified dynamic model of Veloce is presented in
the sequel. But first, to simplify the motion equations of the different parts of the mechanical
structure of Veloce, the following assumptions, commonly used in Delta-like robots, are
considered [37]

Assumption 1. Both dry and viscous frictions in all passive and active joints are neglected.
This is mainly due to the fact that the joints are carefully designed such that friction effects
are minimized.

Assumption 2. The rotational inertia of the forearms is neglected and their mass is split
up into two equivalent parts, one is added to the mass of the arm while the other one is
considered with the moving platform. This hypothesis is justified by the small mass of the
forearms compared to other components.

Table 2. Dynamic parameters of Veloce robot

Parameter Description Value
ma One Rear-arm’s weight 0.541 kg
mf One Forearm’s weight 0.08 kg
mp Platform’s weight 0.999 kg
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The dynamics of the Veloce robot shows a lot of similarities with those of the Delta
robot. Nevertheless few differences arise due to the number of kinematic chains and the
additional rotational DOF of the moving platform.

Regarding the moving platform, we distinguish two kinds of forces acting on it, the
gravity forces Gp ∈ R4 and the inertial force Fp ∈ R4, they are given by

Gp = Mp [0 0 − g 0]T (22)

Fp = MpẌ (23)

where Mp ∈ R4×4 is the mass matrix of the moving platform that also considers the half-
masses of the forearms, g = 9.81 m/s2 is the gravity constant and Ẍ ∈ R4 is the Cartesian
acceleration vector.

The contributions of Gp and Fp to each motor can be computed using the Jacobian
matrix J(q,X) ∈ R4×4 as follows

ΓGp = JTMp [0 0 − g 0]T (24)

Γp = JTMpẌ (25)

From the joints side, the elements that contribute to the dynamics of the actuators are
the forces and torques resulting from the movement of the rear-arms in addition to the half-
messes of the forearms.

Applying the virtual work principle, which states that the sum of non-inertial forces is
equal to that of the inertial ones, and after rearranging the terms, we get

JTMpẌ + ΓGp + Iaq̈ + ΓGa = Γ (26)

being Ia ∈ R4×4 a diagonal inertia matrix of the arms accounting for the rear-arms as
well as the half-masses of the forearms, q̈ ∈ R4 the joint acceleration vector and ΓGa ∈ R4

is the force vector resulting from gravity acting on the arms being given by

ΓGa = marGagcos(q) (27)

with ma the sum of the mass of one rear-arm and one half-mass of a forearm, rGa the
distance between the center of one axis and the center of mass of one arm and q1, q2, q3 and
q4 are the joints positions.

Given the kinematic relationship Ẍ = Jq̈ + J̇ q̇, (26) can be rewritten as follows(
Ia + JTMpJ

)
q̈ +

(
JTMpJ̇

)
q̇ −

(
JTGp + ΓGa

)
+ Γd = Γ, (28)

where Γd is a disturbance term that accounts for non-modeled dynamics and possible ex-
ternal disturbances. It can be written in a standard joint-space form as follows

M(q)q̈ + C(q, q̇)q̇ +G(q) + Γd = Γ, (29)

with:

M(q) = Ia + JTMpJ the total mass matrix.

C(q, q̇) = JTMpJ̇ the Coriolis and centrifugal forces matrix.

G(q) = −
(
JTGp + ΓGa

)
the gravitational forces vector.

The expression of the dynamics in (29) is suitable for joint-space control since it is
expressed in terms of the actuated joints.
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4. Background on L1 Adaptive Control

In this section, the basic idea behind the development of the L1 adaptive control theory is
detailed. For the sake of simplicity, we consider a single-input single-output system. Since
L1 adaptive control is inspired from MRAC, we first introduce MRAC for the considered
system. Then the architecture of MRAC is changed to achieve the decoupling of robustness
and adaptation.

4.1. Control problem formulation

Consider the following single-input single-output linear time-invariant system

ẋ(t) = Ax(t) + bu(t), x(0) = x0

y(t) = cTx(t)
(30)

where

x(t) ∈ Rn is the measurable state of the system,

u(t) ∈ R is the control input,

b, c ∈ Rn are known constant input and output vectors,

y(t) ∈ R is the output to be regulated by the controller.

The system state matrix A ∈ Rn×n is supposed unknown. The control objective is
to design an adaptive control signal u(t) such that the regulated output of the system y(t)
tracks a given reference signal r(t) ∈ R with desired performance while guaranteeing that
the system state and other signals remain bounded under the following assumption

Assumption 3. There exist a Hurwitz matrix Am ∈ Rn×n and a vector θ ∈ Rn of perfect
parameters such that the pair (Am, b) is controllable and Am − A = bθT . Moreover,
assume that this unknown perfect parameters vector θ belongs to a given compact set Θ.

Under the above assumption, the system in (30) can be rewritten as follows

ẋ(t) = Amx(t) + b
(
u(t)− θTx(t)

)
, x(0) = x0

y(t) = cTx(t)
(31)

4.2. From direct MRAC to direct MRAC with a state predictor

One of the key differences between MRAC and L1 adaptive control is the introduction of
a prediction-based adaptive architecture. In the following, this new structure is highlighted
and demonstrated that it leads to the same closed-loop behavior as direct MRAC.
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4.2.1. Direct MRAC

Consider the nominal nonadaptive controller given by

unom(t) = θTx(t) + kgr(t) (32)

where kg , 1/
(
cTA−1

m b
)

is a feedforward gain that ensures zero steady-state track-
ing error. Substituting (32) in the system dynamics in (31) leads to the following desired
reference system

ẋm(t) = Amxm(t) + bkgr(t), x(0) = x0

ym(t) = cTxm(t)
(33)

where xm(t) is the state of the reference system and ym(t) its output. The nominal control
law is impossible to implement due to the uncertainties in the system state matrix A (and,
hence, θ) which should be estimated online.

The feasible direct MRAC control law is hence given by

u(t) = θ̂Tx(t) + kgr(t) (34)

where θ̂ ∈ Rn is an estimate of θ whose evolution is governed by the following adaptation
rule

˙̂
θ(t) = γx(t)eT (t)Pb, θ̂(0) = kx0 (35)

where γ ∈ R+ is the adaptation gain, e(t) , xm(t) − x(t) and P = P T > 0 is the
solution for the algebraic Lyapunov equation AT

mP + PAm = −Q, for an arbitrary choice
of Q = QT > 0.

Substituting the adaptive control law (34) in the system dynamics in (31) leads to the
following error dynamics

ė(t) = Ame(t)− bθ̃T (t)x(t) (36)

where θ̃ , θ̂(t) − θ is the parameters estimation error. Figure 7 depicts the overall block
diagram of MRAC.

4.2.2. MRAC with a state predictor

Now consider the following state predictor that mimics the behavior of the system in (31)
with the unknown parameter θ replaced by its estimate θ̂(t)

˙̂x(t) = Amx̂(t) + b(u(t)− θ̂x(t)), x̂(0) = x0

ŷ(t) = cT x̂(t)
(37)

where x̂(t) being the state of the predictor. The prediction error dynamics can be obtained
by subtracting the system dynamics from those of the predictor as follows
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u(t) = θ̂Tx(t) + kgr(t)

ẋm(t) = Amxm(t) + bkgr(t)

ym(t) = cTxm(t)

ẋ(t) = Amx(t) + b
(
u(t)− θT x(t)

)
y(t) = cTx(t)

˙̂
θ(t) = γx(t)eT (t)Pb

r(t) u(t) x(t)

xm(t)

e(t)θ̂(t)

−+

Figure 7. Block diagram of MRAC

˙̃x(t) = Amx̃(t)− bθ̃(t)x(t) (38)

where x̃(t) , x̂(t)− x(t) is the prediction error. It can be seen that the prediction error dy-
namics is identical to the obtained error dynamics with direct MRAC in (36). The adaptive
law of the predictor-based controller is similar to that of direct MRAC, the only difference
is the use of the prediction error x̃(t) instead of the tracking error e(t). It is thus given by

˙̂
θ(t) = γx(t)x̃T (t)Pb, θ̂(0) = θ0 (39)

It can be noticed that the closed-loop state predictor mimics the behavior of the refer-
ence model in (33). Indeed, substituting the control law (34) in the predictor dynamics and
upon the use of (39) we get the following closed-loop dynamics

˙̂x(t) = Amx̂(t) + bkgr(t), x̂(0) = x0,

ŷ(t) = cT x̂(t)
(40)

which is identical to the dynamics of the reference system of direct MRAC in (33). It is
demonstrated in [38] that the tracking (or prediction) errors are upper bounded at any time
by

‖e(t)‖(= ‖x̃(t)‖) ≤ ‖θ̃(0)‖√
λmin(P )γ

(41)

being θ̃(0) the initial parameters estimation error and λmin(P ) the minimum eigenvalue
of P . This means that the tracking error can be made arbitrarily small by increasing the
adaptation gain γ. However, it can be seen from the control law in (34) and the adaptation
laws in (35) and (39) that increasing the adaptation gain lead to high gain feedback. The
block diagram of MRAC scheme with a state predictor is shown in Figure 8.
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u(t) = θ̂Tx(t) + kgr(t)

˙̂x(t) = Amx̂(t) + b(u(t)− θ̂x(t))

ŷ(t) = cT x̂(t)

ẋ(t) = Amx(t) + b
(
u(t)− θT x(t)

)
y(t) = cTx(t)

˙̂
θ(t) = γx(t)eT (t)Pb

r(t)

u(t)

x(t)

x̂(t)

x̃(t)θ̂(t)

−
+

Figure 8. Block diagram of the control loop based on MRAC with state predictor

4.3. L1 adaptive control

In a real system, the unknown parameters vector θ may be a time-varying uncertainty with
frequencies that may lie outside the control channel bandwidth [38]. In this case, such
frequencies are naturally attenuated due to hardware limitations of the actuators. Conse-
quently, the behavior of the closed-loop system will be different than the dynamics of the
reference model in (33).

The control problem in L1 adaptive control is formulated with the understanding that
some uncertainties could never be perfectly compensated. Indeed, while the control objec-
tive in MRAC is only stated asymptotically, the closed-loop performance in L1 adaptive
control is specified ∀t ≥ 0. This means that at any time, the performance of the system
can be predicted. Moreover, the control signal never exceeds the available control channel
bandwidth.

For the class of systems given by (31), consider the following state predictor that mimics
its behavior

˙̂x(t) = Amx̂(t) + b(u(t)− θ̂x(t)), x̂(0) = x0

ŷ(t) = cT x̂(t)
(42)

In addition to the state predictor in (42), consider a projection-type adaption law for the
estimated parameter vector θ̂ expressed as

˙̂
θ(t) = γ Proj

(
θ̂(t), x(t)x̃(t)Pb

)
, θ̂(0) = θ0 (43)

which is adjusted using the prediction error x̃(t) = x̂(t) − x(t). The projection operator
Proj avoids the parameters drift and ensures that they remain inside the compact set Θ.
In (43), γ is the positive adaptation gain and P is the symmetric positive definite matrix,
solution of the algebraic Lyapunov equation AT

mP+PAm = −Q for an arbitrary symmetric
positive definite matrix Q.

The last stage which is one of the notable unique features of the L1 adaptive control,
is the control input characterized by the introduction of a low-pass filter. It is given by its
Laplace form as follows

u(s) = C(s) (η̂(s) + kgr(s)) (44)
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u(t) = θ̂Tx(t) + kgr(t)

ẋm(t) = Amxm(t) + bkgr(t)

ym(t) = cTxm(t)

ẋ(t) = Amx(t) + b
(
u(t)− θT x(t)

)
y(t) = cTx(t)

˙̂
θ(t) = γ Proj(x(t)eT (t)Pb)

C(s)
r(t)

u(t)

x(t)

xm(t)

e(t)θ̂(t)

−+

Figure 9. Block diagram of L1 adaptive control.

where C(s) is a bounded-input bounded-output strictly proper transfer function with
C(0) = 1, r(s) is the Laplace transform of the reference trajectory r(t) and η̂(s) is the
Laplace transform of ˆη(t) = θ̂T (t)x(t).

It is demonstrated in [38] that the controlled system in (30) under the L1 adaptive con-
trol law in (44) is bounded-input bounded-state with respect to r(t) and x0 if the following
L1-norm-based equality is satisfied

‖G(s)‖L1L < 1 (45)

where

G(s) , H(s)(1− C(s)), H(s) , (sI−Am)−1b, L , max
θ∈Θ

‖θ‖1 (46)

The block diagram of the L1 adaptive control strategy for the class of systems given by
(31) is displayed in Figure 9.

5. Application of L1 adaptive control to Parallel Manipulators

Recall the inverse dynamics for parallel mechanical manipulators which are expressed as

M(q)q̈ + C(q, q̇)q̇ +G(q) + Γd(t) = Γ(t) (47)

In the aim of developing a L1 adaptive controller for the class of systems given by (47),
introduce the following combined position-velocity tracking error given by

r = (q̇ − q̇d) + Λ (q − qd) (48)

where Λ ∈ R4×4 is a symmetric positive-definite weighting matrix.

5.1. Control law

Consider the following control input vector Γ(t) consisting of a combination of two distinct
terms [39]

Γ(t) = Γm(t) + Γad(t), Γm(t) , Amr(t) (49)
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where Γm ∈ Rn is a state-feedback term characterizing the desired transient response of the
tracking error r(t) and Γad is the adaptive control term which will be designed subsequently.
Taking the first time derivative of (48) with respect to time we get

ṙ(t) = (q̈ − q̈d) + Λ (q̇ − q̇d) (50)

Substituting the control law (49) into the dynamics of the parallel manipulator in (47)
and solving for q̈ along with substituting into (50), we get the following error dynamics

ṙ(t) = Amr(t) + Γad(t)− η(t, ζ(t)), r(0) = r0 (51)

where ζ = [r, q]T and η(t, ζ(t)) is a nonlinear function that gathers all the nonlinearities
of the system including possible external disturbances. Before proceeding to the develop-
ment of the adaptive control law, some important assumptions and properties regarding the
unknown function η(t, ζ(t)) have to be made, they can be summarized as follows

Assumption 4. (Uniform boundedness of η(t,0)) There exist B > 0 such that ∀t ≥
0, ‖η(t, 0)‖≤ B.

Assumption 5. (Semiglobal uniform boundedness of partial derivatives of η(t, ζ(t))) The
unknown nonlinear function η(t, ζ(t)) is continuous with respect to its arguments, and for
arbitrary δ > 0, there exist dηt(δ) and dηx(δ) such that∥∥∥∥∂η(t, ζ)∂t

∥∥∥∥
∞

≤ dηt(δ),

∥∥∥∥∂η(t, ζ)∂ζ

∥∥∥∥
∞

≤ dηζ (δ) (52)

Assumption 6. for t ≥ 0, ‖rt‖L∞
≤ ρ and ‖ṙT ‖L∞

≤ dr, for some positive constants ρ
and dr.

It follows from Lemma A.9.2 in [38] that the unknown nonlinear function η(t, ζ(t)) can
be parametrized as follows

η(t, ζ(t)) = θ(t)‖rt‖L∞ + σ(t) (53)

where θ(t), σ(t) ∈ Rn are continuous, piecewise-differentiable and uniformly bounded
unknown functions. Therefore, the error dynamics in (51) can be rewritten as:

ṙ(t) = Amr(t) + Γad(t)− (θ(t)‖rt‖L∞ + σ(t)) , r(0) = r0. (54)

Notice that the substitution of Γad(t) = (θ(t)‖rt‖L∞ + σ(t)) in the error dynamics in
(54) results in the desired performance characterized by ṙ(t) = Amr(t). However, since
the nonlinear function η(t, ζ(t)) = (θ(t)‖rt‖L∞ + σ(t)) is unknown due to uncertainties
and unmeasured disturbances, the control term Γad(t) should be designed in a way that it
estimates the unknown functions θ(t) and σ(t) in real-time.
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rd = 0
η̂(t) =

(
θ̂(t)‖rt‖L∞ + σ̂(t)

)
C(s)

Am ˙̂r(t) = Amr̂(t) + Γad(t) − η̂(t) − Kr̃(t)

ṙ(t) = Amr(t) + Γad(t)− η(t, ζ(t))

˙̂
θ(t) = ΞProj

(
θ̂(t), P r̃(t)‖rt‖L∞

)
˙̂σ(t) = ΞProj (σ̂(t), P r̃(t))

θ̂(t), σ̂(t)

Γad(t)

r̂(t)

r(t)

r̃(t)

+
−

+
+

Figure 10. Block diagram of L1 adaptive control for parallel manipulators

5.2. State predictor

To predict the behavior of the combined tracking error r(t) and according to the L1 adaptive
control theory, a state predictor that mimics the behavior of the error dynamics in (54) is
formulated by [39]:

˙̂r(t) = Amr̂(t) + Γad(t)−
(
θ̂(t)‖rt‖L∞ + σ̂(t)

)
− Zr̃(t), r̂(0) = r0 (55)

where r̂(t) is the state of the predictor, r̃(t) , r̂(t) − r(t) is the prediction error and
θ̂(t), σ̂(t) are estimates of θ(t) and σ(t), respectively. Notice the introduction of the addi-
tional term Zr̃(t) responsible of rejecting the estimation error.

5.3. Adaptation laws

The evolution of the adaptive estimates θ̂(t), σ̂(t), required for the L1 adaptive control
architecture, is governed by the following projection-type adaptation laws

˙̂
θ(t) = ΞProj

(
θ̂(t), P r̃(t)‖rt‖L∞

)
, θ̂(0) = θ̂0 (56)

˙̂σ(t) = ΞProj (σ̂(t), P r̃(t)) , σ̂(0) = σ̂0 (57)

where Ξ > 0 is the adaptive gain, P = P T > 0 is the solution to the algebraic Lyapunov
equation AT

mP + PAm = −Q for some arbitrary matrix Q = QT > 0.
Finally, the adaptive control term Γad(t) in (49) is given by its Laplace form as follows

Γad(s) = C(s)η̂(s) (58)

where η̂(s) is the Laplace transform of η̂(t) =
(
θ̂(t)‖rt‖L∞ + σ̂(t)

)
and C(s) is a diagonal

matrix whose elements are bounded-input bounded-output stable strictly proper transfer
functions satisfying C(0) = In and zero initialization for their state-space realizations.

To sum up, the block diagram shown in Figure 10 illustrates the architecture of L1

adaptive control for the class of systems given by (47).
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6. Extended L1 adaptive control of Parallel Manipulators

Let qd(t), q̇d(t), q̈d(t) ∈ R4 be the desired joint position, velocity and acceleration trajecto-
ries respectively. These reference trajectories to be tracked by the active joints of Veloce,
are generated in task-space according to a specific task of the moving platform (e.g. pick-
and-place). Then, adequate kinematic relationships are used to compute the corresponding
joint quantities. The control objective is to ensure that the traveling plate of the manipulator
tracks, as accurately as possible, the desired trajectories regardless of any inherent nonlin-
earities or external disturbances. To quantify the control objective, consider the combined
joint tracking error r(t) ∈ R4 defined by

r(t) = (q̇ − q̇d) + Λ (q − qd) (59)

where Λ ∈ R4×4 is a symmetric positive-definite design matrix. Since −Λ is Hurwitz, it
follows that (59) is BIBO-stable; i.e. there exist L1, L2 > 0 such that [40]

‖qτ‖L∞
≤ L1 ‖rτ‖L∞

+ L2 (60)

where ‖(.)τ‖L∞ denotes the truncated L∞-norm of (.). The proposed control law to achieve
the desired tracking performance is given by:

Γ = M0(qd)q̈d + C0(qd, q̇d)q̇d +G0(qd) +Amr + Γad, (61)

The proposed control law in (61) can be thought of as the combination of three distinct
terms. Each term has a specific role in the closed-loop system:

• The first term (i.e. M0(qd)q̈d + C0(qd, q̇d)q̇d + G0(qd)) is a nominal feedforward
inverse dynamics term intended to minimize the effect of the inherent nonlinearities
of the system and hence, to improve the tracking performance.

• The second term (i.e. Amr) consists of a stabilizing state-feedback term specifying
the desired closed-loop behavior of the system.

• More importantly, the last term Γad, which will be detailed in the subsequent devel-
opment, is the adaptive signal responsible of rejecting all the remaining disturbances
such as friction effects, external disturbances, etc.

Substituting the control law (61) into (29) results in the following error dynamics

ṙ(t) = Amr(t) + Γad(t)− η(t, ζ(t)), r(0) = r0 (62)

where η(t, ζ(t)), ζ =
[
rT , qT , q̇T

]T is a nonlinear function that gathers all the remaining
nonlinearities that result from applying the control law (61) to (29) and is given by

η(t, ζ(t)) = M−1(q)(M̃(q)q̈d + Ñ(q, q̇))

+ (I−M−1(q))(Amr + ΓAD)

− Λr + Λ2(q − qd)

(63)

where M̃(q) , M(q) − M̂(qd), Ñ(q, q̇) , N(q, q̇) − N̂(qd, q̇d) and I ∈ R4×4 denotes
the identity matrix. For the subsequent parametrization of η(t, ζ(t)), let’s consider the
following non-restricting assumptions [41]



Adaptive Control of Parallel Manipulators 21

Assumption 7. There exist positive B such that ‖η(t, 0)‖≤ B holds for all t ≥ 0.

Assumption 8. η is continuous in its arguments, and for arbitrary δ > 0, there exist dηt(δ)
and dηx(δ) such that∥∥∥∥∂η(t, ζ)∂t

∥∥∥∥
∞

≤ dηt(δ),

∥∥∥∥∂η(t, ζ)∂ζ

∥∥∥∥
∞

≤ dηζ (δ) (64)

Assumption 9. for τ ≥ 0, ‖rτ‖L∞
≤ ρ and ‖ṙτ‖L∞

≤ dr, for some positive constants ρ
and dr. Now, for some arbitrary γ > 0, let

ρ̄ , max {ρ+ γ, L1(ρ+ γ) + L2} , Lρ ,
ρ̄

ρ
dηζ (ρ̄) (65)

It follows from Lemma A.9.2 in [41] that η(t, ζ(t)) can be parametrized as follows

η(t, ζ(t)) = θ(t)‖rτ‖L∞ + σ(t) (66)

where θ(t), σ(t) ∈ R4 are differentiable functions. It follows that (62) can be rewritten as

ṙ(t) = Amr(t) + ΓAD(t)− (θ(t)‖rτ‖L∞ + σ(t)) , r(0) = r0 (67)

Since the nonlinear function η(t, ζ(t)) is unknown due to uncertainties and unmeasured dis-
turbances, the control term Γad(t) should be adaptively designed in order to obtain estimates
of θ(t) and σ(t). Now, consider the following state predictor of the combined tracking error

˙̂r(t) =Amr̂(t) + Γad(t)−
(
θ̂(t)‖rτ‖L∞ + σ̂(t)

)
−Kr̃(t), r̂(0) = r0

(68)

where r̃(t) , r̂(t) − r(t) and K ∈ R4×4 is a design parameter introduced to reject high-
frequency noise [14]. θ̂(t) and σ̂(t) are real-time estimates of θ(t) and σ(t) respectively,
their evolution is governed by the following projection-based adaptive laws in order to
ensure their boundedness [41]

˙̂
θ(t) = ΣProj

(
θ̂(t), P r̃(t)‖rτ‖L∞

)
, θ̂(0) = θ̂0 (69)

˙̂σ(t) = ΣProj (σ̂(t), P r̃(t)) , σ̂(0) = σ̂0 (70)

where Σ ∈ R+ is the adaptive gain, P = P T > 0 is the solution to the algebraic Lya-
punov equation AT

mP + PAm = −Q for some arbitrary Q = QT > 0. Since the esti-
mated parameters are bounded thanks to the projection operator, they satisfy ‖θ̂(t)‖∞ <
θb, ‖σ̂(t)‖∞ < σb, ∀t ∈ [0, T ]. The adaptive control signal Γad(t) is the output of the
following system given in Laplace domain

Γad(s) = C(s)η̂(s) (71)

where η̂(s) is the Laplace transform of η̂(t) =
(
θ̂(t)‖rt‖L∞ + σ̂(t)

)
and C(s) is a diagonal

matrix of filters whose elements are BIBO-stable strictly proper transfer functions satisfying
a unity DC gain and zero initialization for their state-space realizations.
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Figure 11. View of the experimental setup of the VELOCE robot.

7. Real-Time Experiments and Results

In order to demonstrate the relevance of the proposed extended L1 adaptive controller, real-
time experiments were conducted on an experimental testbed consisting of the Veloce robot.

7.1. Experimental Testbed of the VELOCE robot

The actuators of VELOCE are the TMB0140-100-3RBS ETEL direct-drive motors. They
can provide a maximum peak torque of 127 Nm and they are able to reach 550 rpm of speed.
Each actuator is equipped with a non-contact incremental optical encoder providing a total
number of 5000 pulses per revolution. The global structure of the manipulator is capable
of reaching 10 m/s of maximum velocity of the traveling plate, 200 m/s2 of maximum
acceleration and is able to handle a maximum payload of 10 Kg. The control architecture
is implemented using Simulink from Mathworks and compiled using the XPC Target real-

Table 3. Summary of the controllers’ parameters

Parameter Description Value
Λ position error weight 10× diag(65, 65, 65, 65)
Am transient response matrix diag(−6,−6,−6,−6)
θmax upper bound on θ 50
σmax upper bound on σ 30
Σ adaptation gain 106

K noise rejection gain 103 × diag(6, 6, 6, 6)
C(s) L1 low-pass design filter 144/(s2 + 21.6s+ 144)



Adaptive Control of Parallel Manipulators 23

time toolbox. The resulting low-level code is then uploaded to the target PC; an industrial
computer cadenced at 10 KHz (i.e. sample time of 0.1 ms). The experimental testbed is
displayed in Figure 11.

7.2. Real-time Experimental Results

To demonstrate the relevance of the proposed contribution and to highlight its benefits, both
the L1 adaptive controller in [16] and the proposed extended one were implemented in real-
time on VELOCE. As a reminder, the implemented control law in [16] consists only of the
stabilizing term and the adaptive term, it is expressed as

Γ(t) = Amr(t) + Γad(t) (72)

The traveling plate of the manipulator had to perform several spatial point-to-point dis-
placements as well as rotations inside the manipulator’s workspace. We use 5th order poly-
nomials to generate the desired trajectories in Cartesian space, then the inverse kinematics
problem is solved online to determine the corresponding joint trajectories. The duration
of each point-to-point trajectory was fixed to 0.2 sec. The desired joint trajectories were
obtained by solving the Inverse Kinematics problem in real-time while the actual ones are
available from the encoders measurements. The manipulator is not equipped with external
sensors, hence the actual Cartesian position is obtained by solving the Forward Kinemat-
ics problem in real-time as well. We choose the same control parameters for both con-
trollers, they are summarized in Table 3. The estimated functions were initialized to zero (
θ̂(0) = [0, 0, 0, 0]T , σ̂(0) = [0, 0, 0, 0]T ).

A comparison of the Cartesian tracking errors between both controllers is depicted in
Figure 12. The plots are zoomed in the interval [5, 7] seconds for clarity. It can be clearly
seen that the augmented controller performs much better than the original L1 adaptive con-
troller especially on translations on the x and y-axes, while the enhancement is smaller on
z-axis and the rotational DOF. To quantify the improvement brought by the proposed ex-
tended L1 adaptive controller, we formulate the following criteria based on the Root Mean
Square (RMS) of the tracking errors:

RMSJ =

(
4∑

i=1

RMS2(εqi)

) 1
2

(73)

RMSC =
(
RMS2(εx) + RMS2(εy) + RMS2(εz) + +RMS2(εs)

) 1
2 (74)

(75)

where ε(.) is the error between the desired and actual position and RMS(.) is the stan-
dard root mean square function. The obtained results are summarized in Table 4. It can
be noticed that the improvement is very significant regarding the joint tracking errors (up
to 52%) and the translational movements (up to 68.8%) while only small improvement
is observed on the rotation of the traveling plate (only 4.2%). This result highlights the
benefits of using the dynamics of the manipulator in the control loop in terms of tracking
performance.
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Figure 12. Cartesian tracking errors: Extended L1 adaptive controller (solid line), L1 adap-
tive controller (dashed line).

The generated control inputs are shown in Figure 15. The control inputs remain within
the allowable range and do not exceed the limits of the actuators. Overall, it can be observed
that the amplitudes of the control inputs in the case of the augmented controller are slightly
smaller than those of the standard L1 adaptive one. Hence, the following conclusion can
be drawn: the proposed controller significantly improves the tracking performance of the
closed-loop system while consuming less energy than the standard one.

The evolution of the estimated nonlinear functions θ̂(t) and σ̂(t) versus time is depicted
in Figure 13 and Figure 14 respectively. These figures clearly demonstrate the relevance
of the proposed contribution. Indeed, the addition of the model-based feedforward consid-
erably helps in compensating for the modeling inherent nonlinearities of the manipulator.
Therefore, the remaining nonlinearities that have to be compensated for by the adaptive
signal are of smaller amplitudes. This result is further illustrated in Figure 16 where only
the evolution of the adaptive component of (61) and (72) are plotted (i.e Γad(t)). We can
see that the adaptive signal, needed to compensate for the remaining nonlinearities, of the
proposed controller is of lower amplitude than that of the conventional one.
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Figure 13. Evolution of θ̂ versus time.

8. Conclusions and Future Work

In this work, a new controller based on L1 adaptive control for parallel manipulators is
presented. Standard L1 adaptive control do not rely on any knowledge about the dynamics
of the controlled system which may result in a poor tracking perfromance. Since a sim-
plified dynamic model for parallel manipulators is relatively easy to derive, we propose to
take advantage of the modelled dynamics in the control loop to enhance the performance of
L1 adaptive control. For this reason, we augment the standard L1 adaptive controller with
a computed feedforward term based on the nominal dynamics of the parallel manipulator
and the desired trajectories. The main motivation behind such a proposition is to improve
the tracking performance of the manipulator. In fact, the included dynamics partially com-

Table 4. Tracking performance comparison

L1-AC Extended L1-AC Improvement
RMSJ [deg] 0.1012 0.0486 52 %
RMSC [mm] 0.4634 0.195 69.7 %
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Figure 14. Evolution of σ̂ versus time.

pensates for the inherent nonlinear dynamics which results in an improved tracking per-
formance. Real-time experiments on a 4-DOF parallel manipulator show that the proposed
augmented control scheme significantly reduces the tracking errors as compared to standard
L1 adaptive control. Future work may consider evaluating the proposed controller in other
working scenarios and on other parallel manipulators prototypes.
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