
HAL Id: lirmm-01892661
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01892661v1

Submitted on 10 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ontology-Mediated Queries: Combined Complexity and
Succinctness of Rewritings via Circuit Complexity
Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladimir V

Podolskii, Michael Zakharyaschev

To cite this version:
Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladimir V Podolskii, Michael Za-
kharyaschev. Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings
via Circuit Complexity. Journal of the ACM (JACM), 2018, 65 (5), pp.1-51. �10.1145/3191832�.
�lirmm-01892661�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01892661v1
https://hal.archives-ouvertes.fr

1

Ontology-MediatedQueries: Combined Complexity and
Succinctness of Rewritings via Circuit Complexity

MEGHYN BIENVENU, CNRS & University of Montpellier, France

STANISLAV KIKOT, Birkbeck, University of London, UK

ROMAN KONTCHAKOV, Birkbeck, University of London, UK

VLADIMIR V. PODOLSKII, Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow,

Russia and National Research University Higher School of Economics, Russia

MICHAEL ZAKHARYASCHEV, Birkbeck, University of London, UK

We give solutions to two fundamental computational problems in ontology-based data access with the W3C

standard ontology language OWL2QL: the succinctness problem for first-order rewritings of ontology-me-

diated queries (OMQs), and the complexity problem for OMQ answering. We classify OMQs according to

the shape of their conjunctive queries (treewidth, the number of leaves) and the existential depth of their

ontologies. For each of these classes, we determine the combined complexity of OMQ answering, and whether

all OMQs in the class have polynomial-size first-order, positive existential and nonrecursive datalog rewritings.

We obtain the succinctness results using hypergraph programs, a new computational model for Boolean

functions, which makes it possible to connect the size of OMQ rewritings and circuit complexity.

CCS Concepts: • Computing methodologies → Description logics; • Information systems → Query
languages; • Theory of computation→ Description logics; Circuit complexity;

Additional Key Words and Phrases: ontology-based data access, query rewriting, ontology-mediated query,

succinctness, computational complexity.

ACM Reference Format:
Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, and Michael Zakharyaschev.

2018. Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via Circuit Com-

plexity. J. ACM 1, 1, Article 1 (January 2018), 70 pages. https://doi.org/10.1145/3191832

1 INTRODUCTION
1.1 Ontology-Based Data Access
Ontology-based data access (OBDA) via query rewriting was proposed by Poggi et al. [72] with the

aim of facilitating query answering over complex, possibly incomplete and heterogeneous data

sources. In an OBDA system (see Fig. 1), the user does not have to be aware of the structure of data

sources, which can be relational databases, spreadsheets, RDF triplestores, etc. Instead, the system

provides the user with an ontology that serves as a high-level conceptual view of the data, gives a

Authors’ addresses: M. Bienvenu, Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier

(LIRMM), University of Montpellier, 860 rue de St Priest, 34095 Montpellier CEDEX 5, France, meghyn@lirmm.fr; S. Kikot,

R. Kontchakov, M. Zakharyaschev, Department of Computer Science and Information Systems, Birkbeck, University of

London, Malet Street, London WC1E 7HX, UK, {kikot, roman, michael}@dcs.bbk.ac.uk; V. V. Podolskii, Steklov Mathematical

Institute of the Russian Academy of Sciences, 8 Gubkina str., 119991, Moscow, Russia and National Research University

Higher School of Economics, 20 Myasnitskaya str., 101000, Moscow, Russia, podolskii@mi.ras.ru.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/1-ART1 $15.00

https://doi.org/10.1145/3191832

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3191832
https://doi.org/10.1145/3191832

1:2 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

SELECT ?s {

?s a :Staff .

?s a [a owl:restriction;
owl:onProperty :assistedBy;

owl:someValuesFrom :Secretary] . }

query

[] rdf:type rr:TriplesMap ;
rr:logicalTable "SELECT * FROM PROJECT";
rr:subjectMap [a rr:BlankNodeMap ;

rr:column "PRJ_ID" ;] ;
rr:propertyObjectMap [rr:property a:name;

rr:column "PRJ_NAME"] ;
. . . mappings

ontology

Staff

ProjectManager

Project

manages

PAisAssistedBy

Secretary

∪∪

CREATE TABLE PROJECT (
PRJ_ID INT NOT NULL,
PRJ_NAME VARCHAR(60) NOT NULL,
PRJ_MANAGER_ID INT NOT NULL
. . .

)

A B C D
1
2
3
4
5
6
7

data sources

Fig. 1. Ontology-based data access.

convenient vocabulary for user queries, and enriches incomplete data with background knowledge.

A snippet, T , of such an ontology is shown below in the syntax of first-order (FO) logic:

∀x
(
ProjectManager(x) → ∃y (isAssistedBy(x,y) ∧ PA(y))

)
,

∀x
(
∃ymanagesProject(x,y) → ProjectManager(x)

)
,

∀x
(
ProjectManager(x) → Staff(x)

)
,

∀x
(
PA(x) → Secretary(x)

)
.

User queries are formulated in the signature of the ontology. For example, the conjunctive query

q(x) = ∃y
(
Staff(x) ∧ isAssistedBy(x,y) ∧ Secretary(y)

)
is supposed to find the staff assisted by secretaries. The ontology signature and data schemas are

related by mappings designed by the ontology engineer and invisible to the user. The mappings

allow the system to view the data sources as a single RDF graph (a finite set of unary and binary

ground atoms),A, in the signature of the ontology. For example, the global-as-view (GAV) mappings

∀x,y, z
(
PROJECT(x,y, z) → managesProject(z, x)

)
,

∀x,y
(
STAFF(x,y) ∧ (y = 2) → ProjectManager(x)

)
populate the ontology predicatesmanagesProject and ProjectManagerwith values from the database

relations PROJECT and STAFF, respectively. In the query rewriting approach of Poggi et al. [72], the

OBDA system employs the ontology and mappings in order to transform the user query into a

query over the data sources, and then delegates the actual query evaluation to the underlying

database engines and triplestores.

For example, the first-order query

Φ(x) = ∃y
[
Staff(x) ∧ isAssistedBy(x,y) ∧ (Secretary(y) ∨ PA(y))

]
∨

ProjectManager(x) ∨ ∃zmanagesProject(x, z)

is an FO-rewriting of the ontology-mediated query (OMQ)Q(x) = (T ,q(x)) over any RDF graphA in

the sense that a is an answer to Φ(x) overA if and only if q(a) is a logical consequence of T andA.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:3

As the system is not supposed to materialiseA, it uses the mappings to unfold the rewriting Φ into

an SQL (or SPARQL) query over the data sources.

Ontology languages suitable for OBDA via query rewriting have been identified by the Descrip-

tion Logic, Semantic Web, and Database/Datalog communities. The DL-Lite family of description

logics, first proposed by Calvanese et al. [23] and later extended by Artale et al. [6], was specifically

designed to ensure the existence of FO-rewritings for all conjunctive queries (CQs). Based on

this family, the W3C defined a profile OWL 2QL
1
of the Web Ontology Language OWL 2 ‘so that

data [. . .] stored in a standard relational database system can be queried through an ontology

via a simple rewriting mechanism.’ Various dialects of tuple-generating dependencies (tgds) that

admit FO-rewritings of CQs and extend OWL 2QL have also been identified [9, 21, 27]. We note in

passing that while most work on OBDA (including the present article) assumes that the user query

is given as a CQ, other query languages, allowing limited forms of recursion and/or negation, have

also been investigated [13, 43, 62, 78]. SPARQL 1.1, the standard query language for RDF graphs,

contains negation, aggregation and other features beyond first-order logic. The entailment regimes

of SPARQL 1.1
2
also bring inferencing capabilities to the setting, which are, however, necessarily

limited to enable efficient implementations.

By reducing OMQ answering to standard database query evaluation, which is generally regarded

to be very efficient, OBDA via query rewriting has quickly become a hot topic in both theory and

practice. A number of rewriting techniques have been proposed and implemented for OWL 2QL

(PerfectRef [72], Presto/Prexto [79, 80], tree witness rewriting [57]), sets of tuple-generating depen-

dencies (Nyaya [38], PURE [59]), and more expressive ontology languages that require recursive

datalog rewritings (Requiem [70], Rapid [26], Clipper [30] and Kyrie [69]). A few mature OBDA

systems have also recently emerged: pioneering MASTRO [22], commercial Stardog [71] and Ultra-

wrap [81], and the Optique platform [33] based on the query answering engine Ontop [61, 77]. By

providing a semantic end-to-end connection between users and multiple distributed data sources

(and thus making the IT expert middleman redundant), OBDA has attracted the attention of indus-

try, with companies such as Siemens [53] and Statoil [52] experimenting with OBDA technologies

to streamline the process of data access for their engineers.
3

1.2 Problems: Succinctness and Complexity
In this article, our concern is two fundamental theoretical problems whose solutions will elu-

cidate the computational costs required for answering OMQs with OWL 2QL ontologies. The

succinctness problem is to understand how difficult it is to construct rewritings for OMQs in a given

class and, in particular, to determine whether OMQs in the class have polynomial-size rewritings

or not. In other words, the succinctness problem clarifies the computational cost of the reduc-

tion of OMQ answering to database query evaluation. The original FO-rewriting of any given

OMQ Q = (T ,q) suggested by Calvanese et al. [23] and called the ‘perfect reformulation’ is a

union of CQs (UCQ) of size |T | |q | · 2O (|q |
2)
. Having observed that UCQ-rewritings are prohibitively

large in practice, Rosati and Almatelli [80] designed an algorithm for a shorter rewriting ofQ into

a nonrecursive datalog (NDL) program of size |T |O (1) · 2O (|q |). Kikot et al. [57] and Thomazo [84]

identified common structures in UCQ-rewritings and compactified them into unions of semicon-

junctive queries (USCQs)—positive-existential (PE) formulas with matrices of the form ∨∧∨—of

size |T | · 2O (|q |
2)
. The first lower bounds on the size of FO-, PE- and NDL-rewritings

4
were obtained

1
http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

2
http://www.w3.org/TR/sparql11-entailment

3
See, e.g., http://optique-project.eu.

4
Note that domain-independent FO-rewritings correspond to plain SQL queries, PE-rewritings to Select-Project-Join-

Union (SPJU) queries, and NDL-rewritings to SPJU queries with views.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/sparql11-entailment
http://optique-project.eu

1:4 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

by Gottlob et al. [34] who constructed a sequence of OMQs (with tree-shaped CQs) whose PE-

and NDL-rewritings can only be of exponential size, while FO-rewritings are superpolynomial

unless NP ⊆ P/poly.
To understand how optimal OBDA via OMQ rewriting can be, we also have to measure the

resources required to answer OMQs by a best possible algorithm, not necessarily a reduction

to database query evaluation. Thus, we are interested in the combined complexity of the OMQ

answering problem: given an OMQQ(x) = (T ,q(x)) from a certain class, a data instance A and a

tuple a of constants fromA, decide whether T ,A |= q(a). It is not hard to see that this problem is

NP-complete [6, 23], with the lower bound inherited from the complexity of CQ evaluation. The

combined complexity of CQ evaluation has been thoroughly investigated in database theory. In

particular, it is known that tree-shaped CQs and, more generally, CQs of bounded treewidth are

tractable, LogCFL-complete to be more precise [25, 36, 42, 88]. The presence of ontologies in OMQs

makes a transfer of these positive results to the OBDA setting impossible: indeed, answering OMQs

with tree-shaped CQs is NP-hard [56]. The tractability of CQs can be transferred to OMQs only

at the expense of sacrificing the expressivity of the ontology language OWL 2QL, for example, by

disallowing ‘role inclusions’ [14].

In this article, we obtain solutions to the following major research problems:

– give an interesting—both theoretically and practically—classification of all OMQs according

to the structure of their ontologies and CQs;

– determine whether OMQs in each of the identified classes have polynomial-size PE-, NDL-,

and FO-rewritings;

– determine the combined complexity of answering OMQs in each of the classes.

Extended abstracts with initial results that ultimately led to the current article appeared in the

Proceedings of the ACM/IEEE Symposium on Logic in Computer Science [11, 55].

1.3 Our Contribution
We suggest a ‘two-dimensional’ classification of OMQs. One dimension takes account of the shape

of the CQs in OMQs by quantifying their treewidth (as in classical database theory) and the number

of leaves in tree-shaped CQs. Tree-shapedness is especially relevant in the context of OBDA: in

SPARQL 1.1, the sub-queries that require rewriting under the OWL 2QL entailment regime are

always tree-shaped (they are, in essence, complex class expressions). The second dimension is

the existential depth of ontologies, that is, the length of the longest chain of labelled nulls in the

chase on any data. For instance, the NPD FactPages ontology,
5
which was designed to facilitate

querying the datasets of the Norwegian Petroleum Directorate,
6
is of depth 5. A typical example of

an ontology axiom causing infinite depth is ∀x
(
Person(x) → ∃y (ancestor(y, x) ∧ Person(y))

)
.

Figure 2a gives a summary of the succinctness results obtained in this article. It turns out that

polynomial-size PE-rewritings are guaranteed to exist—in fact, can be constructed in polynomial

time—only for the class of OMQs with ontologies of depth 1 and CQs of bounded treewidth,

where tree-shaped OMQs (with CQs of treewidth 1) have polynomial-size Π4-PE-rewritings (with

matrices of the form ∧∨∧∨). Polynomial-size NDL-rewritings can be efficiently constructed for

all tree-shaped OMQs with a bounded number of leaves, all OMQs with ontologies of bounded

depth and CQs of bounded treewidth, and all OMQs with ontologies of depth 1. For OMQs with

ontologies of depth 2 and arbitrary CQs, and OMQs with arbitrary ontologies and tree-shaped CQs,

we have an exponential lower bound on the size of NDL- (and so PE-) rewritings. The existence of

polynomial-size FO-rewritings for all OMQs in each of these classes—save OMQs with ontologies

5
http://sws.ifi.uio.no/project/npd-v2

6
http://factpages.npd.no/factpages

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://sws.ifi.uio.no/project/npd-v2
http://factpages.npd.no/factpages

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:5
o
n
t
o
l
o
g
y
d
e
p
t
h

1

2

3

. . .

d

arb.

2
. . . ℓ trees 2

. . . t arb.

number of leaves treewidth

poly NDL

no poly PE

poly FO

iff

NL/poly ⊆ NC1

poly NDL

no poly PE

poly FO

iff

LogCFL/poly ⊆ NC1

no poly NDL & PE

poly FO iff NP/poly ⊆ NC1

poly Π4-PE poly PE

poly NDL, but no poly PE

poly FO iff NL/poly ⊆ NC1

(a)

1

2

3

. . .

d

arb.

2
. . . ℓ trees 2

. . . t arb.

number of leaves treewidth

NL LogCFL

NPNPNPLogCFL

(b)

Fig. 2. (a) Succinctness of OMQ rewritings, and (b) combined complexity of OMQ answering (tight bounds).

of depth 1 and CQs of bounded treewidth—turns out to be equivalent to one of the major open

problems in computational complexity such as
7 NP/poly ⊆? NC1

. The only previously known

result in Fig. 2a is indicated by the white dotted line; for details, see [34, 54].

To obtain the new results in Fig. 2a, we develop a novel framework that connects succinctness

of rewritings and circuit complexity, a branch of computational complexity theory that classifies

Boolean functions according to the size of circuits (and formulas) computing them. Our starting

point is the observation that the tree-witness PE-rewriting of an OMQ Q = (T ,q) constructed
by Kikot et al. [57] defines a hypergraph whose vertices are the atoms in q and whose hyperedges

correspond to connected sub-queries of q that can be homomorphically mapped to labelled nulls of

some chases for T . Based on this observation, we introduce a new computational model for Boolean

functions by treating any hypergraphH , whose vertices are labelled with (possibly negated) Boolean

variables or constants 0 and 1, as a program computing a Boolean function fH that returns 1 on an

assignment to the variables iff there is an independent subset of hyperedges covering all vertices

labelled with 0 (under the assignment). We show that constructing short FO- (respectively, PE-

and NDL-) rewritings ofQ is (nearly) equivalent to finding short Boolean formulas (respectively,

monotone formulas and monotone circuits) computing the hypergraph function forQ .

For each of the OMQ classes in Fig. 2a, we characterise the computational power of the corre-

sponding hypergraph programs and employ results from circuit complexity to identify the size of

rewritings. For example, we show that OMQs with ontologies of depth 1 correspond to hypergraph

programs of degree at most 2 (in which every vertex belongs to at most two hyperedges), and that

the latter are polynomially equivalent to nondeterministic branching programs (NBPs). Since NBPs

compute the Boolean functions in the classNL/poly ⊆ P/poly, the tree-witness rewritings for OMQs

with ontologies of depth 1 can be equivalently transformed into polynomial-size NDL-rewritings.

On the other hand, there exist monotone Boolean functions computable by polynomial-size NBPs

but not by polynomial-size monotone Boolean formulas, which establishes a superpolynomial lower

bound for PE-rewritings. It also follows that all such OMQs have polynomial-size FO-rewritings

just in case NC1 = NL/poly.
The succinctness results in Fig. 2a, characterising the complexity of the reduction to plain

database query evaluation, are complemented by the combined complexity results in Fig. 2b, where

the only previously known result [56] is encircled by a white dotted line. Here, we prove that,

surprisingly, answering OMQs with ontologies of bounded depth and CQs of bounded treewidth

is no harder than evaluating CQs of bounded treewidth, that is, LogCFL-complete. By restricting

7C/poly is the non-uniform analogue of a complexity class C.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

further the class of CQs to trees with a bounded number of leaves, we obtain an even better

NL-completeness result, which matches the complexity of evaluating the underlying CQs. If we

consider bounded-leaf tree-shaped CQs coupled with arbitrary OWL 2QL ontologies, then the OMQ

answering problem remains tractable in spite of a possibly infinite chase, LogCFL-complete to be

more precise. Thus, in our classification, only the OMQs with arbitrary ontologies and bounded

treewidth CQs turn out to be more complex than their underlying CQs (unless LogCFL = NP).
The plan of the article is as follows. Section 2 introduces OWL 2QL, OMQs and rewritings.

Section 3 defines tree-witness rewritings. Section 4 reduces the succinctness problem for OMQ

rewritings to the succinctness problem for hypergraph Boolean functions associated with the tree-

witness rewritings. Sections 5 and 6 introduce hypergraph programs for computing these functions

and establish a correspondence between classes of OMQs in Fig. 2 and classes of hypergraph

programs. Section 7 characterises the computational power of hypergraph programs in these

classes by relating them to standard models of computation for Boolean functions. Section 8 uses

the results of the previous four sections and known facts from circuit complexity to obtain the

upper and lower bounds on the size of PE-, NDL- and FO-rewritings in Fig. 2a; a roadmap for the

succinctness results is given in Fig. 19 (Section 8). Section 9 establishes the combined complexity

results in Fig. 2b. We conclude in Section 10 by discussing the obtained succinctness and complexity

results and formulating a few open problems. All omitted proofs can be found in Appendix A.

1.4 Some Remarks on Related OBDA Research
In our comprehensive analysis, we slightly simplify the general OBDA setting by assuming that data

is given in the form of RDF graph and leave mappings out of the picture (in fact, GAVmappings only

polynomially increase the size of FO-rewritings over RDF graphs). In practice, however, mappings

play an important role, and their structure can be crucial for the performance of OBDA systems;

see Section 10.

As is well-known in database theory, to find answers to an OMQ Q = (T ,q) over a data

instance A, one can construct the chase of A with T and evaluate q over it; see Section 3 for

details. This approach to OMQ answering is known as materialisation or forward chaining. In

the context of OBDA, there can be two main obstacles to materialisation. First, proprietary data

is often not available for manipulations, and second, the chase with OWL 2QL ontologies may

be infinite. In the combined approach to OMQ answering, the infinite set of labelled nulls of the

chase is encoded by a small number of their representatives, and the CQ q is rewritten in order to

eliminate spurious answers [60, 68] or a special filtering procedure is used to get rid of them [67].

Gottlob and Schwentick [39] and Gottlob et al. [34] showed that every Q has a polynomial-size

PE-rewriting over any given data extended with two special constants, which are used by extra

existential quantifiers in the rewriting to ‘guess’ a derivation of q in the chase (cf. also [8] for a

succinctness trick in the same vein). Gottlob et al. [37] extended the polynomial combined approach

to OMQs with linear tgds.

2 OWL2QL ONTOLOGY-MEDIATED QUERIES AND FIRST-ORDER REWRITABILITY
In first-order logic, any OWL 2QL ontology (or TBox in description logic parlance), T , can be given

as a finite set of sentences (often called axioms) of the following forms

∀x
(
τ (x) → τ ′(x)

)
, ∀x

(
τ (x) ∧ τ ′(x) → ⊥

)
,

∀x,y
(
ϱ(x,y) → ϱ ′(x,y)

)
, ∀x,y

(
ϱ(x,y) ∧ ϱ ′(x,y) → ⊥

)
,

∀x ϱ(x, x), ∀x
(
ϱ(x, x) → ⊥

)
,

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:7

where the formulas τ (x) (called classes or concepts) and ϱ(x,y) (called properties or roles) are defined,
using unary predicates A and binary predicates P , by the grammars

τ (x) ::= ⊤ | A(x) | ∃y ϱ(x,y) and ϱ(x,y) ::= ⊤ | P(x,y) | P(y, x). (1)

(Strictly speaking, OWL 2QL ontologies can also contain inequalities a , b, for constants a and b.
However, they have no impact on the problems considered in this article, and so will be ignored.)

Example 2.1. To illustrate, we show a snippet of the NPD FactPages ontology:

∀x
(
GasPipeline(x) → Pipeline(x)

)
,

∀x
(
FieldOwner(x) ↔ ∃y ownerForField(x,y)

)
,

∀y
(
∃x ownerForField(x,y) → Field(y)

)
,

∀x,y
(
shallowWellboreForField(x,y) → wellboreForField(x,y)

)
,

∀x,y
(
isGeometryOfFeature(x,y) ↔ hasGeometry(y, x)

)
.

To simplify presentation, in our ontologies we also use sentences of the form

∀x
(
τ (x) → ζ (x)

)
, (2)

where

ζ (x) ::= τ (x) | ζ1(x) ∧ ζ2(x) | ∃y
(
ϱ1(x,y) ∧ · · · ∧ ϱk (x,y) ∧ ζ (y)

)
.

It is readily seen that such sentences are syntactic sugar and can be eliminated by means of linearly

many extra axioms. Indeed, any axiom of the form (2) with ζ (x) = ∃y
(
ϱ1(x,y)∧· · ·∧ϱk (x,y)∧ζ

′(y)
)

can be replaced by the following axioms, for a fresh Pζ and i = 1, . . . ,k :

∀x
(
τ (x) → ∃y Pζ (x,y)

)
, ∀x,y

(
Pζ (x,y) → ϱi (x,y)

)
, ∀y

(
∃x Pζ (x,y) → ζ ′(y)

)
(3)

because any first-order structure is a model of (2) iff it is a restriction of some model of (3) to the

signature of (2). The result of (recursively) eliminating the syntactic sugar from an ontology T is

called the normalisation of T . We always assume that all of our ontologies are normalised even

though this is not done explicitly; however, we stipulate (without loss of generality) that the

normalisation predicates Pζ never occur in the data.

When writing ontology axioms, we usually omit the universal quantifiers. We typically use the

characters P , R to denote binary predicates, A, B, C for unary predicates, and S for either of them.

For a binary predicate P , we write P− to denote its inverse; that is, P(x,y) = P−(y, x), for any x
and y, and P−− = P .
A conjunctive query (CQ) q(x) is a formula of the form ∃y φ(x,y), where φ is a conjunction of

atoms S(z) all of whose variables are among x , y.

Example 2.2. Here is a (fragment of a) typical CQ from the NPD FactPages:

q(x1, x2, x3) = ∃y, z
[
ProductionLicence(x1) ∧ operatorForLicence(y, x1) ∧

ProductionLicenceOperator(y) ∧ dateOperatorValidFrom(y, x2) ∧

licenceOperatorCompany(y, z) ∧ name(z, x3)
]
.

To simplify presentation and without loss of generality, we assume that CQs do not contain

constants. Where convenient, we regard a CQ as the set of its atoms; in particular, |q | is the size ofq.
The variables in x are the answer variables of a CQ q(x). A CQ without answer variables is called

Boolean. With every CQ q, we associate its Gaifman graphGq whose vertices are the variables of q
and edges are the pairs {u,v} such that P(u,v) ∈ q, for some P . A CQ q is connected if the graphGq

is connected; q tree-shaped if Gq is a tree
8
, and q is linear if Gq is a tree with at most two leaves.

8
Tree-shaped CQs also go by the name of acyclic queries [14, 88].

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

An OWL 2QL ontology-mediated query (OMQ) is a pair Q(x) = (T ,q(x)) of an OWL 2QL on-

tology T and a CQ q(x). The size of Q is defined as |Q | = |T | + |q |, where |T | is the number of

symbols in T .

A data instance,A, is a finite set of unary or binary ground atoms (called an ABox in description

logic). We denote by ind(A) the set of individual constants in A. Given an OMQQ(x) and a data

instance A, a tuple a of constants from ind(A) of length |x | is called a certain answer to Q(x)
over A if I |= q(a) for all models I of T ∪ A; in this case, we write T ,A |= q(a). If q is Boolean,

a certain answer toQ over A is ‘yes’ if T ,A |= q, and ‘no’ otherwise. We remind the reader [64]

that, for any CQ q(x) = ∃y φ(x,y), any first-order structure I and any tuple a from its domain ∆,
we have I |= q(a) iff there is a map h : x ∪y → ∆ such that (i) if S(z) ∈ q then I |= S(h(z)), and
(ii) h(x) = a. If (i) is satisfied then h is called a homomorphism from q to I, and we write h : q → I;
if (ii) also holds, then we write h : q(a) → I.
Central to OBDA is the notion of OMQ rewriting that reduces the problem of finding certain

answers to standard query evaluation. More precisely, an FO-formula Φ(x), possibly with equal-

ity =, is an FO-rewriting of an OMQ Q(x) = (T ,q(x)) if, for any data instance A (without the

normalisation predicates for T) and any tuple a in ind(A),

T ,A |= q(a) iff IA |= Φ(a), (4)

where IA is the first-order structure over the domain ind(A) such that IA |= S(a) iff S(a) ∈ A,

for any ground atom S(a). AsA is arbitrary, this definition implies, in particular, that the rewriting

must be constant-free. If Φ(x) is a positive existential formula—that is, Φ(x) = ∃y φ(x,y) with φ
constructed from atoms (possibly with equality) using ∧ and ∨ only—we call it a PE-rewriting

ofQ(x). A PE-rewriting whose matrix φ is a disjunction of conjunctions (∨∧) is known as a UCQ-

rewriting; if φ takes the form ∨∧∨ or ∧∨∧∨, then we call it a Σ3-PE or Π4-PE rewriting, respectively.

The size |Φ| of a rewriting Φ is the number of symbols in it.

We also consider rewritings in the form of nonrecursive datalog queries. Recall [1] that a datalog

program, Π, is a finite set of Horn clauses ∀x (γ1 ∧ · · · ∧ γm → γ0), where each γi is an atom

P(x1, . . . , xl) with xi ∈ x . The atom γ0 is the head of the clause, and γ1, . . . ,γm its (possibly empty)

body. A predicate S depends on S ′ in Π if Π has a clause with S in the head and S ′ in the body;

program Π is nonrecursive if this dependence relation is acyclic. We consider only constant-free

datalog programs.

LetQ(x) = (T ,q(x)) be an OMQ, Π a nonrecursive program andG an |x |-ary predicate. The pair
Φ(x) = (Π,G(x)) is an NDL-rewriting of Q(x) if, for any data instance A and tuple a in ind(A),
we have T ,A |= q(a) iff Π(IA) |= G(a), where Π(IA) is the structure with domain ind(A)
obtained by closing IA under the clauses in Π. Every PE-rewriting can clearly be represented as an

NDL-rewriting of linear size [1].

Remark 1. As defined, FO- and PE-rewritings are not necessarily domain-independent queries,

while NDL-rewritings are not necessarily safe [1]. For example, (x = x) is a PE-rewriting of

the OMQ ({∀x P(x, x)}, P(x, x)), and the program ({⊤ → A(x)},A(x)) is an NDL-rewriting of

the OMQ ({⊤ → A(x)},A(x)). Rewritings can easily be made domain-independent and safe by

relativising their variables to the predicates in the data signature (relational schema). For instance,

if the signature is {A, P}, then a domain-independent relativisation of (x = x) is the PE-rewriting(
A(x)∨∃y P(x,y)∨∃y P(y, x)

)
∧(x = x). Note that if we exclude fromOWL 2QL reflexivity and⊤ on

the left-hand side, then rewritings are guaranteed to be domain-independent, and no relativisation

is required. In any case, rewritings are interpreted under the active domain semantics adopted in

databases; see (4).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:9

As mentioned in the introduction, the OWL 2QL profile of OWL 2 was designed to ensure

FO-rewritability of all OMQs with ontologies in the profile or, equivalently, OMQ answering

in AC0
for data complexity. It should be clear, however, that for the OBDA approach to work in

practice, the rewritings of OMQs must be of ‘reasonable shape and size’. Indeed, it was observed

experimentally [22] and also established theoretically [54] that sometimes the rewritings are

prohibitively large—exponentially-large in the size of the original CQ, to be more precise. These

observations imply that, in the context of OBDA, we should actually be interested not in arbitrary

but in polynomial-size rewritings. In complexity-theoretic terms, the focus should not only be

on the data complexity of OMQ answering, which is an appropriate measure for database query

evaluation (where queries are indeed usually small) [85], but also on the combined complexity that

takes into account the contribution of ontologies and queries.

3 TREE-WITNESS REWRITINGS
Now we define one particular rewriting of OWL 2QL OMQs that will play a key role in the

succinctness and complexity analysis later in the article. This rewriting is a modification of the

tree-witness PE-rewriting originally introduced by Kikot et al. [57] (cf. [59, 60, 65] for similar ideas).

We begin with two simple observations that will help us remove unneeded clutter from definitions.

Every OWL 2QL ontology T consists of two parts: T −, which contains all the sentences with⊥, and

the remainder, T +, which is consistent with every data instance. For anyψ (z) → ⊥ in T −, consider

the Boolean CQ ∃zψ (z). It is not hard to see that, for any OMQ (T ,q(x)) and data instance A, a

tuple a is a certain answer to (T ,q(x)) over A iff either T +,A |= q(a) or T +,A |= ∃zψ (z), for
someψ (z) → ⊥ in T −; see [20]. Thus, from now on we assume that, in all our ontologies T , the

‘negative’ part T − is empty, and so they are consistent with all data instances.

The second observation will allow us to restrict the class of data instances we need to consider

when rewriting OMQs. In general, if we only require condition (4) to hold for any data instance A

from some class A, then we call Φ(x) a rewriting ofQ(x) over A. Such classes of data instances can

be defined, for example, by the integrity constraints in the database schema or the mapping [77].

We say that a data instance A is complete
9
for an ontology T if S(a) ∈ A whenever T ,A |= S(a),

for any ground atom S(a) with a from ind(A). The following proposition means that from now on

we will only consider rewritings over complete data instances.

Proposition 3.1. If Φ(x) is an NDL-rewriting ofQ(x) = (T ,q(x)) over complete data instances,

then there is an NDL-rewriting Φ′(x) of Q(x) over arbitrary data instances with |Φ′ | ≤ |Φ| · |T |.
A similar result holds for PE- and FO-rewritings.

Proof. Let (Π,G(x)) be an NDL-rewriting ofQ(x) over complete data instances. Denote by Π∗

the result of replacing each predicate S in Π with a fresh predicate S∗. Let Π′ be the union of Π∗

and the following clauses for predicates A and P in Π:

τ (x) → A∗(x), if T |= τ (x) → A(x) and τ (x) is built from symbols in T ,

ϱ(x,y) → P∗(x,y), if T |= ϱ(x,y) → P(x,y) and ϱ(x,y) is built from symbols in T ,

⊤ → P∗(x, x), if T |= P(x, x)

(the empty body is denoted by ⊤). It is readily seen that (Π′,G∗(x)) is an NDL-rewriting ofQ(x)
over arbitrary data instances, and |Π′ | ≤ |Π | · |T |. The cases of PE- and FO-rewritings are similar:

we replace each A(x) with a disjunction of τ (x), for τ with T |= τ (x) → A(x), and each P(x,y)
with a disjunction of ϱ(x,y), for ϱ with T |= ϱ(x,y) → P(x,y), and x = y if T |= P(x, x), where the
empty disjunction is ⊥. □

9
Rodriguez-Muro et al. [77] used the term ‘H-completeness’; see also [58].

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

AaCT1 , A

aPζ
Pζ R,Q−

AaCT2 , A

aR

aRQ−

R

Q−

AaCT3 , A

aR

aRR

R

R

Fig. 3. Canonical models in Example 3.2.

As is well-known [1], for every pair (T ,A), there is a canonical model (or chase) CT, A such that

T ,A |= q(a) iff CT, A |= q(a), for all CQs q(x) and a in ind(A). In our proofs, we use the following

definition of CT, A , where without loss of generality we assume that T does not contain binary

predicates P with T |= ∀x,y P(x,y). Indeed, occurrences of such P in T can be replaced by ⊤ and

occurrences of P(x,y) in CQs can simply be removed without changing certain answers over any

data instance (provided that x and y occur in the remainder of the query).

The domain ∆CT, A of CT, A consists of ind(A) and the witnesses, or labelled nulls, introduced by

the existential quantifiers in (the normalisation of) T . More precisely, the labelled nulls in CT, A
are finite words of the formw = aϱ1 . . . ϱn (n ≥ 1) such that

– a ∈ ind(A) and T ,A |= ∃y ϱ1(a,y), but T ,A ̸|= ϱ1(a,b) for any b ∈ ind(A);
– T ̸|= ϱi (x, x) for 1 ≤ i ≤ n;
– T |= ∃x ϱi (x,y) → ∃z ϱi+1(y, z) and T ̸|= ϱi (y, x) → ϱi+1(x,y) for 1 ≤ i < n.

Every individual name a ∈ ind(A) is interpreted in CT, A by itself, and unary and binary predicates

are interpreted as follows: for any u,v ∈ ∆CT, A ,

– CT, A |= A(u) iff either u ∈ ind(A) and T ,A |= A(u), or u = wϱ, for some wordw and ϱ with
T |= ∃y ϱ(y, x) → A(x);

– CT, A |= P(u,v) iff one of the three options holds: (i) u,v ∈ ind(A) and T ,A |= P(u,v);
(ii) u = v and T |= P(x, x); (iii) v = uϱ or u = vϱ−, for ϱ with T |= ϱ(x,y) → P(x,y).

Example 3.2. Consider the following ontologies:

T1 = { A(x) → ∃y
(
R(x,y) ∧Q(y, x)

)
},

T2 = { A(x) → ∃y R(x,y), ∃x R(x,y) → ∃z Q(z,y) },

T3 = { A(x) → ∃y R(x,y), ∃x R(x,y) → ∃z R(y, z) }.

The canonical models of (Ti ,A) with A = {A(a)}, for i = 1, 2, 3, are shown in Fig. 3, where Pζ is

the normalisation predicate for ζ (x) = ∃y (R(x,y) ∧ Q(y, x)). When depicting canonical models,

we use for constants and for labelled nulls.

For any ontology T and any formula τ (x) given by (1), we denote by Cτ (a)
T

the canonical model of

(T ∪{A(x) → τ (x)}, {A(a)}), for a fresh unary predicateA. We say that T is of depthn, 1 ≤ n < ω, if

(i) there is no ϱ with T |= ϱ(x, x),
(ii) at least one of the Cτ (a)

T
contains a word aϱ1 . . . ϱn , but

(iii) none of the Cτ (a)
T

contains such a word of greater length.

Thus, T1 in Example 3.2 is of depth 1, T2 of depth 2, while T3 is not of any finite depth.

Ontologies of infinite depth generate infinite canonical models. However, OWL 2QL has the

polynomial derivation depth property (PDDP) in the sense that there is a polynomial p such that,

for any OMQ Q(x) = (T ,q(x)), data instance A and a in ind(A), we have T ,A |= q(a) iff
q(a) holds in the sub-model of CT, A whose domain consists of words of the form aϱ1 . . . ϱn

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:11

with n ≤ p(|Q |) [20, 48]. (In general, the bounded derivation depth property of an ontology

language is a necessary and sufficient condition of FO-rewritability [34].)

We call a set ΩQ of words of the form w = ϱ1 . . . ϱn fundamental for Q if, for any A and a
in ind(A), we have T ,A |= q(a) iff q(a) holds in the sub-model of CT, A with the domain

{aw ∈ CT, A | a ∈ ind(A), w ∈ ΩQ }. We say that a class Q of OMQs has the polynomial funda-

mental set property (PFSP) if there is a polynomial p such that every Q in Q has a fundamental

set ΩQ with |ΩQ | ≤ p(|Q |). The class of OMQs with ontologies of finite depth and tree-shaped

CQs does not have the PFSP [54]. On the other hand, it should be clear that the class of OMQs with

ontologies of bounded depth does enjoy the PFSP. A less trivial example is given by the following

theorem, which is an immediate consequence of Theorem 3.8 to be proved below:

Theorem 3.3. The class of OMQswhose ontologies contain no axioms of the form ϱ(x,y) → ϱ ′(x,y)
(and syntactic sugar (2)) enjoys the PFSP.

We are now in a position to define the tree-witness PE-rewriting of OWL 2QL OMQs.

3.1 Basic Tree-Witness Rewriting
Suppose we are given an OMQ Q(x) = (T ,q(x)) with q(x) = ∃y φ(x,y). For a pair t = (tr, ti) of
disjoint sets

10
of variables in q with ti ⊆ y and ti , ∅, let

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z ⊈ tr

}
.

Ifqt is a minimal subset ofq for which there is a homomorphismh : qt → C
τ (a)
T

such that tr = h
−1(a)

and qt contains every atom of q with at least one variable from ti, then we call t a tree witness

for Q(x) generated by τ (and induced by h). Note that the same tree witness can be generated by

different τ . Now, we set

twt(tr) = ∃z
(∧
x ∈tr

(x = z) ∧
∨

t generated by τ

τ (z)
)
. (5)

The variables in ti do not occur in twt and are called internal. By definition, the answer variables x in

q(x) cannot be internal. The variables in tr, if any, are called root variables. If t has no root variables,
then qt is a connected component of q, in which case we call t detached. Tree witnesses t and t′

are conflicting if qt ∩qt′ , ∅. Denote by ΘQ the set of tree witnesses forQ(x). A subset Θ ⊆ ΘQ is

independent if no pair of distinct tree witnesses in it is conflicting. Let qΘ =
⋃
t∈Θ qt . The following

PE-formula is called the tree-witness rewriting ofQ(x) over complete data instances:

Φtw(x) =
∨

Θ⊆ΘQ independent

∃y
(∧
S (z)∈q\qΘ

S(z) ∧
∧
t∈Θ

twt(tr)
)
. (6)

Note that Φtw(x) is essentially a Σ3-PE formula (because the twt contain disjunctions); Proposi-

tion 3.1 would then produce a Σ3-PE rewriting ofQ(x) over arbitrary data.

Remark 2. As the normalisation predicates Pζ cannot occur in data instances, we omit from (5)

all the disjuncts with Pζ . For the same reason, the tree witnesses generated only by concepts with

normalisation predicates will be ignored in the sequel.

Example 3.4. Consider the OMQQ(x1, x2) = (T ,q(x1, x2)), where

q(x1, x2) = ∃y1,y2,y3,y4

(
R(x1,y1) ∧Q(y1,y2) ∧ S1(y2,y3) ∧ S2(y4,y3) ∧Q(x2,y4)

)
10
We (ab)use set-theoretic notation for lists: for example, we write ti ⊆ y to say that every element of ti is an element of y .

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

x1

y1

y2

y3

y4

x2

R Q Q

S
2S 1

A1

a

aPζ

R,Q−Pζ

CA1(a)
T

A2

a

aS1

S1,S2

CA2(a)
T

A3

a

aQ1

aQ1S1

Q Q1

S1, S2

CA3(a)
T

t1

t3

t2

Fig. 4. Tree witnesses in Example 3.4.

and T contains the following sentences:

A1(x) → ∃y
(
R(x,y) ∧Q(y, x)

)
, Q1(x,y) → Q(x,y), (7)

A2(x) → ∃y S1(x,y), S1(x,y) → S2(x,y), (8)

A3(x) → ∃yQ1(x,y), ∃yQ1(y, x) → ∃y S1(x,y). (9)

The CQ is shown in Fig. 4 alongside the CAi (a)
T

, where Pζ is the normalisation predicate for the

first axiom. When depicting CQs, we use for answer and for existentially quantified variables.

There are three tree witnesses, t1, t2 and t3, forQ(x1, x2) with

qt1 =
{
R(x1,y1), Q(y1,y2)

}
, qt2 =

{
S1(y2,y3), S2(y4,y3)

}
and

qt3 =
{
Q(y1,y2), S1(y2,y3), S2(y4,y3), Q(x2,y4)

}
shown in Fig. 4 as shaded rectangles. The tree witness t1 = (t1r , t

1

i) with t
1

r = {x1,y2} and t
1

i = {y1}

is generated by A1(x), which gives

twt1 (x1,y2) = ∃z
(
(x1 = z) ∧ (y2 = z) ∧A1(z)

)
.

(Although t1 is also generated by ∃y Pζ (z,y), it is not included in twt1 because Pζ cannot occur in

data instances.) Similarly, for tree witnesses t2 and t3, we have

twt2 (y2,y4) = ∃z
(
(y2 = z) ∧ (y4 = z) ∧

(
A2(z) ∨ ∃y S1(z,y) ∨ ∃yQ1(y, z)

))
,

twt3 (y1, x2) = ∃z
(
(y1 = z) ∧ (x2 = z) ∧

(
A3(z) ∨ ∃yQ1(z,y)

))
.

Note that t2 is generated byA2(z), ∃y S1(z,y) and ∃yQ1(y, z). As t
3
is conflicting with both t1 and t2,

the set ΘQ contains five independent subsets: ∅, {t1}, {t2}, {t3} and {t1, t2}, each of which gives

rise to a disjunct in the following tree-witness rewriting Φtw(x1, x2) ofQ(x1, x2) over complete data

instances:

∃y1,y2,y3,y4

(
R(x1,y1) ∧Q(y1,y2) ∧ S1(y2,y3) ∧ S2(y4,y3) ∧Q(x2,y4)

)
∨

∃y2,y3,y4

(
twt1 (x1,y2) ∧ S1(y2,y3) ∧ S2(y4,y3) ∧Q(x2,y4)

)
∨

∃y1,y2,y4

(
R(x1,y1) ∧Q(y1,y2) ∧ twt2 (y2,y4) ∧Q(x2,y4)

)
∨

∃y1

(
R(x1,y1) ∧ twt3 (y1, x2)

)
∨ ∃y2,y4

(
twt1 (x1,y2) ∧ twt2 (y2,y4) ∧Q(x2,y4)

)
.

Theorem 3.5 ([57]). For any OMQQ(x) = (T ,q(x)), any data instanceA complete for T and any

tuple a from ind(A), we have T ,A |= q(a) iff IA |= Φtw(a). In other words, Φtw(x) is a rewriting

ofQ(x) over complete data instances.

Intuitively, for any homomorphism h : q(a) → CT, A , the sub-CQs of q that are mapped by h to

sub-models of the form Cτ (a)
T

define an independent set Θ of tree witnesses; see Fig. 5, where A

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:13

x1

y1

y2

y3

y4

x2

R Q Q

S
2S 1

c

cS1

S1 S2

CA1(c)
T

A1

cPζ

R,Q− Pζ

C∃y Q1(y,c)
T

c′
Q ,Q

1

t1

t2

q(x1, x2)

CT, A

h

Fig. 5. A homomorphism h : q(c, c ′) → CT, A and an independent set {t1, t2} of tree witnesses.

consists of Q1(c
′, c), Q(c ′, c) and A1(c). Conversely, if Θ is an independent subset of ΘQ , then the

homomorphisms inducing the tree witnesses in Θ can be pieced together into a homomorphism

from q(a) to CT, A—provided that the S(z) from q \ qΘ and the twt(tr) for t ∈ Θ hold in IA : in

Fig. 5, the non-conflicting t1 and t2 are mapped to fragments isomorphic to C∃y Q1(y,a)
T

and CA1(a)
T

,

respectively, while the remaining Q(x2,y4) is mapped to the Q-atom in the data instance IA .

The size of the tree-witness PE-rewriting Φtw depends on the number of tree witnesses in the

given OMQ Q = (T ,q), namely, |Φtw | = O(2 |ΘQ | · |Q |2) because |twt | = O(|Q |), for each t ∈ ΘQ

(note that |ΘQ | ≤ 3
|q |
).

If any two tree witnesses for an OMQ Q are compatible in the sense that either they are non-

conflicting or one is included in the other (that is, qt ⊆ qt′), then the Σ3-PE rewriting Φtw can be

equivalently transformed to the Π4-PE rewriting

∃y
∧

S (z)∈q

(
S(z) ∨

∨
t∈ΘQ with S (z)∈qt

twt(tr)
)

which, unlike Φtw, is linear in |ΘQ |—of size O(|ΘQ | · |Q |
2), to be more precise. In Example 3.4

without axioms (9), there are only two tree witnesses, t1 and t2, which are compatible, and so we

obtain the following rewriting:

∃y1,y2,y3,y4

[(
R(x1,y1) ∨ twt1 (x1,y2)

)
∧
(
Q(y1,y2) ∨ twt1 (x1,y2)

)
∧(

S1(y2,y3) ∨ twt2 (y2,y4)
)
∧
(
S2(y4,y3) ∨ twt2 (y2,y4)

)
∧Q(x2,y4)

]
.

Thus, by increasing the alternation depth from Σ3 to Π4, we can make PE-rewritings more succinct.

In Section 4, we translate the problem of finding succinct rewritings into the setting of Boolean

functions, which is concerned with circuit complexity.

3.2 The Number of Tree Witnesses
OMQs with arbitrary axioms (and PFSP) can have exponentially many tree witnesses:

Example 3.6. Consider the tree-shaped OMQQn(x
0) = (T ,qn(x

0)), where

T =
{
A(x) → ∃y

(
R(y, x) ∧ ∃z (R(y, z) ∧ B(z))

) }
,

qn(x
0) = ∃y,y1,x1,y2

[
B(y) ∧

∧
1≤i≤n

(
R(y1

i ,y) ∧ R(y
1

i , x
1

i) ∧ R(y
2

i , x
1

i) ∧ R(y
2

i , x
0

i)
)]

and xk and yk denote vectors of n variables xki and yki , for 1 ≤ i ≤ n, respectively. The CQ is

shown in Fig. 6 alongside the canonical model CA(a)
T

. The OMQQn has at least 2
n
tree witnesses:

for any α = (α1, . . . ,αn) ∈ {0, 1}
n
, there is a tree witness (tαr , t

α
i) with t

α
r = {x

αi
i | 1 ≤ i ≤ n}. It is

worth observing that the tree-witness rewriting ofQn can be equivalently transformed into the

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

qn(x
0)

B
y

x1

1

x0

1

x1

n

x0

n

. . .

A
a

CA(a)
T

B

R−

R B

y x 1

i

x0

i

B
y

x1

i
x 0

i

Fig. 6. The queryqn (x
0) (all edges are labelled by R), the canonical model CA(a)

T
(the normalisation predicates

are not shown) and two ways of mapping a branch of the query to the canonical model in Example 3.6.

following polynomial-size PE-rewriting:

qn(x
0) ∨ ∃z

[
A(z) ∧

∧
1≤i≤n

(
(x0

i = z) ∨ ∃y (R(y, x0

i) ∧ R(y, z))
)]
.

The number of tree witnesses is, however, polynomial in two important cases.

Theorem 3.7. OMQs Q(x) = (T ,q(x)) with T of depth 1 have at most |q | tree witnesses, and
every atom in q belongs to at most two tree witnesses.

Proof. Suppose t = (tr, ti) is a tree witness forQ and y ∈ ti. Since T is of depth 1, ti = {y} and
the set tr consists of all the variables inq adjacent to y in the Gaifman graphGq ofq. Thus, different
tree witnesses have different internal variables y. An atom of the form A(u) ∈ q belongs to qt
iff u = y. An atom of the form P(u,v) ∈ q is in qt iff either u = y or v = y. Therefore, P(u,v) ∈ q
can only be covered by a unique tree witness with internal u and by a unique tree witness with

internal v (if they exist). □

Theorem 3.8. OMQsQ(x) = (T ,q(x)), where T contains no axioms of the form ϱ(x,y) → ϱ ′(x,y)
(and syntactic sugar (2)), have at most 3|q | tree witnesses.

Proof. As observed above, there is at most one detached tree witness for each connected

component of q. As T has no axioms of the form ϱ(x,y) → ϱ ′(x,y), any two points in Cτ (a)
T

can

be R-related by at most one R, and so no point can have more than one R-successor, for any R. It
follows that, for any P(x,y) ∈ q, there is at most one tree witness t = (tr, ti) with P(x,y) ∈ qt , x ∈ tr
and y ∈ ti (P

−(y, x) may give another tree witness). □

3.3 Tree-Witness Rewriting Modified
To be able to deal with OMQs that have exponentially many tree witnesses, we slightly modify

the tree-witness rewriting in Section 3.1. Suppose t = (tr, ti) is a tree witness forQ(x) = (T ,q(x))
induced by a homomorphism h : qt → C

τ (a)
T

. We say that t is ϱ-initiated if every h(z) with z ∈ ti
is of the form aϱw , for some w . (Since qt is minimal, this is equivalent to having the property

for some z ∈ ti.) For such ϱ, let ϱ
∗(x) be a disjunction of all τ (x) with T |= τ (x) → ∃y ϱ(x,y). In

Example 3.4, the tree witness t2 is generated by A2(z), ∃y S1(z,y), ∃yQ1(y, z); it is S1-initiated but

not Q1-initiated, and

S∗
1
(z) = A2(z) ∨ ∃y S1(z,y) ∨ ∃yQ1(y, z).

Again, the disjunction ϱ∗(x) includes only those τ (x) that do not contain normalisation predicates

(even though ϱ itself can be one, like Pζ for t1 in Example 3.4).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:15

The modified tree-witness rewriting Φ′tw(x) for Q(x) = (T ,q(x)) is obtained by replacing (5)

in (6) with the formula

tw′t(tr, ti) =
∧

P (z,z′)∈qt

(z = z ′) ∧
∨

t is ϱ-initiated

∧
z∈tr∪ti

ϱ∗(z). (5
′
)

Note that unlike twt , the new formula tw′
t
contains equalities for the variables from both ti and tr

(variables ti were not needed in (5)) as well as ϱ∗(z) for all variables z ∈ ti ∪ tr (even though they are

all equal under relevant assignments)—these redundancies are required to simplify the construction

in the proof of Theorem 5.12 below. For the OMQQ(x1, x2) in Example 3.4, Φ′tw(x1, x2) will contain

disjuncts such as

∃y1,y2,y3,y4

(
R(x1,y1) ∧Q(y1,y2) ∧

[
(y2 = y3) ∧ (y3 = y4) ∧

∧
z∈{y2,y3,y4 }

S∗
1
(z)

]
∧Q(x2,y4)

)
.

Although the size of both Φtw and Φ′tw can be exponential in |q |, the basic tree-witness rewrit-
ing Φtw can contain exponentially many distinct subformulas of the form twt , whereas the modified

rewriting Φ′tw contains only a linear number of distinct atoms and subformulas of the form ϱ∗. This
property will be used in Section 4.1. The proof of the following theorem is given in Appendix A.1:

Theorem 3.9. For any OMQQ(x), the formulas Φtw(x) and Φ′tw(x) are equivalent, and so Φ
′
tw(x)

is a PE-rewriting ofQ(x) over complete data instances.

4 OMQ REWRITINGS AS BOOLEAN FUNCTIONS
Our aim now is to reduce the succinctness problem for OMQ rewritings to the succinctness problem

for certain Boolean functions associated with the tree-witness rewritings.

We remind the reader (for details see, e.g., [5, 49]) that an n-ary Boolean function, for n ≥ 1,

is any function from {0, 1}n to {0, 1}. A Boolean function f is monotone if f (α) ≤ f (β) for
all α ≤ β , where ≤ is the component-wise ≤ on vectors of {0, 1}. A Boolean circuit,C , is a directed
acyclic graph whose vertices are called gates. Each gate is labelled with a propositional variable,

a constant 0 or 1, or with not, and or or. Gates labelled with variables and constants have in-

degree 0 and are called inputs; not-gates have in-degree 1, while and- and or-gates have in-degree 2

(unless otherwise specified). A gate of out-degree 0 is distinguished as the output gate. Given an

assignment α ∈ {0, 1}n to the variables, we compute the value of each gate inC under α as usual

in Boolean logic. The outputC(α) ofC on α ∈ {0, 1}n is the value of the output gate. We usually

assume that the gates д1, . . . ,дm ofC are ordered in such a way that д1, . . . ,дn are input gates; each

gate дi , for i > n, gets inputs from gates дj1, . . . ,дjk with j1, . . . , jk < i , and дm is the output gate.

We say thatC computes an n-ary Boolean function f ifC(α) = f (α) for allα ∈ {0, 1}n . The size |C |
ofC is the number of gates inC . A circuit ismonotone if it contains only inputs, and- and or-gates.

Any monotone circuit computes a monotone function, and any monotone Boolean function can be

computed by a monotone circuit. Boolean formulas can be thought of as circuits in which every

logic gate has at most one outgoing edge.

4.1 Hypergraph Functions
Let H = (V , E) be a hypergraph with vertices v ∈ V and hyperedges e ∈ E ⊆ 2

V
. A subset E ′ ⊆ E

is said to be independent if e ∩ e ′ = ∅, for any distinct e, e ′ ∈ E ′. The set of vertices that occur in
the hyperedges of E ′ is denoted by VE′ . For each vertex v ∈ V and each hyperedge e ∈ E, we take
propositional variables pv and pe , respectively. The hypergraph function fH for H is given by the

monotone Boolean formula

fH =
∨

E′ independent

(∧
v ∈V \VE′

pv ∧
∧
e ∈E′

pe
)
. (10)

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

R(x1, y1)

v1

Q (y1, y2)

v2
S1(y2, y3)

v3

S2(y4, y3)

v4

Q (x2, y4)

v5

e1

e3

e2

Fig. 7. The hypergraphH(Q) forQ from Example 3.4: each ei corresponds to ti .

The tree-witness PE-rewriting Φtw of any OMQQ(x) = (T ,q(x)) defines a hypergraph whose

vertices are the atoms of q and hyperedges are the sets qt , where t is a tree witness forQ(x). We

denote this hypergraph by H(Q) and call fH(Q) the tree-witness hypergraph function for Q . To

simplify notation, we write f ▽Q instead of fH(Q). Note that formula (10) defining f ▽Q is obtained

from rewriting (6) by regarding the atoms S(z) in q and tree-witness formulas twt as propositional
variables. We denote these variables by pS (z) and pt (rather than pv and pe), respectively.

Example 4.1. For the OMQQ(x1, x2) in Example 3.4, the hypergraphH(Q) has five vertices (one
for each atom in the query) and three hyperedges (one for each tree witness) shown in Fig. 7. The

tree-witness hypergraph function f ▽Q forQ is as follows:(
pR(x1,y1) ∧ pQ (y1,y2) ∧ pS1(y2,y3) ∧ pS2(y4,y3) ∧ pQ (x2,y4)

)
∨

(
pt1 ∧ pS1(y2,y3) ∧ pS2(y4,y3) ∧ pQ (x2,y4)

)
∨

(
pR(x1,y1) ∧ pQ (y1,y2) ∧ pt2 ∧ pQ (x2,y4)

)
∨

(
pR(x1,y1) ∧ pt3

)
∨

(
pt1 ∧ pt2 ∧ pQ (x2,y4)

)
.

Suppose the function f ▽Q for an OMQQ(x) is computed by a Boolean formula χ . Consider the
FO-formula Φ(x) obtained by replacing each pS (z) in χ with S(z), each pt with twt , and adding

the appropriate prefix ∃y. By comparing (10) and (6), we see that Φ(x) is an FO-rewriting ofQ(x)
over complete data instances. This proves the following theorem for FO- and PE-rewritings; NDL-

rewritings are dealt with in Appendix A.2:

Theorem 4.2. If f ▽Q is computed by a Boolean formula (monotone formula or monotone circuit) χ ,
thenQ has an FO- (respectively, PE- or NDL-) rewriting of size O(|χ | · |Q |).

Thus, the problem of constructing polynomial-size rewritings of OMQs reduces to finding poly-

nomial-size (monotone) formulas or monotone circuits for the corresponding functions f ▽Q . Note,
however, that f ▽Q contains a variable pt for every tree witness t, rendering the reduction inefficient

for OMQs with exponentially many tree witnesses. In this case, we associate with the modified

rewriting Φ′tw(x) the monotone Boolean formula f ▼Q obtained from f ▽Q by replacing each variable pt ,
for t = (tr, ti), with ∧

P (z,z′)∈qt

pz=z′ ∧
∨

t is ϱ-initiated

∧
z∈tr∪ti

pϱ∗(z), (11)

where pz=z′ and pϱ∗(z) are propositional variables. Although the size of the resulting formula is

exponential in |Q |, the number of variables in it is linear in |Q |, and we show in Appendix A.2:

Proposition 4.3. The function f ▼Q can be computed by a nondeterministic algorithm that runs in

polynomial time in the size ofQ .

The proof of the following analogue of Theorem 4.2 is given in Appendix A.2:

Theorem 4.4. If f ▼Q is computed by a Boolean formula (monotone formula or monotone circuit) χ ,
thenQ has an FO- (respectively, PE- or NDL-) rewriting of size O(|χ | · |Q |).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:17

4.2 Primitive Evaluation Functions
To obtain lower bounds on the size of rewritings, we associate with every OMQQ(x) = (T ,q(x)) a
third Boolean function, f △Q , that describes the result of evaluatingQ on data instances with a single

constant. Letγ be a function assigning a truth-valueγ (Si) to each unary or binary predicate Si inQ .

We fix some order on the predicate names and assume that γ ∈ {0, 1}n for some n. We associate

with γ the data instance

A(γ) =
{
Ai (a) | γ (Ai) = 1

}
∪

{
Pi (a,a) | γ (Pi) = 1

}
and set f △Q (γ) = 1 iff T ,A(γ) |= q(a), where a is the |x |-tuple of as. We call f △Q the primitive

evaluation function forQ(x).

Theorem 4.5. If Φ(x) is an FO- (respectively, PE- or NDL-) rewriting of Q(x), then f △Q can be

computed by a Boolean formula (respectively, monotone formula or monotone circuit) of size O(|Φ|).

Proof. Let Φ(x) be an FO-rewriting ofQ(x). We eliminate the quantifiers in Φ by replacing each

subformula of the form ∃x ψ (x) and ∀x ψ (x) in Φ with ψ (a). We then replace each a = a with ⊤

and each atom of the form Ai (a) and Pi (a,a) with the corresponding propositional variable. The

resulting Boolean formula clearly computes f △Q . If Φ is a PE-rewriting of Q , then the result is a

monotone Boolean formula computing f △Q .
If (Π,G(x)) is an NDL-rewriting ofQ(x), we replace all variables in Π with a and then perform

the replacement described above. We now turn the resulting propositional NDL-program Π′ into a

monotone circuit computing f △Q . For every (propositional) variable p occurring in the head of a

rule in Π′, we take an appropriate number of or-gates whose output is p and inputs are the bodies

of the rules with head p. For every such body, we introduce an appropriate number of and-gates

whose inputs are the variables in the body, or, if the body is empty, then we take the gate for

constant 1. □

5 FROM OMQS TO HYPERGRAPH PROGRAMS
We introduced hypergraph functions as Boolean abstractions of the tree-witness rewritings. Our

next aim is to define a model of computation for these functions.

5.1 Hypergraph Programs
A hypergraph program (HGP) P is a hypergraph H = (V , E) each of whose vertices is labelled

with 0, 1 or a literal over a list p1, . . . ,pn of propositional variables. (As usual, a literal is a propo-

sitional variable or its negation.) An input for P is a tuple α ∈ {0, 1}n , which is regarded as an

assignment of truth values to p1, . . . ,pn . The output P(α) of P on α is 1 iff there is an independent

subset of E that covers all zeros—that is, contains every vertex in V whose label evaluates to 0

under α . We say that P computes an n-ary Boolean function f if f (α) = P(α), for all α ∈ {0, 1}n .
An HGP is monotone if its vertex labels do not have negated variables. The size |P | of an HGP P is

the size |H | of the underlying hypergraph H = (V , E), which is |V | + |E |.
The following observation shows that monotone HGPs capture the computational power of

hypergraph functions. We remind the reader that a subfunction of a Boolean function f is obtained

from f by renaming (in particular, identifying) some of its variables and/or fixing them to 0 or 1. A

hypergraph H and any HGP P based on H are said to be of degree (at most) d if every vertex in H
belongs to (at most) d hyperedges.

Proposition 5.1. For any hypergraph H = (V , E) of degree at most d , there is a monotone HGP

that computes fH and is of degree at most max(2,d) and size O(|H |).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

(a)

1 2 3 4 5

6
(b)

{1, 2} {2, 3} {3, 4} {4, 5}

{2, 6}

a non-convex

subtree

a convex

subtree

(a hyperedge)

Fig. 8. Tree T underlying hypergraph H in Example 5.3.

Proof. We label each v ∈ V with the variable pv . For each e ∈ E, we add a fresh vertex ae
labelled with 1 and a fresh vertex be labelled with pe ; then we add ae to e and create a new

hyperedge e ′ = {ae ,be }. We claim that the resulting HGP P computes fH . Indeed, for any input α
with α (pe) = 0, we have to include the edge e ′ into the cover, and so cannot include e itself.

Thus, P(α) = 1 iff there is an independent set E of hyperedges with α (pe) = 1, for all e ∈ E,
covering all zeros. □

In general, the hypergraph H(Q) of a given OMQ Q = (T ,q) can be exponential in the size

ofQ , and so Proposition 5.1 is not always helpful. However, if T is an ontology of depth 1 then, by

Theorem 3.7,H(Q) is of degree at most 2 and its size does not exceed 2|q |. So, by Proposition 5.1,

we obtain the following:

Corollary 5.2. For every OMQ Q(x) = (T ,q(x)) with an ontology T of depth 1, there is a

monotone HGP that computes f ▽Q and is of degree at most 2 and of size O(|q |).

5.2 Tree Hypergraph Programs (THGPs)
We call an OMQ tree-shaped if its CQ is tree-shaped. We show that tree-shaped OMQs give rise to

tree hypergraph programs, which are defined as follows.
11

Suppose T = (U ,V) is an undirected tree with nodes U , ∅ and edges V (possibly none). A

leaf is a node of degree 1. A tree T ′ = (U ′,V ′) is a subtree of T if U ′ ⊆ U and V ⊆ V ′. We call T ′

convex if, for any non-leaf u in T ′, we have {u,u ′} ∈ V ′ whenever {u,u ′} ∈ V . For U ′ ⊆ U , denote

by [U ′] the set of edges of the smallest convex subtree of T containing U ′. A triple H = (U ,V , E) is
a tree hypergraph if TH = (U ,V) is a tree and (V , E) is a hypergraph with E ⊆ { [U ′] | U ′ ⊆ U }. By
definition, every hyperedge e ∈ E induces a convex subtree Te of TH . The boundary of e is the set
of leaves in Te ; the set of all other nodes of Te forms the interior of e . We refer to (V , E) and TH as

the reduct and the underlying tree of H , respectively, and say that H is based on TH . A hypergraph

is isomorphic to a tree hypergraph (U ,V , E) if it is isomorphic to its reduct. By the size of a tree

hypergraph we understand the size of its reduct, |V | + |E |.

Example 5.3. Let T = (U ,V) be the tree depicted in Fig. 8a with nodes {1, . . . , 6} and edges

{1, 2}, {2, 3}, {2, 6}, {3, 4}, {4, 5}. Any tree hypergraph based on T , for instance, the one in Fig. 8b,

has the set of vertices V (which are the edges of T) and its hyperedges may include the set

{{1, 2}, {2, 6}, {2, 3}, {3, 4}} (which can be denoted by [1, 4] or [6, 4] and which is shown by dark

shading in Fig. 8) because the induced subtree is convex. On the other hand, {{1, 2}, {2, 3}, {3, 4}}
(light shading in Fig. 8a) is not convex.

Recall that, by Theorem 3.7, if an OMQQ has an ontology of depth 1, thenH(Q) is of degree at
most 2. The following analogue for tree-shaped OMQs is immediate from the definitions of tree

witnesses and tree hypergraphs; see Appendix A.4:

11
Our definition of tree hypergraph is a minor variant of the notion of (sub)tree hypergraph (aka hypertree) from graph

theory [18, 19, 31].

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:19

pv1

1

pe1

1

pv2
pv3

pv4

1

pv5

Fig. 9. Gadget encoding a DNF pv1
∨ pe1

∨ (pv2
∧ pv3

∧ pv4
) ∨ pv5

: squares are the nodes of the underlying
tree (a path graph), and circles are the vertices of the hypergraph (that is, the edges in the underlying tree).

Proposition 5.4. If an OMQQ(x) has a tree-shaped CQ q(x) with ℓ leaves, thenH(Q) is isomor-

phic to a tree hypergraph based on a tree with max(2, ℓ) leaves.

Tree hypergraph programs (THGPs) are HGPs based on a tree hypergraph; they capture the

computational power of tree hypergraph functions similarly to Proposition 5.1. The following is

proved in Appendix A.5:

Proposition 5.5. For any tree hypergraph H of degree at most d , there is a monotone THGP that

computes fH and is of degree at most max(2,d) and size O(|H |).

For tree hypergraphs of degree at most 2, we can even obtain linear THGPs of degree at most 2,

which are based on tree hypergraphs with two leaves:

Theorem 5.6. For any tree hypergraph H of degree at most 2, there is a monotone linear THGP

that computes fH and is of degree at most 2 and size |H |O (1).

Proof. The construction of the THGPs uses obstructions, that is, sequences (e0, . . . , e2n−1), n ≥ 1,

of distinct hyperedges of H with ei ∩ ei+1 , ∅ for 0 ≤ i < 2n − 1. Since no vertex belongs to more

than two hyperedges, which induce subtrees ofTH , we have ei ∩ ej = ∅ for |i − j | > 1; moreover, an

obstruction is uniquely determined by e0 and e2n−1. So, there are O(|H |
2) obstructions. An input α

meets an obstruction (e0, . . . , e2n−1) from v0 to v2n−1 if

(O1) α (pv0
) = 0 and α (pe ′) = 0, for any hyperedge e ′ , e0 with v0 ∈ e

′
;

(O2) α (pv2n−1
) = 0 and α (pe ′) = 0, for any hyperedge e ′ , e2n−1 with v2n−1 ∈ e

′
;

(O3) for every k , 1 ≤ k < n, there is v ∈ e2k−1 ∩ e2k with α (pv) = 0.

Intuitively, by (O1), any independent cover of zeros under α contains e0; but it cannot contain e1,

and so, by (O3), it contains e2, and so on. Thus, e2n−1 cannot be in the independent cover contrary

to (O2). We say that an input α is degenerate if

(D) there is v ∈ V such that α (pv) = 0 and α (pe) = 0 for all e ∈ E with v ∈ e .

We claim (see Lemma A.3 in Appendix A.6) that fH (α) = 1 iff α neither is degenerate nor meets

any obstruction. We construct a linear THGP of degree at most 2 for checking these conditions

by using ‘gadgets’ of the form shown in Fig. 9. Such a gadget encodes a DNF: it outputs zero iff

none of its disjuncts is true. The condition ‘α does not meet an obstruction (e0, . . . , e2n−1) from v0

to v2n−1’ can be expressed as a DNF as follows:

pv0
∨ γv0,e0︸ ︷︷ ︸

negation of (O1)

∨ pv2n−1
∨ γv2n−1,e2n−1︸ ︷︷ ︸

negation of (O2)

∨
∨

1≤k<n

[∧
v ∈e

2k−1
∩e

2k
pv

]
︸ ︷︷ ︸

negation of (O3)

,

where γv ,e = pe ′ if v ∈ e
′
and e , e ′ (such e ′ is determined uniquely) or ⊥ otherwise. Negation

of (D) gives rise to a similar gadget. It remains to combine the gadgets for the obstructions in H and

negated (D) into a single linear THGP of degree 2 by ordering the gadgets linearly and inserting

edges labelled with 1 between them (these hypergraph vertices do not belong to any hyperedges).

The resulting THGP is of polynomial size. □

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

Table 1. Monotone HGPs that compute hypergraph functions fH for hypergraphs H .

hypergraph H monotone HGP P computing fH |P |

Prop. 5.1 hypergraph of degree ≤ d HGP of degree ≤ max(2,d) O(|H |)

Prop. 5.5 tree hypergraph of degree ≤ d THGP of degree ≤ max(2,d) O(|H |)

Th. 5.6 tree hypergraph of degree ≤ 2 linear THGP of degree ≤ 2 |H |O (1)

Th. 5.8 tree hypergraph with ≤ ℓ leaves linear THGP O(|H |3ℓ+1)

We apply Theorem 5.6 as follows. Let Q(x) = (T ,q(x)) be an OMQ with T of depth 1 and

tree-shaped q. By Proposition 5.4,H(Q) is isomorphic to a tree hypergraph. By Theorem 3.7,H(Q)
is of linear size and degree at most 2. Therefore, we obtain:

Corollary 5.7. For every tree-shaped OMQQ(x) = (T ,q(x)) with an ontology of depth 1, there

is a monotone linear THGP that computes f ▽Q and is of degree at most 2 and size polynomial in |q |.

In fact, we can transform any THGP into a linear THGP (of exponential size in the number of

leaves; cf. Theorem 5.6). Let H = (U ,V , E) be a tree hypergraph. Pick a node r ∈ U and fix it as a

root of the underlying tree TH . An independent subset F ⊆ E is called flat if every simple path

from r in TH intersects at most one e ∈ F . Flat subsets can be partially ordered by taking F ≺ F ′

if the sets

⋃
F and

⋃
F ′ of hypergraph vertices are disjoint and every simple path from r to

⋃
F ′

intersects

⋃
F . Then a non-empty E ′ ⊆ E is independent iff it can be partitioned into flat ‘layers’

F1 ≺ F2 ≺ · · · ≺ Fm .

Indeed, any disjoint flat subsets F1, . . . , Fm with this property give rise to an independent subset E ′.
Conversely, if E ′ is independent, then we first take the set F1 of all hyperedges from E ′ that are
accessible from r via paths not intersecting any other e ∈ E ′, thenwe take the set F2 of all hyperedges

from E ′ \ F1 that are accessible from r via paths not intersecting any other e ∈ E ′ \ F1, and so on. As

the number of flat subsets isO(|H |ℓ) (each contains at most ℓ hyperedges), we obtain the following

result for linear THGPs (proven in Appendix A.7) in the vein of the preceding results (see Table 1):

Theorem 5.8. For any tree hypergraphH based on a tree with at most ℓ leaves, there is a monotone

linear THGP that computes fH and has size O(|H |3ℓ+1).

Proposition 5.4 and Theorem 5.8 with |H(Q)| = O(|q |ℓ) give us the following:

Corollary 5.9. For every tree-shaped OMQQ(x) = (T ,q(x)) such that CQ q has ℓ leaves, there
is a monotone linear THGP that computes f ▽Q and is of size |q |O (ℓ

2)
.

Example 3.6 shows that the exponential bound on the size of the hypergraph H(Q) cannot
be reduced, and Corollary 5.9 does not give us polynomial-size THGPs for tree-shaped OMQs;

moreover, f ▽Q may have exponentially many variables. In Section 5.3, we devise a direct construction

for THGPs computing f ▼Q for OMQs with CQs of bounded treewidth and ontologies with the

polynomial fundamental set property (PFSP).

5.3 THGPs for OMQs of Bounded Treewidth and PFSP
Recall (see, e.g., [32]) that a tree decomposition of an undirected graph G = (V , E) is a pair (T , λ),
where T is an (undirected) tree and λ a function from the set of nodes of T to 2

V
such that

– for every v ∈ V , there is a node N with v ∈ λ(N);
– for every e ∈ E, there is a node N with e ⊆ λ(N);

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:21

y1

y2

y3

y4

R R

S1 S2

y1,y2,y4 N1

y2,y3,y4 N2

Fig. 10. Tree decomposition in Example 5.10.

– for every v ∈ V , the nodes {N | v ∈ λ(N)} induce a (connected) subtree of T .

We call the set λ(N) ⊆ V a bag for N . The width of a tree decomposition (T , λ) is the size of its

largest bag minus one. The treewidth of G is the minimum width over all tree decompositions of G .
The treewidth of a CQ q is the treewidth of its Gaifman graph Gq .

Example 5.10. The Boolean CQ q = { R(y2,y1), R(y4,y1), S1(y4,y3), S2(y2,y3) } and its tree

decomposition (T , λ) of width 2 are shown in Fig. 10, whereT has two nodes, N1 and N2, connected

by an edge, with bags λ(N1) = {y1,y2,y4} and λ(N2) = {y2,y3,y4}.

We show that, for any OMQ Q(x) = (T ,q(x)) with a CQ of bounded treewidth and a finite

fundamental set ΩQ , the modified tree-witness hypergraph function f ▼Q can be computed using a

monotone THGP of size bounded by a polynomial in |q | and |ΩQ |.

Let (T , λ) be a tree decomposition of the Gaifman graph Gq of q of widthm − 1. We fix an order

of variables in every bag λ(N) and define an injection νN : λ(N) → {1, . . . ,m} that gives the index
of each z in λ(N). A (bag) type is anm-tuple w ∈ Ωm

Q : its ith component wi ∈ ΩQ indicates that

the ith variable in the bag is mapped to a domain element awi in the canonical model CT, A . We

say that a typew is compatible with a node N if, for all z, z ′ ∈ λ(N), the following conditions hold:

(C1) if A(z) ∈ q andw[z] , ε , thenw[z] = σϱ for some ϱ with T |= ∃y ϱ(y, x) → A(x);
(C2) if P(z, z ′) ∈ q and eitherw[z] , ε orw[z ′] , ε , then

– w[z] = w[z ′] and T |= P(x, x), or
– w[z ′] = w[z] · ϱ orw[z] = w[z ′] · ϱ− for some ϱ with T |= ϱ(x,y) → P(x,y),

wherew[z] stands forwνN (z). For a typew compatible with N , we use the abbreviationw[z] if N
is clear from the context. Clearly, the type with all components equal to ε is compatible with any

node N and corresponds to mapping the variables in λ(N) to individual constants in ind(A).

Example 5.11. Let T = {A(x) → ∃y R(x,y) } and q be the same as in Example 5.10. Assume νN1

and νN2
respect the order of the variables in the bags in Fig. 10. The bag types compatible with N1

are (ε, ε, ε) and (R, ε, ε), and only (ε, ε, ε) is compatible with N2.

Letw1, . . . ,wM be all the bag types for ΩQ (M = |ΩQ |
m
). Denote byTH the tree obtained fromT

by replacing every edge {Ni ,Nj } with the following sequence of edges:

{Ni ,u
1

i j }, {uki j ,v
k
i j } and {v

k
i j ,u

k+1

i j }, for 1 ≤ k < M, {uMij ,v
M
ij }, {vMij ,v

M
ji },

{vMji ,u
M
ji }, {uk+1

ji ,v
k
ji } and {v

k
ji ,u

k
ji }, for 1 ≤ k < M, {u1

ji ,Nj },

for some fresh nodes uki j , v
k
i j , u

k
ji and v

k
ji . We now define a generalised monotone THGP based on a

hypergraphH with underlying treeTH (in generalised THGPs, vertices are labelledwith conjunctions

of literals, which is convenient but does not add any expressive power; see Appendix A.3 for details).

The hypergraph has the following hyperedges:

– eki = [Ni ,u
k
i j1, . . . ,u

k
i jn] (the minimal convex subtree with Ni ,u

k
i j1, . . . ,u

k
i jn , see Section 5.2) if

Nj1, . . . ,Njn are the neighbours of Ni in T andwk is compatible with Ni ;

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

e1

1

e2

1

e1

2

f 11

12

f 21

12

u1

12
v1

12
u2

12
v2

12
v2

21
u2

21
v1

21
u1

21

N1 N2

R(y4, y1)

R(y2, y1)

y4 = y1, y2 = y1

R∗(y1), R∗(y2), R∗(y4)

S1(y4,y3)

S2(y2,y3)

Fig. 11. THGP in Example 5.13: non-zero labels of hypergraph vertices are given on the edges of the tree.

– f kℓi j = [v
k
i j ,v

ℓ
ji] if {Ni ,Nj } is an edge in T and (wk ,wℓ) is compatible with (Ni ,Nj) in the

sense thatwk [z] = wℓ[z], for all z ∈ λ(Ni) ∩ λ(Nj).

Each vertex {uki j ,v
k
i j } in H is labelled with the conjunction of the following variables:

– pS (z), whenever S(z) ∈ q, z ⊆ λ(Ni) andwk [z] = ε , for all z ∈ z;
– pϱ∗(z), whenever A(z) ∈ q, z ∈ λ(Ni) andwk [z] = ϱσ for some σ ;
– pϱ∗(z), pϱ∗(z′) and pz=z′ , whenever P(z, z

′) ∈ q (possibly with z = z ′), z, z ′ ∈ λ(Ni), and either

wk [z] = ϱσ orwk [z
′] = ϱσ for some σ ;

all other vertices are labelled with 0. The obtained generalised THGP can be equivalently represented

as a linearly large THGP, and the following is proved in Appendix A.8:

Theorem 5.12. For every OMQ Q(x) = (T ,q(x)) with a fundamental set ΩQ and a CQ of

treewidth t , there is a monotone THGP that computes f ▼Q and is of degree polynomial in |ΩQ |
t
and

size polynomial in |q | and |ΩQ |
t
.

Example 5.13. LetQ = (T ,q) be the OMQ from Example 5.11. As we have seen, there are only

two types compatible with nodes inT :w1 = (ε, ε, ε) andw2 = (R, ε, ε). This gives us the generalised
THGP shown in Fig. 11, where the omitted labels are 0. To explain the meaning of the THGP, let

T ,A |= q, for some data instance A. Then a homomorphism h : q → CT, A defines the type of N1,

which can be eitherw1 (if h(z) ∈ ind(A) for all z ∈ λ(N1)) orw2 (if h(y1) = aR for some a ∈ ind(A)).
The two cases are represented by hyperedges e1

1
= [N1,u

1

12
] and e2

1
= [N1,u

2

12
]. Since {N1,u

1

12
}

is labelled with 0, exactly one of them must be chosen for an independent subset of hyperedges

covering all zeros. In contrast to that, there is no hyperedge e2

2
becausew2 is not compatible with N2,

and so e1

2
= [u1

21
,N2] must be present in any covering of all zeros. Both (w1,w1) and (w2,w1) are

compatible with (N1,N2), which gives rise to f 11

12
= [v1

12
,v1

21
] and f 21

12
= [v2

12
,v1

21
]. Thus, if N1 is of

typew1, then we include e1

1
and f 11

12
in the covering of all zeros, and so pR(y4,y1) ∧ pR(y2,y1) should

hold. If N1 is of typew2, then we take f 21

12
, and so py4=y1

∧ py2=y1
∧ pR∗(y1) ∧ pR∗(y2) ∧ pR∗(y4) should

be true. Since {v1

21
,u1

21
} is not in any hyperedge, pS1(y4,y3) ∧ pS2(y2,y3) should hold in either case.

For OMQs with ontologies of depth 1, a similar construction gives us the following:

Theorem 5.14. For every OMQ Q(x) = (T ,q(x)) with an ontology of depth 1 and a CQ of

treewidth t , there is a monotone THGP that computes f ▽Q and is of degree 2
O (t)

and size polynomial

in |q | and 2
t
.

A crucial observation in the proof of Theorem 5.14 (see Appendix A.8) is that any OMQ with an

ontology of depth 1 can equivalently be replaced by an explicit OMQ whose tree witnesses t are

initiated by special predicates Pt . As each tree witness t = (tr, ti) for an OMQ of depth 1 is uniquely

determined by a variable z with ti = {z}, type compatibility for explicit OMQs can be refined:w is

strongly compatible with a node N if (C1) and (C2) hold for all z, z ′ ∈ λ(N), and, for all z ∈ λ(N),

(C3) w[z] is either ε or Pt for the tree witness t = (tr, ti) such that ti = {z}.

The binary choice in (C3) gives the 2
O (t)

bound on the degree of the resulting THGP.

The obtained results on HGPs computing f ▽Q and f ▼Q are summarised in Table 2 .

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:23

Table 2. HGPs computing tree-witness hypergraph functions for OMQs.

OMQQ(x) = (T ,q(x)) monotone HGP of size computes

Cor. 5.2 T of depth 1 HGP of degree 2 O(|q |) f ▽Q
Cor. 5.9 tree-shaped q with ℓ leaves linear THGP |q |O (ℓ

2) f ▽Q
Cor. 5.7 tree-shaped q and T of depth 1 linear THGP of degree 2 |q |O (1) f ▽Q

Th. 5.12
q of treewidth t

ΩQ a fundamental set
THGP |q |O (1) · |ΩQ |

O (t) f ▼Q

Th. 5.14 q of treewidth t and T of depth 1 THGP of degree 2
O (t) |q |O (1) · 2O (t) f ▽Q

6 REPRESENTING HYPERGRAPHS AS OMQS
Going in the opposite direction, we represent every hypergraph H as a ‘small’ OMQ Q such

that any monotone HGP based on H computes a subfunction of f △Q , and each hyperedge of H
corresponds to a tree witness for Q , making H a subgraph of H(Q). Here, H is a subgraph of a

hypergraph H ′ = (V ′, E ′) if H is obtained from H ′ by removing some of its hyperedges and some

of its vertices from both V ′ and E ′.

6.1 Arbitrary Hypergraphs as OMQs with Ontologies of Depth 2
To begin with, we show that every hypergraph H = (V , E) can be represented by a polynomial-size

OMQQH = (T ,q) with T of depth 2. With every vertex v ∈ V we associate a unary predicate Av ,

and with every hyperedge e ∈ E a unary predicate Be and a binary predicate Re . We define T to be

the set of the following axioms, for e ∈ E:

Be (x) → ∃y
[∧
e∩e ′,∅, e,e ′

Re ′(x,y) ∧
∧
v ∈e

Av (y) ∧ ∃z Re (z,y)
]
.

We also take the Boolean CQ q with variables yv and ze , for v ∈ V and e ∈ E:

q =
{
Av (yv) | v ∈ V

}
∪

{
Re (ze ,yv) | v ∈ e, for v ∈ V and e ∈ E

}
.

Example 6.1. Consider the hypergraph from Example 4.1, which we now denote by H = (V , E).
The CQ q and the canonical models CBei (a)

T
, for i = 1, 3, are shown in Fig. 12 along with the five

tree witnesses forQH : each square vertex i represents the variable yvi with a unary atom A(yvi)
and the black arrows with a number i represent a binary atom in the query with the predicate Rei .
The dashed grey arrows, which duplicate query edges, are shown only as an aid for identifying

tree witnesses.

Observe that all the tree witnesses forQH fall into two types:

t
e = (ter , t

e
i) with t

e
r = {ze ′ | e ∩ e

′ , ∅, e , e ′} and tei = {ze } ∪ {yv | v ∈ e}, for e ∈ E;

t
v = (tvr , t

v
i) with t

v
r = {ze | v ∈ e} and t

v
i = {yv }, for v ∈ V that belong to a single e ∈ E.

In Example 6.1, the tree witness te1 = (t
e1

r , t
e1

i) with t
e1

r = {ze3
} and t

e1

i = {ze1
,yv1
,yv2
} is generated

by Be1
—see the homomorphism on the left; however, as explained in Remark 2, we ignore the

tree witnesses generated only by normalisation predicates, e.g., the tree witness t = (tr, ti) with
tr = {yv1

,yv2
} and ti = {ze1

} (the bottom half of te1
). The tree witness tv1 = (t

v1

r , t
v1

i)with t
v1

r = {ze1
}

and t
v1

i = {yv1
} is generated by Be3

.

Theorem 6.2. Any hypergraph H is isomorphic to a subgraph ofH(QH), and any monotone HGP

based on H computes a subfunction of f △QH
.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

1 2 3 4 5

ze1

ze2

ze3ze3
ze3

ze1
ze2

3

3

3

1

2

2

1

1

2

2

3 33 3

e1 e3

e2

Be1

a

Av1
, Av2

Re
3

R−e
1

CBe1
(a)

T Be3

a

Av2
, Av3

, Av4
, Av5

Re
1
, Re

2

R−e
3

CBe3
(a)

T

Fig. 12. The OMQ QH for H from Example 4.1, its hyperedge tree witnesses te1 , te2 , te3 (solid rectangles),
and vertex tree witnesses tv1 and tv5 (dashed rectangles). Dotted lines are homomorphisms for te1 and te3 .

Proof. An isomorphism between H = (V , E) and a subgraph ofH(QH) can be established by

the map v 7→ Av (yv), for v ∈ V , and e 7→ qte , for e ∈ E.
Given an input α for a monotone HGP P based on H , we define an assignment γ for the

predicates inQH by taking γ (Av) to be the value of the label of each v ∈ V under α , and γ (Be) = 1

andγ (Re) = 1 for each e ∈ E (of course,γ (Pζ) = 0 for normalisation predicates Pζ). By the definition
of T , for each e ∈ E, the canonical model CT, A(γ) contains labelled nullswe andw

′
e such that

CT, A(γ) |=
∧

e∩e ′,∅, e,e ′
Re ′(a,we) ∧

∧
v ∈e

Av (we) ∧ Re (w
′
e ,we).

We now show that P(α) = 1 iff f △QH
(γ) = 1. Suppose first that P(α) = 1, that is, there is an

independent subset E ′ ⊆ E such that the label of each v <
⋃

E ′ evaluates to 1 under α . Then the

map h : q → CT, A(γ) defined by taking

h(ze) =

{
w ′e , if e ∈ E ′,

a, otherwise,
h(yv) =

{
we , if v ∈ e ∈ E ′,

a, otherwise

is a homomorphism witnessing CT, A(γ) |= q, whence f △QH
(γ) = 1.

Conversely, if f △QH
(γ) = 1, then there is a homomorphism h : q → CT, A(γ). For any hy-

peredge e ∈ E, there are only two options for h(ze): either a or w ′e . It follows that the sub-

set E ′ = {e ∈ E | h(ze) = w
′
e } is independent and covers all zeros. Indeed, ifv <

⋃
E ′ thenh(yv) = a,

and so the label of v evaluates to 1 under α because Av (yv) ∈ q. □

6.2 Hypergraphs of Degree 2 as OMQs with Ontologies of Depth 1
We shownow that any hypergraphH of degree 2 is isomorphic toH(SH), for someOMQ SH = (T ,q)
with T of depth 1. We can assume that H = (V , E) comes with two fixed maps i1, i2 : V → E such

that, for every v ∈ V , we have v ∈ i1(v), v ∈ i2(v) but i1(v) , i2(v). For any v ∈ V , we fix a

binary predicate Rv and, for any e ∈ E, a unary predicate Ae . Let the ontology T in SH contain the

following axioms, for e ∈ E:

Ae (x) → ∃y
[∧
v ∈V with i1(v)=e

Rv (y, x) ∧
∧

v ∈V with i2(v)=e

Rv (x,y)
]
.

The Boolean CQ q contains variables ze , for e ∈ E, and is defined by taking

q =
{
Rv (zi1(v), zi2(v)) | v ∈ V

}
.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:25

v2

v1 v3

v4e3 e2

e1

ze2

ze1

ze3

Rv1

Rv2

Rv4

Rv3

H q

te1 CAe1
(a)

T

ze1

ze2

ze3

Ae1
a

PζR−v3

, Rv2
, R−v1

Fig. 13. Hypergraph H in Example 6.3, its CQ q, tree witness te1 for SH and canonical model CAe1
(a)

T
.

Example 6.3. Let H = (V , E), where V = {v1,v2,v3,v4}, E = {e1, e2, e3} and e1 = {v1,v2,v3},

e2 = {v3,v4}, e3 = {v1,v2,v4}. Suppose

i1 : v1 7→ e1, v2 7→ e3, v3 7→ e1, v4 7→ e2,

i2 : v1 7→ e3, v2 7→ e1, v3 7→ e2, v4 7→ e3.

The hypergraph H and the query q are shown in Fig. 13: each Rvk is represented by an edge, i1(vk)
is indicated by the circle-shaped end of the edge and i2(vk) by the diamond-shaped end of the edge;

the ej are shown as large grey squares. In this case,

q = ∃ze1
, ze2
, ze3

(
Rv1
(ze1
, ze3
) ∧ Rv2

(ze3
, ze1
) ∧ Rv3

(ze1
, ze2
) ∧ Rv4

(ze2
, ze3
)
)

and T consists of the following axioms:

Ae1
(x) → ∃y

[
Rv1
(y, x) ∧ Rv2

(x,y) ∧ Rv3
(y, x)

]
,

Ae2
(x) → ∃y

[
Rv3
(x,y) ∧ Rv4

(y, x)
]
,

Ae3
(x) → ∃y

[
Rv1
(x,y) ∧ Rv2

(y, x) ∧ Rv4
(x,y)

]
.

The canonical model CAe1
(a)

T
is shown on the right-hand side of Fig. 13. Note that each ze determines

the tree witness te with qte = { Rv (zi1(v), zi2(v)) | v ∈ e }; distinct te and te
′

are conflicting

iff e ∩ e ′ , ∅. It follows that H is isomorphic toH(SH).

Theorem 6.4. Any hypergraph H = (V , E) of degree 2 is isomorphic toH(SH), and any monotone

HGP based on H computes a subfunction of f △SH .

Proof. We show that the map д : v 7→ Rv (zi1(v), zi2(v)) is an isomorphism betweenH andH(SH).
By the definition of SH , д is a bijection between V and the atoms of q. For any e ∈ E, there is a
tree witness te = (ter , t

e
i) generated by Ae with t

e
i = {ze } and t

e
r = {ze ′ | e ∩ e

′ , ∅, e , e ′}, and qte
consists of the д(v), for v ∈ e . Conversely, every tree witness t = (tr, ti) for SH contains ze ∈ ti, for
some e ∈ E, and so qt = {д(v) | v ∈ e}.
Given an input α for a monotone HGP P based on H , we define γ by taking γ (Rv) to be the

value of the label of v under α for v ∈ V and γ (Ae) = 1 for e ∈ E (of course, γ (Pζ) = 0 for all

normalisation predicates Pζ). By the definition of T , for each e ∈ E, the canonical model CT, A(γ)
contains a labelled nullwe such that

CT, A(γ) |=
∧

v ∈V with i1(v)=e

Rv (we ,a) ∧
∧

v ∈V with i2(v)=e

Rv (a,we).

We prove that P(α) = 1 iff f △SH (γ) = 1. Suppose P(α) = 1, that is, there is an independent subset E ′

of E such that the label of each v ∈ V \ VE′ evaluates to 1 under α . Define h : q → CT, A(γ) by
taking h(ze) = a if e < E ′ and h(ze) = we otherwise. One can check that h is a homomorphism, and

so T, A(γ) |= q, whence f △SH (γ) = 1.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

z1

z2

z6

z3

z4 z5

qte
q

R12

S12

R26 R23

S26

S23 R34

S34

R45 S45

a
AeCAe (a)

T

S−
34
, S−

26
R12

S12, S23
R−

23
, R−

34
, R−

26

Fig. 14. The canonical model CAe (a)
T

and the CQ q (yi j is the half-way point between zi and zj) for the tree
hypergraph H in Example 6.5.

Conversely, if f △SH (γ) = 1, then there is a homomorphism h : q → CT, A(γ). We show that the

subset E ′ = { e ∈ E | h(ze) , a } is independent. Indeed, if e, e ′ ∈ E ′ and v ∈ e ∩ e ′, then h sends

one variable of the Rv -atom to the labelled nullwe and the other end towe ′ , which is impossible.

We claim that E ′ makes P(α) = 1. Indeed, for each v ∈ V \ VE′ , the map h sends both ends of

the Rv -atom to a, and so the value of the label of v under α is 1. □

6.3 Tree Hypergraphs as Tree-Shaped OMQs
We show that any tree hypergraph H = (U ,V , E) is isomorphic to a subgraph ofH(TH), for some

tree-shaped OMQTH . SupposeU = {1, . . . ,n}, for n > 1, and 1 is a leaf of TH . Let T
∗ = (U ,V ∗) be

the directed tree obtained from TH by fixing 1 as the root and orienting the edges away from it. We

associate with H a tree-shaped OMQTH = (T ,q), in which q is the Boolean CQ

q =
{
Ri j (zi ,yi j), Si j (yi j , zj) | (i, j) ∈ V

∗
}
,

where the zi , for i ∈ U , and the yi j , for (i, j) ∈ V
∗
, are variables for the nodes and the arcs of the

directed tree, respectively. To define T , suppose a hyperedge e ∈ E induces a convex directed

subtree Te = (Ue ,Ve) of T
∗
with root re ∈ Ue and leaves Le ⊆ Ue . Denote by T the ontology that

contains the following axiom, for each e ∈ E:

Ae (x) → ∃y
[∧
(re , j)∈Ve

Rre j (x,y) ∧
∧
(i , j)∈Ve
j ∈Le

Si j (y, x) ∧ ∃z
(∧
(i , j)∈Ve
i,re

Ri j (z,y) ∧
∧
(i , j)∈Ve
j<Le

Si j (y, z)
)]
.

SinceTe is convex, its root re has only one outgoing arc, (re , j), for some j , and so the first conjunct

of the axiom contains a single atom, Rre j (x,y). Since the boundary of e comprises {re } ∪ Le and
the interior all other elements ofUe , these axioms (and convexity of hyperedges) ensure thatTH
has a tree witness te = (ter , t

e
i) with

t
e
r = { zi | i is on the boundary of e },

t
e
i = { zi | i is in the interior of e } ∪ {yi j | (i, j) ∈ Ve }.

Example 6.5. Let H be the tree hypergraph from Example 5.3 with root 1 and one hyperedge

e = [1, 4]; see Fig. 8. The CQ q and the canonical model CAe (a)
T

forTH are shown in Fig. 14. Note

the tree witness te and the homomorphism from qte into C
Ae (a)
T

.

The following THGP analogue of Theorem 6.2 is proved in Appendix A.9:

Theorem 6.6. Any tree hypergraph H is isomorphic to a subgraph of H(TH), and any monotone

THGP based on H computes a subfunction of f △TH .

Table 3 summarises the representation results of Theorems 6.2, 6.4 and 6.6 that show how

abstract hypergraphs can be embedded into tree-witness hypergraphs of polynomial-size OMQs;

see Appendix A.10 for details on the size of the OMQs.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:27

Table 3. Hypergraph representation results: any monotone HGP based on H computes a subfunction of f △Q .

hypergraph H is isomorphic to OMQQ |H(Q)| OMQ class

Th. 6.2 any a subgraph ofH(Q) QH O(|H 2 |) T of depth 2

Th. 6.4 of degree 2 H(Q) SH |H | T of depth 1

Th. 6.6
tree hypergraph

with ℓ leaves
a subgraph ofH(Q) TH O(|H 2 |)

T of depth 2 and

tree-shaped q with ℓ leaves

7 HYPERGRAPH PROGRAMS AND CIRCUIT COMPLEXITY
In Section 5, we saw how different classes of OMQs gave rise to different classes of monotone

HGPs. Here we characterise the computational power of HGPs in these classes by relating them to

standard models of computation for Boolean functions. We remind the reader that the complexity

classes we use in this section form the chain

Π3 ⫋ AC0 ⫋ NC1 ⊆ NL/poly ⊆ LogCFL/poly ⊆ P/poly ⊆ NP/poly, (12)

and that whether any of the non-strict inclusions is actually strict remains a major open problem

in complexity theory; see, e.g., [5, 49]. All these classes are non-uniform in the sense that they are

defined in terms of polynomial-size non-uniform sequences of Boolean circuits or programs of

certain shape and depth. The suffix ‘/poly’ comes from an alternative definition of C/poly in terms

of Turing machines for the class C with an additional advice input of polynomial size.

When talking about complexity classes, instead of individual Boolean functions, we consider

sequences of functions f = { fn}n<ω with fn : {0, 1}n → {0, 1}. The same concerns circuits, HGPs

and the other models of computation we deal with. For example, we say that a circuitC = {Cn}n<ω
computes a function f = { fn}n<ω ifCn computes fn for every n < ω. (It will always be clear from
the context whether f ,C , etc. denote an individual function, circuit, etc. or a sequence thereof.) A

circuitC is said to be polynomial if there is a polynomial p : N→ N such that |Cn | ≤ p(n), for every
n < ω. The depth ofCn is the length of the longest directed path from an input to the output ofCn .

The complexity class P/poly can be defined as comprising the Boolean functions computable

by polynomial circuits, and NC1
consists of functions computed by polynomial formulas (that is,

circuits whose logic gates have at most one output). Alternatively, a Boolean function is in NC1
iff

it can be computed by a polynomial-size circuit of logarithmic depth, whose and- and or-gates

have two inputs.

LogCFL/poly (also known as SAC1
) is the class of Boolean functions computable by polynomial-

size and logarithmic-depth circuits in which and-gates have two inputs but or-gates can have

arbitrarily many inputs (unbounded fan-in) and not-gates can only be applied to inputs of the

circuit [87]. AC0
is the class of functions computable by polynomial-size circuits of constant depth

with and- and or-gates of unbounded fan-in and not-gates only at the inputs; Π3 is the subclass

of AC0
that only allows circuits of depth 3 (not counting the not-gates) with an output and-gate.

The class NL/poly consists of functions computed by polynomial-size nondeterministic branching

programs (NBPs) to be defined in Section 7.2.

Finally, a Boolean function f = { fn}n<ω is in the class NP/poly if there is a polynomial p and a

polynomial circuitC = {Cn+p(n)}n<ω such that, for any n and α ∈ {0, 1}n ,

fn(α) = 1 iff there is β ∈ {0, 1}p(n) such thatCn+p(n)(α , β) = 1 (13)

(the β-inputs are sometimes called certificate inputs).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:28 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

ēi ei
дi

p ¬p

дi = p

ēj ej

ēi eiдi

дj

дi = ¬дj

дi

ui

дkдj

vj vk

ej ek

ēj ēk

eiēi

дi = дj ∨ дk

Fig. 15. HGP in the proof of Theorem 7.1: black vertices are labelled with 1 and white vertices with 0.

By allowing only monotone circuits or formulas in the definitions of the complexity classes, we

obtain their monotone counterparts: for example, the monotone variant of NP/poly is denoted

by mNP/poly and defined by restricting the use of not-gates in the circuits to the certificate

inputs only. We note in passing that the monotone counterparts of the classes in (12) also form a

chain [4, 51, 74]:

mΠ3 ⫋ mAC0 ⫋ mNC1 ⫋ mNL/poly ⊆ mLogCFL/poly ⫋ mP/poly ⫋ mNP/poly. (14)

Whether the inclusion mNL/poly ⊆ mLogCFL/poly is proper remains open.

7.1 NP/poly and HGP3

Denote by HGP (mHGP) the class of Boolean functions computable by polynomial-size (monotone)

HGPs; the functions computable by polynomial-size (monotone) HGPs of degree at most d comprise

the class HGPd (respectively, mHGPd).

Theorem 7.1. NP/poly = HGP = HGP3
and mNP/poly = mHGP = mHGP3

.

Proof. Suppose P is a (monotone) HGP. We construct a nondeterministic circuit C of size

polynomial in |P | whose input variables are the variables in P , certificate inputs correspond to the

hyperedges of P and such thatC(α , β) = 1 iff {ei | β(ei) = 1} is an independent set of hyperedges

covering all zeros under α . It will then follow that

P(α) = 1 iff there is β such thatC(α , β) = 1. (15)

First, for each pair of intersecting hyperedges ei , ej in P , we take the disjunction ¬ei ∨ ¬ej , and, for
each vertex in P labelled with a literal l (that is, p or ¬p) and the hyperedges ei1, . . . , eik incident

to it, we take the disjunction l ∨ ei1 ∨ · · · ∨ eik . The circuit C is then a conjunction of all such

disjunctions. Note that if P is monotone, then ¬ is only applied to the certificate inputs, e , inC .
Conversely, letC be a circuit with certificate inputs. We construct an HGP P of degree at most 3

satisfying (15) as follows. For each gate дi in C , the HGP contains a vertex дi labelled with 0

and a pair of hyperedges ēi and ei , both containing дi . No other hyperedge contains дi , and so

either ēi or ei should be present in any cover of zeros. For each дi , we add the following vertices

and hyperedges to P (see Fig. 15):

– if дi is an input p, then we add a vertex labelled with ¬p to ei and a vertex labelled with p
to ēi ;

– if дi is a certificate input, then no additional vertices and hyperedges are added;

– if дi = ¬дj , then we add a vertex labelled with 1 to hyperedges ei and ej , and a vertex labelled
with 1 to hyperedges ēi and ēj ;

– ifдi = дj∨дk , thenwe add a vertex labelled with 1 to hyperedges ej and ēi , add a vertex labelled
with 1 to ek and ēi ; then, we add vertices vj and vk labelled with 1 to ēj and ēk , respectively,
and a vertex ui labelled with 0 to ēi ; finally, we add hyperedges {vj ,ui } and {vk ,ui } to P ;

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:29

– if дi = дj ∧ дk , then the pattern is dual to the case of ∨: we add a vertex labelled with 1 to ēj
and ei , a vertex labelled with 1 to ēk and ei ; then, we add verticesvj andvk labelled with 1 to ej
and ek , respectively, and a vertex ui labelled with 0 to ei ; finally, we add hyperedges {vj ,ui }
and {vk ,ui } to P .

Then, we add one more vertex labelled with 0 to em for the output gate дm of C , which ensures

that em must be included the cover. It is easily verified that the constructed HGP is of degree at

most 3. One can establish (15) by induction on the structure of C . We illustrate the proof of the

inductive step for the case of дi = дj ∨ дk : we show that ei is in the cover iff it contains either ej
or ek . Suppose the cover contains ej . Then it cannot contain ēi , and so it contains ei . The vertex ui
in this case can be covered by {vj ,ui } since ēj is not in the cover. Conversely, if neither ej nor ek is

in the cover, then it must contain both ēj and ēk , and so neither {vj ,ui } nor {vk ,ui } can belong to

the cover, and thus we will have to include ēi in the cover.

If C is monotone, then we remove from P all vertices labelled with ¬p, for an input p, and
denote the resulting HGP by P ′. We claim that, for any α , we have P ′(α) = 1 iff there is β such

that C(α , β) = 1. The implication (⇐) is trivial: if C(α , β) = 1 then, by the argument above, we

obtain P(α) = 1 and, clearly, P ′(α) = 1. Conversely, suppose P ′(α) = 1. Each of the vertices дi
in P ′ for the inputs of C is covered by either ei or ēi ; so, let α ′ be such that α ′(дi) = 1 if дi is
covered by ei , and α ′(дi) = 0 if дi is covered by ēi . Clearly, α ′ ≤ α . This cover of vertices of P ′

gives us P(α ′) = 1. Thus, by the argument above, there is β such that C(α ′, β) = 1. Since C is

monotone,C(α , β) = 1. □

7.2 NL/poly and HGP2

A Boolean function belongs to the class NL/poly iff it can be computed by a polynomial-size

nondeterministic branching program (NBP). We remind the reader (see [49] for more details) that an

NBP B is a directed graph G = (V , E), whose arcs are labelled with constants 0 and 1, propositional

variables p1, . . . ,pn or their negations, and which distinguishes two vertices s, t ∈ V . Given an

assignment α to the variables p1, . . . ,pn , we write s →α t if there is a path in G from s to t all of
whose labels evaluate to 1 under α . An NBP B computes a Boolean function f in case f (α) = 1

iff s →α t , for any α ∈ {0, 1}n . The size |B | of B is the size of the underlying graph, |V | + |E |. An
NBP is monotone if there are no negated variables among its labels. The class of Boolean functions

computable by polynomial-size monotone NBPs is denoted by mNL/poly; the class of functions f
whose duals f ∗(p1, . . . ,pn) = ¬f (¬p1, . . . ,¬pn) are computable by polynomial-size monotone

NBPs is denoted by co-mNL/poly.12 We now show that NL/poly coincides with the classes HGP2

and HGP=2
of functions computable by polynomial-size HGPs of degree at most 2 and exactly 2,

respectively, while co-mNL/poly coincides with the classes mHGP2
and mHGP=2

of functions

computable by polynomial-size monotone HGPs of degree at most 2 and exactly 2.

Theorem 7.2. NL/poly = HGP2 = HGP=2
and co-mNL/poly = mHGP2 = mHGP=2

.

Proof. First, we proveNL/poly ⊆ HGP2
. One can show [46, 83] that if a function f is computable

by a polynomial-size NBP, then ¬f is also computable by a polynomial-size NBP. So suppose ¬f is

computed by an NBP B. We construct an HGP P computing f of degree at most 2 and polynomial

size in |B | as follows (see Fig. 16). For each arc e in B, the HGP P has two vertices e0
and e1

, which

represent the beginning and the end of e , respectively. The vertex e0
is labelled with the negated

label of e in B and e1
with 1. For each arc e in B, the HGP P has an e-hyperedge {e0, e1}. For each

12
Observe that the functions computable by monotone NBPs are monotone by definition, and so using the dual of f is

the only natural choice for the definition of co-mNL/poly. Another (equivalent) option is to define monotone NBPs by

restricting all labels either to positive or to negative (computing monotone and anti-monotone functions, respectively) and

use the negation ¬f (p1, . . . , pn), as done by Grigni and Sipser [41].

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:30 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

v0

v1

v2

v3

e0 : q

e1
: ¬q

e
2 : p

v1-hyperedge

e0-hyperedge

e1
-hyper

edge

e
2-hyperedge

e0

0

¬q

e0

1

q

e0

2

¬p

e1

0

e1

1

e1

2

Fig. 16. HGP in the proof of Theorem 7.2: black vertices are labelled with 1.

vertex v in B but s and t , the HGP P has a v-hyperedge comprising all vertices e1
for the arcs e

leading to v , and all vertices e0
for the arcs e leaving v . We also add to P a vertexw labelled with 0

and a hyperedge ēw that consists ofw and all vertices e1
for the arcs e in B leading to t . We claim

that P computes f . Indeed, if s ̸→α t then the following subset of hyperedges is independent and

covers all zeros: all e-hyperedges, for the arcs e reachable from s and labelled with 1 under α ,

and all v-hyperedges with s ̸→α v (including ēw). Conversely, if s →α t , then one can show by

induction that, for each arc e of the path, the e-hyperedge must be in the cover of all zeros. Thus,

no independent set can coverw , which is labelled with 0.

To show HGP2 ⊆ HGP=2
, consider an HGP P of degree at most 2 computing f . We extend

its hypergraph with three vertices, x , y and z, labelled with 1, 0 and 0, respectively, and three

hyperedges e1 = {v1, . . . ,vl , x,y}, e2 = {v1, . . . ,vk , x, z} and e3 = {y, z}, where v1, . . . ,vk are

the vertices of degree 0 and vk+1, . . . ,vl the vertices of degree 1. It is easy to see that each cover

should contain e3 but cannot contain e1 and e2. Indeed, y and z should both be covered. However,

hyperedges e1 and e2 intersect and cannot be both in the same cover. Thus, y and z should be

covered by e3, while e1 and e2, intersecting e3, are not in the cover. After these choices we are left

with the original hypergraph.

To show HGP=2 ⊆ NL/poly, suppose f is computed by an HGP P of degree 2 with hyperedges

e1, . . . , ek . We first provide a graph-theoretic characterisation of independent sets covering all zeros

based on the implication graph [7]. For every hyperedge ei , take a propositional variable ui and
associate the following set Φα of propositional binary clauses with every assignment α :

¬ui ∨ ¬uj , if ei ∩ ej , ∅, and ui ∨ uj , if α (v) = 0 for some v ∈ ei ∩ ej .

Informally, the former means that intersecting hyperedges cannot be chosen at the same time,

while the latter that all zeros must be covered. By definition, E ′ is an independent set covering

all zeros iff E ′ = {ei | γ (ui) = 1}, for some assignment γ satisfying Φα . Let Cα = (V , Eα) be the
implication graph of Φα , that is, a directed graph with

V =
{
ui , ūi | 1 ≤ i ≤ k

}
, Eα =

{
(ui , ūj) | ei ∩ ej , ∅

}
∪
{
(ūi ,uj) | α (v) = 0,v ∈ ei ∩ ej

}
.

(V is the set of all ‘literals’ for the variables of Φα , and Eα are the arcs for the implicational form of

the clauses: e.g., ¬ui ∨ ¬uj in Φα gives rise to two implications, ui → ¬uj and uj → ¬ui , and thus

to two arcs inCα ; similarly for ui ∨uj .) By [7, Theorem 1], Φα is satisfiable iff there is no (directed)

cycle through some ui and ūi . We represent theCα , for assignments α , as a single labelled directed

graph C with

vertices ui and ūi , for 1 ≤ i ≤ k, andwv
i j , for 1 ≤ i, j ≤ k and v ∈ ei ∩ ej , and with

arcs (ui , ūj), for ei ∩ ej , ∅, and (ūi ,w
v
i j) and (w

v
i j ,uj), for each v in ei ∩ ej , ∅;

arcs of the form (ui , ūj) and (ūi ,w
v
i j) are labelled with 1 and arcs of the form (wv

i j ,uj) with the

negation of the label of v in P . It should be clear that Cα has a cycle through ui and ūi iff we have

both ūi →α ui and ui →α ūi inC . The required NBP B contains distinguished vertices s and t , and,
for each hyperedge ei in P , two copies, C0

i and C
1

i , of C with additional arcs from s to the ūi vertex

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:31

s tūi C0

i ui ui C1

i
ūi

Fig. 17. The NBP in the proof of Theorem 7.2.

of C0

i , from the ui vertex of C
0

i to the ui vertex of C
1

i , and from the ūi vertex of C
1

i to t ; see Fig. 17.
By construction, s →α t iffCα contains a cycle through ui and ūi , for a hyperedge ei in P . We thus

have a polynomial NBP B computing ¬f , and so f is also computable by a polynomial NBP.

As to co-mNL/poly = mHGP2 = mHGP=2
, observe that the first construction, if applied to a

monotone NBP for f ∗, produces a polynomial-size HGP of degree at most 2 computing ¬f ∗, all
of whose labels are negative. By removing negations from labels, we obtain a monotone HGP

computing f . The second construction preserves monotonicity. The third construction allows us to

transform a monotone HGP of degree 2 for f into an NBP that computes ¬f and has only negative

literals. By inverting the polarity of the labels, we obtain a monotone NBP computing f ∗. □

7.3 NL/poly and THGP(ℓ)
For any natural ℓ ≥ 2, we denote by THGP(ℓ) and mTHGP(ℓ) the classes of Boolean functions

computable by (sequences of) polynomial-size THGPs and, respectively, monotone THGPs whose

underlying trees have at most ℓ leaves.

Theorem 7.3. NL/poly = THGP(ℓ) and mNL/poly = mTHGP(ℓ), for any ℓ ≥ 2.

Proof. Suppose a polynomial-size THGP P computes a Boolean function f . Consider the func-
tion fH for the underlying hypergraphH of P . By Theorem 5.8, fH is computed by a polynomial-size

monotone linear THGP P ′. We can assume that the verticesv1, . . . ,vn of P ′ are consecutive edges of
the path graph underlying P ′, and so every hyperedge in P ′ is of the form [vi ,vi+m] = {vi , . . . ,vi+m},
for somem ≥ 0. We add two extra vertices, v0 and vn+1, to P

′
(thereby extending the underlying

two-leaf tree to v0,v1, . . . ,vn,vn+1) and label them with 0; we also add two hyperedges s = {v0}

and t = {vn+1} to P
′
. Clearly, the resulting monotone linear THGP P ′′ computes fH . To construct

a polynomial-size NBP B computing f , we take a directed graph whose vertices are hyperedges

of P ′′ and which contains an arc from ei = [vi1,vi2] to ej = [vj1,vj2] iff i2 < j1; we label this arc
with

∧
i2<k<j1 lk , where lk is the label of vk in THGP P ′′. It is not hard to see that a path from s to t

evaluated to 1 under a given assignment α corresponds to a cover of zeros in P ′′ under α . To get

rid of conjunctive labels on edges, we replace every arc with a label l i1 ∧ · · · ∧ l ik by a sequence

of k consecutive arcs labelled with l i1, . . . , l ik . Finally, we replace the vertex variables pv in the

labels by the corresponding vertex labels in P and fix all edge variables pe to 1. The resulting NBP B
is as required. Finally, observe that if P is monotone, then B is also monotone.

Conversely, suppose a Boolean function f is computed by an NBP B based on a directed graph

with vertices V = {v1, . . . ,vn}, edges E = {e1, . . . , em}, s = v1 and t = vn . Without loss of

generality, we assume that B has a loop from t to t labelled with 1. Thus, if there is a path from s
to t whose labels evaluate to 1, then there is such a path of length n − 1. We now construct a

polynomial-size linear THGP computing f . The nodes of its underlying tree T are arranged into n
vertex blocks VB

1, . . . ,VBn and n − 1 edge blocks EB
1, . . . , EBn−1

. Each vertex block contains two

nodes, vkj , v̄
k
j , for each vertex vj ∈ V , and each edge block contains two nodes, eki , ē

k
i , for each

edge ei ∈ E:

VB
k = vk

1
, v̄k

1
,vk

2
, v̄k

2
, . . . ,vkn , v̄

k
n and EB

k = ek
1
, ēk

1
, ek

2
, ēk

2
, . . . , ekm, ē

k
m .

To construct the undirected tree T , we alternate the vertex and edge blocks in the following way:

VB
1, EB1,VB2, EB2, . . . , EBn−1,VBn and then connect the adjacent nodes by edges. Consider now a

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:32 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

(a) (b)

a
n
d
-
d
e
p
t
h
1

a
n
d
-
d
e
p
t
h
0

x1
д1 x2

д2

¬x3
д3 x4

д4orд5

andд6 andд7

orд8

д
7 = д

5 ∧ д
4д

6 = д
5 ∧ д

3

w8

v8

u8

8

7

6

5

w2

v2

u2

2

w1

v1

u1

1

4

3

1

1

1 1

1

x2

1

x1

x4

1

¬x3

Fig. 18. (a) A circuitC . (b) The labelled tree T forC : the nodes in the ith triple are ui ,vi ,wi and the omitted
edge labels are zeros. The vertices of the THGP are the edges of T (with the same labels) and the hyperedges
are sets of edges of T (two of them are shown).

tree hypergraph H based on T whose hyperedges are of the form

hki = [v̄
k
j , e

k
i] and дki = [ē

k
i ,v

k+1

j′], for ei = (vj ,vj′) ∈ E and 1 ≤ k < n.

Note that |H | = O(|B |2). The vertices of H of the form {vki , v̄
k
i } are labelled with 1, the vertices

of the form {eki , ē
k
i }, which separate the hyperedges hki and дki , are labelled with the label of ei

in B, and all other vertices with 0. So, P is monotone whenever B is. We show that the constructed

THGP P computes f . Indeed, if f (α) = 1, then there is a path ei1, . . . , ein−1
from v1 to vn whose

labels evaluate to 1 under α . It follows that {hkik ,д
k
ik
| 1 ≤ k < n} is an independent set in H

covering all zeros. Conversely, if E ′ is an independent set in H covering all zeros under α , then

it must contain exactly one pair of hyperedges hkik and дkik for every k with 1 ≤ k < n, and the

corresponding sequence of edges ei1, . . . , ein−1
defines a path from v1 to vn . Moreover, since E ′

does not cover the vertices {ekik , ē
k
ik
}, for 1 ≤ k < n, their labels (that is, the labels of the eik in B)

evaluate to 1 under α . □

7.4 LogCFL/poly and THGP
THGP and mTHGP are the classes of functions computable by polynomial-size THGPs and mono-

tone THGPs, respectively.

Theorem 7.4. LogCFL/poly = THGP and mLogCFL/poly = mTHGP.

Proof. To show that LogCFL/poly ⊆ THGP, consider a SAC1
-circuitC of depth d ≤ log |C |. It

will be convenient to think ofC as containing no not-gates but having literals as inputs. By the

and-depth of a gate д in C we mean the maximal number of and-gates in a path from an input

ofC to д (it does not exceed d). LetC left
n andCright

n be the unions of sub-circuits computing the left

and, respectively, right inputs of the and-gates of and-depth n. Without loss of generality (see

Lemma A.6 in Appendix A.11) we can assume thatC left
n ∩C

right
n = ∅, for any n ≤ d . Our aim is to

transform C into a polynomial-size THGP P . We construct its underlying tree T by associating

with each gate дi three nodes ui ,vi ,wi and arranging them into a tree as shown in Fig. 18. More

precisely, we first arrange the nodes associated with the gates of the maximal and-depth, d , into
a path following the order of the gates in C and the alphabetic order for ui ,vi ,wi . Then we fork

the path into two branches, one of which is associated withC left
d and the other withCright

d , and so

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:33

forth. We obtain the tree T by removing the nodewm from the result, where дm is the output gate

ofC (m = |C |); the tree T has vm as its root and contains 3|C | − 1 nodes. The THGP P is based on

the hypergraph whose vertices are the edges of T and whose hyperedges comprise the following

(see Fig. 18):

– [ui ,wi], for each i < m (pairs of edges in each triple of nodes in Fig. 18);

– [vj ,vk ,vi], for each дi = дj ∧ дk (shown in Fig. 18 by shading);

– [vj1,vi], . . . , [vjk ,vi], for each дi = дj1 ∨ · · · ∨ дjk .

Finally, if an input gate дi is a literal l , then we label the vertex {ui ,vi } with l ; we label all

other {ui ,vi }- and {vi ,wi }-vertices with 0, and the remaining ones with 1. Clearly, the size of P is

polynomial in |C |. By Lemma A.7, for any input α , the output of дi is 1 iff there is an independent

set of hyperedges entirely inside the subtree rooted in vi such that it covers all zeros in the subtree.

Thus, P computes the same function asC .
To show THGP ⊆ LogCFL/poly, suppose a THGP P is based on a tree hypergraph H = (U ,V , E).

Given an input α for P and a non-empty subtree T of the underlying tree TH of H , we set coverT
true iff there exists an independent subset of hyperedges in H that lie in T and cover all zeros in T .
It follows that, for any edge v of TH , cover(v , {v }) is true if {v} is a hyperedge of H ; otherwise, it is

the value of the label of v in P under α .

Our aim is to recursively construct a polynomial-size SAC1
-circuit C computing the function

coverTH . LetT be a convex subtree ofTH . Given a convex subtreeT0 ofT , we define theT0-splitting

of T as a (uniquely determined) set {T1, . . . ,Tk } of maximal convex subtrees such that the set of

edges of T is a disjoint union of the non-empty sets of edges of T0,T1, . . . ,Tk and each Ti shares a
leaf with T0, in which case the conjunction coverT1

∧ · · · ∧ coverTk is denoted by splitT ,T0

. We also

say that a node u of T splits T into the ({u}, ∅)-splitting of T . Observe that coverT is equivalent to

splitT ,({u },∅) ∨
∨

e ∈E and u is in the interior of Te
splitT ,Te , (16)

for any node u in T . By the degree deg(T) of T we understand the number of its leaves that are not

leaves of TH ; in other words, the degree is the number of nodes shared with other subtrees of a

splitting of TH . Note that TH is its only convex subtree of degree 0. The following lemma shows

that to compute coverTH we only need subtrees of degree at most 2 and that the depth of recursion

is O(log |P |).

Lemma 7.5. Let T be a subtree of TH withm edges and deg(T) ≤ 2. If deg(T) ≤ 1, then there is

a node u splitting T into subtrees with at most (m + 1)/2 edges and degree at most 2. If deg(T) = 2,

then there is a node u splittingT into subtrees with at most (m + 1)/2 edges and degree at most 2 and,

possibly, one subtree with less thanm edges and degree 1.

Proof. If deg(T) ≤ 1, then let a node u1 split T into subtrees one of which, say T1, has more

than (m + 1)/2 edges and all others have less than (m − 1)/2 edges in total. Let u2 be the (unique)

node in T1 adjacent to u1 in T . Then u2 splits T into subtrees lying inside T1 and a subtree with the

edge {u1,u2}, which has less than (m + 1)/2 edges; all of the subtrees are of degree at most 2. If

there is still a subtree with more than (m + 1)/2 edges, then its size has decreased. The process is

repeated until all subtrees have at most (m + 1)/2 edges.

If deg(T) = 2, then let b1 and b2 be the leaves of T that are not leaves of TH . We proceed as

above starting from u1 = b1, but stop when either the largest subtree has at most (m + 1)/2 edges,

or ui+1 leaves the path between b1 and b2, in which case ui splits T into subtrees of degree at

most 2 (and at most (m + 1)/2 edges) and one subtree of degree 1 (whose number of edges does not

exceedm − 1). □

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:34 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

By applying (16) toTH recursively and choosing the splitting nodesu as prescribed by Lemma 7.5,

we obtain a circuitC whose inputs are the labels of some vertices of H . Since any tree has polyno-

mially many subtrees of degree at most 2, the size ofC is polynomial in |P |. We now show how to

make the depth ofC logarithmic in |P |.
Suppose T is a subtree withm edges constructed on the recursion step i . To compute coverT

using (16), we need one or-gate of unbounded fan-in and a number of and-gates of fan-in 2.

We show by induction that we can make the and-depth of these and-gates at most logm + i .
Let {T1, . . . ,Tk } be the ({u}, ∅)-splitting of T andmj the number of edges in Tj , for all j ≤ k . We

havem =m1 + · · · +mk . By the induction hypothesis, we can compute each coverTj within the

and-depth of at most logmj + i − 1. Assign the probabilitymj/m toTj . As shown by Huffman [45],

there is a prefix binary code such that each Tj is encoded by a word of length ⌈log(m/mj)⌉. This

encoding can be represented as a binary tree whose leaves are labelled with the Tj so that the

length of the branch ending atTj is ⌈log(m/mj)⌉. By replacing each non-leaf vertex of the tree with

an and-gate, we obtain a circuit for the first conjunction in (16) whose depth does not exceed

maxj {logmj + (i − 1) + log(m/mj) + 1} = logm + i .

The conjunction splitT ,Te is considered analogously. □

7.5 NC1, Π3 and THGPd

Denote by THGPd and mTHGPd the classes of functions computable by polynomial-size THGPs

and, respectively, monotone THGPs of degree at most d . The proof of the following theorem, given

in Appendix A.11, is a simplified version of the proof of Theorem 7.4:

Theorem 7.6. NC1 = THGPd and mNC1 = mTHGPd , for any d ≥ 3.

The subclasses of THGP2
and mTHGP2

with linear HGPs are denoted, respectively, by THGP2(2)

and mTHGP2(2). THGPs of degree 2 turn out to be less expressive than of degree 3:

Theorem 7.7. Π3 = THGP2 = THGP2(2) and mΠ3 = mTHGP2 = mTHGP2(2).

Proof. To show THGP2 ⊆ Π3, take a THGP P based on a tree hypergraph H of degree at

most 2. By Lemma A.3, fH (α) = 1 iff neither α is degenerate nor meets any of its polynomially

many obstructions. This property can be computed by a Π3-circuit where, for each obstruction

(e0, . . . , e2n−1) fromv0 tov2n−1, we create a circuit corresponding to the DNF expressing that one of

the conditions (O1)–(O3) is falsified (see Section 5.2). We collect the outputs of the or-gates of these

circuits and input them to a fresh and-gate. It remains to add to this and-gate the conjunction of

the labels of vertices of P that are not covered by any hyperedge; see condition (D).

To show Π3 ⊆ THGP2(2), let C be a Π3-circuit. We can assume that C is a conjunction of

DNFs. Denote the or-gates ofC by д1, . . . ,дk and the inputs of дi by hi ,1, . . . ,hi ,li , where the hi , j
are and-gates. We construct a generalised THGP P whose underlying path graph consists of k
consecutive blocks of edges V1, . . . ,Vk , where each Vi comprises edges vi ,1, v̄i ,1, . . . ,vi ,li , v̄i ,li , and
whose hyperedges are of the form {vi , j , v̄i , j } and {v̄i , j ,vi , j+1}, for j < li . We label each vi , j with a

conjunction of the inputs ofhi , j and each v̄i , j with 1. For an input forC , we can cover all zeros among

each Vi with an independent set of hyperedges iff at least one of the gates hi ,1, . . . ,hi ,li outputs 1;
cf. Fig. 9. For different i , the corresponding Vi are covered independently. Thus, P computes the

same function asC . We convert P to a HGP from THGP2(2) using Proposition A.2. □

Table 4 summarises the results obtained in this section. For example, its first row says that a

function is computable by a polynomial-size nondeterministic circuit iff it can also be computed by

a polynomial-size HGP (of degree at most d , for d ≥ 3).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:35

Table 4. Complexity classes, models of computation and the corresponding classes of HGPs.

complexity

class
model of computation theorem class of HGPs

NP/poly nondeterministic Boolean circuits 7.1 HGP = HGPd , d ≥ 3

P/poly Boolean circuits —

LogCFL/poly
(SAC1

)

logarithmic-depth circuits with

unbounded fan-in and-gates,

and not-gates only on inputs

7.4 THGP

NL/poly nondeterministic branching programs 7.2 / 7.3 HGP2 = THGP(ℓ), ℓ ≥ 2

NC1
Boolean formulas 7.6 THGPd , d ≥ 3

AC0

constant-depth circuits with

unbounded fan-in and- and or-gates,

and not-gates only on inputs

—

Π3 AC0
-circuits of depth 3 & output and-gate 7.7 THGP2 = THGP2(2)

8 THE SIZE OF OMQ REWRITINGS
We now bring together the results from Sections 4–7 to obtain the upper and lower bounds on

the size of PE-, NDL- and FO-rewritings in Fig. 2a. In this section, by an OMQ Q = (T ,q) we
mean a sequence {Qn = (Tn,qn)}n<ω of OMQs of size polynomial in n, and by a rewriting Φ ofQ
we mean a sequence {Φn}n<ω of rewritings Φn of Qn . We call Φ a polynomial rewriting of Q if

there is a polynomial p such that |Φn | ≤ p(n), for n < ω. Theorem 4.5 can now be recast in the

complexity-theoretic setting as follows (see Table 4):

– ifQ has a polynomial FO-rewriting, then f △Q ∈ NC1
;

– ifQ has a polynomial NDL-rewriting, then f △Q ∈ mP/poly;
– ifQ has a polynomial PE-rewriting, then f △Q ∈ mNC1

.

Similarly, Theorems 4.2 and 4.4 give the ‘converse’ implications:

– if f ▽Q ∈ NC1
or f ▼Q ∈ NC1

, thenQ has a polynomial FO-rewriting;

– if f ▽Q ∈ mP/poly or f ▼Q ∈ mP/poly, thenQ has a polynomial NDL-rewriting;

– if f ▽Q ∈ mNC1
or f ▼Q ∈ mNC1

, thenQ has a polynomial PE-rewriting.

In the sequel, we use these results without explicit references to the theorems.

The relations of the various classes of OMQs with the complexity of the Boolean functions

associated with these OMQs and their equivalent classes of monotone HGPs are summarised

in Fig. 19. The circles in the figure stand for classes of OMQs and the arrows for polynomial

transformations. For example, if we take an OMQQ with ontologies of unbounded depth and CQs

of unbounded treewidth (the most general class, in the bottom right corner) then, by Proposition 4.3,

f ▼Q ∈ mNP/poly.13 Conversely, by Theorem 7.1, any function in mNP/poly is computable by a

polynomial-size monotone HGP based on some hypergraph H and, by Theorem 6.2, this function

is a subfunction of f △QH
, for a polynomial-size OMQ QH , which is of depth 2 and unbounded

treewidth—see the QH node in Fig. 19. Now, to obtain the succinctness landscape of Fig. 2a, it

remains to recall suitable results from circuit complexity; we shall do this in the remainder of this

13
The class mNP/poly of functions computable by monotone Boolean circuits coincides with the class ofmonotone functions

in NP/poly [41].

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:36 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

in mP/poly but mNL/poly-hard
(poly-NDL but no poly-PE)

in mNC1
(poly-PE)

mNP/poly-complete

(no poly-NDL but poly-FO iff NP/poly ⊆ NC1
)

o
n
t
o
l
o
g
y
d
e
p
t
h

1

2

3

. . .

d

arb.

2
. . . ℓ trees (=1) 2

. . . t arb.

number of leaves treewidth

Q Q SH

Q

Q

QQf

TH TH QH

mΠ3 mTHGP2

mTHGP2(2)

mNC1 mTHGPd
d ≥ 3

mLogCFL/poly

mTHGP

mNL/poly

mTHGP(2)

co-mNL/poly

mHGP=2 mHGP2

mNP/polymNP/polymNP/poly

mHGPmHGPmHGP mHGPd
d ≥ 3

mNP/polymNP/polymNP/poly

T7.7 T7.6

T
7
.4

T
7
.3

T7.2

T7.2

T7.1

T7.1

T7.7

f ▽Q

C5.7

f ▽Q

T5.14

f ▼Q

T
5
.1
2

f ▽Q
C
5
.9

f
▽
Q

C
5
.2

f ▼Q P4.3

f △SH T6.4

f △T
H

T
6
.6

f △T
H

T
6
.6 f △QH T6.2

[34, L8]

Fig. 19. Roadmap for the proofs of succinctness results.

section. That every function in mNP/poly is computable by some (polynomial-size) tree-shaped

OMQ was shown by Gottlob et al. [34, Lemma 8].

8.1 All OMQs
We begin with the class of all OMQs. By Theorem 7.1, monotone HGPs can compute any function

in mNP/poly, in particular, the function Cliqe with n(n − 1)/2 variables ej j′ , 1 ≤ j < j ′ ≤ n, that
returns 1 iff the graph with vertices {1, . . . ,n} and edges {{j, j ′} | ej j′ = 1} contains a k-clique, for
some fixedk . Therefore, by Theorem 6.2,Cliqe is a subfunction of f △Q

Cliqe

for some polynomial-size

OMQQ
Cliqe

with ontologies of depth 2 and polynomially many tree witnesses.

On the other hand, Cliqe is known to be NP/poly-complete under non-uniform AC0
-reduc-

tions.
14
A series of papers started by Razborov [74] gave an exponential lower bound for the size of

monotone circuits computing Cliqe, namely, 2
Ω(
√
k)
for k ≤ 1

4
(n/logn)2/3 [4]. Thus,

Cliqe < mP/poly. (17)

For monotone formulas, an even better lower bound is known: 2
Ω(k)

for k = 2n/3 [73]. Using these

complexity results, we can establish:

14
It is a standard observation in computational complexity that all well-known complete problems in conventional complexity

classes are complete under non-uniform AC0
-reductions [2, 3]. Also, once we consider non-uniform reductions, all problems

that are complete for the uniform version of some complexity class are also complete for the non-uniform version. In

particular, NP and NP/poly have the same complete problems under non-uniform AC0
-reductions. The same is true of NL

and NL/poly and of LogCFL and LogCFL/poly. We use these observations throughout Section 8.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:37

Theorem 8.1. (i) There is anOMQwith ontologies of depth 2 and polynomiallymany tree witnesses,

any PE- and NDL-rewritings of which are of exponential size.

(ii) The following conditions are equivalent:

(a) all OMQs have polynomial FO-rewritings;

(b) all OMQs with ontologies of depth 2 and polynomially many tree witnesses have polynomial

FO-rewritings;

(c) NP/poly ⊆ NC1
.

Proof. (i) IfQ
Cliqe

had a polynomial PE- or NDL-rewriting, then Cliqe would be in mP/poly,
contrary to (17).

(b)⇒ (c) IfQ
Cliqe

has a polynomial-size FO-rewriting, then Cliqe ∈ NC1
. But since Cliqe

is NP/poly-complete under non-uniform AC0
-reductions, we obtain NP/poly ⊆ NC1

.

(c)⇒ (a) By Proposition 4.3, we have f ▼Q ∈ mNP/poly, for any OMQQ . Thus, if NP/poly ⊆ NC1
,

then f ▼Q ∈ NC1
, and soQ has a polynomial FO-rewriting. □

8.2 OMQs with Ontologies of Depth 1
Consider the monotone function Reach that takes the adjacency matrix of a directed graph G
with two distinguished vertices, s and t , and returns 1 iff G contains a directed path from s to t .
The function Reach and its dual, Reach

∗
, are both NL/poly-complete under non-uniform AC0

-

reductions [75]. It is known [49, 51] that Reach is computable by a polynomial-size monotone NBP,

but any monotone Boolean formula for Reach is of size nΩ(logn)
. Thus,

Reach ∈ mNL/poly but Reach < mNC1. (18)

By observing that mNC1
is closed under taking dual functions (that is, by swapping and and or),

we also obtain:

Reach
∗ ∈ co-mNL/poly but Reach

∗ < mNC1. (19)

Then, by Theorems 7.2 and 6.4, we construct a polynomial-size OMQ SReach∗ of depth 1 such that

Reach
∗
is a subfunction of f △S

Reach
∗
. Using (19), we now prove the following:

Theorem 8.2. (i) All OMQsQ of depth 1 have polynomial NDL-rewritings.

(ii) There is an OMQ of depth 1 any PE-rewriting of which is of superpolynomial size.

(iii) All OMQs of depth 1 have polynomial FO-rewritings iff NL/poly ⊆ NC1
.

Proof. (i) By Theorem 7.2 and Corollary 5.2, f ▽Q ∈ co-mNL/poly ⊆ mP/poly, and so there is a

polynomial NDL-rewriting ofQ .

(ii) If SReach∗ had a polynomial PE-rewriting, then Reach
∗
would be in mNC1

, contrary to (19).

(iii) If NL/poly ⊆ NC1
and Q is an OMQ of depth 1, then, by Theorem 7.2 and Corollary 5.2,

f ▽Q ∈ co-mNL/poly ⊆ mNC1 ⊆ NC1
, and so there is a polynomial FO-rewriting ofQ . Conversely,

if SReach∗ has a polynomial FO-rewriting, then f △S
Reach

∗
∈ NC1

. Since Reach
∗
is NL/poly-complete

under AC0
-reductions, we obtain NL/poly ⊆ NC1

. □

8.3 Tree-Shaped OMQs with a Bounded Number of Leaves
By using (18) in conjunction with Theorems 7.3, 6.6 and Corollary 5.9, we get the following result:

Theorem 8.3. Fix any ℓ ≥ 2.

(i) All tree-shaped OMQsQ with at most ℓ leaves have polynomial NDL-rewritings.

(ii) There is an OMQ with ontologies of depth 2 and linear CQs, any PE-rewriting of which is of

superpolynomial size.

(iii) The following are equivalent:

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:38 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

(a) all tree-shaped OMQs with at most ℓ leaves have polynomial FO-rewritings;

(b) all OMQs with ontologies of depth 2 and linear CQs have polynomial FO-rewritings;

(c) NL/poly ⊆ NC1
.

8.4 OMQs with PFSP and Bounded Treewidth
Consider the Boolean function HCFL that corresponds to the hardest context-free language L0 [40]:

it takes a word in the alphabet of L0 as input and returns 1 iff the word is in L0. It is known that

HCFL is LogCFL/poly-complete under non-uniform AC0
-reductions [47]. It is also not hard to

define a monotone version mHCFL of this function that is also LogCFL/poly-complete. Indeed,

if HCFL has n inputs x = x1, . . . , xn , then we construct a monotone function mHCFL with 2n
inputs x,y, where y = y1, . . . ,yn , by taking

mHCFL(x,y) =

0, if there is i with xi = yi = 0,

HCFL(x), if yi = ¬xi , for all i,

1, otherwise.

Now, mHCFL together with Theorems 5.12, 7.4 and 6.6 give us the following:

Theorem 8.4. Fix any t > 0.

(i) All OMQsQ with the PFSP and CQs of treewidth at most t have polynomial NDL-rewritings.

(ii) The following are equivalent:

(a) all OMQs with the PFSP and CQs of treewidth at most t have polynomial FO-rewritings;

(b) all tree-shaped OMQs with ontologies of depth 2 have polynomial FO-rewritings;

(c) LogCFL/poly ⊆ NC1
.

Using Theorem 3.3 and the fact that OMQs with ontologies of bounded depth enjoy the PFSP,

we obtain:

Corollary 8.5. The following OMQs have polynomial-size NDL-rewritings:

– OMQs with ontologies of bounded depth and CQs of bounded treewidth;

– OMQs with ontologies not containing axioms of the form ϱ(x,y) → ϱ ′(x,y) (and (2)) and CQs

of bounded treewidth.

Whether all OMQswithout axioms of the form ϱ(x,y) → ϱ ′(x,y) have polynomial-size rewritings

remains open.
15
As concerns PE-rewritings for OMQs with CQs of bounded treewidth, Theorem 8.3

sends a negative message if their ontologies are of depth at least 2. However, for ontologies of

depth 1, we obtain the following positive result:

Theorem 8.6. (i) For any fixed t > 0, all OMQsQ with ontologies of depth 1 and CQs of treewidth

at most t have polynomial PE-rewritings.

(ii) All tree-shaped OMQsQ of depth 1 have polynomial Π4-PE rewritings.

Proof. (i) By Theorems 5.14 and 7.6, f ▽Q ∈ mNC1
, and so there is a polynomial PE-rewriting.

(ii) By Corollary 5.7 and Theorem 7.7, f ▽Q ∈ mΠ3. By a simple unravelling argument, f ▽Q is

computed by a polynomial monotone Boolean Π3-formula. It remains to repeat the argument in

the proof of Theorem 4.2 to obtain a polynomial Π4-PE rewriting ofQ . □

15
A positive answer to this question [56] is based on a flawed proof.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:39

9 COMBINED COMPLEXITY OF OMQ ANSWERING
The size of OMQ rewritings we investigated so far is crucial for classical OBDA, which relies upon

a reduction to standard database query evaluation. However, this way of answering OMQs may not

be optimal, and so understanding the size of OMQ rewritings does not shed much light on how hard

OMQ answering actually is. For example, answering the OMQs from the proof of Theorem 8.2 (ii)

via PE-rewriting requires superpolynomial time, while the graph reachability problem encoded

by those OMQs is NL-complete. On the other hand, the existence of a short rewriting does not

obviously imply tractability.

In this section, we analyse the combined complexity of answering OMQs classified according to

the depth of ontologies and the shape of CQs. More precisely, our concern is the following decision

problem: given an OMQ Q(x) = (T ,q(x)), a data instance A and a tuple a from ind(A), decide
whether T ,A |= q(a). Recall from Section 3 that T ,A |= q(a) iff CT, A |= q(a) iff there exists a

homomorphism from q(a) to CT, A .
The combined complexity of CQ evaluation has been thoroughly investigated in relational

database theory. In general, evaluating CQs is NP-complete [24], but the problem becomes tractable

for tree-shaped CQs [88] and bounded treewidth CQs [25, 42]—LogCFL-complete, to be more

precise [36].

The emerging combined complexity landscape for OMQ answering is summarised in Fig. 2b

in Section 1.3. The NP and LogCFL lower bounds for arbitrary OMQs and tree-shaped OMQs

with ontologies of bounded depth are inherited from the corresponding CQ evaluation problems.

The NP upper bound for all OMQs was shown by Calvanese et al. [23] and Artale et al. [6], while

the matching lower bound for tree-shaped OMQs by Kikot et al. [56] and Gottlob et al. [34]. By

reduction of the reachability problem for directed graphs, one can easily show that evaluation

of tree-shaped CQs with a bounded number of leaves (as well as answering OMQs with unary

predicates only) is NL-hard. We now establish the remaining results.

9.1 OMQs with Bounded-Depth Ontologies
We begin by showing that the LogCFL upper bound for CQs of bounded treewidth [36] is preserved

even in the presence of ontologies of bounded depth.

Theorem 9.1. For any fixed d ≥ 0 and t > 0, answering OMQs with ontologies of depth at most d
and CQs of treewidth at most t is LogCFL-complete.

Proof. LetQ(x) = (T ,q(x)) be an OMQ with T of depth at most d and q of treewidth at most t .
As T is of finite depth, CT, A is finite for anyA. As LogCFL is closed under LLogCFL

-reductions [35]

and evaluation of CQs of bounded treewidth is LogCFL-complete, it suffices to show that CT, A can

be computed by an LLogCFL
-transducer (a deterministic logspace Turing machine with a LogCFL

oracle). Clearly, we need only logarithmic space to represent any predicate name or individual

constant from T and A, as well as any word aw ∈ ∆CT, A (since |w | ≤ d and d is fixed). Finally, as

entailment in OWL 2QL is in NL [6], each of the following problems can be decided by making a

call to an NL (hence LogCFL) oracle:
– decide whether aϱ1 . . . ϱn ∈ ∆

CT, A
, for any n ≤ d and roles ϱi from T ;

– decide whether u ∈ ∆CT, A belongs to ACT, A , for a unary predicate A from T and A;

– decide whether (u1,u2) ∈ ∆
CT, A × ∆CT, A is in P CT, A , for a binary P from T and A. □

If we restrict the number of leaves in tree-shaped OMQs, then the LogCFL upper bound can be

improved to NL:

Theorem 9.2. For any fixed d ≥ 0 and ℓ ≥ 2, answering OMQs with ontologies of depth at most d
and tree-shaped CQs with at most ℓ leaves is NL-complete.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:40 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

ALGORITHM 1: Nondeterministic procedure TreeQuery for answering tree-shaped OMQs

Data: a tree-shaped OMQ (T ,q(x)), a data instance A and a tuple a from ind(A)
Result: true if T ,A |= q(a) and false otherwise

fix a directed tree T compatible with the Gaifman graph of q and let z0 be its root;

letU =
{
aw ∈ ∆CT, A | a ∈ ind(A) and |w | ≤ d

}
; /* not computed */

guess u0 ∈ U ; /* use the definition of U to check if the guess is allowed */

if z0 is the ith answer variable and u0 , ai then
return false

check u0 ∈ A
CT, A

, for all A(z0) ∈ q, and (u0,u0) ∈ P
CT, A

, for all P(z0, z0) ∈ q;

frontier←− {z0 7→ u0};

while frontier , ∅ do
remove some z 7→ u from frontier;
foreach child z′ of z in T do

guess u ′ ∈ U ; /* use the definition of U to check if the guess is allowed */

if z′ is the ith answer variable and u ′ , ai then
return false

check (u,u ′) ∈ P CT, A , for all P(z, z′) ∈ q;
check u ′ ∈ ACT, A , for all A(z′) ∈ q, and (u ′,u ′) ∈ P CT, A , for all P(z′, z′) ∈ q;
frontier←− frontier ∪ {z′ 7→ u ′}

return true;

Proof. Algorithm 1 defines a nondeterministic procedure TreeQuery for deciding whether a

tuple a is a certain answer to a tree-shaped OMQ (T ,q(x)) over A. The procedure views q as a

directed tree (we pick one of its variables z0 as a root) and constructs a homomorphism from q(a)
to CT, A on-the-fly by traversing the tree from root to leaves. The set frontier is initialised with

a pair z0 7→ u0 representing the choice of where to map z0. The possible choices for z0 include

ind(A) and aw ∈ ∆CT, A with |w | ≤ d . This set of possible choices is denoted by U in Algorithm 1.

Note thatU occurs only in statements of the form ‘guess u ∈ U ’ and need not be fully materialised.

Instead, we assume that the sequence u is guessed element-by-element and the condition u ∈ U
is verified along the sequence of guesses. We first ensure that, if z0 is an answer variable of q(x),
then u0 is the individual constant corresponding to z0 in a. Next, if z0 ∈ ind(A), then we verify

16

that u0 satisfies all atoms in q(x) that involve only z0. The remainder of the algorithm consists of a

while loop, in which we remove z 7→ u from frontier, and if z is not a leaf node, guess where to
map its children. We must then check that the guessed element u ′ for a child z ′ is compatible with

(i) the binary atoms linking z to z ′ and (ii) the atoms that involve only z ′. If the checks succeed,
then we add z ′ 7→ u ′ to frontier, for each child z ′ of z; otherwise, false is returned. We exit the

while loop when frontier is empty, that is, when an element of CT, A has been assigned to each

variable in q(x).
Correctness and termination of the algorithm are straightforward. Membership in NL follows

from the fact that the number of leaves of q does not exceed ℓ, in which case the cardinality of

frontier is bounded by ℓ, and the fact that the depth of T does not exceed d , in which case every

element ofU requires only a fixed amount of space to store. So, since each variable z can be stored

in logarithmic space, the set frontier can also be stored in logarithmic space. Finally, as noted in

the proof of Theorem 9.1, the checks u ∈ ACT, A and (u,u ′) ∈ P CT, A can be implemented in NL. □

16
The operator check immediately returns false if the condition is not satisfied.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:41

9.2 OMQs with Bounded-Leaf CQs
It remains to settle the complexity of answering OMQs with arbitrary ontologies and tree-shaped

CQs with a bounded number of leaves, for which neither the upper bounds from Section 9.1 nor

the NP lower bound by Kikot et al. [56] are applicable.

Theorem 9.3. For any fixed ℓ ≥ 2, answering OMQs with tree-shaped CQs having at most ℓ leaves
is LogCFL-complete.

Proof. First, we establish the upper bound using a characterisation of the class LogCFL in terms

of nondeterministic auxiliary pushdown automata (NAuxPDAs). An NAuxPDA [29] is a nondeter-

ministic Turing machine with an additional work tape constrained to operate as a pushdown store.

Sudborough [82] showed that LogCFL coincides with the class of problems that can be solved by

NAuxPDAs running in logarithmic space and polynomial time (note that the pushdown tape is not

subject to the logarithmic space bound). Algorithm 2 gives a procedure BLQuery for answering

OMQs with bounded-leaf CQs that can be implemented by an NAuxPDA.

Similarly to TreeQuery, the idea is to view the input CQ q(x) as a treeT and iteratively construct

a homomorphism from q(a) to CT, A , working from root to leaves. We begin by guessing an

element a0w to which the root variable z0 is mapped and checking that a0w is compatible with z0.

However, instead of storing directly a0w in frontier, we guess it element-by-element and push the

wordw onto the stack, stack. We assume that we have access to the top of the stack, denoted by

top(stack), and that the call top(stack) on empty stack returns ε . During the execution of BLQuery,
the height of the stack will never exceed 2|T | + |q | (which is enough to find a homomorphism if

one exists [6]), and so we assume that the height of the stack, denoted by |stack|, is also available

as, for example, a variable whose value is updated by the push and pop operations on stack.
After having guessed a0w , we check that z0 can be mapped to it, which is done by calling

canMap(z0, a0, top(stack)). If the check succeeds, then we initialise frontier to the set of 4-tuples

of the form (z0 7→ (a0, |stack|), zi), for all children zi of z0 in T . Intuitively, a tuple (z 7→ (a,n), z
′)

records that the variable z is mapped to the element a stack≤n and that the child z ′ of z remains to

be mapped (in the explanations, we use stack≤n to refer to the word comprising the first n symbols

of stack; the algorithm, however, does not make use of it).

In the main loop, we remove one or more tuples from frontier, choose where to map the variables

and update frontier and stack accordingly. There are four options. Option 1 is used for tuples

(z 7→ (a, 0), z ′) where both z and z ′ are mapped to individual constants, Option 2 (Option 3)

for tuples (z 7→ (a,n), z ′) in which we map z ′ to a child (respectively, parent) of the image of z
in CT, A , while Option 4 applies when z and z ′ are mapped to the same element (which is possible

if P(z, z ′) ∈ q, for some P that is reflexive according to T). Crucially, however, the order in

which tuples are treated matters due to the fact that several tuples ‘share’ the single stack. Indeed,

when applying Option 3, we pop a symbol from stack, and may therefore lose some information

that is needed for processing other tuples. To avoid this, Option 3 may only be applied to tuples

(z 7→ (a,n), z ′) with maximal n, and it must be applied to all such tuples at the same time. For

Option 2, we require that the selected tuple (z 7→ (a,n), z ′) is such that n = |stack|: since z ′ is being
mapped to an element a stack≤n ϱ, we need to access the nth symbol in stack to determine the

possible choices for ϱ and to record the symbol chosen by pushing it onto stack.
The procedure terminates and returns true when frontier is empty, meaning that we have

successfully constructed a homomorphism witnessing that the input tuple is an answer. Conversely,

given a homomorphism from q(a) to CT, A , we can define a successful execution of BLQuery. We

prove in Appendix A.12 that BLQuery terminates (Proposition A.8), is correct (Proposition A.9)

and can be implemented by an NAuxPDA (Proposition A.10). The following example illustrates the

construction.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:42 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

ALGORITHM 2: Nondeterministic procedure BLQuery for answering bounded-leaf OMQs.

Data: a bounded-leaf OMQ (T ,q(x)), a data instance A and a tuple a from ind(A)
Result: true if T ,A |= q(a) and false otherwise

fix a directed tree T compatible with the Gaifman graph of q and let z0 be its root;

guess a0 ∈ ind(A) and n0 < 2|T | + |q |; /* guess the ABox element and max distance */

foreach n in 1, . . . ,n0 do /* guess the initial element in a step-by-step fashion */
guess a role ϱ in T such that isGenerated(ϱ, a0, top(stack));
push ϱ on stack

check canMap(z0, a0, top(stack));
frontier←−

{
(z0 7→ (a0, |stack|), zi) | zi is a child of z0 in T

}
;

while frontier , ∅ do
guess one of the 4 options;
if Option 1 then /* take a step in ind(A) */

remove some (z 7→ (a, 0), z′) from frontier;
guess a′ ∈ ind(A);
check (a,a′) ∈ P CT, A , for all P(z, z′) ∈ q, and canMap(z′, a′, ε);
frontier←− frontier ∪ {(z′ 7→ (a′, 0), z′i) | z

′
i is a child of z′ in T }

else if Option 2 and |stack| < 2|T | + |q | then /* a step forward in the tree part */
remove some (z 7→ (a, |stack|), z′) from frontier;
guess a role ϱ in T such that isGenerated(ϱ, a, top(stack));
push ϱ on stack;
check T |= ϱ(x,y) → P(x,y), for all P(z, z′) ∈ q, and canMap(z′, a, top(stack));
frontier←− frontier ∪ {(z′ 7→ (a, |stack|), z′i) | z

′
i is a child of z′ in T }

else if Option 3 and |stack| > 0 then /* a step backward in the tree part */
let deepest = {(z 7→ (a,n), z′) ∈ frontier | n = |stack|}; /* may be empty */

remove all deepest from frontier;
pop ϱ from stack;
foreach (z 7→ (a,n), z′) ∈ deepest do

check T |= ϱ(x,y) → P(x,y), for all P(z′, z) ∈ q, and canMap(z′, a, top(stack));
frontier←− frontier ∪ {(z′ 7→ (a, |stack|), z′i) | z

′
i is a child of z′ in T }

else if Option 4 and |stack| > 0 then /* a loop-step in the tree part of CT, A */
remove some (z 7→ (a, |stack|), z′) from frontier;
check T |= P(x, x), for all P(z, z′) ∈ q, and canMap(z′, a, top(stack));
frontier←− frontier ∪ {(z′ 7→ (a, |stack|), z′i) | z

′
i is a child of z′ in T }

else return false;

return true;

Function isGenerated(ϱ, a, σ)
if σ , ε then check T |= ∃y σ (y, x) → ∃y ϱ(x,y) ; /* of the form a . . . σ (tree part) */

else check (a,b) ∈ ϱCT, A , for some b ∈ ∆CT, A \ ind(A) ; /* in ind(A) */
return true;

Function canMap(z, a, σ)

if z is the ith answer variable and either a , ai or σ , ε then return false;
if σ , ε then /* of the form a . . . σ (tree part) */

check T |= ∃y σ (y, x) → A(x), for all A(z) ∈ q, and T |= P(x, x), for all P(z, z) ∈ q
else /* in ind(A) */

check a ∈ ACT, A , for all A(z) ∈ q, and (a,a) ∈ P CT, A , for all P(z, z) ∈ q
return true;

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:43

(a)

y1

B
q(x1, x2)

y2 y3

x1
y4

y5

x2

P S

R S T

U

A
a
CT,A

c

aPB

aPS

aPST −

R

P ,U −

S

T −
P

S

T −

2

1

0

(b)

y1

B
q(x1, x2)

y2 y3

x1
y4

y5

x2

P S

R S T

U

A
a
CT,A

c

aPB

aPS

aPST −

R

P ,U −

S

T −
P

1

4

(c)

y1

B

y2 y3

x1
y4

y5

x2

P S

R S

T

U

A
a c

aPB

aPS

aPST −

R

P ,U −

S

T −

50

4

5

(d)

y1

B

y2

y3

x1
y4

y5

x2

P S

R S

T

U

A
a c

aPB

aPS

aPST −

R

P ,U −

S

T −

5

6

Fig. 20. Partial homomorphisms from a tree-shaped CQ q(x1, x2) to the canonical model CT, A and the
contents of stack in Example 9.4: (a) before the third iteration, (b) before the fifth iteration, (c) before and
(d) after the final (sixth) iteration. Large nodes indicate the last component of the tuples in frontier.

Example 9.4. Suppose T has the following axioms:

A(x) → ∃y P(x,y), P(x,y) → U (y, x), ∃y P(y, x) → B(x),

∃y P(y, x) → ∃y S(x,y), ∃y S(y, x) → ∃yT (y, x),

the query q(x1, x2) consists of the following atoms with quantified variables y1, . . . ,y5:

R(y2, x1), P(y2,y1), S(y1,y3), T (y5,y3), S(y4,y3), U (y4, x2)

and A = {A(a), R(a, c) }. Observe that CT, A |= q(c,a). We show how to define an execution of

BLQuery that returns true on ((T ,q),A, (c,a)) and the homomorphism it induces. We fix some

variable, say y1, as the root of the query tree. We then guess the constant a and the word P , push P
onto stack and check using canMap(y1, a, P) that our choice is compatible with y1. At the start of

the while loop, we have

frontier = { (y1 7→ (a, 1),y2), (y1 7→ (a, 1),y3) } and stack = P, (w-1)

where the first tuple, for example, records that y1 has been mapped to a stack≤1 = aP and y2

remains to be mapped. We are going to use Option 3 for the first tuple in frontier and Option 2

for the second. We (have to) start with Option 2 though: we remove (y1 7→ (a, 1),y3) from frontier,
guess S , push it onto stack, and add (y3 7→ (a, 2),y4) and (y3 7→ (a, 2),y5) to frontier. Note that the
tuples in frontier allow us to read off the elements a stack≤1 and a stack≤2 to which y1 and y3 are

mapped. Thus,

frontier = { (y1 7→ (a, 1),y2), (y3 7→ (a, 2),y4), (y3 7→ (a, 2),y5) } and stack = PS (w-2)

at the start of the second iteration of the loop. We are going to use Option 3 for the second

tuple in frontier and Option 2 for the third. Again, we have to start with Option 2: we remove

(y3 7→ (a, 2),y5) from frontier, and guessT − and push it onto stack. As y5 has no children, we leave

frontier unchanged. At the start of the third iteration (see Fig. 20a),

frontier = { (y1 7→ (a, 1),y2), (y3 7→ (a, 2),y4) } and stack = PST −. (w-3)

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:44 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

We apply Option 3 and, since deepest = ∅, we pop T − from stack but make no other changes. In

the fourth iteration, we again apply Option 3. Since deepest = {(y3 7→ (a, 2),y4)}, we remove this

tuple from frontier and pop S from stack. Since the checks succeed for S , we add (y4 7→ (a, 1), x2)

to frontier. The fifth iteration (see Fig. 20b) begins with

frontier = { (y1 7→ (a, 1),y2), (y4 7→ (a, 1), x2) } and stack = P . (w-5)

We apply Option 3 with deepest = {(y1 7→ (a, 1),y2), (y4 7→ (a, 1), x2)}. This leads to both tuples

being removed from frontier and P popped from stack. We next perform the required checks and,

in particular, verify that the choice of where to map the answer variable x2 agrees with the input

tuple (c,a) (which is indeed the case). Then, we add (y2 7→ (a, 0), x1) to frontier. Thus,

frontier = { (y2 7→ (a, 0), x1) } and stack = ε (w-6)

at the start of the final, sixth, iteration; see Fig. 20c. We choose Option 1, remove (y2 7→ (a, 0), x1)

from frontier, guess c , and perform the required compatibility checks. As x1 is a leaf, no new tuples

are added to frontier; see Fig. 20d. We are thus left with frontier = ∅, and return true.

The proof of LogCFL-hardness is by reduction of the following problem: decide whether an

input of length n is accepted by the nth circuit of a logspace-uniform family of SAC1
-circuits,

which is known to be LogCFL-hard [86]. This problem was used by Gottlob et al. [36] to show

LogCFL-hardness of evaluating tree-shaped CQs. We follow a similar approach, but with one

crucial difference: using an ontology, we ‘unravel’ the circuit into a tree, which allows us to replace

tree-shaped CQs by linear ones. Following Gottlob et al. [36], we assume without loss of generality

that the considered SAC1
-circuits adhere to the following normal form:

– fan-in of all and-gates is 2;

– nodes are assigned to levels, with gates on level i only receiving inputs from gates on level i−1,

the input gates on level 1 and the output gate on the greatest level;

– the number of levels is odd, all even-level gates are or-gates, and all odd-level non-input

gates are and-gates.

It is well known [36, 86] that a circuit in normal form accepts an input α iff there is a labelled

rooted tree (called a proof tree) such that

– the root is labelled with the output and-gate;

– if a node is labelled with an and-gate дi = дj ∧ дk , then it has two children labelled with дj
and дk , respectively;

– if a node is labelled with an or-gate дi = дj1 ∨ . . . ∨ дjk , then it has a unique child that is

labelled with one of дj1, . . . ,дjk ;
– every leaf is labelled with an input gate whose literal evaluates to 1 under α .

For example, the circuit in Fig. 21a accepts (1, 0, 0, 0, 0), as witnessed by the proof tree in Fig. 21b.

While a circuit-input pair may admit multiple proof trees, they are all isomorphic modulo the

labelling. Thus, with every circuitC , we can associate a skeleton proof tree T such thatC accepts α
iff some labelling of T is a proof tree for C and α . Note that T depends only on the number of

levels in C . The reduction [36], which is for presentation purposes reproduced here with minor

modifications, encodesC and α in the database and uses a Boolean tree-shaped CQ based on the

skeleton proof tree. Specifically, the database D(α) uses the gates ofC as constants and consists of

the following facts:

L(дj ,дi) and R(дk ,дi), for every and-gate дi = дj ∧ дk ;

U (дj1,дi), . . . ,U (дjk ,дi), for every or-gate дi = дj1 ∨ · · · ∨ дjk ;

A(дi), for every input gate дi whose value is 1 under α .

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:45

(a)

x11 x22 ¬x33 x44 x55 ¬x16

or7 or8 or9 or10

and11 and12 and13

or14 or15

and16 (b)

x11

or7

¬x33

or8

and11

or14

and16

or15

and12

or8 or9

¬x33 ¬x33

(d)

1

A
2 1

A
3

A
1

A
4 2 3

A
4 1

A
3

A
4 5 6

7 8 8 9 8 10

11 12

.

.

.

12 13

14 15

16 a
L R

U

U U U

L R L R L R

U

U

U

U

U

U

U U

U

U

U

U

U U

(c)

U U

L

R

U U

L

R

U U

L R

A A A A

Fig. 21. (a) A circuit C of five levels with input α : x1 7→ 1, x2 7→ 0, x3 7→ 0, x4 7→ 0, x5 7→ 0 (the gate
number is indicated on the left and gates with value 1 under α are shaded); (b) a proof tree for C and α ;
(c) CQs q (thick grey arrows) and q′ (black arrows); (d) the canonical model of (Tα ,A) with the subscript
of Gi inside the nodes.

The CQ q uses the nodes of T as variables, has an atomU (zj , zi) (L(zj , zi) or R(zj , zi), respectively)
for every node zi with unique (left or right, respectively) child zj , and has an atom A(zi) for every
leaf zi . These definitions guarantee that D(α) |= q iffC accepts α ; moreover, both q and D(α) can
be constructed by logspace transducers.

To adapt this reduction to our setting, we replace q by a linear CQ q′, which is obtained by a

depth-first traversal of q. When evaluated on D(α), the CQs q′ and q may give different answers,

but the answers coincide if the CQs are evaluated on the unravelling of D(α) into a tree. Thus, we
define (Tα ,A) whose canonical model induces a tree isomorphic to the unravelling of D(α). To
formally introduce q′, consider the sequence of words defined inductively as follows:

w0 = ε and w j+1 = L−U −w j U LR−U −w j U R, for j > 0.

SupposeC has 2d + 1 levels, d ≥ 0. Consider the dth wordwd = ϱ1ϱ2 . . . ϱk and take

q′(y0) = ∃y1, . . . ,yk

[∧
1≤i≤k

ϱi (yi−1,yi) ∧
∧

ϱi ϱi+1=U −U

A(yi)
]
;

see Fig. 21c. We now define (Tα ,A). SupposeC has gates д1, . . . ,дm , with the output gate дm . In
addition to predicatesU , L, R,A, we take a unary predicateGi for each gate дi . We setA = {Gm(a)}
and include the following axioms in Tα :

Gi (x) → ∃y
(
S(y, x) ∧G j (y)

)
, for every S(дj ,дi) ∈ D(α), S ∈ {U , L,R},

Gi (x) → A(x), for every A(дi) ∈ D(α);

see Fig. 21d for an illustration. When restricted to predicatesU , L, R and A, the canonical model

of (Tα ,A) is isomorphic to the unravelling of D(α) starting from дm .

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:46 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

We show in Appendix A.13 that Tα and q′ can be constructed by logspace transducers (Proposi-

tion A.11), and thatC accepts α iff Tα ,A |= q′(a) (Proposition A.12). □

10 CONCLUSIONS AND OPEN PROBLEMS
Our aim in this work was to understand how the size of OMQ rewritings and the combined

complexity of OMQ answering depend on (i) the existential depth of OWL 2QL ontologies, (ii) the

treewidth of CQs or the number of leaves in tree-shaped CQs, and (iii) the type of rewriting:

PE, NDL or arbitrary FO.

We tackled the succinctness problem by representing OMQ rewritings as (Boolean) hypergraph

functions and establishing an unexpectedly tight correspondence between the size of OMQ rewrit-

ings and the size of various computational models for computing these functions. It turned out

that polynomial-size PE-rewritings can only be constructed for OMQs with ontologies of depth 1

and CQs of bounded treewidth. Ontologies of larger depth require, in general, PE-rewritings of

super-polynomial size. The good and surprising news, however, is that, for classes of OMQs with

ontologies of bounded depth and CQs of bounded treewidth, we can always (efficiently) construct

polynomial-size NDL-rewritings. The same holds if we consider OMQs obtained by pairing ontolo-

gies of depth 1 with arbitrary CQs, as well as arbitrary ontologies with bounded-leaf queries; see

Fig. 2 for details. The existence of polynomial-size FO-rewritings for different classes of OMQs was

shown to be equivalent to major open problems in computational and circuit complexity such as

NL/poly ⊆? NC1
, LogCFL/poly ⊆? NC1

and NP/poly ⊆? NC1
.

We also determined the combined complexity of answering OMQs from the considered classes.

In particular, we showed that OMQ answering is tractable—either NL- or LogCFL-complete—for

bounded-depth ontologies coupled with bounded treewidth CQs, as well as for arbitrary ontologies

with tree-shaped queries with a bounded number of leaves. We point out that membership in

LogCFL implies that answering OMQs from the identified tractable classes can be ‘profitably

parallelised’ (for details, consult [36]).

Comparing the two sides of Fig. 2, we remark that the class of tractable OMQs nearly coincides

with the OMQs admitting polynomial-size NDL-rewritings (the only exception being OMQs with

ontologies of depth 1 and arbitrary CQs). However, the LogCFL and NL membership results cannot

be immediately inferred from the existence of polynomial-size NDL-rewritings, since evaluating

polynomial-size NDL-queries is a PSpace-complete problem in general. In the follow-up paper [10],

we give polynomial-size NDL-rewritings for these cases, which can be constructed and evaluated

in LogCFL and NL, respectively, and study the parametrised and query complexities of OMQ

answering with CQs of bounded treewidth.

Although the present article gives comprehensive solutions to the succinctness and combined

complexity problems formulated in Section 1, it also raises some interesting and challenging

questions:

(1) What is the size of rewritings of OMQs with a fixed ontology?

(2) What is the size of rewritings of OMQs with ontologies in a fixed signature?

(3) What is the size of rewritings for OMQs whose ontologies do not contain role inclusions,

that is, axioms of the form ϱ(x,y) → ϱ ′(x,y)?

Answering these questions would provide further insight into the difficulty of OBDA and could

lead to identification of new classes of well-behaved OMQs.

As far as practical OBDA is concerned, our experience with the query answering framework

Ontop [61, 77], which employs the tree-witness rewriting, shows that mappings and database

constraints together with semantic query optimisation techniques can drastically reduce the size of

rewritings and produce efficient SQL queries over the data. The role ofmappings and data constraints

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:47

in OBDA is yet to be fully investigated [15, 63, 76, 79] and constitutes another promising avenue

for future work.

Finally, the focus of this article was on the ontology language OWL 2QL that has been designed

specifically for OBDA via query rewriting. However, in practice ontology engineers often require

constructs that are not available in OWL 2QL. Typical examples include axioms with ∨ and ∧ such

as A(x) → B(x) ∨C(x) and P(x,y) ∧A(y) → B(x). The former is a standard covering constraint in

conceptual modelling, while the latter occurs in biomedical ontologies such as SNOMED CT. There

are at least three ways of extending the applicability of rewriting techniques to a wider class of

ontology languages. One is the combined approach discussed in Section 1.4. A second approach

relies upon the observation that although many ontology languages do not guarantee the existence

of rewritings for all ontology-query pairs, it may still be the case that the queries and ontologies

typically encountered in practice admit rewritings. This has motivated the development of diverse

methods for identifying particular ontologies andOMQs forwhich (first-order or Datalog) rewritings

exist [12, 16, 44, 50, 66]. A third approach consists in replacing an ontology formulated in a complex

ontology language (which lacks efficient query answering algorithms) by an ontology written in a

simpler language, for which query rewriting methods can be employed. Ideally, one would show

that the simpler ontology is equivalent to the original with regards to query answering [17], and

thus provides the exact set of answers. Alternatively, one can use a simpler ontology to approximate

the answers for the full one [17, 28] (possibly employing a more costly complete algorithm to decide

the status of the remaining candidate answers [89]).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:48 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

A SUPPLEMENTARY MATERIALS
A.1 Proof of Theorem 3.9

Theorem 3.9. For any OMQQ(x), the formulas Φtw(x) and Φ′tw(x) are equivalent, and so Φ
′
tw(x)

is a PE-rewriting ofQ(x) over complete data instances.

Proof. Let Q(x) = (T ,q(x)) and q(x) = ∃y φ(x,y). We begin by showing that, for every tree

witness t forQ(x), we have the following chain of equivalences:∧
R(z,z′)∈qt

(z = z ′) ∧
∨

t is ϱ-initiated

∧
z∈tr∪ti

ϱ∗(z) ≡
∧

z,z′∈tr∪ti

(z = z ′) ∧
∨

t is ϱ-initiated

∧
z∈tr∪ti

ϱ∗(z)

≡ ∃z0

(∧
z∈tr∪ti

(z = z0) ∧
∨

t is ϱ-initiated

ϱ∗(z0)

)
≡ ∃z0

(∧
z∈tr∪ti

(z = z0) ∧
∨

t is generated by τ

τ (z0)

)
, (20)

where z0 is a fresh variable. The first equivalence follows from the transitivity of equality and

the fact that every pair of variables z, z ′ in a tree witness must be linked by a sequence of binary

atoms. The following equivalence can be readily verified using first-order semantics. For the final

equivalence, we use the fact that if t is ϱ-initiated and T |= τ (x) → ∃y ϱ(x,y), then t is generated
by τ , and conversely, if t is generated by τ , then there is some role ϱ that initiates t and is such

that T |= τ (x) → ∃y ϱ(x,y).
By (20), Φ′tw(x) can be equivalently expressed as follows:

∃y
∨

Θ⊆ΘQ

independent

(∧
S (z)∈q\qΘ

S(z) ∧
∧
t∈Θ

∃z0

(∧
z∈tr∪ti

(z = z0) ∧
∨

t is generated by τ

τ (z0)
))
.

Finally, we observe that, for every independent Θ ⊆ ΘQ , the variables that occur in some ti, for

t ∈ Θ, do not occur in t′i , for any other t′ ∈ Θ. It follows that if z ∈ ti and t ∈ Θ, then the only

occurrence of z in the disjunct for Θ is in the equality atom z = z0. We can thus drop all such

atoms, while preserving equivalence, which gives us precisely the tree-witness rewriting Φtw(x).
In particular, this means that Φ′tw(x) is a rewriting ofQ(x) over complete data instances. □

A.2 Proofs of Theorems 4.2 and 4.4 and of Proposition 4.3
Theorem 4.2. If f ▽Q is computed by a Boolean formula (monotone formula or monotone circuit) χ ,

thenQ has an FO- (respectively, PE- or NDL-) rewriting of size O(|χ | · |Q |).

Proof. The cases of FO- and PE-rewritings are dealt with in Section 4.1. So, letQ(x) = (T ,q(x))
be an OMQ andC a monotone circuit computing f ▽Q . Let t1, . . . , tl be tree witnesses forQ(x) with
q(x) = ∃y

∧n
i=1

Si (zi). We assume that the gates д1, . . . ,дn ofC are the inputs pS1(z 1), . . . ,pSn (zn)
for the atoms, the gates дn+1, . . . ,дn+l are the inputs pt1, . . . ,ptl for the tree witnesses, whereas
дn+l+1, . . . ,дm are and- and or-gates. Denote by Π the following NDL-program, where z = x ∪y:

– Si (zi) → Gi (z), for 0 < i ≤ n;
– τ (u) → Gn+j (z[t

j
r/u]), for 0 < j ≤ l and τ generating tj , where z[tjr/u] is the result of

replacing each z ∈ tjr in z with u;

–

{
G j (z) ∧Gk (z) → Gi (z), if дi = дj ∧ дk ,

G j (z) → Gi (z) and Gk (z) → Gi (z), if дi = дj ∨ дk ,
for n + l < i ≤ m;

– Gm(z) → G(x).

It is not hard to see that (Π,G(x)) is an NDL-rewriting ofQ(x). □

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:49

Theorem 4.4. If f ▼Q is computed by a Boolean formula (monotone formula or monotone circuit) χ ,
thenQ has an FO- (respectively, PE- or NDL-) rewriting of size O(|χ | · |Q |).

Proof. Let χ be a Boolean formula that computes

f ▼Q =
∨

Θ⊆ΘQ

independent

(∧
S (z)∈q\qΘ

pS (z) ∧
∧
t∈Θ

(∧
R(z,z′)∈qt

pz=z′ ∧
∨

t is ϱ-initiated

∧
z∈tr∪ti

pϱ∗(z)
))
,

and letΦ(x) be the FO-formula obtained by replacing eachpz=z′ in χ with z = z ′, eachpS (z) with S(z),
each pϱ∗(z) with

∨
T |=τ (x)→∃y ϱ(x ,y) τ (z), and prefixing the result with ∃y. Recall that the modified

rewriting Φ′tw(x) was obtained by applying this same transformation to the original monotone

Boolean formula for f ▼Q . Since χ computes f ▼Q , Φ(x) and Φ′tw(x) are equivalent FO-formulas. As

we have already established that Φ′tw(x) is a rewriting ofQ(x), the same must be true of Φ(x). The
statement regarding NDL-rewritings can be shown similarly to the proof of Theorem 4.2. □

Proposition 4.3. The function f ▼Q can be computed by a nondeterministic algorithm that runs in

polynomial time in the size ofQ .

Proof. Given truth-values for the pS (z), pz=z′ and pϱ∗(z) in f ▼Q , we first guess k , for k ≤ |q |,
subsets q

1
, . . . ,qk of q, concepts τ1, . . . , τk and maps h1, . . . ,hk and check that the hi : qi → C

τi (a)
T

are homomorphisms, for 1 ≤ i ≤ k , and the t1, . . . , tk corresponding toq1
, . . . ,qk are tree witnesses.

Then, we check whetherΘ = {t1, . . . , tk } is independent. Finally, we check whether the polynomial-

size formula (11) is true under the given truth-values for every t ∈ Θ, and every S(z) with pS (z) = 0

belongs to some t ∈ Θ. □

A.3 Generalised HGPs and THGPs
In some cases, it is convenient to use generalised HGPs and THGPs that allow hypergraph vertices

labelled with conjunctions

∧
i l i of literals l i . The following two propositions show that this

generalisation does not increase the computational power of HGPs and THGPs.

Proposition A.1. For every generalised HGP P over n variables, there is an HGP P ′ computing the

same function and such that |P ′ | ≤ n · |P |.

Proof. Let P be based on a hypergraph H = (V , E). To construct P ′, we split every vertex v ∈ V

labelled with

∧k
i=1

l i into k new vertices v1, . . . ,vk and label vi with l i , for 1 ≤ i ≤ k ; each
hyperedge containing v will now contain all the vi . It is easy to see that P(α) = P ′(α), for any
input α . Since we can assume without loss of generality that l i and l j in each

∧k
i=1

l i have distinct
variables for i , j, we have |P ′ | ≤ n · |P |. □

Proposition A.2. For every generalised THGP P over n variables, there is a THGP P ′ computing

the same function and such that |P ′ | ≤ n · |P |. Moreover, the degree of P ′ and the number of leaves in

it are the same as in P .

Proof. Let P be based on a tree hypergraph H = (U ,V , E). To construct P ′, we proceed as in the

proof of Proposition A.1: we split every vertex v ∈ V (which is an edge of the underlying tree TH)

labelled with

∧k
i=1

l i into k new verticesv1, . . . ,vk and labelvi with l i , for 1 ≤ i ≤ k—these vertices
form consecutive edges in the underlying tree in P ′; each hyperedge containing v will now contain

all the vi . As before, we have P(α) = P ′(α), for any α , and |P ′ | ≤ n · |P |. Moreover, it should be

clear that the degree of P ′ and the number of leaves in it are the same as in P . □

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:50 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

u

u ′

u0

u1 u2

u3

v ′e pve

v ′′e pve

v1

e

pve

v2

e

1

v3

e

pe

e ′

e

Fig. 22. Splitting an edge ve in a tree hypergraph in the proof of Proposition 5.5.

A.4 Proof of Proposition 5.4
Proposition 5.4. If an OMQQ(x) has a tree-shaped CQ q(x) with ℓ leaves, thenH(Q) is isomor-

phic to a tree hypergraph based on a tree with max(2, ℓ) leaves.

Proof. The case when q has no binary atoms is trivial. Otherwise, we begin with the Gaifman

graph Gq of q, which is a tree, and label its nodes u with the unary atoms ξ (u) in q of the form

A(u) and P(u,u), and its edges {u,v} with the atoms of the form P(u,v) and P ′(v,u) in q. Then,
we replace every edge {u,v} labelled with P1(u

′
1
,v ′

1
), . . . , Pn(u

′
n,v
′
n), for n ≥ 2, by a sequence of n

edges forming a path from u to v and label them with P1(u
′
1
,v ′

1
), . . . , Pn(u

′
n,v
′
n), respectively. In the

resulting tree, for every node u labelled with n unary atoms ξ1(u), . . . , ξn(u), for n ≥ 1, we pick an

edge {u,v} labelled with some P(u ′,v ′) and replace it by a sequence of n + 1 edges forming a path

from u to v and label them with ξ1(u), . . . , ξn(u), P(u
′,v ′), respectively. The resulting tree T has

the same number of leaves as q. It is readily checked that, for any tree witness t forQ , the set of

edges in T labelled with atoms in qt forms a convex subtree of T , which gives a tree hypergraph

isomorphic toH(Q). □

A.5 Proof of Proposition 5.5
Proposition 5.5. For any tree hypergraph H of degree at most d , there is a monotone THGP that

computes fH and is of degree at most max(2,d) and size O(|H |).

Proof. Let H = (U ,V , E). For any hyperedge e ∈ E, we fix a vertex ve ∈ e and perform the

following for all e ∈ E. We split the edge ve = {u,u
′} in the underlying tree TH of H into a pair of

edges v ′e = {u,u
0} and v ′′e = {u

0,u ′} and add a new chain of edges vie = {u
i−1,ui }, for 1 ≤ i ≤ 3,

to TH , where the u
i
are fresh nodes (if the same vertex is chosen for distinct hyperedges e and e ′,

then the edge ve = ve ′ is split only once, and the same u0
is used for both chains of length 3). The

vertices v ′e , v
′′
e and v1

e are labelled with pve and added to all hyperedges that contained ve . We

label v2

e with 1 and add it to e . We label v3

e with pe and introduce a new hyperedge e ′ = {v2

e ,v
3

e };

see Fig. 22 All other vertices are labelled with the corresponding variables of fH . The resulting
THGP P is of degree at most max(2,d).

We claim that P computes fH . Indeed, for any input α with α (pe) = 0, we have to include the

hyperedge e ′ into the cover, and so cannot include e itself. Thus, P(α) = 1 iff there is an independent

set E ′ ⊆ { e ∈ E | α (pe) = 1 } covering the zeros of variables pv . □

A.6 Proof of Theorem 5.6
Lemma A.3. For any tree hypergraph H = (U ,V , E) of degree at most 2, we have fH (α) = 1 iff α

neither is degenerate nor meets any obstruction.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:51

Proof. It should be clear that fH outputs 0 if either α is degenerate or meets an obstruction.

Conversely, if α is neither degenerate and nor meets any obstruction, then we construct an

independent subset E ′ ⊆ {e ∈ E | α (pe) = 1} covering all vertices labelled with zeros under α as

follows.

Let E0 be the set of all e0 ∈ E such that α (pe0
) = 1 and there is v0 ∈ e0 with α (pv0

) = 0 and

α (pe ′) = 0 for any hyperedge e ′ , e0 withv0 ∈ e
′
; cf. (O1) and (O2). Let E1 be the result of iteratively

(until a fixpoint) extending E0 with hyperedges e2 ∈ E such that α (pe2
) = 1 and

there are e0 ∈ E0 and e1 ∈ E \ E0 with e0 ∩ e1 , ∅ and v ∈ e1 ∩ e2 with α (pv) = 0; (21)

cf. (O3). We claim that E1 is independent. For the sake of contradiction, suppose there are dis-

tinct e, e ′ ∈ E1 with e ∩ e ′ , ∅. Then there are sequences (e0, e1, . . . , e2k) and (e
′
0
, e ′

1
, . . . , e ′

2k ′)

satisfying (O1) and (O3) and such that e = e2k and e ′ = e ′
2k ′ . Consider now the sequence

(e0, e1, . . . , e2k , e
′
2k ′, . . . , e

′
1
, e ′

0
).

By construction, it satisfies conditions (O1)–(O3). However, it may contain duplicating hyperedges,

say, ei and e
′
i′ . If that is the case, then we remove ei+1, . . . , e

′
i′ from the sequence. By construction,

the result of the exhaustive removal of repetitions is an obstruction, and α meets it from v0 to v
′
0
.

Next, if there is a vertex v with α (pv) = 0 but v <
⋃

E1, then we extend E1: since α is non-

degenerate, there is some e∗ ∈ E such that v ∈ e∗, α (pe∗) = 1 and e∗ ∩
⋃

E1 = ∅. (Indeed, there

are two hyperedges e ′∗ and e ′′∗ containing v with α (pe ′∗) = α (pe ′′∗) = 1; for otherwise, a single

such hyperedge would be in E0. Next, if e
′
∗ ∩

⋃
E1 , ∅, then, by (21), we would get e ′′∗ ∈ E1; thus,

neither e ′∗ nor e
′′
∗ intersects

⋃
E1.) Now we apply the extension procedure to E1 ∪ {e∗}, that is, we

iteratively (until a fixpoint) extend the subset of hyperedges by all e2 ∈ E such that α (pe2
) = 1 and

there are e0 ∈ E1 and e1 ∈ E \ E1 with e0 ∩ e1 , ∅ and v ∈ e1 ∩ e2 with α (pv) = 0. (22)

We claim that the resulting set E2 is independent. Indeed, if E2 contains e and e
′
with e ∩ e ′ , ∅,

then one of them, say e , was added to E2 due to (22) with some e0, e1 and v . We claim that the

second hyperedge (in our case, e ′) could not have been added to E2. The intuition is as follows:

if both e and e ′ were added to E2, then they are ‘reachable’ from e∗ by two different paths (we

may speak of paths because the hyperedges are subtrees, and each vertex can belong to at most 2

hyperedges). Since e ∩ e ′ , ∅, these two paths intersect, forming a ‘loop’, which contradicts the

fact that the underlying tree of the hypergraph has no cycles. It follows that e ′ could not have

been added to E2, and so we must have e ′ ∈ E1. This, however, means that e1 should have been

added to E1 by using (21) for e ′, e and v (in place of, respectively, e0, e1 and v in (21)) contrary to

the assumption that e was added only to E2 using it.

The process of extending Ek to Ek+1 is repeated until there are no vertices v such that α (pv) = 0

but v <
⋃

Ek . It can be seen that the resulting set Ek is independent. □

A.7 Proof of Theorem 5.8
Theorem 5.8. For any tree hypergraphH based on a tree with at most ℓ leaves, there is a monotone

linear THGP that computes the function fH and is of size O(|H |3ℓ+1).

Proof. Let H = (U ,V , E) be a tree hypergraph: each e ∈ E induces a convex subtree Te of the
underlying treeTH . Pick some r ∈ U and fix it as a root ofTH . Let ≺ be the order on the flat subsets

of E defined in Section 5.2. For a flat F , let before(F) be the edges of TH that lie outside

⋃
F and

are accessible from the root r via paths not passing through

⋃
F ; we denote by after(F) the edges

of TH outside

⋃
F that are accessible from r only via paths passing through

⋃
F . For flat F and F ′

with F ≺ F ′, we denote by between(F , F ′) the set of edges in TH ‘between’

⋃
F and

⋃
F ′, that is,

the edges outside

⋃
F and

⋃
F ′ that are accessible from

⋃
F via paths not passing through

⋃
F ′

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:52 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

F

F ′

between(F , F
′) aft

er(F
′)

before(F)

r

Fig. 23. Parts of the underlying tree in the proof of Theorem 5.8: F ≺ F ′ for F with one hyperedge and F ′

with two hyperedges.

but are inaccessible from the root r via a path not passing through

⋃
F ; see Fig. 23. Recall that the

edges of TH are the vertices of the reduct (V , E) of H and so, the defined sets are subsets of V .

Let F1, . . . , Fm be the flat subsets of E, wherem = O(|H |ℓ). The required linear THGP will use a

linear gadget based on the following nodes:

m + 2 pairs fi , ¯fi , (m + 2)2 pairs ri j , r̄i j , m + 2 pairs f ′j ,
¯f ′j ,

where 0 ≤ i, j ≤ m + 1; the three groups are ordered as above, and the nodes within each group

are ordered lexicographically: e.g., fi , ¯fi is followed by fi+1, ¯fi+1, whereas ri j , r̄i j is followed by

ri(j+1), r̄i(j+1) if j < m + 1 and by r(i+1)0, r̄(i+1)0 if j =m + 1 (and i < m + 1). The gadget vertices are

pairs of consecutive elements in the order and are labelled as follows: for all 1 ≤ i, j ≤ m,

– { f0, ¯f0}, { fi , ¯fi }, { f
′
j ,

¯f ′j } and { f
′
m+1
, ¯f ′m+1

} with 1,

– {ri j , r̄i j } with all pv , for v ∈ between(Fi , Fj), and all pe , for e ∈ Fj , provided that Fi ≺ Fj ,
– {r0j , r̄0j } with all pv , for v ∈ before(Fj), and all pe , for e ∈ Fj ,
– {ri ,m+1, r̄i ,m+1} with all pv , for v ∈ after(Fi),
– {r0,m+1, r̄0,m+1} with pv , for all v ∈ V ,

– {rm+1,m+1, r̄m+1,m+1} with 1,

– all other vertices are labelled with 0.

Note that the vertices are labelled with conjunctions of variables, and so the constructed linear

THGP will be generalised. The hyperedges are of the form

дi j = [¯fi , ri j] and д̄i j = [r̄i j , f
′
j] if Fi ≺ Fj or i = 0 or j =m + 1,

for 0 ≤ i, j ≤ m + 1. To construct the required generalised linear THGP P (see Appendix A.3), we

takem + 2 isomorphic copies of the gadget placing them in a linear order one after another and

identify each f ′j and
¯f ′j with fj and ¯fj in the successive copy.

We show that P computes fH . Indeed, if fH (α) = 1, then there is an independent subset E ′ ⊆ E
such that α (pv) = 1, for v ∈ V \VE′ and α (pe) = 1, for e ∈ E ′. If E ′ = ∅, then we can choose hyper-

edges д0,m+1 and д̄0,m+1 in every copy to cover all zeros under α . Otherwise, E ′ is partitioned into

flat Fi1 ≺ · · · ≺ Fik . As ik ≤ m, we can extend the sequence of indices i0 = 0, i1, . . . , ik , ik+1 =m + 1

by repeatingm+1 so that the result is of lengthm+2. It then can be verified that by choosing дi j−1,i j
and д̄i j−1,i j in the jth copy (1 ≤ j ≤ m+ 2), we cover all zeros under α . Conversely, if there is a cover

of all zeros under α in P , then it must contain exactly one matching pair of hyperedges дi j and д̄i j
from each copy of the gadget and, for each such д̄i j , the successive copy of the gadget will contain

a hyperedge of the form дjk . Moreover, the first copy can only choose hyperedges of the form д0i1

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:53

and д̄0i1 , with 1 ≤ i1 ≤ m + 1, and the final copy can only choose hyperedges of the form дim+1,m+1

and д̄im+1,m+1, with 1 ≤ im+1 ≤ m + 1. If i1 =m + 1, then E ′ = ∅ is independent and α (pv) = 1, for

all v ∈ V . Otherwise, there is a sequence of indices i1, . . . , ik that determines Fi1 ≺ Fi2 ≺ · · · ≺ Fik .
It can be verified that taking E ′ =

⋃
j Fi j guarantees fH (α) = 1. Observe that |P | = O(|H |3ℓ).

Finally, it remains to apply Proposition A.2 to convert the generalised linear THGP P into a linear

THGP of size O(|H |3ℓ+1). □

A.8 Proofs of Theorems 5.12 and 5.14
Theorem 5.12. For every OMQ Q(x) = (T ,q(x)) with a fundamental set ΩQ and a CQ of

treewidth t , there is a monotone THGP that computes f ▼Q and is of degree polynomial in |ΩQ |
t
and

size polynomial in |q | and |ΩQ |
t
.

Proof. We consider the generalised THGP P constructed in Section 5.3, which is based on a tree

hypergraph H = (U ,V , E) with the underlying tree TH = (U ,V).
First, we consider the size of P . Recall that (T , λ) is a tree decomposition of Gq of widthm − 1

and M = |ΩQ |
m
is the number of bag types. Let K be the number of nodes in the tree T . By [32,

Lemma 11.9], we can assume that K ≤ |q |. We claim that

– P contains at most (4M + 1) · K vertices and at most (M +M2) · K hyperedges, and

– P has labels with at most 3|q | conjuncts.

The vertices of the hypergraph of P correspond to the edges ofTH , and there are at most (4M +1) ·K
of them: indeed, there are no more than K edges in T , each of which is replaced by a sequence of

4M + 1 edges in TH . The hyperedges are of two types: e
k
i , for 1 ≤ i ≤ K and 1 ≤ k ≤ M , and f kℓi j ,

for an edge {i, j} in T and 1 ≤ k, ℓ ≤ M . It follows that the total number of hyperedges does not

exceed (M +M2) · K . Finally, a simple examination of the labelling function shows that there are

at most 3|q | conjuncts in each label: indeed, given i , j and k , each atom S(z) with z ⊆ λ(Ni) gives

rise to 1, 2 or 3 propositional variables in the label of {uki j ,v
k
i j }, and |q | is the upper bound for the

number of such atoms.

Next, we show that P computes f ▼Q : for any assignment α ,

f ▼Q (α) = 1 iff P(α) = 1.

(⇒) Let α be such that f ▼Q (α) = 1. Then we can find an independent Θ ⊆ ΘQ such that α
satisfies the corresponding disjunct of f ▼Q :∧

S (z)∈q\qΘ

pS (z) ∧
∧
t∈Θ

(∧
P (z,z′)∈qt

pz=z′ ∧
∨

t is ϱ-initiated

∧
z∈tr∪ti

pϱ∗(z)

)
. (23)

For every t ∈ Θ, let ϱt be a role that makes the disjunction hold. We use the following lemma to

construct bag types for all nodes in T .

Lemma A.4. LetΘ ⊆ ΘQ be an independent set of tree witnesses forQ , and, for each t ∈ Θ, let ϱt be
a role and ht : qt → C

∃yϱt(a,y)
T

a homomorphism such that each ht(z) for z ∈ ti is of the form aϱtσ , for
some σ with ϱtσ ∈ ΩQ (in other words, t is ϱt-initiated and induced by ht). Then, with each node N
in the tree decomposition (T , λ), we can associate a bag type τ (N) by taking, for all z ∈ λ(N):

τ (N)[z] =

{
w, if z ∈ ti and ht(z) = aw, for some t ∈ Θ,

ε, otherwise,
(24)

such that τ (N) is compatible withN and the pairs (τ (N), τ (N ′)) of types associated with pairs (N ,N ′)
of nodes in T are compatible.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:54 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

Proof. Observe that τ (N) is well-defined since the independence of Θ guarantees that every

variable in q can occur in at most one ti, for t ∈ Θ. We show that τ (N) is compatible with N . For

condition (C1), consider A(z) ∈ q with z ∈ λ(N) and τ (N)[z] , ε . Then there is t ∈ Θ with z ∈ ti,
in which case ht(z) = a · τ (N)[z]. Let ϱ be the final symbol in ht(z). Since ht : qt → C

∃yϱt(a,y)
T

is a

homomorphism, we have T |= ∃y ϱ(y, x) → A(x). For condition (C2), consider P(z, z ′) ∈ q with

z, z ′ ∈ λ(N) and either τ (N)[z] , ε or τ (N)[z ′] , ε . We assume without loss of generality that the

former is true (the latter is handled analogously). By definition, there is t ∈ Θ such that z ∈ ti and
ht(z) = a ·τ (N)[z]. Since z ∈ ti and P(z, z

′) ∈ q, by the definition of tree witnesses, z ′ ∈ tr ∪ ti. Since
ht : qt → C

∃yϱt(a,y)
T

is a homomorphism, one of the following holds:

– τ (N)[z ′] = τ (N)[z] and T |= P(x, x);
– τ (N)[z ′] = τ (N)[z] · ϱ or τ (N)[z] = τ (N)[z ′] · ϱ− for some ϱ with T |= ϱ(x,y) → P(x,y).

This establishes compatibility of τ (N) with N . Next, by construction, the pairs (τ (N), τ (N ′)) of
types associated with pairs (N ,N ′) of nodes in T are compatible: τ (N)[z] = τ (N ′)[z], for all z
in λ(N) ∩ λ(N ′). □

Recall thatw1, . . . ,wM are all the bag types for ΩQ , and consider the following subset E ′ ⊆ E of

hyperedges in H :

– eki = [Ni ,u
k
i j1, . . . ,u

k
i jn], where k is such thatwk = τ (Ni) and Nj1, . . . ,Njn are the neighbours

of Ni , for every node Ni in T ;
– f kℓi j = [v

k
i j ,v

ℓ
ji], where k and l are such that wk = τ (Ni) and wℓ = τ (Nj), for every edge

{Ni ,Nj } in T .

Note that, by Lemma A.4, these are hyperedges of H . It is easy to see that E ′ is independent:
whenever we include eki or f kℓi j , we do not include any ek

′

i or f k
′ℓ

i j for k ′ , k . It remains to show

that every vertex of H that is not covered by E ′ evaluates to 1 under α . Observe first that most of

the vertices are covered by E ′. Specifically:

– {Ni ,u
1

i j } is covered by eki ;

– {vki j ,u
k+1

i j } is covered either by eni (if n ≤ k + 1) or by enℓi j (if n > k + 1);

– {vMij ,v
M
ji } is covered by ekℓi j ;

– {uki j ,v
k
i j } is covered by eni if k < n, and by enℓi j if n > k .

So, the only type of vertex not covered by E ′ is of the form {uki j ,v
k
i j }, wherewk = τ (Ni). Recall that

the vertex {uki j ,v
k
i j } is labelled with the following variables:

(i) pS (z), whenever S(z) ∈ q, z ⊆ λ(Ni) andwk [z] = ε , for all z ∈ z;
(ii) pϱ∗(z), whenever A(z) ∈ q, z ∈ λ(Ni) andwk [z] = ϱσ for some σ ;
(iii) pϱ∗(z), pϱ∗(z′) and pz=z′ , whenever P(z, z

′) ∈ q (possibly with z = z ′), z, z ′ ∈ λ(Ni) and either

wk [z] = ϱσ orwk [z
′] = ϱσ for some σ .

First suppose that pS (z) appears in the label of {uki j ,v
k
i j }. Thenwk [z] = ε , for all z ∈ z, and hence no

variable in S(z) belongs to any ti for t ∈ Θ. It follows that S(z) ∈ q \ qΘ, and since (23) is satisfied,

the variable pS (z) evaluates to 1 under α . Next suppose that one of pϱ∗(z), pϱ∗(z′) and pz=z′ is part of
the label. We focus on the case where these variables come from a binary atom (item (iii) above), but

the proof for the case of a unary atom (item (ii) above) is similar. So, there is some atom P(z, z ′) ∈ q
with z, z ′ ∈ λ(Ni) and eitherwk [z] = ϱσ orwk [z

′] = ϱσ for some σ . It follows that there is a tree
witness t ∈ Θ with z, z ′ ∈ tr ∪ ti. This means that pz=z′ is a conjunct of (23), and so it is satisfied

under α . Also, either wk [z] or wk [z
′] is of the form ϱσ , and, since all non-empty words in the

image of ht begin by ϱt , we obtain ϱ = ϱt . Since ϱt was chosen so that

∧
z∈tr∪ti pϱ∗(z) is satisfied

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:55

under α , both pϱ∗(z) and pϱ∗(z′) evaluate to 1 under α . Therefore, E ′ is independent and covers all

zeros under α , which means that P(α) = 1.

(⇐) Suppose P(α) = 1, that is, there is an independent subset E ′ of the hyperedges in H that

covers all zeros under α . By construction, the subset E ′ contains exactly one hyperedge of the

form eki for every node Ni in T , and so we can associate with every node Ni the unique bag

type wk , denoted by τ (Ni). Also, E
′
contains exactly one hyperedge of the form ekℓi j for every

edge {Ni ,Nj } in T . Moreover, if E ′ contains hyperedges eki and ek
′ℓ

i j (respectively, eℓj and ekℓ
′

i j),

then k = k ′ (respectively, ℓ = ℓ′). By the definition of H , every τ (Ni) is compatible with Ni ,

and every (τ (Ni), τ (Nj)) are compatible with (Ni ,Nj) for adjacent nodes Ni ,Nj in T . Using the

compatibility properties and the connectedness condition of tree decompositions, we can conclude

that the pairs of types assigned to any two nodes Ni and Nj inT are compatible. Since every variable

occurs in at least one node label, we can associate with each variable z in q a unique wordwz ∈ ΩQ

such thatwz = τ (N)[z], for all nodes N with z ∈ λ(N).
Denote by ≡ the smallest equivalence relation on the atoms of q that satisfies the following

condition: for every variable z in q,

ifwz , ε and z occurs in both S1(z1) and S2(z2), then S1(z1) ≡ S2(z2).

Let q
1
, . . . ,qn be the subqueries corresponding to the equivalence classes of ≡. It is easily verified

that the qi are pairwise disjoint. Moreover, if qi contains only variables z with wz = ε , then qi
consists of a single atom. We can show that the remaining qi correspond to tree witnesses.

Lemma A.5. For every qi that contains a variable z withwz , ε ,

(T1) there is a role ϱi such that allwz , ε begin by ϱi , for variables z in qi ;
(T2) there is a homomorphism hi : qi → C

∃yϱi (a,y)
T

with hi (z) = awz for all z in qi ;

(T3) there is a (ϱi -initiated and induced by hi) tree witness t
i
forQ such that qi = qti .

Proof. By the definition of qi , there is a sequence Ξ0, . . . ,Ξk of subsets of qi such that Ξ0

consists of S0(z0) and contains a variable z0 withwz0
, ε ; each Ξj+1 is obtained from Ξj by adding

an atom that contains a variable z that occurs in Ξj and is such thatwz , ε ; and finally Ξk = qi .
By construction, every atom in qi contains a variable z withwz , ε . Let ϱi be the first letter of the
wordwz0

and, for every 0 ≤ j ≤ k , let hj be the function that maps every variable z in Ξj to awz .

Properties (T1) and (T2) are shown by induction on j. The base case is trivial. For the induction
step, suppose that, at stage j, for every variable z in Ξj , the word wz , ε begins by ϱi , and hj is
a homomorphism Ξj → C

∃yϱi (a,y)
T

such that hj (z) = awz for all z. Let S(z) be the unique atom
in Ξj+1 \ Ξj . Then S(z) contains a variable z from Ξj such that wz , ε . If S(z) = A(z), then (T1)

for wz is by induction hypothesis. For (T2), let N be a node in T with z ∈ λ(N). Since τ (N) is
compatible with N , the wordwz ends by a role ϱ with T |= ∃y ϱ(y, x) → A(x), which proves (T2).

If S(z) = P(z, z ′) (possibly with z = z ′), then let N be a node in T with z, z ′ ∈ λ(N). Since τ (N)
is compatible with N , we have one of the following: (a) wz′ = wz and T |= P(x, x) or (b) either
wz′ = wzϱ orwz = wz′ϱ

−
for some ϱ with T |= ϱ(x,y) → P(x,y). If (a) holds, then the arguments

for (T1) and (T2) are similar to the previous case, except that we use T |= P(x, x). If (b) holds,
then, whenever wz begins with ϱi , the same holds for wz′ unless wz′ = ε , and other way round,

which proves (T1). By construction, hj+1 is a homomorphism from Ξj+1 to C
∃yϱi (a,y)
T

, so (T2) holds.

If S(z) = P(z ′, z), then the argument is analogous.

Property (T3) follows from (T1) and (T2) by the definitions of qi and tree witnesses. □

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:56 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

Let Θ consist of all the tree witnesses ti obtained by Lemma A.5. As the qi are disjoint, the set Θ
is independent. We show that α satisfies the disjunct (23) of f ▼Q that corresponds to Θ. To this end,

observe that since all zeros are covered by E ′, the following variables are assigned 1 under α :

pS (z), if S(z) ∈ q andwz = ε, for all z ∈ z; (25)

pϱ∗(z), if A(z) ∈ q andwz = ϱσ , for some σ ; (26)

pϱ∗(z),pϱ∗(z′),pz=z′ if P(z, z ′) ∈ q (possibly with z = z ′) (27)

and eitherwz = ϱσ orwz′ = ϱσ , for some σ .

Consider first S(z) ∈ q\qΘ. We havewz = ε , for each variable z in S(z), whence, by (25),α (pS (z)) = 1.

Next, consider a ϱi -initiated tree witness ti ∈ Θ, where ϱi is the role provided by Lemma A.5.

If qi = {A(z)}, then, by (26), α (pϱ∗i (z)) = 1, and we are done. Otherwise, qi contains a binary atom.

Consider any P(z, z ′) ∈ qi : by construction, eitherwz , ε orwz′ , ε , whence, by (27), α (pz=z′) = 1,

as required. It remains to show that α (pϱ∗i (z)) = 1 for each z ∈ tir ∪ t
i
i . By construction, qi contains

some P(z) with z = {z, z ′} and eitherwz , ε orwz′ , ε . Then, by Lemma A.5 (T1), eitherwz = ϱiσ
orwz′ = ϱiσ , whence, by (27), α (pϱ∗i (z)) = 1, as required.

To complete the proof of Theorem 5.12, we convert the generalised THGP P into a THGP using

Proposition A.2. □

Theorem 5.14. For every OMQ Q(x) = (T ,q(x)) with an ontology of depth 1 and a CQ of

treewidth t , there is a monotone THGP that computes f ▽Q and is of degree 2
O (t)

and size polynomial

in |q | and 2
t
.

Proof. For every tree witness t = (tr, ti) for Q(x), we take a fresh binary predicate Pt (which
cannot occur in any data instance) and extend T with the following axioms:

τ (x) → ∃y Pt(x,y), if τ generates t,

Pt(x,y) → ϱ(x,y), if ϱ(z ′, z) ∈ qt, z
′ ∈ tr and z ∈ ti.

Denote the resulting ontology by T ′ and letQ ′(x) = (T ′,q(x)). Intuitively, Pt becomes the single

most specific role that initiates t. It is easily verified that T ′ is also of depth 1. By Theorem 3.7, the

number of tree witnesses forQ(x) does not exceed |q |, and so the size ofQ ′ is polynomial in |Q |.
It is easy to see that f ▽Q ′ coincides with f ▽Q . Thus, in the sequel we assume that the given OMQ is of

the formQ ′, which we call explicit.

Let (T , λ) be a tree decomposition of the Gaifman graph Gq of widthm − 1; and letw1, . . . ,wM
be all the bag types for ΩQ (M = |ΩQ |

m
). We construct a tree THs = (Us ,Vs) from T similarly

to the tree TH in Section 5.3 except that nodes uki j and v
k
i j are introduced only if wk is strongly

compatible with Ni (it follows that each edge of T corresponds to a sequence of 4 · 2m + 1 edges

in THs , which does not depend on ΩQ). Then we define a generalised monotone THGP Ps based on

a tree hypergraph Hs = (Us ,Vs , Es) with the underlying tree THs and the following hyperedges:

– eki = [Ni ,u
k
i j1, . . . ,u

k
i jn] if Nj1, . . . ,Njn are the neighbours of Ni in T and wk is strongly

compatible with Ni ;

– f kℓi j = [v
k
i j ,v

ℓ
ji] if {Ni ,Nj } is an edge in T , bag types wk and wℓ are strongly compatible

with Ni and Nj , respectively, and (wk ,wℓ) is compatible with (Ni ,Nj).

Each vertex {uki j ,v
k
i j } in Hs is labelled with the conjunction of the following variables:

– pS (z), whenever S(z) ∈ q, z ⊆ λ(Ni) andwk [z] = ε , for all z ∈ z;
– pt , wheneverwk [z] = Pt for some z ∈ λ(Ni);

all other vertices are labelled with 0.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:57

We claim that the generalised THGP Ps is of degree polynomial in 2
t
and size polynomial in 2

t

and |q |. First, since there are at most 2
m
types strongly compatible with a node, each vertex can

belong to at most 2
m
hyperedges of the first type and 2

2m
hyperedges of the second type. So, the

degree of Ps does not exceed 2
m + 2

2m = 2
O (t)

. It then can be easily verified that Ps contains at
most (2m+2 + 1) · |q | vertices and at most (2m + 2

2m) · |q | hyperedges, and has labels with at most |q |
conjuncts.

We show now that Ps computes f ▽Q : for any assignment α ,

f ▽Q (α) = 1 iff Ps (α) = 1.

(⇒) Let α be such that f ▽Q (α) = 1. Then we can find an independent Θ ⊆ ΘQ such that α
satisfies the corresponding disjunct of f ▽Q :∧

S (z)∈q\qΘ

pS (z) ∧
∧
t∈Θ

pt . (28)

Since T is explicit, every t ∈ Θ has a role Pt that initiates it and a homomorphism ht that induces
it: ht : qt → C

∃y Pt(a,y)
T

with ht(z) = aPt , for every z ∈ ti. By Lemma A.4, we can assign a bag

type τ (N) to each node N in T so that τ (N) is compatible with N . In fact, as condition (C3) is

immediate from the choice of ht , the bag types are strongly compatible with their nodes.

Consider now a subset E ′s of hyperedges of Hs defined in the same way as E ′ in the proof of (⇒)

in Theorem 5.12. Note that E ′s are hyperedges of Hs because each τ (N) is strongly compatible

with N and each pair (τ (Ni), τ (Nj)) is compatible with (Ni ,Nj). Again, it is easy to see that E ′s is
independent. It remains to show that every vertex of Hs that is not covered by E ′s evaluates to 1

under α . Observe first that most of the vertices are covered by E ′s (see the proof of Theorem 5.12

for details), and only vertices of the form {uki j ,v
k
i j }, forwk = τ (Ni), are not covered by E ′s . If pS (z)

appears in the label of such a vertex, then wk [z] = ε , for all z ∈ z, and hence no variable in S(z)
belongs to any ti for t ∈ Θ. It follows that S(z) ∈ q \ qΘ, and since (28) is satisfied, α (pS (z)) = 1.

If pt is part of the label, then there is z ∈ λ(Ni) with wk [z] = Pt . By the definition of τ (Ni), we

obtain t ∈ Θ, whence, by (28), α (pt) = 1. Therefore, E ′s is independent and covers all zeros under α ,

which means that Ps (α) = 1.

(⇐) Suppose Ps (α) = 1, that is, there is an independent subset E ′ of the hyperedges in Hs
that covers all vertices evaluated to 0 under α . Then, in the same way as in the proof of (⇐) in

Theorem 5.12, we can define an equivalence relation ≡ onq so that its equivalence classesq
1
, . . . ,qn

satisfy Lemma A.5. Since all bag types are strongly compatible, condition (C3) in addition implies

that all wordswz are of length at most 1 and each tree witness ti is Pti -initiated and induced by a

homomorphism hi with hi (z) = aPti , for all z ∈ t
i
i . Let Θ = {t

1, . . . , tn}. As the qi are disjoint, the
set Θ is independent. We show that α satisfies the disjunct of f ▽Q that corresponds to Θ; cf. (28).
Observe that, since all zeros are covered by E ′, the following variables are evaluated to 1 by α :

pS (z), if S(z) ∈ q andwz = ε, for all z ∈ z; (29)

pt, ifwz = Pt . (30)

Now, consider some S(z) ∈ q \ qΘ: for every variable z in S(z), we have wz = ε , whence, by (29),

we get α (pS (z)) = 1. Next, by (30), we obtain α (pt) = 1 for all t ∈ Θ, as required.

To complete the proof of Theorem 5.14, we convert the generalised THGP Ps into a THGP using

Proposition A.2. □

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:58 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

A.9 Proof of Theorem 6.6
Theorem 6.6. Any tree hypergraph H is isomorphic to a subgraph of H(TH), and any monotone

THGP based on H computes a subfunction of f △TH .

Proof. Let H = (U ,V , E) be a tree hypergraph with U = {1, . . . ,n}, for n > 1, and 1 be a leaf of

the underlying tree TH . The directed tree obtained from TH by fixing 1 as the root and orienting

the edges away from 1 is denoted by T ∗ = (U ,V ∗). By definition, each e ∈ E induces a convex

subtree Te = (Ue ,Ve) of T
∗
. Observe that, for each subtree Te , the OMQ TH has a tree-witness te

such that

t
e
r = { zi | i in on the boundary of e },

t
e
i = { zi | i is in the interior of e } ∪ {yi j | (i, j) ∈ Ve }.

Thus, H is isomorphic to the subgraph of H(TH) with vertices Ri j (zi ,yi j), for (i, j) ∈ Ve , and
hyperedges qte ∩ {Ri j (zi ,yi j) | (i, j) ∈ Ve }, for e ∈ E; in other words, the hypergraph is obtained by

eliminating the Si j atoms.

For the second statement, let P be based on a tree hypergraph H = (U ,V , E). Given an input α
for P , we define an assignment γ for the predicates inTH = (T ,q) by taking each γ (Ri j) and γ (Si j)
to be the value of the label of (i, j) ∈ V ∗ under α and γ (Ae) = 1 for all e ∈ E (of course, γ (Pζ) = 0

for all normalisation predicates Pζ). Observe that, for each e ∈ E, the canonical model CT, A(γ)
contains labelled nullswe andw

′
e such that

CT, A(γ) |=
∧

(re , j)∈Ve

Rre j (a,we) ∧
∧

(i , j)∈Ve , j ∈Le

Si j (we ,a) ∧
∧

(i , j)∈Ve , i,re

Ri j (w
′
e ,we) ∧

∧
(i , j)∈Ve , j<Le

Si j (we ,w
′
e).

We show that P(α) = iff f △TH (γ) = 1.

(⇒) Suppose that P(α) = 1. Then there exists an independent E ′ ⊆ E that covers all zeros under α .

We show that T ,A(γ) |= q (that is, f △TH (γ) = 1). Define a mapping h as follows:

h(zi) =

{
w ′e , if i is in the interior of e ∈ E ′,

a, otherwise,
h(yi j) =

{
we , if {i, j} ∈ e ∈ E ′,

a otherwise.

Note that h is well-defined: since E ′ is independent, its hyperedges share no interior, and there can

be at most one hyperedge e ∈ E ′ containing any given vertex {i, j}.
It remains to show that h is a homomorphism from q to CT, A(γ). Consider a pair of atoms

Ri j (zi ,yi j) and Si j (yi j , zj) in q. We have (i, j) ∈ V ∗. If there is e ∈ E ′ with{i, j} ∈ e , then there are

four possibilities to consider:

– if neither i nor j is in the interior of e then, since Te is a tree and (i, j) is its edge, the only
possibility is e = {{i, j}}, whence h(zi) = h(zj) = a and h(yi j) = we ;

– if i is on the boundary and j is internal, then h(zi) = a, h(yi j) = we , and h(zj) = w
′
e ;

– if j is on the boundary and i is internal, then this case is the mirror image;

– if both i and j are in the interior, then h(zi) = h(zj) = w
′
e and h(yi j) = we .

Otherwise, the label of {i, j}must evaluate to 1 underα , whenceA(γ) containsRi j (a,a) and Si j (a,a),
and we set h(zi) = h(yi j) = h(zj) = a. In all cases, h preserves the atoms Ri j (zi ,yi j) and Si j (yi j , zj),
and so h is indeed a homomorphism.

(⇐) Suppose that f △TH (γ) = 1. Then T ,A(γ) |= q, and so there is a homomorphismh : q → CT, A(γ).
We show that there is an independent E ′ ⊆ E that covers all zeros under α . Let E ′ be the set of
all e ∈ E such that h−1(we) , ∅ (that is, we is in the image of h). To show that E ′ is independent,
we need the following claim:

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:59

Claim. If h−1(we) , ∅, then h(yi j) = we for all {i, j} ∈ e .

Proof of claim. Recall that re is the root ofTe and Le its leaves. Pick some variable z ∈ h−1(we) such

that there is no z ′ ∈ h−1(we) higher than z in q (using the order of variables induced by the treeT ∗).
Observe that z cannot be of the form zj , for otherwise q would contain an atom R jℓ(zj ,yjℓ) or
Sℓj (yℓj , zj), butwe has no outgoing R jℓ or S

−
ℓj arcs in CT, A(γ). It follows that z is of the form yjℓ , for

some j, ℓ. By considering the available arcs leavingwe again, we conclude that {j, ℓ} ∈ e . We next

show that j = re . Suppose that this is not the case. Then, there must be {p, j} ∈ e with (p, j) ∈ V ∗. A
simple examination of the axioms in T shows that the only way for h to satisfy the atom R jℓ(zj ,yjℓ)
is to map zj tow

′
e . It follows that to satisfy the atom Spj (ypj , zj), we must put h(ypj) = we contrary

to the assumption that z = yjℓ was a highest vertex in h−1(we). Thus, j = re . Now, using a simple

inductive argument on the distance from zre and considering the possible ways of mapping the

atoms of q, we can show that h(yi j) = we for every {i, j} ∈ e . (end proof of claim)

Suppose that there are two distinct hyperedges e, e ′ ∈ E ′ that have a non-empty intersection:

let {i, j} ∈ e ∩ e ′. Either yi j or yji occurs in q, and we can assume the former without loss of

generality. By the claim, we obtain h(yi j) = we = we ′ , a contradiction. Therefore, E
′
is independent.

We now show that it covers all zeros. Let {i, j} be such that its label evaluates to 0 under α , and

assume again without loss of generality that yi j occurs in q. Then A(γ) does not contain Ri j (a,a),
so the only way h can satisfy the atom Ri j (zi ,yi j) is by mapping yi j to some we with {i, j} ∈ e .
Therefore, there is an e ∈ E ′ such that {i, j} ∈ e , so all zeros under α are covered by E ′. It follows
that P(α) = 1. □

A.10 Size of OMQs Constructed in Section 6
OMQ QH has an ontology of depth 2 and at most |E | + |V | tree witnesses and is of size O(|H |2):
indeed, the ontology has |E | axioms, each of size O(|H |), and the CQ at most |V | + |E | · |V | atoms.

OMQ SH has an ontology of depth 1 and exactly |E | tree witnesses and is of size O(|H |): the
ontology contains |E | axioms with the total number of atoms in them not exceeding 2|V |, and the

CQ contains exactly |V | atoms.

OMQTH has an ontology of depth 2 and a tree-shaped CQ with the same number of leaves as

the underlying tree of H , has exactly |E | tree witnesses (by Remark 2, we ignore the tree witnesses

generated by normalisation predicates) and is of sizeO(|H |2): by construction, the ontology has |E |
axioms, each of size O(|E |), and the CQ has 2|V | atoms.

A.11 Proofs of Theorems 7.4 and 7.6
Lemma A.6. Any semi-unbounded fan-in circuit C of and-depth d is equivalent to a semi-un-

bounded fan-in circuitC ′ of and-depth d with |C ′ | ≤ 2
d · |C | andC ′ left

n ∩C
′ right
n = ∅, for all n ≤ d .

Proof. We show by induction on n that we can reconstruct the circuit in such a way that the

property holds for all i ≤ n, the and-depth of the circuit does not change, and the size of the

circuit increases at most by the factor of 2
n
. First, take a copy C ′′ of C left

n and feed its outputs as

left inputs to the and-gates of C of and-depth n. This operation at most doubles the size of the

circuit and ensures the property for the and-gates of and-depth n. Apply now the same procedure

inductively to the sub-circuits of bothC ′′ andCright
n (which do not intersect). The size of the result

increases at most by the factor of 2
n−1

, and the property for all gates of and-depth not exceeding n
is ensured. □

In the setting of Theorem 7.4, let дi be a gate inC and Ti the subtree of T rooted in vi . Given an

input α , we say that Ti can be covered under α if the hypergraph with the underlying tree Ti has
an independent subset of hyperedges that are entirely in Ti and cover all zeros in Ti under α .

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:60 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

(a) (b)

x1
д1 x2

д2

¬x3
д3orд5 orд′

5

x1 д′
1

x2 д′
2

x4
д4

andд6 andд7

orд8

w8

v8

u8

8

76

5
w2

v2

u2

2

w1

v1

u1

1

43

5
′

2
′

1
′

11

1 1

1

x2

1

x1

x4

1

¬x3

1

x2

1 1

x1

Fig. 24. (a) A formulaC . (b) The labelled tree T forC : the nodes in the ith triple are ui ,vi ,wi and the omitted
edge labels are 0s. The vertices of the THGP are the edges of T (with the same labels) and the hyperedges are
sets of edges of T (two of them are shown).

Lemma A.7. For a given input α and any i , the gate дi outputs 1 if and only if Ti can be covered.

Proof. We prove the claim by induction on i . If дi is an input gate and outputs 1, then the label

of the edge {ui ,vi } evaluates to 1 under α , and the remainder of Ti can be covered by [uj ,w j]-

hyperedges. Conversely, if an input gate дi outputs 0, then no hyperedge in Ti can cover {ui ,vi }.
If дi = дj ∧ дk is an and-gate and outputs 1, then both дj and дk output 1. So we apply the

induction hypothesis to cover both subtrees Tj and Tk (which are disjoint by construction) and add

to the cover the hyperedge [vj ,vk ,vi], which is entirely inside Ti . Thus, Ti is covered. Conversely,
any covering of zeros in Ti must include the hyperedge [vj ,vk ,vi], and so the subtrees Tj and Tk
are covered. Thus, by the induction hypothesis, дj and дk should output 1, and so does дi .

If дi = дj1 ∨ · · · ∨дjk is an or-gate and outputs 1, then one of its inputs, say, дj , outputs 1. By the

induction hypothesis, we cover Tj and add the hyperedge [vj ,vi], which, possibly together with

hyperedges of the form [uℓ,wℓ], forms a covering ofTi . Conversely, since {ui ,vi } is labelled with 0,

any covering of Ti must include a hyperedge of the form [vj ,vi], for some j ∈ {j1, . . . , jk }. Thus Tj
must also be covered. By the induction hypothesis, дj outputs 1, and so does дi . □

Theorem 7.6. NC1 = THGPd and mNC1 = mTHGPd , for any d ≥ 3.

Proof. To show NC1 ⊆ THGP3
, we use a more direct construction than in the proof of Theo-

rem 7.4. First, we assume that or-gates have only two inputs and second, even under this assumption,

the construction in the proof of Theorem 7.4 results in a hypergraph of degree 4.

Consider a polynomial-size formulaC in negation normal form, which we represent as a tree

of gates д1, . . . ,дm enumerated so that j < i whenever дj is an input of дi . We assume thatC has

negated variables in place of not-gates. We first construct a tree T that contains triples of vertices

ui ,vi ,wi (in this order) partially ordered in the same way as the дi inC . We then remove vertexwm
and make vm the root of T . Next, we consider a hypergraph H whose vertices are the edges of T
and whose hyperedges comprise the following, see Fig. 24:

– [ui ,wi], for each i < m;

– [vj ,vk ,vi], for each дi = дj ∧ дk ;
– [vj ,uk ,vi], [uj ,vk ,vi], for each дi = дj ∨ дk

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:61

Finally, we construct a THGP P based on H by labelling its vertices (which are edges of T): if an
input gate дi is a literal l , then we label {ui ,vi } with l ; all other edges are labelled with 0. It is not

hard to check that P is of degree 3 and size polynomial in |C | and computes the same function

asC . Indeed, one can show by induction that we can cover all zeros in a subtree rooted at vi by the

hyperedges entirely inside this subtree iff дi outputs 1. (Hyperedges [uj ,w j] ensure that we can

cover all zeros in all subtrees rooted in vertices uj , which is needed for or-gates; see Fig. 24)

The inclusion THGPd ⊆ NC1
follows from the proof of THGP ⊆ LogCFL/poly in Theorem 7.4.

Indeed, if the degree of a given THGP P is at most d , then the disjunction in (16) has at most d + 1

disjuncts, and so the constructed circuit is of bounded fan-in. Since its depth is O(log |P |), the size
of the circuit is polynomial in |P |. □

A.12 Proof of the LogCFL membership in Theorem 9.3
We say that an iteration of the while loop is successful if the procedure BLQuery does not return

false; in particular, if none of the check operations returns false. The following properties can be

easily seen to hold by examination of BLQuery and straightforward induction:

For every tuple (z 7→ (a,n), z ′) ∈ frontier, z ′ is a child of z in T . (31)

For every tuple (z 7→ (a,n), z ′) ∈ frontier, we have n ≤ |stack|. (32)

All tuples (z 7→ (a,n), z ′) ∈ frontier with n > 0 share the same a. (33)

Once (z 7→ (a,n), z ′) is added to frontier, (34)

no tuple of the form (z 7→ (a′,n′), z ′) can ever be added to frontier.

In every successful iteration, either at least one tuple is removed from frontier (35)

or frontier is unchanged, but one ϱ is popped from the stack.

If (z 7→ (a,n), z ′) is removed from frontier in a successful iteration, then (36)

a tuple of the form (z ′ 7→ (a′,n′), z ′′) is added to frontier, for each child z ′′ of z ′ in T .

Proposition A.8. Every execution of BLQuery terminates.

Proof. A simple examination of BLQuery shows that the only possible source of non-termina-

tion is the while loop, which continues as long as frontier is non-empty. By (31) and (34), the total

number of tuples that may appear in frontier at any point cannot exceed the number of edges

in T , which is bounded by |q |. By (34) and (35), every tuple is added at most once and is eventually

removed from frontier. Thus, either the algorithm will exit the while loop by returning false (if a

check operations fails), or it will eventually exit the loop after reaching an empty frontier. □

Proposition A.9. There exists an execution of BLQuery that returns true on input ((T ,q),A,a)
if and only if T ,A |= q(a).

Proof. (⇐) Suppose that T ,A |= q(a). Then there exists a homomorphism h : q → CT, A such

that h(x) = a. Without loss of generality [6], we may choose h so that the image of h consists

of elements aw with |w | ≤ 2|T | + |q |. We use h to specify an execution of BLQuery((T ,q),A,a)
that returns true. First, we fix an arbitrary variable z0 as root, and then we choose the element

h(z0) = a0w0. Sinceh defines a homomorphism ofq(a) into CT, A , the call canMap(z0,a0, top(stack))
returns true. We initialise stack tow0 and frontier to {(z0 7→ (a0, |stack|),vi) | vi is a child of v0}.

Next, we enter the while loop. Our aim is to make the nondeterministic choices to satisfy the

following invariant:

If (z 7→ (a,m), z ′) ∈ frontier, then h(z) = a stack≤m . (37)

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:62 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

Recall that stack≤m denotes the word obtained by concatenating the first m symbols of stack.
Observe that before the while loop, property (37) is satisfied. At the start of each iteration of the

while loop, we proceed as follows.

[Case 1.] If frontier contains (z 7→ (a, 0), z ′) such that h(z ′) ∈ ind(A), then we choose Option 1.

We remove the tuple from frontier and choose the individual a′ = h(z ′) for the guess. As a = h(z)
(by (37)) and h is a homomorphism, we have (a,a′) ∈ P CT, A , for all P(z, z ′) ∈ q, and the call

canMap(z ′, a′, ε) returns true. We add (z ′ 7→ (a′, 0), z ′′) to frontier for every child z ′′ of z ′ in T .
These additions to frontier clearly preserve the invariant.

[Case 2.] If Case 1 does not apply, |stack| > 0, and frontier contains (z 7→ (a, |stack|), z ′) such
that h(z ′) = h(z), then we choose Option 4 and remove the tuple from frontier. Since stack is

non-empty, h(z) = h(z ′) occurs in the tree part. As h is a homomorphism, we have T |= P(x, x), for
all P(z, z ′) ∈ q, and canMap(z ′, a, top(stack)) returns true. Then, for every child z ′′ of z ′ in T , we
add (z ′ 7→ (a, |stack|), z ′′) to frontier. Observe that since h(z) = h(z ′) and (37) holds for z, it also
holds for the newly added tuples.

[Case 3.] If neither Case 1 nor Case 2 applies, and frontier contains (z 7→ (a, |stack|), z ′) such
that h(z ′) = h(z)ϱ, then we choose Option 2 and remove the tuple from frontier. Note that in this

case, |stack| < 2|T | + |q | since, by (37), h(z) = aw , for w = stack≤ |stack | , and, by the choice of

homomorphism h, we have |wϱ | ≤ 2|T | + |q |. So, we continue and choose ϱ for the guess. By (37),

since h is a homomorphism and h(z ′) = h(z)ϱ, the call isGenerated(ϱ, a, top(stack)) returns true,
T |= ϱ(x,y) → P(x,y), for all P(z, z ′) ∈ q, and the call canMap(z ′, a, top(stack)) returns true. So,
we push ϱ onto stack and add (z ′ 7→ (a, |stack|), z ′′) to frontier for every child z ′′ of z ′ in T . As
stack contains the word component of h(z ′), invariant (37) holds for the newly added tuples.

[Case 4.] If none of Case 1, 2 or 3 is applicable, then we choose Option 3 and remove all elements in

deepest = {(z 7→ (a,n), z ′) ∈ frontier | n = |stack|} from frontier. Since neither Case 1 nor Case 3
applies, |stack| > 0. So, we pop the top symbol ϱ from stack. Suppose first that deepest , ∅. By (33),
all tuples in deepest share the same individual a. By (37), for every tuple (z 7→ (a,n), z ′) ∈ deepest,
we have h(z) = awϱ, where w = stack≤ |stack | ; moreover, as Case 3 is not applicable, h(z ′) = aw .

Since h is a homomorphism, one can show that T |= ϱ(x,y) → P(x,y), for all P(z ′, z) ∈ q, and
canMap(z ′, a, top(stack)) returns true. So, we add to frontier all tuples (z ′ 7→ (a, |stack|), z ′′), for
children z ′′ of z ′ in T . Note that invariant (37) is satisfied by all the new tuples. Moreover, since we

only removed the last symbol in stack, all the remaining tuples in frontier continue to satisfy (37).

Finally, if deepest = ∅, then we do nothing, but the tuples in frontier continue to satisfy (37).

It is easily verified that so long as frontier is non-empty, one of these four cases applies. Since

we have shown how to make the nondeterministic choices in the while loop without returning

false, by Proposition A.8, the procedure eventually leaves the while loop and returns true.

(⇒) Consider an execution of BLQuery((T ,q),A,a) that returns true. It follows that the while
loop is successfully exited after reaching an empty frontier. Let L be the total number of iterations

of the while loop. We inductively define a sequence h0,h1, . . . ,hL of partial functions from the

variables of q to ∆CT, A by considering the guesses made during the different iterations of thewhile
loop. The domain of hi will be denoted by dom(hi). We will ensure that the following properties

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:63

hold for every 0 ≤ i < L:

If i > 0, then dom(hi−1) ⊆ dom(hi) and hi (z) = hi−1(z), for z ∈ dom(hi−1). (38)

If (z 7→ (a,n), z ′) ∈ frontier at the end of iteration i, then (39)

hi (z) = aw, wherew = stack≤n, (39a)

and neither z ′ nor any of its descendants belongs to dom(hi). (39b)

hi is a homomorphism qi → CT, A, where qi is the restriction of q to dom(hi). (40)

We begin by setting h0(z0) = a0w0, wherew0 is the word in stack (and leaving h0 undefined for

all other variables). Property (38) is vacuously satisfied. Property (39) holds because of the initial

values of frontier and stack and because only z0 ∈ dom(h0), and z0 cannot be its own child (hence,

it cannot appear in the last component of a tuple in frontier). To see why (40) is satisfied, first

suppose thatw0 = ε and so a0w0 ∈ ind(A). Then, the call canMap(z0, a0, top(stack)) returns true.
It follows that

if z0 is the jth answer variable, then a0 = aj ;

a0 ∈ A
CT, A , for each A(z0) ∈ q, and (a0,a0) ∈ P

CT, A , for each P(z0, z0) ∈ q;

hence, h0 is a homomorphism of q
0
into CT, A . Otherwise,w0 is non-empty andw0 = w

′
0
ϱ. Thus,

z0 is not an answer variable of q;

T |= ∃y ϱ(y, x) → A(x), for each A(z0) ∈ q, and T |= P(x, x), for each P(z0, z0) ∈ q;

hence h0 homomorphically maps all atoms of q
0
into CT, A . Thus, h0 satisfies (38)–(40).

Next, we show how to inductively define hi from hi−1 while preserving (38)–(40). The variables

that belong to dom(hi) \ dom(hi−1) are precisely those variables that appear in the last position of

tuples removed from frontier during iteration i (since these are the variables for which we guess

a domain element). The choice of where to map these variables depends on which of the four

options was selected. In what follows, we will use stacki to denote the contents of stack at the end

of iteration i .

[Option 1.] We remove a tuple (z 7→ (a, 0), z ′) and guess a′ ∈ ind(A). So, we set hi (z ′) = a′ and
hi (v) = hi−1(v) for all v ∈ dom(hi−1) (all other variables remain undefined). Property (38) is by

definition. For property (39), consider a tuple τ = (v 7→ (c,m),v ′) that belongs to frontier at the
end of iteration i . Suppose first τ was added to frontier during iteration i , in which case τ is of

the form (z ′ 7→ (a′, 0), z ′′) for some child z ′′ of z ′. Property (39a) is satisfied because stacki≤0
= ε .

Since hi−1 satisfies (39), z ′′ (a descendant of z ′) is not in dom(hi−1), which satisfies (39b). The

remaining possibility is that τ was already in frontier at the beginning of iteration i . Since hi−1

satisfies (39), we have hi−1(v) = cw for w = stacki−1

≤n and neither v ′ nor any of its descendants

belongs to dom(hi−1). Since stacki = stacki−1

and hi (v) = hi−1(v), property (39a) holds for τ .
Moreover, as τ was not removed from frontier during iteration i , we have τ , (z 7→ (a, 0), z ′), and
so, by (34), v ′ , z ′. Thus, neither v ′ nor any of its descendants is in dom(hi).

For property (40), we first note that since hi agrees with hi−1 on dom(hi) and hi−1 satisfies (40),

it is only necessary to consider the atoms in qi \ qi−1
. There are three kinds of such atoms:

– if A(z ′) ∈ qi , then, since canMap(z
′
, a′, ε) returns true, we have hi (z ′) = a′ ∈ ACT, A ;

– if P(z ′, z ′) ∈ qi , then, since canMap(z
′
, a′, ε) returns true, (hi (z ′),hi (z ′)) = (a′,a′) ∈ P CT, A ;

– if P(z ′,v) ∈ qi with v , z ′, then v ∈ dom(hi), so v must coincide with z, the parent of z ′

(rather than being one of the children of z ′); the check operation in the algorithm then

guarantees (hi (z
′),hi (v)) = (a

′,a) ∈ P CT, A .

Thus, (40) holds for hi .

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:64 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

[Option 2.] a tuple (z 7→ (a,n), z ′) is removed from frontier, n = |stack| and a role ϱ is guessed. We

set hi (z
′) = hi−1(z)ϱ. By (39), hi−1(z) is defined. Moreover, the call isGenerated(ϱ, a, top(stack))

ensures that hi−1(z)ϱ ∈ ∆CT, A . We also set hi (v) = hi−1(v) for all v ∈ dom(hi−1) and leave the

remaining variables undefined. Property (38) is immediate from the definition of hi , and (39b) can

be shown exactly as for Option 1. To show (39a), consider a tuple τ = (v 7→ (c,m),v ′) that belongs
to frontier at the end of iteration i . Suppose first that τ was added to frontier during iteration i ,
in which case τ = (z ′ 7→ (a,n + 1), z ′′) for some child z ′′ of z ′. Since hi−1 satisfies (39), we have

hi−1(z) = a stacki−1

≤n . Property (39a) follows then from hi (z
′) = hi−1(z)ϱ and stacki = stacki−1 ϱ.

The other possibility is that τ was present in frontier at the beginning of iteration i . Since hi−1

satisfies (39), we have hi−1(v) = a stacki−1

≤m . Property (39a) continues to hold for τ because stacki =
stacki−1 ϱ andm ≤ |stacki−1 | and hi (v) = hi−1(v).

We now turn to property (40). As explained in the proof for Option 1, it is sufficient to consider

the atoms in qi \ qi−1
, which can be of three types:

– if A(z ′) ∈ qi , then, since canMap(z ′, a, ϱ) returns true, we have T |= ∃y ϱ(y, x) → A(x),
hence hi (z

′) = hi−1(z)ϱ ∈ A
CT, A

.

– if P(z ′, z ′) ∈ qi , then, again, since canMap(z
′
, a, ϱ) returns true, we have T |= P(x, x), hence

(hi (z
′),hi (z

′)) ∈ P CT, A .
– if P(z ′,v) ∈ qi with v , z ′ then v = z (see Option 1); so, T |= ϱ(x,y) → P(y, x), whence
(hi (z

′),hi (v)) = (hi−1(z)ϱ,hi−1(z)) ∈ P
CT, A

.

Therefore, hi is a homomorphism from qi into CT, A , which is required by (40).

[Option 3.] Tuples in deepest = {(z 7→ (a,n), z ′) ∈ frontier | n = |stack|} are removed from

frontier, and role ϱ is popped from stack. By (33), all tuples in deepest share the same individual a.
Let V = {z ′ | (z 7→ (a,n), z ′) ∈ deepest}. For every v ∈ V , we set hi (v) = a stacki ; we also set

hi (v) = hi−1(v) for all v ∈ dom(hi−1) and leave the remaining variables undefined. Property (38) is

again immediate, and the argument for (39b) is the same as in Option 1. For property (39a), take

any tuple τ = (v 7→ (c,m),v ′) in frontier at the end of iteration i . If the tuple was added to frontier
during this iteration, then v ∈ V , a = c ,m = |stacki |, and hi (v) = a stacki , whence (39a). The other
possibility is that τ was present in frontier at the beginning of iteration i . Then hi−1(v) = c stacki−1

≤m
andm < |stacki−1 |. Since stacki is obtained from stacki−1

by popping one role, we havem ≤ |stacki |,
and so (39a) holds for τ .
For property (40), the argument is similar to Options 1 and 2 and involves considering the

different types of atoms that may appear in qi \ qi−1
:

– if A(z ′) ∈ qi with z ′ ∈ V then, since canMap(z ′, a, top(stack)) returns true, we have

hi (z
′) ∈ ACT, A (see Options 1 and 2);

– if P(z ′, z ′) ∈ qi with z ′ ∈ V then, since canMap(z ′, a, top(stack)) returns true, we have

(hi (z
′),hi (z

′)) ∈ P CT, A ;
– if P(z ′,v) ∈ qi with v , z ′ and z ′ ∈ V , then v is the parent of z (see Option 1) and, since

T |= ϱ(y, x) → P(x,y), we obtain (hi (z
′),hi (v)) = (a stacki ,a stacki ϱ) ∈ P CT, A .

[Option 4.] A tuple (z 7→ (a,n), z ′) is removed from frontier with n = |stack| > 0. We set

hi (z
′) = hi (z), hi (v) = hi−1(v) for every v ∈ dom(hi−1), and leave all other variables unmapped.

Again, it is easy to see that properties (38) and (39b) are satisfied by hi . For property (39a), let

τ = (v 7→ (c,m),v ′) be a tuple in frontier at the end of iteration i . If the tuple is added during

iteration i , then v = z ′, a = c , andm = n. Since (z 7→ (a,n), z ′) was present at the end of iteration

i − 1 and stacki = stacki−1

, we have hi (z) = a stacki−1

≤n , hence hi (z) = a stacki≤m . As hi (z
′) = hi (z),

we have hi (z
′) = a stacki≤m , so τ satisfies (39a). If τ is already present at the beginning of iteration i ,

then we can use the fact that stacki = stacki−1

and all tuples in frontier satisfy (39a).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:65

To show (40), we consider the three types of atoms in qi \ qi−1
:

– if A(z ′) ∈ qi then, since canMap(z
′
, a, top(stack)) returns true, then T |= ∃y ϱ(y, x) → A(x),

where ϱ = top(stack), and so hi (z
′) ∈ ACT, A ;

– if P(z ′, z ′) ∈ qi then, since canMap(z
′
, a, top(stack)) returns true, then T |= P(x, x), and so

(hi (z
′),h(z ′)) ∈ P CT, A ;

– if P(z ′,v) ∈ qi with v , z ′, then v = z (see Option 1), and so, since T |= P(x, x), we have
(hi (z

′),hi (z)) ∈ P
CT, A

.

We claim that the final partial function hL is a homomorphism of q to CT, A . Since hL is a

homomorphism of qL into CT, A , it suffices to show that q = qL , or equivalently, that all variables
of q are in dom(hL). This follows from the tree-shapedness of q (which in particular means that q
is connected), invariants (31) and (36) and the fact that

dom(hi+1) = dom(hi) ∪ { z ′ | (z 7→ (a,n), z ′) is removed from frontier during iteration i }.

This completes the proof of Proposition A.9. □

Proposition A.10. BLQuery can be implemented by an NAuxPDA.

Proof. It suffices to show that BLQuery runs in nondeterministic logarithmic space and polyno-

mial time (the size of stack does not have to be bounded).

First, we nondeterministically fix a root variable z0, but do not actually need to store the induced

directed tree T in memory. Instead, it suffices to decide, given two variables z and z ′, whether z ′ is
a child of z in T , which clearly belongs to NL.

Next, we need only logarithmic space to store the individual a0. The initial wordw0 = ϱ1 . . . ϱn0

is guessed symbol-by-symbol and pushed onto stack. We note that both subroutines, isGenerated
and canMap, can be made to run in nondeterministic logarithmic space. Then, since the children of

a node in T can be identified in NL, we can decide in nondeterministic logarithmic space whether

a tuple (z0 7→ (a0, |stack|, zi) should be included in frontier. Moreover, since the input query q is

a tree-shaped query with a bounded number of leaves, only a bounded number of tuples can be

added to frontier by each such operation. Moreover, it is clear that every tuple can be stored using

logarithmic space. More generally, by (31) and (34), one can show that |frontier| is bounded by a

constant throughout the execution of the procedure, and the tuples added during the while loop
can also be stored in logarithmically space.

Observe that iterations of the loop involve a polynomial number of simple operations such as

– remove a tuple from frontier, or add a tuple to frontier;
– pop a role from stack, or push a role onto stack;
– guess a single individual constant or symbol;

– identify the children of a given variable;

– test whether T |= α , for some inclusion α involving symbols from T ;

– make a call to subroutines isGenerated or canMap.

For each of the above operations, it is either easy to see, or has already been explained, that the

operation can be performed in nondeterministic logarithmic space.

To complete the proof, observe that, by (35), each iteration of the while loop involves removing a

tuple from frontier or popping a role from stack. By (31), every tuple in frontier corresponds to an

edge in T , and, by (34), we create at most one tuple per edge. Thus, there are at most |q | iterations
involving the removal of a tuple. The total number of roles added to stack is bounded by 2|T | + |q |
roles in the initial stack plus |q | roles added in later iterations, yielding at most 2|T |+2|q | iterations
involving only the popping of a role. Thus, the total number of iterations of the while loop does

not exceed 2|T | + 3|q |. □

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:66 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

A.13 Proof of LogCFL-hardness in Theorem 9.3
Proposition A.11. The OMQ (Tα ,q′) can be computed fromC by logspace transducers.

Proof. Consider a circuitC in normal form with 2d + 1 layers of gates, where d is logarithmic in

the number of its inputs n. We show that Tα and q′ can be constructed using O(log(n)) worktape
memory.

To produce the CQ q′, we can generate the word wd symbol-by-symbol and insert the corre-

sponding variables. This can be done by a simple recursive procedure of depth d , using the worktape
to remember the current position in the recursion tree as well as the index of the current variable yi .
Note that |wd | (hence the largest index of the query variables) may be exponential in d , but is only
polynomial in n, and so we need only logarithmic space to store the index of the current variable.

The ontology Tα is obtained by making a single pass over a (graph representation) of the circuit

and generating the axioms that correspond to the gates ofC and the links between them. To decide

which axioms of the formGi (x) → A(x) to include, we must also look up the value of the variables

associated to the input gates under α . □

Proposition A.12. C accepts α iff Tα ,A |= q′(a).

Proof. Denote by e the natural homomorphism from q′ to q, and by e ′ the natural homo-

morphism from CTα ,A to D(α). Since C accepts input α iff there is a homomorphism h from q
to D(α) [36], it remains to show that there is a homomorphism h from q to D(α) if and only if

there exists a homomorphism f from q′ to CTα ,A :

(a) q′

q D(α)

CTα ,A

e e ′

h

h′

f
(b) q′

q D(α)

CTα ,A

e e ′

f

f ′

h

(⇒) Suppose h is a homomorphism from q to D(α). We define a homomorphism h′ : q → CTα ,A

inductively moving from the root zm of q to its leaves. For the basis of induction, we set h′(zm) = a;
note that CTα ,A |= Gm(a). For the inductive step, suppose that zj is a child of zi , h

′(zi) is defined,
CTα ,A |= Gi′(h

′(zi)) and h(zj) = дj′ . In this case, we set h′(zj) = h′(zi)Pi′j′ , where Pi′j′ is the
normalisation predicate for the axiom Gi′(x) → ∃y

(
S(y, x) ∧G j′(y)

)
. By the definition of Tα , we

have CTα ,A |= G j′(h
′(zj)), which enables us to continue the induction. It should be clear that h′ is

indeed a homomorphism from q into CTα ,A . The desired homomorphism f : q′→ CTα ,A can be

obtained as the composition of e and h′, as illustrated in diagram (a).

(⇐) Suppose that f is a homomorphism from q′ to CTα ,A . We prove, by induction on |j − i |, that

e(yi) = e(yj) implies f (yi) = f (yj), for all variables yi ,yj . (41)

The base case (|j − i | = 0) is trivial. For the inductive step, we may assume without loss of generality

that i < j and there is no intermediate variable yk between yi and yj with e(yi) = e(yk) =
e(yj) (otherwise, we can simply use the induction hypothesis together with the transitivity of

equality). It follows that e(yi+1) = e(yj−1), and the atom between yj−1 and yj is oriented from yj−1

towards yj , while the atom between yi and yi+1 goes from yi+1 to yi . Indeed, this holds if the
node z = e(yi) = e(yj) has a single child since in this case there are exactly two variables in q′

which are mapped to z, and they bound the subtree in q generated by z. If z has two children,

this also holds by our assumption on the intermediate variables. By the induction hypothesis,

f (yi+1) = f (yj−1) = awϱ for some word awϱ. Since the only parent of awϱ in CTα ,A is aw , all

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:67

arrows in relations U , L and R are oriented towards the root, and f is a homomorphism, it follows

that f (yi) = f (yj) = aw . This concludes the inductive argument.

Next, we define function f ′ : q → CTα ,A by setting f ′(z) = f (y), where y is such that e(y) = z.
By (41), f ′ is well-defined, and since f is a homomorphism, the same holds for f ′. To obtain the

desired homomorphism h : q → D(α), it suffices to consider the composition of f ′ and e ′; see
diagram (b) above. □

ACKNOWLEDGMENTS
This work was supported by the French ANR JCJC grant 12-JS02-007-01 ‘PAGODA: Practical

Algorithms for Ontology-Based Data Access’, the UK EPSRC grant EP/M012670 ‘iTract: Islands

of Tractability in Ontology-Based Data Access’, the grant MK-5379.2018.1 of the President of the

Russian Federation, and the Russian Academic Excellence Project 5-100. The authors are grateful to

the anonymous referees for their careful reading, valuable comments and constructive suggestions.

REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.

[2] M. Agrawal, E. Allender, R. Impagliazzo, T. Pitassi, and S. Rudich. 2001. Reducing the complexity of reductions.

Computational Complexity 10, 2 (2001), 117–138.

[3] M. Agrawal, E. Allender, and S. Rudich. 1998. Reductions in circuit complexity: an isomorphism theorem and a gap

theorem. J. Comput. System Sci. 57, 2 (1998), 127–143.

[4] N. Alon and R. Boppana. 1987. The monotone circuit complexity of Boolean functions. Combinatorica 7, 1 (1987), 1–22.

[5] S. Arora and B. Barak. 2009. Computational Complexity: A Modern Approach (1st ed.). Cambridge University Press,

New York, NY, USA.

[6] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. 2009. The DL-Lite family and relations. J. Artif. Intell.

Res. (JAIR) 36 (2009), 1–69.

[7] B. Aspvall, M. Plass, and R. Tarjan. 1979. A linear-time algorithm for testing the truth of certain quantified boolean

formulas. Inform. Process. Lett. 8, 3 (1979), 121–123.

[8] J. Avigad. 2003. Eliminating definitions and Skolem functions in first-order logic. ACM Trans. Comput. Logic 4, 3 (2003),

402–415.

[9] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. 2011. On rules with existential variables: walking the decidability

line. Artif. Intell. 175, 9–10 (2011), 1620–1654.

[10] M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, V. Ryzhikov, and M. Zakharyaschev. 2017. The complexity of

ontology-based data access with OWL 2 QL and bounded treewidth queries. In Proc. of the 36th ACM SIGMOD-SIGACT-

SIGAI Symp. on Principles of Database Systems, PODS 2017. ACM, 201–216.

[11] M. Bienvenu, S. Kikot, and V. V. Podolskii. 2015. Tree-like queries in OWL 2 QL: succinctness and complexity results.

In Proc. of the 30th Annual ACM/IEEE Symp. on Logic in Computer Science, LICS 2015. IEEE Computer Society, 317–328.

[12] M. Bienvenu, C. Lutz, and F. Wolter. 2013. First-order rewritability of atomic queries in Horn description logics. In

Proc. of the 23nd Int. Joint Conf. on Artificial Intelligence, IJCAI 2013. IJCAI/AAAI, 754–760.

[13] M. Bienvenu, M. Ortiz, and M. Simkus. 2015. Regular path queries in lightweight description logics: complexity and

algorithms. J. Artif. Intell. Res. (JAIR) 53 (2015), 315–374.

[14] M. Bienvenu, M. Ortiz, M. Simkus, and G. Xiao. 2013. Tractable queries for lightweight description logics. In Proc. of

the 23nd Int. Joint Conf. on Artificial Intelligence, IJCAI 2013. IJCAI/AAAI, 768–774.

[15] M. Bienvenu and R. Rosati. 2015. Query-based comparison of OBDA specifications. In Proc. of the 28th Int. Workshop

on Description Logics, DL 2015 (CEUR), Vol. 1350. CEUR-WS, 55–66.

[16] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. 2014. Ontology-based data access: a study through disjunctive Datalog,

CSP, and MMSNP. ACM Trans. Database Syst. 39, 4 (2014), 33:1–44.

[17] E. Botoeva, D. Calvanese, V. Santarelli, D. F. Savo, A. Solimando, and G. Xiao. 2016. Beyond OWL 2 QL in OBDA:

rewritings and approximations. In Proc. of the AAAI Conf. on Artificial Intelligence, AAAI 2016.

[18] A. Brandstädt, V. B. Le, and J. P. Spinrad. 1999. Graph Classes: A Survey. SIAM, Philadelphia, PA, USA.

[19] A. Bretto. 2013. Hypergraph Theory: An Introduction. Springer.

[20] A. Calì, G. Gottlob, and T. Lukasiewicz. 2012. A general Datalog-based framework for tractable query answering over

ontologies. J. Web Semantics 14 (2012), 57–83.

[21] A. Calì, G. Gottlob, and A. Pieris. 2012. Towards more expressive ontology languages: The query answering problem.

Artif. Intell. 193 (2012), 87–128.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:68 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

[22] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and D. F.

Savo. 2011. The MASTRO system for ontology-based data access. Semantic Web 2, 1 (2011), 43–53.

[23] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. 2007. Tractable reasoning and efficient query

answering in description logics: the DL-Lite family. J. of Autom. Reasoning 39, 3 (2007), 385–429.

[24] A. Chandra and P. Merlin. 1977. Optimal implementation of conjunctive queries in relational data bases. In Conf.

Record of the 9th Annual ACM Symp. on Theory of Computing, STOC’77. ACM, 77–90.

[25] C. Chekuri and A. Rajaraman. 2000. Conjunctive query containment revisited. Theoretical Computer Science 239, 2

(2000), 211–229.

[26] A. Chortaras, D. Trivela, and G. Stamou. 2011. Optimized query rewriting for OWL 2 QL. In Proc. of the 23rd Int. Conf.

on Automated Deduction, CADE-23 (LNCS), Vol. 6803. Springer, 192–206.

[27] C. Civili and R. Rosati. 2012. A broad class of first-order rewritable tuple-generating dependencies. In Proc. of the 2nd

Int. Datalog 2.0 Workshop (LNCS), Vol. 7494. Springer, 68–80.

[28] M. Console, J. Mora, R. Rosati, V. Santarelli, andD. F. Savo. 2014. Effective computation ofmaximal sound approximations

of description logic ontologies. In Proc. of the 13th Int. Semantic Web Conf., ISWC 2014, Part II (LNCS), Vol. 8797. Springer,

164–179.

[29] S. A. Cook. 1971. Characterizations of pushdown machines in terms of time-bounded computers. J. ACM 18, 1 (1971),

4–18.

[30] T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, and G. Xiao. 2012. Query rewriting for Horn-SHIQ plus rules. In Proc. of the

26th AAAI Conf. on Artificial Intelligence, AAAI 2012. AAAI, 726–733.

[31] C. Flament. 1978. Hypergraphes arborés. Discrete Mathematics 21, 3 (1978), 223–227.

[32] J. Flum and M. Grohe. 2006. Parameterized Complexity Theory. Springer.

[33] M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase, E. Jiménez-Ruiz, D. Lanti, M. Rezk, G. Xiao, Ö. Özçep, and R.

Rosati. 2015. Optique: Zooming in on Big Data. IEEE Computer 48, 3 (2015), 60–67.

[34] G. Gottlob, S. Kikot, R. Kontchakov, V. V. Podolskii, T. Schwentick, and M. Zakharyaschev. 2014. The price of query

rewriting in ontology-based data access. Artif. Intell. 213 (2014), 42–59.

[35] G. Gottlob, N. Leone, and F. Scarcello. 1999. Computing LOGCFL certificates. In Proc. of the 26th Int. Colloquium on

Automata, Languages & Programming, ICALP-99 (LNCS), Vol. 1644. Springer, 361–371.

[36] G. Gottlob, N. Leone, and F. Scarcello. 2001. The complexity of acyclic conjunctive queries. J. ACM 48, 3 (2001),

431–498.

[37] G. Gottlob, M. Manna, and A. Pieris. 2015. Polynomial rewritings for linear existential rules. In Proc. of the 24th Int.

Joint Conf. on Artificial Intelligence, IJCAI 2015. AAAI, 2992–2998.

[38] G. Gottlob, G. Orsi, and A. Pieris. 2011. Ontological queries: rewriting and optimization. In Proc. of the 27th Int. Conf.

on Data Engineering, ICDE 2011. IEEE Computer Society, 2–13.

[39] G. Gottlob and T. Schwentick. 2012. Rewriting ontological queries into small nonrecursive Datalog programs. In Proc.

of the 13th Int. Conf. on Principles of Knowledge Representation & Reasoning, KR 2012. AAAI, 254–263.

[40] S. A. Greibach. 1973. The Hardest Context-Free Language. SIAM J. Comput. 2, 4 (1973), 304–310.

[41] M. Grigni and M. Sipser. 1992. Monotone complexity. In Proc. of the London Mathematical Society Symp. on Boolean

Function Complexity. Cambridge University Press, 57–75.

[42] M. Grohe, T. Schwentick, and L. Segoufin. 2001. When is the evaluation of conjunctive queries tractable?. In Proc. of

the 33rd Annual ACM Symp. on Theory of Computing, STOC 2001. ACM, 657–666.

[43] V. Gutiérrez-Basulto, Y. Ibáñez-García, R. Kontchakov, and E. V. Kostylev. 2015. Queries with negation and inequalities

over lightweight ontologies. J. Web Semantics 35 (2015), 184–202.

[44] P. Hansen, C. Lutz, I. Seylan, and F. Wolter. 2015. Efficient query rewriting in the description logic EL and beyond. In

Proc. of the 24th Int. Joint Conf. on Artificial Intelligence, IJCAI 2015. AAAI, 3034–3040.

[45] D. A. Huffman. 1952. A method for the construction of minimum-redundancy codes. Proceedings of the Institute of

Radio Engineers 40, 9 (1952), 1098–1101.

[46] N. Immerman. 1988. Nondeterministic space is closed under complementation. SIAM J. Comput. 17, 5 (1988), 935–938.

[47] D. S. Johnson. 1990. A Catalog of Complexity Classes. In Handbook of Theoretical Computer Science, Volume A:

Algorithms and Complexity (A). 67–161.

[48] D. S. Johnson and A. C. Klug. 1982. Testing containment of conjunctive queries under functional and inclusion

dependencies. In Proc. of the ACM Symp. on Principles of Database Systems, PODS. ACM, 164–169.

[49] S. Jukna. 2012. Boolean Function Complexity — Advances and Frontiers. Algorithms and combinatorics, Vol. 27. Springer.

[50] M. Kaminski, Y. Nenov, and B. Cuenca Grau. 2014. Datalog rewritability of disjunctive Datalog programs and its

applications to ontology reasoning. In Proc. of the 28th AAAI Conference on Artificial Intelligence, AAAI 2014. AAAI,

1077–1083.

[51] M. Karchmer and A. Wigderson. 1988. Monotone circuits for connectivity require super-logarithmic depth. In Proc. of

the 20th Annual ACM Symp. on Theory of Computing, STOC ’88. ACM, 539–550.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:69

[52] E. Kharlamov, D. Bilidas, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie, M. Rezk, M. Skjæveland, A. Soylu, G. Xiao, D.

Zheleznyakov, M. Giese, Y. Ioannidis, Y. Kotidis, M. Koubarakis, and A. Waaler. 2017. Ontology based data access in

Statoil. J. Web Semantics 44 (2017), 3–36.

[53] E. Kharlamov, T. Mailis, G. Mehdi, C. Neuenstadt, Ö. Özçep, M. Roshchin, N. Solomakhina, A. Soylu, C. Svingos, S.

Brandt, M. Giese, Y. Ioannidis, S. Lamparter, R. Möller, Y. Kotidis, and A. Waaler. 2017. Semantic access to streaming

and static data at Siemens. J. Web Semantics 44 (2017), 54–74.

[54] S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. 2012. Exponential lower bounds and separation for

query rewriting. In Proc. of the 39th Int. Colloquium on Automata, Languages & Programming, ICALP 2012 (LNCS),

Vol. 7392. Springer, 263–274.

[55] S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. 2014. On the succinctness of query rewriting over

shallow ontologies. In Proc. of the Joint Meeting of the 23rd EACSL Annual Conf. on Computer Science Logic (CSL) and

the 29th Annual ACM/IEEE Symp. on Logic in Computer Science (LICS), CSL-LICS’14. ACM, 57:1–57:10.

[56] S. Kikot, R. Kontchakov, and M. Zakharyaschev. 2011. On (in)tractability of OBDA with OWL 2 QL. In Proc. of the 24th

Int. Workshop on Description Logics, DL 2011, Vol. 745. CEUR-WS, 224–234.

[57] S. Kikot, R. Kontchakov, and M. Zakharyaschev. 2012. Conjunctive query Answering with OWL 2 QL. In Proc. of the

13th Int. Conf. on Principles of Knowledge Representation & Reasoning, KR 2012. AAAI, 275–285.

[58] M. König, M. Leclère, and M.-L. Mugnier. 2015. Query rewriting for existential rules with compiled preorder. In Proc.

of the 24th Int. Joint Conf. on Artificial Intelligence, IJCAI 2015. AAAI, 3106–3112.

[59] M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. 2015. Sound, complete and minimal UCQ-rewriting for

existential rules. Semantic Web 6, 5 (2015), 451–475.

[60] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. 2010. The combined approach to query answering

in DL-Lite. In Proc. of the 12th Int. Conf. on Principles of Knowledge Representation & Reasoning, KR 2010. AAAI, 247–257.

[61] R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev. 2014. Answering SPARQL queries over

databases under OWL 2 QL entailment regime. In Proc. of the 13th Int. Semantic Web Conf., ISWC 2014, Part I (LNCS),

Vol. 8796. Springer, 552–567.

[62] E. V. Kostylev, J. L. Reutter, and D. Vrgoč. 2015. XPath for DL ontologies. In Proc. of the 29th AAAI Conference on

Artificial Intelligence, AAAI 2015. AAAI, 1525–1531.

[63] D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen. 2015. Mapping analysis in ontology-based data access:

algorithms and complexity. In Proc. of the 14th Int. Semantic Web Conf., ISWC 2015 (LNCS), Vol. 9366. Springer, 217–234.

[64] L. Libkin. 2004. Elements of Finite Model Theory. Springer.

[65] C. Lutz. 2008. The complexity of conjunctive query answering in expressive description logics. In Proc. of the 4th Int.

Joint Conf. on Automated Reasoning, IJCAR 2008 (LNAI). Springer, 179–193.

[66] C. Lutz, R. Piro, and F. Wolter. 2011. Description logic TBoxes: model-theoretic characterizations and rewritability. In

Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence, IJCAI 2011. IJCAI/AAAI, 983–988.

[67] C. Lutz, I. Seylan, D. Toman, and F. Wolter. 2013. The combined approach to OBDA: taming role hierarchies using

filters. In Proc. of the 12th Int. Semantic Web Conf., ISWC 2013, Part I (LNCS), Vol. 8218. Springer, 314–330.

[68] C. Lutz, D. Toman, and F. Wolter. 2009. Conjunctive query answering in the description logic EL using a relational

database system. In Proc. of the 21st Int. Joint Conf. on Artificial Intelligence, IJCAI 2009. 2070–2075.

[69] J. Mora, R. Rosati, and Ó. Corcho. 2014. Kyrie2: query rewriting under extensional constraints in ELHIO. In Proc. of the

13th Int. Semantic Web Conf., ISWC 2014 (LNCS), Vol. 8796. Springer, 568–583.

[70] H. Pérez-Urbina, B. Motik, and I. Horrocks. 2009. A comparison of query rewriting techniques for DL-lite. In Proc. of

the 22nd Int. Workshop on Description Logics, DL 2009 (CEUR), Vol. 477. CEUR-WS.

[71] H. Pérez-Urbina, E. Rodríguez-Díaz, M. Grove, G. Konstantinidis, and E. Sirin. 2012. Evaluation of query rewriting

approaches for OWL 2. In Proc. of SSWS+HPCSW 2012 (CEUR), Vol. 943. CEUR-WS.

[72] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. 2008. Linking data to ontologies. J.

Data Semantics X (2008), 133–173.

[73] R. Raz and A. Wigderson. 1992. Monotone circuits for matching require linear depth. J. ACM 39, 3 (1992), 736–744.

[74] A. Razborov. 1985. Lower bounds for the monotone complexity of some Boolean functions. Dokl. Akad. Nauk SSSR

281, 4 (1985), 798–801.

[75] A. A. Razborov. 1991. Lower bounds for deterministic and nondeterministic branching programs. In Proc. of the 8th Int.

Symp. on Fundamentals of Computation Theory, FCT’91 (LNCS), Vol. 529. Springer, 47–60.

[76] M. Rodriguez-Muro and D. Calvanese. 2012. High performance query answering over DL-Lite ontologies. In Proc. of

the 13th Int. Conf. on Principles of Knowledge Representation & Reasoning, KR 2012. AAAI, 308–318.

[77] M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. 2013. Ontology-based data access: Ontop of databases. In

Proc. of the 12th Int. Semantic Web Conf., ISWC 2013 (LNCS), Vol. 8218. Springer, 558–573.

[78] R. Rosati. 2007. The limits of querying ontologies. In Proc. of the 11th Int. Conf. on Database Theory, ICDT 2007 (LNCS),

Vol. 4353. Springer, 164–178.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:70 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

[79] R. Rosati. 2012. Prexto: query rewriting under extensional constraints in DL-Lite. In Proc. of the 9th Extended Semantic

Web Conf., EWSC 2012 (LNCS), Vol. 7295. Springer, 360–374.

[80] R. Rosati and A. Almatelli. 2010. Improving query answering over DL-Lite ontologies. In Proc. of the 12th Int. Conf. on

Principles of Knowledge Representation & Reasoning, KR 2010. AAAI, 290–300.

[81] J. F. Sequeda, M. Arenas, and D. P. Miranker. 2014. OBDA: query rewriting or materialization? In practice, both!. In

Proc. of the 13th Int. Semantic Web Conf., ISWC 2014, Part I (LNCS), Vol. 8796. Springer, 535–551.

[82] I. H. Sudborough. 1978. On the tape complexity of deterministic context-free languages. J. ACM 25, 3 (1978), 405–414.

[83] R. Szelepcsényi. 1988. The method of forced enumeration for nondeterministic automata. Acta Informatica 26, 3 (1988),

279–284.

[84] M. Thomazo. 2013. Compact rewritings for existential rules. In Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence,

IJCAI 2013. IJCAI/AAAI, 1125–1131.

[85] M. Vardi. 1982. The complexity of relational query languages (extended abstract). In Proc. of the 14th ACM SIGACT

Symp. on Theory of Computing, STOC’82. ACM, 137–146.

[86] H. Venkateswaran. 1991. Properties that characterize LOGCFL. J. Comput. System Sci. 43, 2 (1991), 380–404.

[87] H. Vollmer. 1999. Introduction to Circuit Complexity: A Uniform Approach. Springer.

[88] M. Yannakakis. 1981. Algorithms for acyclic database schemes. In Proc. of the 7th Int. Conf. on Very Large Data Bases,

VLDB’81. IEEE Computer Society, 82–94.

[89] Y. Zhou, B. Cuenca Grau, Y. Nenov, M. Kaminski, and I. Horrocks. 2015. PAGOdA: pay-as-you-go ontology query

answering using a Datalog reasoner. J. Artif. Intell. Res. (JAIR) 54 (2015), 309–367.

Received April 2016; revised August 2017; accepted March 2018

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	1.1 Ontology-Based Data Access
	1.2 Problems: Succinctness and Complexity
	1.3 Our Contribution
	1.4 Some Remarks on Related OBDA Research

	2 OWL2QL ontology-mediated queries and first-order rewritability
	3 Tree-Witness Rewritings
	3.1 Basic Tree-Witness Rewriting
	3.2 The Number of Tree Witnesses
	3.3 Tree-Witness Rewriting Modified

	4 OMQ Rewritings as Boolean Functions
	4.1 Hypergraph Functions
	4.2 Primitive Evaluation Functions

	5 From OMQs to Hypergraph Programs
	5.1 Hypergraph Programs
	5.2 Tree Hypergraph Programs (THGPs)
	5.3 THGPs for OMQs of Bounded Treewidth and PFSP

	6 Representing hypergraphs as OMQs
	6.1 Arbitrary Hypergraphs as OMQs with Ontologies of Depth 2
	6.2 Hypergraphs of Degree 2 as OMQs with Ontologies of Depth 1
	6.3 Tree Hypergraphs as Tree-Shaped OMQs

	7 Hypergraph Programs and Circuit Complexity
	7.1 NP/poly and HGP3
	7.2 NL/poly and HGP2
	7.3 NL/poly and THGP()
	7.4 LogCFL/poly and THGP
	7.5 NCbold0mu mumu 111111, bold0mu mumu bold0mu mumu 333333 and THGPd

	8 The Size of OMQ Rewritings
	8.1 All OMQs
	8.2 OMQs with Ontologies of Depth 1
	8.3 Tree-Shaped OMQs with a Bounded Number of Leaves
	8.4 OMQs with PFSP and Bounded Treewidth

	9 Combined Complexity of OMQ answering
	9.1 OMQs with Bounded-Depth Ontologies
	9.2 OMQs with Bounded-Leaf CQs

	10 Conclusions and open problems
	A Supplementary Materials
	A.1 Proof of Theorem 3.9
	A.2 Proofs of Theorems 4.2 and 4.4 and of Proposition 4.3
	A.3 Generalised HGPs and THGPs
	A.4 Proof of Proposition 5.4
	A.5 Proof of Proposition 5.5
	A.6 Proof of Theorem 5.6
	A.7 Proof of Theorem 5.8
	A.8 Proofs of Theorems 5.12 and 5.14
	A.9 Proof of Theorem 6.6
	A.10 Size of OMQs Constructed in Section 6
	A.11 Proofs of Theorems 7.4 and 7.6
	A.12 Proof of the LogCFL membership in Theorem 9.3
	A.13 Proof of LogCFL-hardness in Theorem 9.3

	Acknowledgments
	References

