N

N

Ontology-Mediated Queries: Combined Complexity and
Succinctness of Rewritings via Circuit Complexity
Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladimir V

Podolskii, Michael Zakharyaschev

» To cite this version:

Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladimir V Podolskii, Michael Za-
kharyaschev. Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings
via Circuit Complexity. Journal of the ACM (JACM), 2018, 65 (5), pp.1-51. 10.1145/3191832 .
lirmm-01892661

HAL Id: lirmm-01892661
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01892661
Submitted on 10 Oct 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01892661
https://hal.archives-ouvertes.fr

Ontology-Mediated Queries: Combined Complexity and
Succinctness of Rewritings via Circuit Complexity

MEGHYN BIENVENU, CNRS & University of Montpellier, France

STANISLAV KIKOT, Birkbeck, University of London, UK

ROMAN KONTCHAKOV, Birkbeck, University of London, UK

VLADIMIR V. PODOLSKII, Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow,

Russia and National Research University Higher School of Economics, Russia

MICHAEL ZAKHARYASCHEV, Birkbeck, University of London, UK

We give solutions to two fundamental computational problems in ontology-based data access with the W3C
standard ontology language OWL 2 QL: the succinctness problem for first-order rewritings of ontology-me-
diated queries (OMQs), and the complexity problem for OMQ answering. We classify OMQs according to
the shape of their conjunctive queries (treewidth, the number of leaves) and the existential depth of their
ontologies. For each of these classes, we determine the combined complexity of OMQ answering, and whether
all OMQs in the class have polynomial-size first-order, positive existential and nonrecursive datalog rewritings.
We obtain the succinctness results using hypergraph programs, a new computational model for Boolean
functions, which makes it possible to connect the size of OMQ rewritings and circuit complexity.

CCS Concepts: « Computing methodologies — Description logics; « Information systems — Query
languages; « Theory of computation — Description logics; Circuit complexity;

Additional Key Words and Phrases: ontology-based data access, query rewriting, ontology-mediated query,
succinctness, computational complexity.

ACM Reference Format:

Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, and Michael Zakharyaschev.
2018. Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via Circuit Com-
plexity. 7. ACM 1, 1, Article 1 (January 2018), 70 pages. https://doi.org/10.1145/3191832

1 INTRODUCTION
1.1 Ontology-Based Data Access

Ontology-based data access (OBDA) via query rewriting was proposed by Poggi et al. [72] with the
aim of facilitating query answering over complex, possibly incomplete and heterogeneous data
sources. In an OBDA system (see Fig. 1), the user does not have to be aware of the structure of data
sources, which can be relational databases, spreadsheets, RDF triplestores, etc. Instead, the system
provides the user with an ontology that serves as a high-level conceptual view of the data, gives a

Authors’ addresses: M. Bienvenu, Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
(LIRMM), University of Montpellier, 860 rue de St Priest, 34095 Montpellier CEDEX 5, France, meghyn@lirmm.fr; S. Kikot,
R. Kontchakov, M. Zakharyaschev, Department of Computer Science and Information Systems, Birkbeck, University of
London, Malet Street, London WC1E 7HX, UK, {kikot, roman, michael}@dcs.bbk.ac.uk; V. V. Podolskii, Steklov Mathematical
Institute of the Russian Academy of Sciences, 8 Gubkina str., 119991, Moscow, Russia and National Research University
Higher School of Economics, 20 Myasnitskaya str., 101000, Moscow, Russia, podolskii@mi.ras.ru.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/1-ART1 $15.00

https://doi.org/10.1145/3191832

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3191832
https://doi.org/10.1145/3191832

1:2 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

SELECT 7|
% a :Staff . query
?% a | a owlrestriction;
owl:onProperty :assistedBy; I
owl:someValuesFrom :Secretary| . } -
Staff|

ProjectManager

[1 rdf:type rr:TriplesMap ;
rr:logicalTable "SELECT * FROM PROJECT";
rr:subjectMap [a rr:BlankNodeMap ;

rr:column "PRJ_ID" ; 1 ;

rr:propertyObjectMap [rr:property a:name; Project ontology
rr:column "PRJ_NAME"] ;
mappings
PP g A B C D

CREATE TABLE PROJECT (
PRJ_ID INT NOT NULL,
PRJ_NAME VARCHAR(60) NOT NULL,
PRJ_MANAGER_ID INT NOT NULL

.

L

data sources

Fig. 1. Ontology-based data access.

convenient vocabulary for user queries, and enriches incomplete data with background knowledge.
A snippet, 77, of such an ontology is shown below in the syntax of first-order (FO) logic:

Vx (ProjectManager(x) — Ty (isAssistedBy(x, y) A PA(y))),
Vx (Jy managesProject(x, y) — ProjectManager(x)),
Vx (ProjectManager(x) — Staff(x)),
Vx (PA(x) — Secretary(x)).
User queries are formulated in the signature of the ontology. For example, the conjunctive query
q(x) = Ty (Staffix) A isAssistedBy(x, y) A Secretary(y))

is supposed to find the staff assisted by secretaries. The ontology signature and data schemas are
related by mappings designed by the ontology engineer and invisible to the user. The mappings
allow the system to view the data sources as a single RDF graph (a finite set of unary and binary
ground atoms), A, in the signature of the ontology. For example, the global-as-view (GAV) mappings

Vx, y, z (PROJECT(x, y, z) — managesProject(z, x)),

Vx, y (STAFF(x, y) A (y = 2) — ProjectManager(x))
populate the ontology predicates managesProject and ProjectManager with values from the database
relations PROJECT and STAFF, respectively. In the query rewriting approach of Poggi et al. [72], the
OBDA system employs the ontology and mappings in order to transform the user query into a
query over the data sources, and then delegates the actual query evaluation to the underlying

database engines and triplestores.
For example, the first-order query

d(x) = Ty [Staﬂ‘(x) A isAssistedBy(x, y) A (Secretary(y) V PA(y))] \Y
ProjectManager(x) V 3z managesProject(x, z)

is an FO-rewriting of the ontology-mediated query (OMQ) Q(x) = (7, q(x)) over any RDF graph A in
the sense that a is an answer to ®(x) over A if and only if q(a) is a logical consequence of 7~ and A.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:3

As the system is not supposed to materialise A, it uses the mappings to unfold the rewriting ® into
an SQL (or SPARQL) query over the data sources.

Ontology languages suitable for OBDA via query rewriting have been identified by the Descrip-
tion Logic, Semantic Web, and Database/Datalog communities. The DL-Lite family of description
logics, first proposed by Calvanese et al. [23] and later extended by Artale et al. [6], was specifically
designed to ensure the existence of FO-rewritings for all conjunctive queries (CQs). Based on
this family, the W3C defined a profile OWL 2 QL' of the Web Ontology Language OWL 2 ‘so that
data [...] stored in a standard relational database system can be queried through an ontology
via a simple rewriting mechanism’ Various dialects of tuple-generating dependencies (tgds) that
admit FO-rewritings of CQs and extend OWL 2 QL have also been identified [9, 21, 27]. We note in
passing that while most work on OBDA (including the present article) assumes that the user query
is given as a CQ, other query languages, allowing limited forms of recursion and/or negation, have
also been investigated [13, 43, 62, 78]. SPARQL 1.1, the standard query language for RDF graphs,
contains negation, aggregation and other features beyond first-order logic. The entailment regimes
of SPARQL 1.1% also bring inferencing capabilities to the setting, which are, however, necessarily
limited to enable efficient implementations.

By reducing OMQ answering to standard database query evaluation, which is generally regarded
to be very efficient, OBDA via query rewriting has quickly become a hot topic in both theory and
practice. A number of rewriting techniques have been proposed and implemented for OWL 2 QL
(PerfectRef [72], Presto/Prexto [79, 80], tree witness rewriting [57]), sets of tuple-generating depen-
dencies (Nyaya [38], PURE [59]), and more expressive ontology languages that require recursive
datalog rewritings (Requiem [70], Rapid [26], Clipper [30] and Kyrie [69]). A few mature OBDA
systems have also recently emerged: pioneering MASTRO [22], commercial Stardog [71] and Ultra-
wrap [81], and the Optique platform [33] based on the query answering engine Ontop [61, 77]. By
providing a semantic end-to-end connection between users and multiple distributed data sources
(and thus making the IT expert middleman redundant), OBDA has attracted the attention of indus-
try, with companies such as Siemens [53] and Statoil [52] experimenting with OBDA technologies
to streamline the process of data access for their engineers’

1.2 Problems: Succinctness and Complexity

In this article, our concern is two fundamental theoretical problems whose solutions will elu-
cidate the computational costs required for answering OMQs with OWL 2 QL ontologies. The
succinctness problem is to understand how difficult it is to construct rewritings for OMQs in a given
class and, in particular, to determine whether OMQs in the class have polynomial-size rewritings
or not. In other words, the succinctness problem clarifies the computational cost of the reduc-
tion of OMQ answering to database query evaluation. The original FO-rewriting of any given
OMQ Q = (7, q) suggested by Calvanese et al. [23] and called the ‘perfect reformulation’ is a
union of CQs (UCQ) of size |77|19! . 2009 . Having observed that UCQ-rewritings are prohibitively
large in practice, Rosati and Almatelli [80] designed an algorithm for a shorter rewriting of Q into
a nonrecursive datalog (NDL) program of size |77|°®) - 20U4D_Kikot et al. [57] and Thomazo [84]
identified common structures in UCQ-rewritings and compactified them into unions of semicon-
junctive queries (USCQs)—positive-existential (PE) formulas with matrices of the form VAV—of
size | 77| - 20Ul). The first lower bounds on the size of FO-, PE- and NDL-rewritings* were obtained

Thttp://www.w3.org/TR/owl2-profiles/#*OWL_2_QL

http://www.w3.org/TR/sparql11-entailment

3See, e.g., http://optique-project.eu.

“Note that domain-independent FO-rewritings correspond to plain SQL queries, PE-rewritings to SELECT-PROJECT-JOIN-
Un1oN (SPJU) queries, and NDL-rewritings to SPJU queries with views.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/sparql11-entailment
http://optique-project.eu

1:4 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

by Gottlob et al. [34] who constructed a sequence of OMQs (with tree-shaped CQs) whose PE-
and NDL-rewritings can only be of exponential size, while FO-rewritings are superpolynomial
unless NP C P/poly.

To understand how optimal OBDA via OMQ rewriting can be, we also have to measure the
resources required to answer OMQs by a best possible algorithm, not necessarily a reduction
to database query evaluation. Thus, we are interested in the combined complexity of the OMQ
answering problem: given an OMQ Q(x) = (7, q(x)) from a certain class, a data instance A and a
tuple a of constants from A, decide whether 7, A |= q(a). It is not hard to see that this problem is
NP-complete [6, 23], with the lower bound inherited from the complexity of CQ evaluation. The
combined complexity of CQ evaluation has been thoroughly investigated in database theory. In
particular, it is known that tree-shaped CQs and, more generally, CQs of bounded treewidth are
tractable, LogCFL-complete to be more precise [25, 36, 42, 88]. The presence of ontologies in OMQs
makes a transfer of these positive results to the OBDA setting impossible: indeed, answering OMQs
with tree-shaped CQs is NP-hard [56]. The tractability of CQs can be transferred to OMQs only
at the expense of sacrificing the expressivity of the ontology language OWL 2 QL, for example, by
disallowing ‘role inclusions’ [14].

In this article, we obtain solutions to the following major research problems:

— give an interesting—both theoretically and practically—classification of all OMQs according
to the structure of their ontologies and CQs;
— determine whether OMQs in each of the identified classes have polynomial-size PE-, NDL-,
and FO-rewritings;
— determine the combined complexity of answering OMQs in each of the classes.
Extended abstracts with initial results that ultimately led to the current article appeared in the
Proceedings of the ACM/IEEE Symposium on Logic in Computer Science [11, 55].

1.3 Our Contribution

We suggest a ‘two-dimensional’ classification of OMQs. One dimension takes account of the shape
of the CQs in OMQs by quantifying their treewidth (as in classical database theory) and the number
of leaves in tree-shaped CQs. Tree-shapedness is especially relevant in the context of OBDA: in
SPARQL 1.1, the sub-queries that require rewriting under the OWL 2 QL entailment regime are
always tree-shaped (they are, in essence, complex class expressions). The second dimension is
the existential depth of ontologies, that is, the length of the longest chain of labelled nulls in the
chase on any data. For instance, the NPD FactPages ontology; which was designed to facilitate
querying the datasets of the Norwegian Petroleum Directorate’ is of depth 5. A typical example of
an ontology axiom causing infinite depth is Vx (Person(x) — Jy (ancestor(y, x) A Person(y))).
Figure 2a gives a summary of the succinctness results obtained in this article. It turns out that
polynomial-size PE-rewritings are guaranteed to exist—in fact, can be constructed in polynomial
time—only for the class of OMQs with ontologies of depth 1 and CQs of bounded treewidth,
where tree-shaped OMQs (with CQs of treewidth 1) have polynomial-size 4-PE-rewritings (with
matrices of the form AVAV). Polynomial-size NDL-rewritings can be efficiently constructed for
all tree-shaped OMQs with a bounded number of leaves, all OMQs with ontologies of bounded
depth and CQs of bounded treewidth, and all OMQs with ontologies of depth 1. For OMQs with
ontologies of depth 2 and arbitrary CQs, and OMQs with arbitrary ontologies and tree-shaped CQs,
we have an exponential lower bound on the size of NDL- (and so PE-) rewritings. The existence of
polynomial-size FO-rewritings for all OMQs in each of these classes—save OMQs with ontologies

Shttp://sws.ifi.uio.no/project/npd-v2
Shttp://factpages.npd.no/factpages

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://sws.ifi.uio.no/project/npd-v2
http://factpages.npd.no/factpages

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:5

poly NDL, but no poly PE
poly FO iff NL/poly € NC!

poiy M,-PE H i pol}; PE

poly FO iff NP/poly ¢ NC!

C

- 2 poly NDL I poly NDL 21
°7 no paly PE I no poly PE 3
5 poly FO |
E iff

£ 4 LogCFL/poly € NC! dA

T T T T T T T T T T
2 e 4 trees 2 B t arb. 2 e ¢ trees 2 e t arb.

number of leaves treewidth number of leaves treewidth

@ (b)

Fig. 2. (a) Succinctness of OMQ rewritings, and (b) combined complexity of OMQ answering (tight bounds).

of depth 1 and CQs of bounded treewidth—turns out to be equivalent to one of the major open
problems in computational complexity such as’ NP/poly €* NC!. The only previously known
result in Fig. 2a is indicated by the white dotted line; for details, see [34, 54].

To obtain the new results in Fig. 2a, we develop a novel framework that connects succinctness
of rewritings and circuit complexity, a branch of computational complexity theory that classifies
Boolean functions according to the size of circuits (and formulas) computing them. Our starting
point is the observation that the tree-witness PE-rewriting of an OMQ Q = (7, q) constructed
by Kikot et al. [57] defines a hypergraph whose vertices are the atoms in q and whose hyperedges
correspond to connected sub-queries of q that can be homomorphically mapped to labelled nulls of
some chases for 7. Based on this observation, we introduce a new computational model for Boolean
functions by treating any hypergraph H, whose vertices are labelled with (possibly negated) Boolean
variables or constants 0 and 1, as a program computing a Boolean function fy that returns 1 on an
assignment to the variables iff there is an independent subset of hyperedges covering all vertices
labelled with 0 (under the assignment). We show that constructing short FO- (respectively, PE-
and NDL-) rewritings of Q is (nearly) equivalent to finding short Boolean formulas (respectively,
monotone formulas and monotone circuits) computing the hypergraph function for Q.

For each of the OMQ classes in Fig. 2a, we characterise the computational power of the corre-
sponding hypergraph programs and employ results from circuit complexity to identify the size of
rewritings. For example, we show that OMQs with ontologies of depth 1 correspond to hypergraph
programs of degree at most 2 (in which every vertex belongs to at most two hyperedges), and that
the latter are polynomially equivalent to nondeterministic branching programs (NBPs). Since NBPs
compute the Boolean functions in the class NL/poly C P/poly, the tree-witness rewritings for OMQs
with ontologies of depth 1 can be equivalently transformed into polynomial-size NDL-rewritings.
On the other hand, there exist monotone Boolean functions computable by polynomial-size NBPs
but not by polynomial-size monotone Boolean formulas, which establishes a superpolynomial lower
bound for PE-rewritings. It also follows that all such OMQs have polynomial-size FO-rewritings
just in case NC! = NL/poly.

The succinctness results in Fig. 2a, characterising the complexity of the reduction to plain
database query evaluation, are complemented by the combined complexity results in Fig. 2b, where
the only previously known result [56] is encircled by a white dotted line. Here, we prove that,
surprisingly, answering OMQs with ontologies of bounded depth and CQs of bounded treewidth
is no harder than evaluating CQs of bounded treewidth, that is, LogCFL-complete. By restricting

7C/poly is the non-uniform analogue of a complexity class C.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

further the class of CQs to trees with a bounded number of leaves, we obtain an even better
NL-completeness result, which matches the complexity of evaluating the underlying CQs. If we
consider bounded-leaf tree-shaped CQs coupled with arbitrary OWL 2 QL ontologies, then the OMQ
answering problem remains tractable in spite of a possibly infinite chase, LogCFL-complete to be
more precise. Thus, in our classification, only the OMQs with arbitrary ontologies and bounded
treewidth CQs turn out to be more complex than their underlying CQs (unless LogCFL = NP).
The plan of the article is as follows. Section 2 introduces OWL 2 QL, OMQs and rewritings.
Section 3 defines tree-witness rewritings. Section 4 reduces the succinctness problem for OMQ
rewritings to the succinctness problem for hypergraph Boolean functions associated with the tree-
witness rewritings. Sections 5 and 6 introduce hypergraph programs for computing these functions
and establish a correspondence between classes of OMQs in Fig. 2 and classes of hypergraph
programs. Section 7 characterises the computational power of hypergraph programs in these
classes by relating them to standard models of computation for Boolean functions. Section 8 uses
the results of the previous four sections and known facts from circuit complexity to obtain the
upper and lower bounds on the size of PE-, NDL- and FO-rewritings in Fig. 2a; a roadmap for the
succinctness results is given in Fig. 19 (Section 8). Section 9 establishes the combined complexity
results in Fig. 2b. We conclude in Section 10 by discussing the obtained succinctness and complexity
results and formulating a few open problems. All omitted proofs can be found in Appendix A.

1.4 Some Remarks on Related OBDA Research

In our comprehensive analysis, we slightly simplify the general OBDA setting by assuming that data
is given in the form of RDF graph and leave mappings out of the picture (in fact, GAV mappings only
polynomially increase the size of FO-rewritings over RDF graphs). In practice, however, mappings
play an important role, and their structure can be crucial for the performance of OBDA systems;
see Section 10.

As is well-known in database theory, to find answers to an OMQ Q = (7, q) over a data
instance A, one can construct the chase of A with 7 and evaluate q over it; see Section 3 for
details. This approach to OMQ answering is known as materialisation or forward chaining. In
the context of OBDA, there can be two main obstacles to materialisation. First, proprietary data
is often not available for manipulations, and second, the chase with OWL 2 QL ontologies may
be infinite. In the combined approach to OMQ answering, the infinite set of labelled nulls of the
chase is encoded by a small number of their representatives, and the CQ g is rewritten in order to
eliminate spurious answers [60, 68] or a special filtering procedure is used to get rid of them [67].
Gottlob and Schwentick [39] and Gottlob et al. [34] showed that every Q has a polynomial-size
PE-rewriting over any given data extended with two special constants, which are used by extra
existential quantifiers in the rewriting to ‘guess’ a derivation of q in the chase (cf. also [8] for a
succinctness trick in the same vein). Gottlob et al. [37] extended the polynomial combined approach
to OMQs with linear tgds.

2 OWL2QL ONTOLOGY-MEDIATED QUERIES AND FIRST-ORDER REWRITABILITY

In first-order logic, any OWL 2 QL ontology (or TBox in description logic parlance), 7, can be given
as a finite set of sentences (often called axioms) of the following forms

Vx (r(x) = 7'(x)), Vx (z(x) A T/(x) — L),
vx,y (e(x, y) = o' (x.y), Vx,y (e, y) A'(x,y) = L),
Vx o(x, x), Vx (o(x, x) — 1),

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:7

where the formulas 7(x) (called classes or concepts) and p(x, y) (called properties or roles) are defined,
using unary predicates A and binary predicates P, by the grammars
7(x) == T [Alx) | Fyelx,y) and o(xy) == T | Plx,y) | P(y,x). (1)
(Strictly speaking, OWL 2 QL ontologies can also contain inequalities a # b, for constants a and b.
However, they have no impact on the problems considered in this article, and so will be ignored.)
Example 2.1. To illustrate, we show a snippet of the NPD FactPages ontology:
Vx (GasPipeline(x) — Pipeline(x)),
Vx (FieldOwner(x) <> 3y ownerForField(x, y)),
Yy (3x ownerForField(x,y) — Field(y)),
Vx, y (shallowWellboreForField(x, y) — wellboreForField(x, y)),
Vx, y (isGeometryOfFeature(x, y) <> hasGeometry(y, x)).
To simplify presentation, in our ontologies we also use sentences of the form
Vi (2(x) = (), ®)
where
() == 1(x) | L) A LK) | Ty (ei(xy) A Aer(x,y) AL(Y).
It is readily seen that such sentences are syntactic sugar and can be eliminated by means of linearly

many extra axioms. Indeed, any axiom of the form (2) with {(x) = 3y (01(x, y) A+ - - Aok (x,) AL (y))
can be replaced by the following axioms, for a fresh Py andi = 1,. .., k:

Vx (7(x) = Fy Pr(x,y)), Vx,y (Pr(x.y) = 0i(x.y)), Yy (IxPr(x,y) = {'(y)) 3)

because any first-order structure is a model of (2) iff it is a restriction of some model of (3) to the
signature of (2). The result of (recursively) eliminating the syntactic sugar from an ontology 7~ is
called the normalisation of 7". We always assume that all of our ontologies are normalised even
though this is not done explicitly; however, we stipulate (without loss of generality) that the
normalisation predicates Py never occur in the data.

When writing ontology axioms, we usually omit the universal quantifiers. We typically use the
characters P, R to denote binary predicates, A, B, C for unary predicates, and S for either of them.
For a binary predicate P, we write P~ to denote its inverse; that is, P(x,y) = P~ (y, x), for any x
andy,and P~~ = P.

A conjunctive query (CQ) q(x) is a formula of the form Jy ¢(x, y), where ¢ is a conjunction of
atoms S(z) all of whose variables are among x, y.

Example 2.2. Here is a (fragment of a) typical CQ from the NPD FactPages:

q(x1,x2,x3) = Ty, z [ProductionLicence(xl) A operatorForLicence(y, x1) A
ProductionLicenceOperator(y) A dateOperatorValidFrom(y, x;) A
licenceOperatorCompany(y, z) A name(z, X3)] .

To simplify presentation and without loss of generality, we assume that CQs do not contain
constants. Where convenient, we regard a CQ as the set of its atoms; in particular, |q| is the size of q.
The variables in x are the answer variables of a CQ q(x). A CQ without answer variables is called
Boolean. With every CQ q, we associate its Gaifman graph G4 whose vertices are the variables of g
and edges are the pairs {u, v} such that P(u, v) € q, for some P. A CQ q is connected if the graph G4
is connected; q tree-shaped if G4 is a tree® and q is linear if Ggq is a tree with at most two leaves.

8Tree-shaped CQs also go by the name of acyclic queries [14, 88].

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

An OWL 2 QL ontology-mediated query (OMQ) is a pair Q(x) = (7, q(x)) of an OWL 2 QL on-
tology 7 and a CQ q(x). The size of Q is defined as |Q| = |77| + |q|, where |7| is the number of
symbols in 7"

A data instance, A, is a finite set of unary or binary ground atoms (called an ABox in description
logic). We denote by ind(A) the set of individual constants in A. Given an OMQ Q(x) and a data
instance A, a tuple a of constants from ind(A) of length |x| is called a certain answer to Q(x)
over A if I |= q(a) for all models I of 7" U A; in this case, we write 7, A |= q(a). If q is Boolean,
a certain answer to Q over A is ‘yes’ if 7, A |= q, and ‘no’ otherwise. We remind the reader [64]
that, for any CQ q(x) = Jy ¢(x, y), any first-order structure 7 and any tuple a from its domain A,
we have I |= q(a) iff there is a map h: x Uy — A such that (i) if S(z) € q then I |= S(h(z)), and
(i) h(x) = a.If (i) is satisfied then h is called a homomorphism from q to I, and we write h: ¢ — 7 ;
if (ii) also holds, then we write h: q(a) — 7.

Central to OBDA is the notion of OMQ rewriting that reduces the problem of finding certain
answers to standard query evaluation. More precisely, an FO-formula ®(x), possibly with equal-
ity =, is an FO-rewriting of an OMQ Q(x) = (7, q(x)) if, for any data instance A (without the
normalisation predicates for 7°) and any tuple a in ind(A),

T.AkEq@ it Izl a), 4)

where 74 is the first-order structure over the domain ind(A) such that 74 |= S(a) iff S(a) € A,
for any ground atom S(a). As A is arbitrary, this definition implies, in particular, that the rewriting
must be constant-free. If ®(x) is a positive existential formula—that is, ®(x) = Jy ¢(x, y) with ¢
constructed from atoms (possibly with equality) using A and V only—we call it a PE-rewriting
of Q(x). A PE-rewriting whose matrix ¢ is a disjunction of conjunctions (VA) is known as a UCQ-
rewriting; if ¢ takes the form VAV or AVAV, then we call it a ¥3-PE or I4-PE rewriting, respectively.
The size |®| of a rewriting ® is the number of symbols in it.

We also consider rewritings in the form of nonrecursive datalog queries. Recall [1] that a datalog
program, 11, is a finite set of Horn clauses Vx (y; A -+ A ym — ¥o), where each y; is an atom
P(x1,...,x;) with x; € x. The atom y, is the head of the clause, and y1, . . ., yn, its (possibly empty)
body. A predicate S depends on S’ in IT if IT has a clause with S in the head and S’ in the body;
program II is nonrecursive if this dependence relation is acyclic. We consider only constant-free
datalog programs.

Let Q(x) = (7, q(x)) be an OMQ, IT a nonrecursive program and G an |x|-ary predicate. The pair
d(x) = (I, G(x)) is an NDL-rewriting of Q(x) if, for any data instance A and tuple a in ind(A),
we have 7, A |= q(a) iff II(Z#) = G(a), where II(Z4) is the structure with domain ind(A)
obtained by closing 7z under the clauses in II. Every PE-rewriting can clearly be represented as an
NDL-rewriting of linear size [1].

Remark 1. As defined, FO- and PE-rewritings are not necessarily domain-independent queries,
while NDL-rewritings are not necessarily safe [1]. For example, (x = x) is a PE-rewriting of
the OMQ ({Vx P(x, x)}, P(x, x)), and the program ({T — A(x)}, A(x)) is an NDL-rewriting of
the OMQ ({T — A(x)}, A(x)). Rewritings can easily be made domain-independent and safe by
relativising their variables to the predicates in the data signature (relational schema). For instance,
if the signature is {A, P}, then a domain-independent relativisation of (x = x) is the PE-rewriting
(A(x)v3y P(x, y)VIy P(y, x)) A(x = x). Note that if we exclude from OWL 2 QL reflexivity and T on
the left-hand side, then rewritings are guaranteed to be domain-independent, and no relativisation
is required. In any case, rewritings are interpreted under the active domain semantics adopted in
databases; see (4).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:9

As mentioned in the introduction, the OWL 2 QL profile of OWL 2 was designed to ensure
FO-rewritability of all OMQs with ontologies in the profile or, equivalently, OMQ answering
in AC® for data complexity. It should be clear, however, that for the OBDA approach to work in
practice, the rewritings of OMQs must be of ‘reasonable shape and size’ Indeed, it was observed
experimentally [22] and also established theoretically [54] that sometimes the rewritings are
prohibitively large—exponentially-large in the size of the original CQ, to be more precise. These
observations imply that, in the context of OBDA, we should actually be interested not in arbitrary
but in polynomial-size rewritings. In complexity-theoretic terms, the focus should not only be
on the data complexity of OMQ answering, which is an appropriate measure for database query
evaluation (where queries are indeed usually small) [85], but also on the combined complexity that
takes into account the contribution of ontologies and queries.

3 TREE-WITNESS REWRITINGS

Now we define one particular rewriting of OWL 2QL OMQs that will play a key role in the
succinctness and complexity analysis later in the article. This rewriting is a modification of the
tree-witness PE-rewriting originally introduced by Kikot et al. [57] (cf. [59, 60, 65] for similar ideas).

We begin with two simple observations that will help us remove unneeded clutter from definitions.
Every OWL 2 QL ontology 7~ consists of two parts: 7 —, which contains all the sentences with L, and
the remainder, 7+, which is consistent with every data instance. For any ¢/(z) — L in 7, consider
the Boolean CQ 3z /(). It is not hard to see that, for any OMQ (77, q(x)) and data instance A, a
tuple a is a certain answer to (77, q(x)) over A iff either 7, A |= q(a) or T, A |= Iz ¢ (z), for
some ¥(z) — L in 7 ~; see [20]. Thus, from now on we assume that, in all our ontologies 7, the
‘negative’ part 7~ is empty, and so they are consistent with all data instances.

The second observation will allow us to restrict the class of data instances we need to consider
when rewriting OMQs. In general, if we only require condition (4) to hold for any data instance A
from some class U, then we call ®(x) a rewriting of Q(x) over U. Such classes of data instances can
be defined, for example, by the integrity constraints in the database schema or the mapping [77].
We say that a data instance A is complete’ for an ontology 7~ if S(a) € A whenever 7, A |= S(a),
for any ground atom S(a) with a from ind(A). The following proposition means that from now on
we will only consider rewritings over complete data instances.

ProrosITION 3.1. If®(x) is an NDL-rewriting of Q(x) = (7, q(x)) over complete data instances,
then there is an NDL-rewriting ®'(x) of Q(x) over arbitrary data instances with |®’| < |®| - |T|.
A similar result holds for PE- and FO-rewritings.

Proor. Let (II, G(x)) be an NDL-rewriting of Q(x) over complete data instances. Denote by IT*
the result of replacing each predicate S in IT with a fresh predicate S*. Let I’ be the union of IT*
and the following clauses for predicates A and P in IT:

T(x) = A*(x), if 7 | 7(x) — A(x) and 7(x) is built from symbols in 7,
o(x,y) = P*(x,y), if T [o(x,y) — P(x,y) and o(x, y) is built from symbols in 7,
T > P*(x,x), if T | P(x,x)
(the empty body is denoted by T). It is readily seen that (I', G*(x)) is an NDL-rewriting of Q(x)
over arbitrary data instances, and |II’| < |II| - |77|. The cases of PE- and FO-rewritings are similar:
we replace each A(x) with a disjunction of 7(x), for = with 7~ |= 7(x) — A(x), and each P(x, y)
with a disjunction of p(x, y), for o with 7~ |= o(x, y) — P(x,y), and x = y if T |= P(x, x), where the
empty disjunction is L. O

9Rodriguez-Muro et al. [77] used the term ‘H-completeness’; see also [58].

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

l o- i R
aP_(O aR ar

P RO R R
Cr,a aea Cn. A aeA Cr.a aea

Fig. 3. Canonical models in Example 3.2.

As is well-known [1], for every pair (77, A), there is a canonical model (or chase) Cs. & such that
T, A |= q(a) iff Cr; # |= q(a), for all CQs q(x) and a in ind(A). In our proofs, we use the following
definition of Cy; #, where without loss of generality we assume that 7~ does not contain binary
predicates P with 7~ |= Vx, y P(x, y). Indeed, occurrences of such P in 7 can be replaced by T and
occurrences of P(x, y) in CQs can simply be removed without changing certain answers over any
data instance (provided that x and y occur in the remainder of the query).

The domain A" @ of Cy- 4 consists of ind(A) and the witnesses, or labelled nulls, introduced by
the existential quantifiers in (the normalisation of) 7°. More precisely, the labelled nulls in Cg; #
are finite words of the form w = ap; . ..o, (n > 1) such that

- acind(A)and 7, A |= Jypi(a,y), but T, A |~ 01(a, b) for any b € ind(A);
- T Eoilx,x)for1 <i<m
— T | Fx0i(x,4) — 2011 (5, 2) and T I 0i(y, %) — oisi(x,y) for 1 < i <n.
Every individual name a € ind(A) is interpreted in Cy: # by itself, and unary and binary predicates
are interpreted as follows: for any u, v € ACT A
- C7. 2 = Au) iff either u € ind(A) and 7, A |= A(u), or u = wp, for some word w and p with
7 3y oy, x) — Alx);
- Cy- & |= P(u,v) iff one of the three options holds: (i) u,v € ind(A) and 7, A |= P(u,v);
(i) u =vand T |= P(x, x); (iii) v = up or u = vp~, for p with 7~ |= o(x,y) — P(x,).

Example 3.2. Consider the following ontologies:

7i = {Alx) = 3y (R(x,y) A Q(y, X)) },
T; = {A(x) = JyR(x,y), IxR(x,y) — Fz0(z,y) },
73 = { Ax) = JyR(x,y), IxR(x,y) — FzR(y,2) }.

The canonical models of (7;, A) with A = {A(a)}, for i = 1, 2,3, are shown in Fig. 3, where Py is
the normalisation predicate for {(x) = Jy (R(x,y) A O(y, x)). When depicting canonical models,
we use @ for constants and O for labelled nulls.

For any ontology 7~ and any formula z(x) given by (1), we denote by C,TT(“) the canonical model of
(TU{A(x) — 7(x)}, {A(a)}), for a fresh unary predicate A. We say that 7" is of depthn,1 < n < w, if
(i) there is no p with 7~ |= o(x, x),
(ii) at least one of the C,f_(“) contains a word ag; . . . o, but
(iii) none of the C,}(“) contains such a word of greater length.
Thus, 77 in Example 3.2 is of depth 1, 7; of depth 2, while 75 is not of any finite depth.
Ontologies of infinite depth generate infinite canonical models. However, OWL 2 QL has the
polynomial derivation depth property (PDDP) in the sense that there is a polynomial p such that,
for any OMQ QO(x) = (7, q(x)), data instance A and a in ind(A), we have 7, A |= q(a) iff
q(a) holds in the sub-model of Cy # whose domain consists of words of the form ap; . ..on

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:11

with n < p(|Q|) [20, 48]. (In general, the bounded derivation depth property of an ontology
language is a necessary and sufficient condition of FO-rewritability [34].)

We call a set Qp of words of the form w = g, ...0, fundamental for Q if, for any A and a
in ind(A), we have 7, A |= q(a) iff g(a) holds in the sub-model of Cy # with the domain
{aw € C7; 1 | a € ind(A), w € Qp}. We say that a class Q of OMQs has the polynomial funda-
mental set property (PFSP) if there is a polynomial p such that every Q in Q has a fundamental
set Qg with |Qg| < p(|QJ). The class of OMQs with ontologies of finite depth and tree-shaped
CQs does not have the PFSP [54]. On the other hand, it should be clear that the class of OMQs with
ontologies of bounded depth does enjoy the PFSP. A less trivial example is given by the following
theorem, which is an immediate consequence of Theorem 3.8 to be proved below:

THEOREM 3.3. The class of OMQs whose ontologies contain no axioms of the form o(x,y) — o'(x, y)
(and syntactic sugar (2)) enjoys the PFSP.

We are now in a position to define the tree-witness PE-rewriting of OWL 2 QL OMQs.

3.1 Basic Tree-Witness Rewriting
Suppose we are given an OMQ O(x) = (7, q(x)) with q(x) = Jy ¢(x, y). For a pair t = (t,1;) of
disjoint sets'’ of variables in ¢ with t; C y and t; # 0, let

q; = {S(z) €qlzct Ut andz;(_tr}.

If g, is a minimal subset of q for which there is a homomorphism h: ¢, — C,}(“) such thatt, = h™*(a)
and g, contains every atom of q with at least one variable from t;, then we call t a tree witness
for Q(x) generated by t (and induced by h). Note that the same tree witness can be generated by
different 7. Now, we set

twi(t,) = 3z (/\(x =z) A \/ T(Z)). (5)
x€t, t generated by 7

The variables in t; do not occur in tw; and are called internal. By definition, the answer variables x in
g(x) cannot be internal. The variables in t,, if any, are called root variables. If t has no root variables,
then g, is a connected component of g, in which case we call t detached. Tree witnesses t and t’
are conflicting if q; N q, # 0. Denote by O the set of tree witnesses for Q(x). A subset © C Qg is
independent if no pair of distinct tree witnesses in it is conflicting. Let gg = g ¢;. The following
PE-formula is called the tree-witness rewriting of Q(x) over complete data instances:

o) =\ (A s@ A Aw). (©)

©CO independent S(z)eq\qq te®

Note that &, (x) is essentially a ¥3-PE formula (because the tw; contain disjunctions); Proposi-
tion 3.1 would then produce a X 3-PE rewriting of Q(x) over arbitrary data.

Remark 2. As the normalisation predicates P; cannot occur in data instances, we omit from (5)
all the disjuncts with P;. For the same reason, the tree witnesses generated only by concepts with
normalisation predicates will be ignored in the sequel.

Example 3.4. Consider the OMQ Q(xy, x3) = (T, q(x1, x2)), where

q(x1,x2) = Fy1, Y2, Y3, ya (RGx1, y1) A Oy, y2) A S1(y2, y3) A Sa(Yan ys) A Q(x2,ys))

10We (ab)use set-theoretic notation for lists: for example, we write t; C y to say that every element of t; is an element of y.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

C{;\'l(a)

Ay

Ps | R,
aPév O

Fig. 4. Tree witnesses in Example 3.4.

and 7~ contains the following sentences:

Al(x) - 3!/ (R(X, y) A Q(% X)), Ql(x? y) - Q(x7 y)’ (7)
AZ(x) - 3!/ Sl(x’ y)’ Sl(x» y) - SZ(X’ y)’ (8)
As(x) > Jy Qi(x, y), Ty Q1(y, x) = Jy Si(x, y). ©)

The CQ is shown in Fig. 4 alongside the C;‘J' (@, where P; is the normalisation predicate for the
first axiom. When depicting CQs, we use @ for answer and O for existentially quantified variables.
There are three tree witnesses, t!, t2 and t*, for Q(x1, x;) with

gy = {RGx1,y1), Qi y2) } qe = {S1(Y2, y3), S2(yarys)} and

9 = { QW1 y2), S1(y2. y3), S2(ya, y3), Q(xz, ya) }

shown in Fig. 4 as shaded rectangles. The tree witness t' = (t},t) with t! = {xy, 7.} and t! = {y}
is generated by A;(x), which gives

twii(x1, y2) = 3z (1 = 2) A (y2 = 2) A Ai(2)).

(Although t! is also generated by 3y P;(z,), it is not included in twy because Py cannot occur in
data instances.) Similarly, for tree witnesses t2 and t3, we have

twiz(Yz, ya) = 32 (Y2 = 2) A (ya = 2) A (A2(2) V Ty Siz,) V 3y Qu(y, 2))),
twis (Y1, x2) = 3z ((y1 = 2) A (x2 = 2) A (As(2) V Ty Qi(2.).
Note that t? is generated by A,(z), Jy S1(z, y) and Jy Q1 (y, 2). As t* is conflicting with both t! and t2,
the set ©¢ contains five independent subsets: 0, {t'}, {t*}, {t*} and {t, t?}, each of which gives
rise to a disjunct in the following tree-witness rewriting @y, (x1, x2) of Q(x1, x2) over complete data
instances:
y1, y2, Y3, Ya (R(x1, y1) A Q(y1, y2) A Si(ya, ys) A So(ya, y3) A Q(xz,ys)) vV
Y2, Y3, ya (twi (x1, y2) A S1(y2, y3) A So(ya ys) A Q(x2,y4)) V
y1, y2, ya (RGe1, y1) A QY y2) A twee(ya, ya) A Q(x2,ys)) vV
Fy; (RO y1) Atwes(y1,x2)) V' Bz, ya (twin (on, y2) A twie (Y2, ya) A Q(x2, ya)).

THEOREM 3.5 ([57]). Forany OMQ Q(x) = (7, q(x)), any data instance A complete for T and any
tuple a from ind(A), we have T, A |= q(a) iff I |= Prw(a). In other words, ®ry(x) is a rewriting
of O(x) over complete data instances.

Intuitively, for any homomorphism h: g(a) — Cq; a, the sub-CQs of q that are mapped by h to
sub-models of the form C;_(“) define an independent set © of tree witnesses; see Fig. 5, where A

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:13

q(x1,x7)

X2 cPy

Fig. 5. A homomorphism h: q(c,c¢’) = Cy. # and an independent set {t1, 12} of tree witnesses.

consists of Q1(c’, ¢), Q(c’, ¢) and A;(c). Conversely, if © is an independent subset of @, then the
homomorphisms inducing the tree witnesses in © can be pieced together into a homomorphism
from q(a) to Cy; s—provided that the S(z) from q \ qg and the twy(t,) for t € © hold in 74: in
Fig. 5, the non-conflicting t! and t? are mapped to fragments isomorphic to C,;y Q1(¥.4) and C,}‘il(“),
respectively, while the remaining Q(xz, y4) is mapped to the Q-atom in the data instance 7.

The size of the tree-witness PE-rewriting ®y,, depends on the number of tree witnesses in the
given OMQ Q = (7, q), namely, |y, | = 0(2/92! - |Q]?) because |twi| = O(|Q|), for each t € B9
(note that [@¢| < 3lqly,

If any two tree witnesses for an OMQ Q are compatible in the sense that either they are non-
conflicting or one is included in the other (that is, g, C q,), then the X3-PE rewriting ®,, can be
equivalently transformed to the I14-PE rewriting

3y /\ (S(z) v \/ twt(tr))
S(z)eq te®@p with S(z)eq;
which, unlike @y, is linear in |©¢g|—of size O(|Og| - |Q]?), to be more precise. In Example 3.4
without axioms (9), there are only two tree witnesses, t! and t?, which are compatible, and so we
obtain the following rewriting:
Ay1, y2, Y3, ys [(R(xl, Y1) V twi (x1,12)) A (Q(y1, y2) V twa (1, 92)) A
(S1(y2,y3) V twiz (Y2, ya)) A (S2(ya y3) V twie(y2, ya)) A Q(xz, ya)].

Thus, by increasing the alternation depth from X5 to Iy, we can make PE-rewritings more succinct.
In Section 4, we translate the problem of finding succinct rewritings into the setting of Boolean
functions, which is concerned with circuit complexity.

3.2 The Number of Tree Witnesses
OMQs with arbitrary axioms (and PFSP) can have exponentially many tree witnesses:
Example 3.6. Consider the tree-shaped OMQ Q,,(x°) = (7", q,,(x°)), where
7 = {A(x) > 3y (R(y. x) A Iz (R(y, z) A B(2))) }
Fy.y',xLy? [By) A\ (Rl y) ARG x]) AR x]) ARG D))]

1<i<n

q,(x%)

and x* and y* denote vectors of n variables xlk and yf ,for 1 < i < n, respectively. The CQ is
shown in Fig. 6 alongside the canonical model C;‘i(“). The OMQ Q,, has at least 2" tree witnesses:
for any @ = (a1, ..., an) € {0,1}", there is a tree witness (1%, t%) with t = {xf” |1<i<n}ltis
worth observing that the tree-witness rewriting of Q,, can be equivalently transformed into the

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

y X y
OB CA@ BO o 0B
/ TN\ TR l ’
o) N o)

%) x! R I
q,(x°))) A) O+—0—>o
x? x° a x0 %! x0
1 n i i !

Fig. 6. The query q,,(x°) (all edges are labelled by R), the canonical model C,’;\.(“) (the normalisation predicates
are not shown) and two ways of mapping a branch of the query to the canonical model in Example 3.6.

following polynomial-size PE-rewriting:

0,(*) v FZ[A@ A N (] =2) v Iy (R@.x)) ARy, 2))].

1<i<n

The number of tree witnesses is, however, polynomial in two important cases.

THEOREM 3.7. OMQs Q(x) = (7, q(x)) with T of depth 1 have at most |q| tree witnesses, and
every atom in q belongs to at most two tree witnesses.

Proor. Suppose t = (1, 1) is a tree witness for Q and y € t;. Since 7 is of depth 1, t; = {y} and
the set t, consists of all the variables in q adjacent to y in the Gaifman graph G, of q. Thus, different
tree witnesses have different internal variables y. An atom of the form A(u) € q belongs to g,
iff u = y. An atom of the form P(u, v) € q is in g, iff either u = y or v = y. Therefore, P(u,v) € q
can only be covered by a unique tree witness with internal u and by a unique tree witness with
internal v (if they exist). O

THEOREM 3.8. OMQs Q(x) = (T, q(x)), where T contains no axioms of the form o(x, y) — o’(x, y)
(and syntactic sugar (2)), have at most 3|q| tree witnesses.

Proor. As observed above, there is at most one detached tree witness for each connected
component of q. As 7 has no axioms of the form o(x, y) — ¢’(x, y), any two points in C,]T.(“) can
be R-related by at most one R, and so no point can have more than one R-successor, for any R. It
follows that, for any P(x, y) € g, there is at most one tree witness t = (t,, tj) with P(x, y) € g, x € t;
and y € t; (P~ (y, x) may give another tree witness). O

3.3 Tree-Witness Rewriting Modified

To be able to deal with OMQs that have exponentially many tree witnesses, we slightly modify
the tree-witness rewriting in Section 3.1. Suppose t = (1, t;) is a tree witness for Q(x) = (7, q(x))
induced by a homomorphism h: ¢, — C;(“). We say that t is p-initiated if every h(z) with z € t;
is of the form apw, for some w. (Since g, is minimal, this is equivalent to having the property
for some z € t;.) For such g, let o*(x) be a disjunction of all 7(x) with 7 |= (x) — Jyo(x,y). In
Example 3.4, the tree witness 12 is generated by Ay(z), Iy S1(z, y), Fy O1(y, z); it is S;-initiated but
not Qs -initiated, and

S51(2) = Ax(2) V Iy Si(z, y) V Ty Qi (y, 2).
Again, the disjunction o*(x) includes only those 7(x) that do not contain normalisation predicates

(even though g itself can be one, like P; for t! in Example 3.4).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:15

The modified tree-witness rewriting ®j,,(x) for Q(x) = (7, q(x)) is obtained by replacing (5)
in (6) with the formula

witet) =\ @=2) A\ A @ ()

P(z,2")eq; t is p-initiated zet Ut

Note that unlike tw;, the new formula tw] contains equalities for the variables from both t; and t,
(variables t; were not needed in (5)) as well as p*(z) for all variables z € t; Ut, (even though they are
all equal under relevant assignments)—these redundancies are required to simplify the construction
in the proof of Theorem 5.12 below. For the OMQ Q(x, x2) in Example 3.4, ®{, (x1, x2) will contain
disjuncts such as

Fy1, 12, Y5, Ya (RCes y1) A QU 1) A [= 93) A (s =y A [\ S1(@)] A Oz, y)).
z€{y2,y3,ys}
Although the size of both ®,, and @y, can be exponential in |q|, the basic tree-witness rewrit-
ing @y, can contain exponentially many distinct subformulas of the form tw;, whereas the modified
rewriting ®;,, contains only a linear number of distinct atoms and subformulas of the form o*. This
property will be used in Section 4.1. The proof of the following theorem is given in Appendix A.1:

THEOREM 3.9. For any OMQ Q(x), the formulas ®y,,(x) and ®{,,(x) are equivalent, and so @y, (x)
is a PE-rewriting of Q(x) over complete data instances.

4 OMQ REWRITINGS AS BOOLEAN FUNCTIONS

Our aim now is to reduce the succinctness problem for OMQ rewritings to the succinctness problem
for certain Boolean functions associated with the tree-witness rewritings.

We remind the reader (for details see, e.g., [5, 49]) that an n-ary Boolean function, for n > 1,
is any function from {0, 1}" to {0, 1}. A Boolean function f is monotone if f(a) < f(B) for
all @ < B, where < is the component-wise < on vectors of {0, 1}. A Boolean circuit, C, is a directed
acyclic graph whose vertices are called gates. Each gate is labelled with a propositional variable,
a constant 0 or 1, or with NOT, AND or OR. Gates labelled with variables and constants have in-
degree 0 and are called inputs; NoT-gates have in-degree 1, while AND- and oRr-gates have in-degree 2
(unless otherwise specified). A gate of out-degree 0 is distinguished as the output gate. Given an
assignment & € {0, 1}” to the variables, we compute the value of each gate in C under « as usual
in Boolean logic. The output C(«) of C on a € {0, 1}" is the value of the output gate. We usually
assume that the gates gy, . . ., g of C are ordered in such a way that gy, . . ., g, are input gates; each
gate g;, for i > n, gets inputs from gates g;,, ..., g;, with ji, ..., jr < i, and gy, is the output gate.
We say that C computes an n-ary Boolean function f if C(e) = f(«) for all @ € {0, 1}". The size |C|
of C is the number of gates in C. A circuit is monotone if it contains only inputs, AND- and OR-gates.
Any monotone circuit computes a monotone function, and any monotone Boolean function can be
computed by a monotone circuit. Boolean formulas can be thought of as circuits in which every
logic gate has at most one outgoing edge.

4.1 Hypergraph Functions

Let H = (V, E) be a hypergraph with vertices v € V and hyperedges e € E C 2V. A subset E' C E
is said to be independent if e N ¢’ = 0, for any distinct e, e’ € E’. The set of vertices that occur in
the hyperedges of E’ is denoted by V. For each vertex v € V and each hyperedge e € E, we take
propositional variables p,, and p,, respectively. The hypergraph function fy for H is given by the
monotone Boolean formula

fi = N N per Nre) (10)

E’ independent veV\Vgs ecE’

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

U3 ez Uy
| O
€14, vy S1(y2- y3) S2(ya, y3) vs
| O O
R(x1, y1) | Oy, y2) es O(x2, y4)

Fig. 7. The hypergraph H(Q) for Q from Example 3.4: each e; corresponds to t'.

The tree-witness PE-rewriting ®y,, of any OMQ Q(x) = (7, q(x)) defines a hypergraph whose
vertices are the atoms of q and hyperedges are the sets q;, where t is a tree witness for Q(x). We
denote this hypergraph by H(Q) and call fy(g) the tree-witness hypergraph function for Q. To
simplify notation, we write fg instead of fzg). Note that formula (10) defining fg is obtained
from rewriting (6) by regarding the atoms S(z) in q and tree-witness formulas tw; as propositional
variables. We denote these variables by ps(;) and p; (rather than p,, and p.), respectively.

Example 4.1. For the OMQ Q(xy, x2) in Example 3.4, the hypergraph H(Q) has five vertices (one
for each atom in the query) and three hyperedges (one for each tree witness) shown in Fig. 7. The
tree-witness hypergraph function f§ for Q is as follows:

(pR(xl’yl) A POy1.y2) N PSi(y2.y3) N PSa(ya,ys) APQ(Xz,y4)) v (P‘fl A PSi(yz.y3) N PSa(ya.ys) ApQ(Xzsy4))
v (PR(xl,yl) A PQ(yr.yz) N P2 /\PQ(xz,y4)) v (PR(M,yl) Ape) vV (po Ape /\PQ(XZ,y4))~

Suppose the function fQV for an OMQ Q(x) is computed by a Boolean formula y. Consider the
FO-formula ®(x) obtained by replacing each ps;) in y with S(z), each p; with twy, and adding
the appropriate prefix Jy. By comparing (10) and (6), we see that ®(x) is an FO-rewriting of Q(x)
over complete data instances. This proves the following theorem for FO- and PE-rewritings; NDL-
rewritings are dealt with in Appendix A.2:

THEOREM 4.2. If f§ is computed by a Boolean formula (monotone formula or monotone circuit) y,
then Q has an FO- (respectively, PE- or NDL-) rewriting of size O(| x| - |Q]).

Thus, the problem of constructing polynomial-size rewritings of OMQs reduces to finding poly-
nomial-size (monotone) formulas or monotone circuits for the corresponding functions f. Note,
however, that f§ contains a variable p; for every tree witness t, rendering the reduction inefficient
for OMQs with exponentially many tree witnesses. In this case, we associate with the modified
rewriting @, (x) the monotone Boolean formula f{J obtained from fj by replacing each variable pi,

for t = (t,,t;), with
/\ Pz=z A \/ /\ Po*(2) (11)

P(z,2")eq; t is p-initiated z€t, Ut;

where p.—.» and py+(;) are propositional variables. Although the size of the resulting formula is
exponential in |Q|, the number of variables in it is linear in |Q|, and we show in Appendix A.2:

ProposITION 4.3. The function fg can be computed by a nondeterministic algorithm that runs in
polynomial time in the size of Q.

The proof of the following analogue of Theorem 4.2 is given in Appendix A.2:

THEOREM 4.4. If f is computed by a Boolean formula (monotone formula or monotone circuit) x,
then Q has an FO- (respectively, PE- or NDL-) rewriting of size O(| x| - | Q).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:17

4.2 Primitive Evaluation Functions

To obtain lower bounds on the size of rewritings, we associate with every OMQ Q(x) = (7, q(x)) a
third Boolean function, f§, that describes the result of evaluating Q on data instances with a single
constant. Let y be a function assigning a truth-value y(S;) to each unary or binary predicate S; in Q.
We fix some order on the predicate names and assume that y € {0, 1}" for some n. We associate
with y the data instance

Aly) = {Ai@]| yA)=1} U {Pi(aa)|yP) =1}

and set f5(y) = 1iff 7, A(y) E q(a), where a is the |x|-tuple of as. We call f§5 the primitive
evaluation function for Q(x).

THEOREM 4.5. If ®(x) is an FO- (respectively, PE- or NDL-) rewriting of Q(x), then f5 can be
computed by a Boolean formula (respectively, monotone formula or monotone circuit) of size O(|®|).

ProorF. Let ®(x) be an FO-rewriting of Q(x). We eliminate the quantifiers in ® by replacing each
subformula of the form 3x ¥(x) and Vx y(x) in ® with /(a). We then replace each a = a with T
and each atom of the form A;(a) and P;(a, a) with the corresponding propositional variable. The
resulting Boolean formula clearly computes f5. If @ is a PE-rewriting of Q, then the result is a
monotone Boolean formula computing f§.

If (I, G(x)) is an NDL-rewriting of Q(x), we replace all variables in IT with a and then perform
the replacement described above. We now turn the resulting propositional NDL-program I1” into a
monotone circuit computing f5. For every (propositional) variable p occurring in the head of a
rule in IT’, we take an appropriate number of OrR-gates whose output is p and inputs are the bodies
of the rules with head p. For every such body, we introduce an appropriate number of AND-gates
whose inputs are the variables in the body, or, if the body is empty, then we take the gate for
constant 1.]

5 FROM OMQS TO HYPERGRAPH PROGRAMS

We introduced hypergraph functions as Boolean abstractions of the tree-witness rewritings. Our
next aim is to define a model of computation for these functions.

5.1 Hypergraph Programs
A hypergraph program (HGP) P is a hypergraph H = (V,E) each of whose vertices is labelled

with 0, 1 or a literal over a list py, . . ., p, of propositional variables. (As usual, a literal is a propo-
sitional variable or its negation.) An input for P is a tuple « € {0, 1}", which is regarded as an
assignment of truth values to py, . . ., p,. The output P(«) of P on « is 1 iff there is an independent

subset of E that covers all zeros—that is, contains every vertex in V whose label evaluates to 0
under . We say that P computes an n-ary Boolean function f if f(«) = P(«), for all & € {0, 1}".
An HGP is monotone if its vertex labels do not have negated variables. The size |P| of an HGP P is
the size |H| of the underlying hypergraph H = (V, E), which is |V| + |E].

The following observation shows that monotone HGPs capture the computational power of
hypergraph functions. We remind the reader that a subfunction of a Boolean function f is obtained
from f by renaming (in particular, identifying) some of its variables and/or fixing them to 0 or 1. A
hypergraph H and any HGP P based on H are said to be of degree (at most) d if every vertex in H
belongs to (at most) d hyperedges.

ProprosITION 5.1. For any hypergraph H = (V, E) of degree at most d, there is a monotone HGP
that computes fy and is of degree at most max(2, d) and size O(|H]|).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

a convex b
(2) @ subtree (b)
i) (a hyperedge) O {2.6}
a non-convex 5, 2 {3} {4} [5] O (@) (0] o
subtree = = —) (L2} {23} {3,4}) {45

Fig. 8. Tree T underlying hypergraph H in Example 5.3.

Proor. We label each v € V with the variable p,,. For each e € E, we add a fresh vertex a,
labelled with 1 and a fresh vertex b, labelled with p,; then we add a. to e and create a new
hyperedge e’ = {a, b, }. We claim that the resulting HGP P computes fg. Indeed, for any input &
with a(p.) = 0, we have to include the edge e’ into the cover, and so cannot include e itself.
Thus, P(r) = 1 iff there is an independent set E of hyperedges with a(p.) = 1, for all e € E,
covering all zeros. O

In general, the hypergraph H(Q) of a given OMQ Q = (7, q) can be exponential in the size
of Q, and so Proposition 5.1 is not always helpful. However, if 7 is an ontology of depth 1 then, by
Theorem 3.7, H(Q) is of degree at most 2 and its size does not exceed 2|q|. So, by Proposition 5.1,
we obtain the following:

COROLLARY 5.2. For every OMQ Q(x) = (7,q(x)) with an ontology T of depth 1, there is a
monotone HGP that computes f¢ and is of degree at most 2 and of size O(|q]).

5.2 Tree Hypergraph Programs (THGPs)

We call an OMQ tree-shaped if its CQ is tree-shaped. We show that tree-shaped OMQs give rise to
tree hypergraph programs, which are defined as follows.’

Suppose T = (U, V) is an undirected tree with nodes U # 0 and edges V (possibly none). A
leaf is a node of degree 1. Atree T’ = (U’, V') is a subtree of Tif U’ C U and V C V’'. We call T’
convex if, for any non-leaf u in T’, we have {u,u’} € V’ whenever {u,u’} € V. For U’ C U, denote
by [U’] the set of edges of the smallest convex subtree of T containing U’. A triple H = (U, V,E) is
a tree hypergraph if Ty = (U, V) is a tree and (V, E) is a hypergraph with E C {[U’] | U’ C U }. By
definition, every hyperedge e € E induces a convex subtree T, of Ty. The boundary of e is the set
of leaves in Tg; the set of all other nodes of T, forms the interior of e. We refer to (V, E) and Ty as
the reduct and the underlying tree of H, respectively, and say that H is based on Ty. A hypergraph
is isomorphic to a tree hypergraph (U, V, E) if it is isomorphic to its reduct. By the size of a tree
hypergraph we understand the size of its reduct, |V| + |E|.

Example 5.3. Let T = (U, V) be the tree depicted in Fig. 8a with nodes {1,...,6} and edges
{1,2},{2,3},{2, 6}, {3,4}, {4, 5}. Any tree hypergraph based on T, for instance, the one in Fig. 8b,
has the set of vertices V (which are the edges of T) and its hyperedges may include the set
{{1,2},{2,6},{2,3},{3,4}} (which can be denoted by [1, 4] or [6, 4] and which is shown by dark
shading in Fig. 8) because the induced subtree is convex. On the other hand, {{1, 2}, {2, 3}, {3, 4}}
(light shading in Fig. 8a) is not convex.

Recall that, by Theorem 3.7, if an OMQ Q has an ontology of depth 1, then H(Q) is of degree at
most 2. The following analogue for tree-shaped OMQs is immediate from the definitions of tree
witnesses and tree hypergraphs; see Appendix A.4:

1Qur definition of tree hypergraph is a minor variant of the notion of (sub)tree hypergraph (aka hypertree) from graph
theory [18, 19, 31].

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:19

Fig. 9. Gadget encoding a DNF py, V pe, V (Do, A Pous A Po,) V Pos: squares are the nodes of the underlying
tree (a path graph), and circles are the vertices of the hypergraph (that is, the edges in the underlying tree).

PRrOPOSITION 5.4. If an OMQ Q(x) has a tree-shaped CQ q(x) with € leaves, then H(Q) is isomor-
phic to a tree hypergraph based on a tree with max(2, {) leaves.

Tree hypergraph programs (THGPs) are HGPs based on a tree hypergraph; they capture the
computational power of tree hypergraph functions similarly to Proposition 5.1. The following is
proved in Appendix A.5:

PRrROPOSITION 5.5. For any tree hypergraph H of degree at most d, there is a monotone THGP that
computes fy and is of degree at most max(2, d) and size O(|H]).

For tree hypergraphs of degree at most 2, we can even obtain linear THGPs of degree at most 2,
which are based on tree hypergraphs with two leaves:

THEOREM 5.6. For any tree hypergraph H of degree at most 2, there is a monotone linear THGP
that computes fy and is of degree at most 2 and size |H|°W.

Proor. The construction of the THGPs uses obstructions, that is, sequences (eg, . . ., €2,-1), 1 = 1,
of distinct hyperedges of H with e; N e;1 # 0 for 0 < i < 2n — 1. Since no vertex belongs to more
than two hyperedges, which induce subtrees of Ty, we have e; Ne; = 0 for |i — j| > 1; moreover, an
obstruction is uniquely determined by ey and e,_;. So, there are O(|H|?) obstructions. An input
meets an obstruction (e, . . ., €2n—1) from vy t0 vap_q if

(01) &(py,) = 0 and a(p,/) = 0, for any hyperedge e’ # ey with vy € e’;

(02) a(py,, ,) = 0and a(p.) = 0, for any hyperedge e’ # ezp,—1 With vy,—1 € €’;

(03) for every k, 1 < k < n, there is v € ey N ez with a(p,) = 0.

Intuitively, by (O1), any independent cover of zeros under « contains eg; but it cannot contain ey,
and so, by (03), it contains e;, and so on. Thus, ey, cannot be in the independent cover contrary
to (02). We say that an input « is degenerate if

(D) there is v € V such that a(p,) = 0 and a(p.) = 0 for all e € E with v € e.

We claim (see Lemma A.3 in Appendix A.6) that fi(a) = 1 iff & neither is degenerate nor meets
any obstruction. We construct a linear THGP of degree at most 2 for checking these conditions
by using ‘gadgets’ of the form shown in Fig. 9. Such a gadget encodes a DNF: it outputs zero iff
none of its disjuncts is true. The condition ‘@ does not meet an obstruction (e, . . ., €2,—1) from vy
to vg,—1” can be expressed as a DNF as follows:

p’Uo v)/Uﬂ’en v pUZn—l v Y’UZn—laEZn—l v \/1$k<n [/\UEezkimesz’U]’
N———

negation of (O1) negation of (O2)

negation of (O3)

where y, . = per if v € ¢’ and e # e’ (such e’ is determined uniquely) or L otherwise. Negation
of (D) gives rise to a similar gadget. It remains to combine the gadgets for the obstructions in H and
negated (D) into a single linear THGP of degree 2 by ordering the gadgets linearly and inserting
edges labelled with 1 between them (these hypergraph vertices do not belong to any hyperedges).
The resulting THGP is of polynomial size. O

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

Table 1. Monotone HGPs that compute hypergraph functions fg for hypergraphs H.

hypergraph H monotone HGP P computing fi |P|
Prop. 5.1 hypergraph of degree < d HGP of degree < max(2, d) O(|H|)
Prop. 5.5 tree hypergraph of degree < d THGP of degree < max(2, d) O(|H|)
Th. 5.6 tree hypergraph of degree < 2 linear THGP of degree < 2 |H|°W
Th. 5.8 tree hypergraph with < ¢ leaves linear THGP O(IH|?+Y)

We apply Theorem 5.6 as follows. Let Q(x) = (7, q(x)) be an OMQ with 7 of depth 1 and
tree-shaped q. By Proposition 5.4, H(Q) is isomorphic to a tree hypergraph. By Theorem 3.7, H(Q)
is of linear size and degree at most 2. Therefore, we obtain:

COROLLARY 5.7. For every tree-shaped OMQ Q(x) = (T, q(x)) with an ontology of depth 1, there
is @ monotone linear THGP that computes f§ and is of degree at most 2 and size polynomial in |q|.

In fact, we can transform any THGP into a linear THGP (of exponential size in the number of
leaves; cf. Theorem 5.6). Let H = (U, V, E) be a tree hypergraph. Pick a node r € U and fix itas a
root of the underlying tree Ty. An independent subset F C E is called flat if every simple path
from r in Ty intersects at most one e € F. Flat subsets can be partially ordered by taking F < F’
if the sets |J F and |J F’ of hypergraph vertices are disjoint and every simple path from r to | F’
intersects | J F. Then a non-empty E’ C E is independent iff it can be partitioned into flat ‘layers’

Fi<F,<---<Fy.
Indeed, any disjoint flat subsets Fy, . . ., F,, with this property give rise to an independent subset E’.
Conversely, if E’ is independent, then we first take the set F; of all hyperedges from E’ that are
accessible from r via paths not intersecting any other e € E’, then we take the set F, of all hyperedges
from E’ \ F; that are accessible from r via paths not intersecting any other e € E’ \ F;, and so on. As

the number of flat subsets is O(|H|) (each contains at most £ hyperedges), we obtain the following
result for linear THGPs (proven in Appendix A.7) in the vein of the preceding results (see Table 1):

THEOREM 5.8. For any tree hypergraph H based on a tree with at most € leaves, there is a monotone
linear THGP that computes fy and has size O(|H|>*1).

Proposition 5.4 and Theorem 5.8 with |H(Q)| = O(|q|’) give us the following:

COROLLARY 5.9. For every tree-shaped OMQ Q(x) = (7, q(x)) such that CQ q has € leaves, there
is @ monotone linear THGP that computes fg and is of size |q|o([2).

Example 3.6 shows that the exponential bound on the size of the hypergraph H(Q) cannot
be reduced, and Corollary 5.9 does not give us polynomial-size THGPs for tree-shaped OMQs;
moreover, g may have exponentially many variables. In Section 5.3, we devise a direct construction
for THGPs computing fJ for OMQs with CQs of bounded treewidth and ontologies with the
polynomial fundamental set property (PFSP).

5.3 THGPs for OMQs of Bounded Treewidth and PFSP

Recall (see, e.g., [32]) that a tree decomposition of an undirected graph G = (V, E) is a pair (T, 1),
where T is an (undirected) tree and A a function from the set of nodes of T to 2" such that

— for every v € V, there is a node N with v € A(N);
— for every e € E, there is a node N with e C A(N);

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:21

Fig. 10. Tree decomposition in Example 5.10.

— for every v € V, the nodes {N | v € A(N)} induce a (connected) subtree of T.

We call the set A(N) € V a bag for N. The width of a tree decomposition (T, A) is the size of its
largest bag minus one. The treewidth of G is the minimum width over all tree decompositions of G.
The treewidth of a CQ q is the treewidth of its Gaifman graph G,.

Example 5.10. The Boolean CQ q = {R(y2,y1), R(ysy1), S1(ys,y3), S2(y2,y3)} and its tree
decomposition (T, A1) of width 2 are shown in Fig. 10, where T has two nodes, N; and N, connected
by an edge, with bags A(N1) = {y1, y2, ys} and A(N2) = {y2, y3, ya }.

We show that, for any OMQ Q(x) = (7, q(x)) with a CQ of bounded treewidth and a finite
fundamental set Qg, the modified tree-witness hypergraph function f§ can be computed using a
monotone THGP of size bounded by a polynomial in |g| and [Qg].

Let (T, A) be a tree decomposition of the Gaifman graph G4 of q of width m — 1. We fix an order
of variables in every bag A(N) and define an injection vy : A(N) — {1,..., m} that gives the index
of each z in A(N). A (bag) type is an m-tuple w € Qg: its ith component w; € Qg indicates that
the ith variable in the bag is mapped to a domain element aw; in the canonical model Cy; #. We
say that a type w is compatible with a node N if, for all z, z" € A(N), the following conditions hold:

(C1) if A(z) € q and w[z] # ¢, then w(z] = op for some p with 7 |= Ty o(y, x) — A(x);
(C2) if P(z,2’) € q and either w([z] # ¢ or w[z] # ¢, then
- wlz] = w[z/] and T |= P(x, x), or
- w[z’] = w[z] - 0 or w[z] = w[z’] - o~ for some p with T |= o(x,y) — P(x,y),
where w(z] stands for w, ;). For a type w compatible with N, we use the abbreviation w[z] if N
is clear from the context. Clearly, the type with all components equal to ¢ is compatible with any
node N and corresponds to mapping the variables in A(N) to individual constants in ind(A).

Example 5.11. Let T = { A(x) = JyR(x,y) } and q be the same as in Example 5.10. Assume vy,
and vy, respect the order of the variables in the bags in Fig. 10. The bag types compatible with N;
are (g, ¢,¢) and (R, ¢, €), and only (¢, ¢,) is compatible with Nj.

Let wy, ..., wy be all the bag types for Qg (M = |[Qg|™). Denote by Ty the tree obtained from T
by replacing every edge {N;, N;} with the following sequence of edges:

1 k _k ko k+1 M .M M M
{Ni,uij s {ul—j,vij} and {vl—j,ul—j }, for1 <k <M, {u,—j,vij s {Uij,vﬁ R
M M k+1 _k k ok 1
{vﬁ Ui b {uji ,vﬁ} and {Uﬁ,uﬁ}, for1 <k <M, {uﬁ,Nj},
for some fresh nodes ufj, vl’.‘j, uj’?i and v]kl We now define a generalised monotone THGP based on a

hypergraph H with underlying tree Ty (in generalised THGPs, vertices are labelled with conjunctions
of literals, which is convenient but does not add any expressive power; see Appendix A.3 for details).
The hypergraph has the following hyperedges:

- el’.C =[N, uf.cjl, e ufjn] (the minimal convex subtree with N, uf.“jl, cel uf.‘jn, see Section 5.2) if
Nj,, ..., Nj, are the neighbours of N; in T and wj is compatible with N;;

12

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

x, NS o Tl T 7l B R N, [YT S

e; TRwy) R T Ry) R(y2). Ry T T T S2.y3) T ey
e? 11 X 2 5
T T 12 - = - - -7

1 1
Yo Uz

Fig. 11. THGP in Example 5.13: non-zero labels of hypergraph vertices are given on the edges of the tree.

- ilj‘.f = [vl’.‘j, vﬁ] if {N;, N;} is an edge in T and (wg, w¢) is compatible with (N;, N;) in the
sense that wi[z] = we[z], for all z € A(N;) N A(N;).

Each vertex {uf.‘j, vfj} in H is labelled with the conjunction of the following variables:
~ Ps(z), Whenever $(z) € ¢, z € A(N;) and wi[z] = ¢, forall z € z;
~ Po(z)» Whenever A(z) € q, z € A(N;) and wi[z] = oo for some o;
~ Po(2)s Po*(z') and p,—/, Whenever P(z, z") € q (possibly with z = z’), z,z" € A(N;), and either
wi[z] = po or wi[z’] = po for some o;
all other vertices are labelled with 0. The obtained generalised THGP can be equivalently represented
as a linearly large THGP, and the following is proved in Appendix A.8:

THEOREM 5.12. For every OMQ Q(x) = (7,q(x)) with a fundamental set Qg and a CQ of
treewidth t, there is a monotone THGP that computes f and is of degree polynomial in |Qg |' and
size polynomial in |q| and |Qo|".

Example 5.13. Let Q = (7, q) be the OMQ from Example 5.11. As we have seen, there are only
two types compatible with nodes in T: w; = (¢, ¢, €) and wz = (R, ¢, €). This gives us the generalised
THGP shown in Fig. 11, where the omitted labels are 0. To explain the meaning of the THGP, let
T, A |= q, for some data instance A. Then a homomorphism h: ¢ — Cg; # defines the type of Ny,
which can be either wy (if h(z) € ind(A) for all z € A(Ny)) or w; (if A(y;1) = aR for some a € ind(A)).
The two cases are represented by hyperedges el = [N, uj,] and € = [Ny, ui,]. Since {Ny,ul,}
is labelled with 0, exactly one of them must be chosen for an independent subset of hyperedges
covering all zeros. In contrast to that, there is no hyperedge e because w is not compatible with N,
and so e} = [u},, N;] must be present in any covering of all zeros. Both (w1, w1) and (w3, w;) are
compatible with (Nj, N;), which gives rise to f}}' = [v],,vy,] and f2! = [v%,, v},]. Thus, if Nj is of
type w1, then we include e} and f}}} in the covering of all zeros, and s0 pr(y,,y,) A PR(y,.y,) should
hold. If N is of type wy, then we take f2!, and so py,—y, A Py,=y, A PR*(y1) A PR*(y) A PR*(y,) Should
be true. Since {v,,, uy, } is not in any hyperedge, ps, (y,.y;) A P, (ys.y5) should hold in either case.

For OMQs with ontologies of depth 1, a similar construction gives us the following:

THEOREM 5.14. For every OMQ Q(x) = (7,q(x)) with an ontology of depth 1 and a CQ of
treewidth t, there is a monotone THGP that computes ¢ and is of degree 29 and size polynomial
in|q| and 2°.

A crucial observation in the proof of Theorem 5.14 (see Appendix A.8) is that any OMQ with an
ontology of depth 1 can equivalently be replaced by an explicit OMQ whose tree witnesses t are
initiated by special predicates P;. As each tree witness t = (1, t;) for an OMQ of depth 1 is uniquely
determined by a variable z with t; = {z}, type compatibility for explicit OMQs can be refined: w is
strongly compatible with a node N if (C1) and (C2) hold for all z,z" € A(N), and, for all z € A(N),

(C3) w]z] is either ¢ or P; for the tree witness t = (1,,t;) such that t; = {z}.

The binary choice in (C3) gives the 2°®) bound on the degree of the resulting THGP.
The obtained results on HGPs computing fQv and fQ' are summarised in Table 2 .

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:23

Table 2. HGPs computing tree-witness hypergraph functions for OMQs.

OMQ QO(x) = (7, q(x)) monotone HGP of size computes
Cor. 5.2 7 of depth 1 HGP of degree 2 O(lql) fQv
Cor.5.9 tree-shaped q with £ leaves linear THGP PSR 13
Cor. 5.7 tree-shaped q and 7 of depth 1 linear THGP of degree 2 lq|°M va
Th. 5.12 q of treewidth ¢ THGP |q|O(1)] |QQ|O(” va

Qo afundamental set
Th.5.14 q of treewidth t and 7~ of depth 1 THGP of degree 20(*) |g|OM . 200 13

6 REPRESENTING HYPERGRAPHS AS OMQS

Going in the opposite direction, we represent every hypergraph H as a ‘small’ OMQ Q such
that any monotone HGP based on H computes a subfunction of f§, and each hyperedge of H
corresponds to a tree witness for Q, making H a subgraph of H(Q). Here, H is a subgraph of a
hypergraph H” = (V', E’) if H is obtained from H’ by removing some of its hyperedges and some
of its vertices from both V' and E’.

6.1 Arbitrary Hypergraphs as OMQs with Ontologies of Depth 2

To begin with, we show that every hypergraph H = (V, E) can be represented by a polynomial-size
OMQ QO = (7, q) with 7 of depth 2. With every vertex v € V we associate a unary predicate A,
and with every hyperedge e € E a unary predicate B, and a binary predicate R,. We define 7~ to be
the set of the following axioms, for e € E:

B.(x) — Ely[/\Re/(x,y) A /\Av(y) A EzRe(z,y)].
eNe’#0, ee’ vEe

We also take the Boolean CQ q with variables y,, and z., forv € V and e € E:
q = {Av(yv) |ve V} U {Re(ze,yv) |vee forveVande € E}

Example 6.1. Consider the hypergraph from Example 4.1, which we now denote by H = (V, E).
The CQ q and the canonical models Cfr;ei(“), for i = 1,3, are shown in Fig. 12 along with the five
tree witnesses for Qy;: each square vertex [represents the variable y,, with a unary atom A(y,,,)
and the black arrows with a number i represent a binary atom in the query with the predicate R,,.
The dashed grey arrows, which duplicate query edges, are shown only as an aid for identifying
tree witnesses.

Observe that all the tree witnesses for Qy; fall into two types:

te = (7, 1) with tf = {zo |[ene’ #0,e e’} and t’ = {z.} U{y, |v €e}, foreckE;

tY = (t7,t7) with t? = {z. | v € e} and t” = {y,}, for v € V that belong to a single e € E.
In Example 6.1, the tree witness t = (7', 1) with t;" = {2, } and t" = {z¢,, Yo,» Yo, } is generated
by B.,—see the homomorphism on the left; however, as explained in Remark 2, we ignore the
tree witnesses generated only by normalisation predicates, e.g., the tree witness t = (4, t;) with
tr = {0, Yo, } and tj = {2, } (the bottom half of t*). The tree witness t* = (1", 1) with ;" = {2, }
and t”' = {y,, } is generated by B,,.

THEOREM 6.2. Any hypergraph H is isomorphic to a subgraph of H(Qy), and any monotone HGP
based on H computes a subfunction ofoAH.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

a Be3(“)
5, e ———— p— - CcB
' 1 Zes ; Res Zes
/ \ — o
Re, @) ® G)
1 O -
|
Agy, Aoy ;E I%'/ [3] [4] : [51 Ay, Ay, Aoy, Aos
e : 1 S / e]
z
b4 ! . O O ® Reys Re,
61‘\ o 1y v €2 e
\ ! A _/ J 3
Clal® — e _® Be,
Zoy By e

Fig. 12. The OMQ Qp for H from Example 4.1, its hyperedge tree witnesses t1, t¢2, 1% (solid rectangles),
and vertex tree witnesses t“* and t“5 (dashed rectangles). Dotted lines are homomorphisms for t¢1 and t®.

Proor. An isomorphism between H = (V, E) and a subgraph of H(Qy) can be established by
the map v — A,(y,), forv € V, and e = q,., fore € E.

Given an input o« for a monotone HGP P based on H, we define an assignment y for the
predicates in Q; by taking y(A,) to be the value of the label of each v € V under «, and y(B,) = 1
and y(R.) = 1foreach e € E (of course, y(P;) = 0 for normalisation predicates P;). By the definition
of 7, for each e € E, the canonical model Cy- A(y) contains labelled nulls w, and w;, such that

C‘T,?I(y) = /\ Re(a, we) A /\Av(we) A Re(Wé’We)-

ene’#0, et+e’ vee

We now show that P(a) = 1 iff fQAH(y) = 1. Suppose first that P(a) = 1, that is, there is an
independent subset E” C E such that the label of each v ¢ |J E” evaluates to 1 under a. Then the
map h: ¢ — C7; 5(y) defined by taking

h(z,) = {wé, ife € E, h(yo) = {we, ifveeekF,

a, otherwise, a, otherwise

is a homomorphism witnessing C7; #(y) = g, whence fQAH(y) =1.

Conversely, if fQAH(y) = 1, then there is a homomorphism h: ¢ — Cg; #(y). For any hy-
peredge e € E, there are only two options for h(z.): either a or w,. It follows that the sub-
set E’ = {e € E | h(z,) = w_} is independent and covers all zeros. Indeed, if v ¢ | J E’ then h(y,) = a,
and so the label of v evaluates to 1 under a because A, (y,) € g. O

6.2 Hypergraphs of Degree 2 as OMQs with Ontologies of Depth 1

We show now that any hypergraph H of degree 2 is isomorphic to H(Sg), for some OMQ Sy = (77, q)
with 7~ of depth 1. We can assume that H = (V, E) comes with two fixed maps ij,iz: V — E such
that, for every v € V, we have v € i;(v), v € iy(v) but i;(v) # iy(v). For any v € V, we fix a
binary predicate R,, and, for any e € E, a unary predicate A,. Let the ontology 7 in Sy contain the
following axioms, for e € E:

A@ -3y N\ R@® A A Ry

veV with ij(v)=e veV with i(v)=e

The Boolean CQ q contains variables z., for e € E, and is defined by taking

q = {Ro(zi0) 2i0) |V EV .

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:25

Fig. 13. Hypergraph H in Example 6.3, its CQ q, tree witness t°! for Sy and canonical model C?.el(a).

Example 6.3. Let H = (V,E), where V = {v1,vs,v3,v4}, E = {e1,€2, €3} and e; = {v1,v2, v3},
ez = {v3,v4}, e3 = {v1, 02, v4}. Suppose

I1:01 e, Uxb>e3 Uz e, Ug b ey,
ip: V1> e3, Uy e;, U3k ey, Uy es.

The hypergraph H and the query g are shown in Fig. 13: each R, is represented by an edge, i1 (vg)
is indicated by the circle-shaped end of the edge and iz(v) by the diamond-shaped end of the edge;
the e; are shown as large grey squares. In this case,

q = 3z, Ze,, Ze, (Roy(Zeys 2ey) A Roy(2eys Zey) A Roy(Zey, Zey) A Roy(2eys 2e4))
and 7~ consists of the following axioms:
A, (%) = 3y [Ro, (. X) A Ro, (x,9) A Ro, (3. %)]
A, (%) = Ty [Ro,(x,) A R, (3, %)),
Aey(x) = 3y [Ro, (%, y) A Roy (4, X) A Ry, (x,)]

The canonical model C;% (@) is shown on the right-hand side of Fig. 13. Note that each z, determines
the tree witness t¢ with q;. = {Ro(2i,(v), Ziyv)) | ©v € e}; distinct t¢ and t¢’ are conflicting
iffene’ # 0. It follows that H is isomorphic to H(Sg).

THEOREM 6.4. Any hypergraph H = (V, E) of degree 2 is isomorphic to H(Sgr), and any monotone
HGP based on H computes a subfunction of fg, .

Proor. We show that the map g: v = Ry (2i,(0), Ziy(v)) is an isomorphism between H and H (Sg).
By the definition of Sy, g is a bijection between V and the atoms of q. For any e € E, there is a
tree witness t¢ = (t/,t7) generated by A, with t’ = {z.} andt; = {z |[eNe’ # 0,e # ¢’}, and g,
consists of the g(v), for v € e. Conversely, every tree witness t = (1, t;) for Sy contains z, € t;, for
some e € E, and so g, = {g(v) | v € e}.

Given an input « for a monotone HGP P based on H, we define y by taking y(R,) to be the
value of the label of v under « for v € V and y(A,) = 1 for e € E (of course, y(P;) = 0 for all
normalisation predicates P;). By the definition of 7, for each e € E, the canonical model Cy; #(y)
contains a labelled null w, such that

Cr, am E /\ Ry (we, a) A /\ Ry(a, we).
veV with ij(v)=e veV with iy(v)=e

We prove that P(ex) = 1iff fg (y) = 1. Suppose P(@) = 1, that is, there is an independent subset E’
of E such that the label of each v € V' \ Vg evaluates to 1 under «. Define h: ¢ — Cg; a(y) by
taking h(z.) = aif e ¢ E" and h(z,) = w, otherwise. One can check that A is a homomorphism, and
so 7, A(y) = q, whence f§ (y) = 1.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

a zZ1 Z6 Z4 Zs5
Cae(@ 4, o 0——0

Rys Sss

Riz | S34> Sp6 Ri2 S2 S3q
0O O O
_ R
S12, 523TR23 R3ys Ry S12 i Ra3 S23 R3q
q
E Z qie

Fig. 14. The canonical model Cf;‘f(“) and the CQ g (y;; is the half-way point between z; and z;) for the tree
hypergraph H in Example 6.5.

Conversely, if f¢ (y) = 1, then there is a homomorphism h: ¢ — Cg; 71(y). We show that the
subset E’ = {e € E | h(z.) # a} is independent. Indeed, if e,e’ € E’ and v € e N ¢’, then h sends
one variable of the R, -atom to the labelled null w, and the other end to w, which is impossible.
We claim that E’ makes P(«) = 1. Indeed, for each v € V \ Vg, the map h sends both ends of
the R,-atom to a, and so the value of the label of v under « is 1. O

6.3 Tree Hypergraphs as Tree-Shaped OMQs

We show that any tree hypergraph H = (U, V, E) is isomorphic to a subgraph of H(Ty), for some
tree-shaped OMQ Ty. Suppose U = {1,...,n}, forn > 1, and 1 is a leaf of Tyy. Let T* = (U, V*) be
the directed tree obtained from Ty by fixing 1 as the root and orienting the edges away from it. We
associate with H a tree-shaped OMQ Ty = (7, q), in which q is the Boolean CQ

{Rij(zi, i), Sij(yijzj) | (L)) eV},
where the z;, for i € U, and the y;;, for (i, j) € V*, are variables for the nodes and the arcs of the
directed tree, respectively. To define 7, suppose a hyperedge e € E induces a convex directed

subtree T, = (U, V) of T* with root r, € U, and leaves L, C U,. Denote by 7 the ontology that
contains the following axiom, for each e € E:

Ac(x) — Ely[/\R,Ej(x,y) A A Sij(y,x) A Elz(/\ Rij(z,y) A /\ Sij(y,z))]

(re,j)EVe (i,j)€Ve (i,j)€Ve (i,j)€Ve
jE€L, i#re jé¢L,

Since T, is convex, its root r, has only one outgoing arc, (e, j), for some j, and so the first conjunct
of the axiom contains a single atom, R, j(x, y). Since the boundary of e comprises {r.} U L. and
the interior all other elements of U,, these axioms (and convexity of hyperedges) ensure that Ty
has a tree witness t¢ = (t/,t¢) with

ty {z; | i is on the boundary of e },

t? = {z;|iisintheinteriorofe} U {y;; | (i,j) € Ve }.

Example 6.5. Let H be the tree hypergraph from Example 5.3 with root 1 and one hyperedge
e = [1,4]; see Fig. 8. The CQ q and the canonical model CA <(@) for Ty are shown in Fig. 14. Note
the tree witness t¢ and the homomorphism from g,. into CA (@),

The following THGP analogue of Theorem 6.2 is proved in Appendix A.9:

THEOREM 6.6. Any tree hypergraph H is isomorphic to a subgraph of H(Ty), and any monotone
THGP based on H computes a subfunction of ff,,.

Table 3 summarises the representation results of Theorems 6.2, 6.4 and 6.6 that show how
abstract hypergraphs can be embedded into tree-witness hypergraphs of polynomial-size OMQs;
see Appendix A.10 for details on the size of the OMQs.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:27

Table 3. Hypergraph representation results: any monotone HGP based on H computes a subfunction of fé

hypergraph H is isomorphicto OMQ Q |H(Q)| OMQ class
Th. 6.2 any asubgraph of H(Q) Qy O(|H?|) 7 of depth 2
Th. 6.4 of degree 2 H(Q) Sy |H| 7 of depth 1

7 of depth 2 and

tree h h
Tho6 o leaves subgraph of (Q) T O(IH*]) tree-shaped g with ¢ leaves

with ¢ leaves

7 HYPERGRAPH PROGRAMS AND CIRCUIT COMPLEXITY

In Section 5, we saw how different classes of OMQs gave rise to different classes of monotone
HGPs. Here we characterise the computational power of HGPs in these classes by relating them to
standard models of computation for Boolean functions. We remind the reader that the complexity
classes we use in this section form the chain

My & AC® & NC!' € NL/poly C LogCFL/poly C P/poly NP/poly, (12)

and that whether any of the non-strict inclusions is actually strict remains a major open problem
in complexity theory; see, e.g., [5, 49]. All these classes are non-uniform in the sense that they are
defined in terms of polynomial-size non-uniform sequences of Boolean circuits or programs of
certain shape and depth. The suffix ‘/poly’ comes from an alternative definition of C/poly in terms
of Turing machines for the class C with an additional advice input of polynomial size.

When talking about complexity classes, instead of individual Boolean functions, we consider
sequences of functions f = {f, }n<e With f,,: {0,1}" — {0, 1}. The same concerns circuits, HGPs
and the other models of computation we deal with. For example, we say that a circuit C = {Cp, }n<e
computes a function f = {f,}n<e if C,, computes f,, for every n < w. (It will always be clear from
the context whether f, C, etc. denote an individual function, circuit, etc. or a sequence thereof.) A
circuit C is said to be polynomial if there is a polynomial p: N — N such that |C,,| < p(n), for every
n < . The depth of C,, is the length of the longest directed path from an input to the output of C,,.

The complexity class P/poly can be defined as comprising the Boolean functions computable
by polynomial circuits, and NC! consists of functions computed by polynomial formulas (that is,
circuits whose logic gates have at most one output). Alternatively, a Boolean function is in NC! iff
it can be computed by a polynomial-size circuit of logarithmic depth, whose AND- and or-gates
have two inputs.

LogCFL/poly (also known as SAC!) is the class of Boolean functions computable by polynomial-
size and logarithmic-depth circuits in which AND-gates have two inputs but or-gates can have
arbitrarily many inputs (unbounded fan-in) and NoT-gates can only be applied to inputs of the
circuit [87]. AC is the class of functions computable by polynomial-size circuits of constant depth
with AND- and or-gates of unbounded fan-in and NoT-gates only at the inputs; 5 is the subclass
of AC? that only allows circuits of depth 3 (not counting the NoT-gates) with an output AND-gate.
The class NL/poly consists of functions computed by polynomial-size nondeterministic branching
programs (NBPs) to be defined in Section 7.2.

Finally, a Boolean function f = {f;, }n<c is in the class NP/poly if there is a polynomial p and a
polynomial circuit C = {Cp4p(n)}n<w such that, for any n and & € {0, 1}”,

fala) =1 iff thereis f € {0, 1}P™ guch that Chipim)(a, B) =1 (13)

(the B-inputs are sometimes called certificate inputs).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:28 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

e (O 9i €i
;
(o) ® Vk|)

€k

gi=p gi = ~gj €j gi =9; V 9k €k

Fig. 15. HGP in the proof of Theorem 7.1: black vertices are labelled with 1 and white vertices with 0.

By allowing only monotone circuits or formulas in the definitions of the complexity classes, we
obtain their monotone counterparts: for example, the monotone variant of NP/poly is denoted
by mNP/poly and defined by restricting the use of NOT-gates in the circuits to the certificate
inputs only. We note in passing that the monotone counterparts of the classes in (12) also form a
chain [4, 51, 74]:

ml; € mAC® & mNC' & mNL/poly C mLogCFL/poly & mP/poly & mNP/poly. (14)
Whether the inclusion mNL/poly € mLogCFL/poly is proper remains open.

7.1 NP/poly and HGP3?

Denote by HGP (mHGP) the class of Boolean functions computable by polynomial-size (monotone)
HGPs; the functions computable by polynomial-size (monotone) HGPs of degree at most d comprise
the class HGP? (respectively, mHGP?).

THEOREM 7.1. NP/poly = HGP = HGP?® and mNP/poly = mHGP = mHGP?.

Proor. Suppose P is a (monotone) HGP. We construct a nondeterministic circuit C of size
polynomial in |P| whose input variables are the variables in P, certificate inputs correspond to the
hyperedges of P and such that C(a, f) = 1iff {¢; | B(e;) = 1} is an independent set of hyperedges
covering all zeros under . It will then follow that

P(a) =1 iff thereis f such that C(«, f) = 1. (15)

First, for each pair of intersecting hyperedges e;, e; in P, we take the disjunction —e; V —e;, and, for
each vertex in P labelled with a literal I (that is, p or —p) and the hyperedges e;,, ..., e;, incident
to it, we take the disjunction I V e;; V --- V ¢;,. The circuit C is then a conjunction of all such
disjunctions. Note that if P is monotone, then — is only applied to the certificate inputs, e, in C.

Conversely, let C be a circuit with certificate inputs. We construct an HGP P of degree at most 3
satisfying (15) as follows. For each gate g; in C, the HGP contains a vertex g; labelled with 0
and a pair of hyperedges ¢é; and e;, both containing g;. No other hyperedge contains g;, and so
either ¢; or e; should be present in any cover of zeros. For each g;, we add the following vertices
and hyperedges to P (see Fig. 15):

— if g; is an input p, then we add a vertex labelled with —p to e; and a vertex labelled with p
to ¢;;

- if g; is a certificate input, then no additional vertices and hyperedges are added,;

- if g; = =g, then we add a vertex labelled with 1 to hyperedges e; and e, and a vertex labelled
with 1 to hyperedges ¢é; and é;;

- if g; = gjV gk, then we add a vertex labelled with 1 to hyperedges e; and ¢;, add a vertex labelled
with 1 to e; and é;; then, we add vertices v; and v labelled with 1 to &; and é, respectively,
and a vertex u; labelled with 0 to ¢;; finally, we add hyperedges {v;, u;} and {vg, u;} to P;

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:29

- if g; = g; A gk, then the pattern is dual to the case of V: we add a vertex labelled with 1 to g;
and e;, a vertex labelled with 1 to &, and e;; then, we add vertices v; and vy labelled with 1 to e;
and ey, respectively, and a vertex u; labelled with 0 to e;; finally, we add hyperedges {v;, u;}
and {vg,u;} to P.
Then, we add one more vertex labelled with 0 to e, for the output gate g,, of C, which ensures
that e, must be included the cover. It is easily verified that the constructed HGP is of degree at
most 3. One can establish (15) by induction on the structure of C. We illustrate the proof of the
inductive step for the case of g; = g; V gi: we show that e; is in the cover iff it contains either e;
or ex. Suppose the cover contains e;. Then it cannot contain é;, and so it contains e;. The vertex u;
in this case can be covered by {v}, u;} since ¢; is not in the cover. Conversely, if neither e; nor e is
in the cover, then it must contain both é; and éi, and so neither {v;, u;} nor {vg, u;} can belong to
the cover, and thus we will have to include é; in the cover.

If C is monotone, then we remove from P all vertices labelled with —p, for an input p, and
denote the resulting HGP by P’. We claim that, for any «, we have P’(«) = 1 iff there is f§ such
that C(a, B) = 1. The implication (&) is trivial: if C(e, B) = 1 then, by the argument above, we
obtain P(a¢) = 1 and, clearly, P’(«r) = 1. Conversely, suppose P’'(«) = 1. Each of the vertices g;
in P’ for the inputs of C is covered by either e; or €;; so, let @’ be such that a’(g;) = 1if g; is
covered by e;, and @’(g;) = 0 if g; is covered by ¢;. Clearly, @’ < «. This cover of vertices of P’
gives us P(a’) = 1. Thus, by the argument above, there is f such that C(a’, f) = 1. Since C is
monotone, C(a, f) = 1.]

7.2 NL/poly and HGP?

A Boolean function belongs to the class NL/poly iff it can be computed by a polynomial-size
nondeterministic branching program (NBP). We remind the reader (see [49] for more details) that an
NBP B is a directed graph G = (V, E), whose arcs are labelled with constants 0 and 1, propositional
variables py, . . ., p, or their negations, and which distinguishes two vertices s,t € V. Given an
assignment « to the variables py, . .., p,, we write s —4 t if there is a path in G from s to t all of
whose labels evaluate to 1 under a. An NBP B computes a Boolean function f in case f(a) = 1
iff s >4 t, for any a € {0, 1}". The size |B| of B is the size of the underlying graph, |V| + |E|. An
NBP is monotone if there are no negated variables among its labels. The class of Boolean functions
computable by polynomial-size monotone NBPs is denoted by mNL/poly; the class of functions f
whose duals f*(p1,...,pn) = =f(=p1,...,pn) are computable by polynomial-size monotone
NBPs is denoted by co-mNL/poly'? We now show that NL/poly coincides with the classes HGP?
and HGP=? of functions computable by polynomial-size HGPs of degree at most 2 and exactly 2,
respectively, while co-mNL/poly coincides with the classes mHGP? and mHGP=2 of functions
computable by polynomial-size monotone HGPs of degree at most 2 and exactly 2.

TueoreM 7.2. NL/poly = HGP? = HGP=2 and co-mNL/poly = mHGP? = mHGP=2,

ProoF. First, we prove NL/poly € HGP?. One can show [46, 83] that if a function f is computable
by a polynomial-size NBP, then — f is also computable by a polynomial-size NBP. So suppose —f is
computed by an NBP B. We construct an HGP P computing f of degree at most 2 and polynomial
size in |B| as follows (see Fig. 16). For each arc e in B, the HGP P has two vertices e® and e!, which
represent the beginning and the end of e, respectively. The vertex € is labelled with the negated
label of e in B and e! with 1. For each arc e in B, the HGP P has an e-hyperedge {e’, e!}. For each

120bserve that the functions computable by monotone NBPs are monotone by definition, and so using the dual of f is
the only natural choice for the definition of co-mNL/poly. Another (equivalent) option is to define monotone NBPs by
restricting all labels either to positive or to negative (computing monotone and anti-monotone functions, respectively) and
use the negation =f (p1, . . ., pn), as done by Grigni and Sipser [41].

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:30 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

v;-hyperedge

Fig. 16. HGP in the proof of Theorem 7.2: black vertices are labelled with 1.

el _hyperedge ol

1
1

6}’. eo-hyperedge
-q

e —hyperedge. “

vertex v in B but s and ¢, the HGP P has a v-hyperedge comprising all vertices e! for the arcs e
leading to v, and all vertices e’ for the arcs e leaving v. We also add to P a vertex w labelled with 0
and a hyperedge é,, that consists of w and all vertices e! for the arcs e in B leading to t. We claim
that P computes f. Indeed, if s /54 t then the following subset of hyperedges is independent and
covers all zeros: all e-hyperedges, for the arcs e reachable from s and labelled with 1 under «,
and all v-hyperedges with s />, v (including é,,). Conversely, if s —4 t, then one can show by
induction that, for each arc e of the path, the e-hyperedge must be in the cover of all zeros. Thus,
no independent set can cover w, which is labelled with 0.

To show HGP? € HGP=?%, consider an HGP P of degree at most 2 computing f. We extend
its hypergraph with three vertices, x, y and z, labelled with 1, 0 and 0, respectively, and three
hyperedges e; = {v1,...,v5,x,y}, e2 = {v1,...,Uk, %, 2} and e3 = {y, z}, where vy, ..., v} are
the vertices of degree 0 and vj.1, . . ., v; the vertices of degree 1. It is easy to see that each cover
should contain e; but cannot contain e; and e;. Indeed, y and z should both be covered. However,
hyperedges e; and e, intersect and cannot be both in the same cover. Thus, y and z should be
covered by es, while e; and e;, intersecting es, are not in the cover. After these choices we are left
with the original hypergraph.

To show HGP=2 C NL/poly, suppose f is computed by an HGP P of degree 2 with hyperedges
e, ..., ex. We first provide a graph-theoretic characterisation of independent sets covering all zeros
based on the implication graph [7]. For every hyperedge e;, take a propositional variable u; and
associate the following set @, of propositional binary clauses with every assignment «:

—u; V owy, if e;Nej £ 0, and u; Vuj, if a(v) =0 for some v € e; Ne;.

Informally, the former means that intersecting hyperedges cannot be chosen at the same time,
while the latter that all zeros must be covered. By definition, E’ is an independent set covering
all zeros iff E’ = {e; | y(u;) = 1}, for some assignment y satisfying ®,. Let C = (V, Ey) be the
implication graph of @4, that is, a directed graph with

V= {ui,ﬁi | 1<i< k}, Ey = {(ui,b_lj) | €; ﬂej * 0} U {(ﬁi,uj) | (Z(’U) =0,V € ¢ ﬂej}.

(V is the set of all ‘literals’ for the variables of @, and E,, are the arcs for the implicational form of
the clauses: e.g., ~u; V —u; in @, gives rise to two implications, u; — —u; and u; — —u;, and thus
to two arcs in Cq; similarly for u; V u;.) By [7, Theorem 1], @, is satisfiable iff there is no (directed)
cycle through some u; and @;. We represent the C,,, for assignments «, as a single labelled directed
graph C with

(4
ij°
arcs (u;, i), for e; Ne; # 0, and (@;, wy;) and (w

vertices u; and @;, for 1 <i <k, and w;;, for1 <i,j < kand v € ¢; Ne;, and with

v
ij°
arcs of the form (u;, @;) and (4;, wf}) are labelled with 1 and arcs of the form (wl?;., u;) with the
negation of the label of v in P. It should be clear that C, has a cycle through u; and #; iff we have
both @#; —4 u; and u; — ¢4 @; in C. The required NBP B contains distinguished vertices s and ¢, and,
for each hyperedge e; in P, two copies, C? and C}, of C with additional arcs from s to the @; vertex

uj), for each v in e; Ne; # 0;

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:31

S O*O C? u; u; Cll | »Ot

Fig. 17. The NBP in the proof of Theorem 7.2.

of C?, from the u; vertex of C? to the u; vertex of C}, and from the ; vertex of C} to t; see Fig. 17.
By construction, s —4 t iff Cy contains a cycle through u; and @;, for a hyperedge e; in P. We thus
have a polynomial NBP B computing —f, and so f is also computable by a polynomial NBP.

As to co-mNL/poly = mHGP? = mHGP=2, observe that the first construction, if applied to a
monotone NBP for f*, produces a polynomial-size HGP of degree at most 2 computing = f*, all
of whose labels are negative. By removing negations from labels, we obtain a monotone HGP
computing f. The second construction preserves monotonicity. The third construction allows us to
transform a monotone HGP of degree 2 for f into an NBP that computes — f and has only negative
literals. By inverting the polarity of the labels, we obtain a monotone NBP computing f*. O

7.3 NL/poly and THGP(¢)

For any natural £ > 2, we denote by THGP({) and mTHGP({) the classes of Boolean functions
computable by (sequences of) polynomial-size THGPs and, respectively, monotone THGPs whose
underlying trees have at most ¢ leaves.

TuEOREM 7.3. NL/poly = THGP({) and mNL/poly = mTHGP(¢), for any £ > 2.

ProoF. Suppose a polynomial-size THGP P computes a Boolean function f. Consider the func-
tion fy for the underlying hypergraph H of P. By Theorem 5.8, f is computed by a polynomial-size
monotone linear THGP P’. We can assume that the vertices vy, . . ., v, of P’ are consecutive edges of
the path graph underlying P’, and so every hyperedge in P’ is of the form [v;, Uiy m]| = {vi, - - s Vixm}s
for some m > 0. We add two extra vertices, vy and vp41, to P’ (thereby extending the underlying
two-leaf tree to vy, v, . . ., Un, Un+1) and label them with 0; we also add two hyperedges s = {vp}
and t = {vy41} to P’. Clearly, the resulting monotone linear THGP P” computes fg. To construct
a polynomial-size NBP B computing f, we take a directed graph whose vertices are hyperedges
of P”” and which contains an arc from e; = [v;;,v;,] to e; = [v},,v),] iff iy < ji; we label this arc
with Aj, <x<;j, Ik, where I is the label of v; in THGP P”. It is not hard to see that a path from s to ¢
evaluated to 1 under a given assignment ¢ corresponds to a cover of zeros in P”’ under . To get
rid of conjunctive labels on edges, we replace every arc with alabel I;, A --- A l;, by a sequence
of k consecutive arcs labelled with I;,, .. ., I; . Finally, we replace the vertex variables p,, in the
labels by the corresponding vertex labels in P and fix all edge variables p, to 1. The resulting NBP B
is as required. Finally, observe that if P is monotone, then B is also monotone.

Conversely, suppose a Boolean function f is computed by an NBP B based on a directed graph
with vertices V = {vy,...,v,}, edges E = {e1,...,em}, s = v; and t = v,. Without loss of
generality, we assume that B has a loop from ¢ to t labelled with 1. Thus, if there is a path from s
to t whose labels evaluate to 1, then there is such a path of length n — 1. We now construct a
polynomial-size linear THGP computing f. The nodes of its underlying tree T are arranged into n
vertex blocks VB!, ..., VB" and n — 1 edge blocks EB!, ..., EB""!. Each vertex block contains two
nodes, v}‘, 6]]?, for each vertex v; € V, and each edge block contains two nodes, eg‘, éf, for each
edgee; € E:

k _ _k -k _k -k k -k k _ k sk _k Sk k Sk
VB® = v],07,0y,0y,...,0,, 0, and EB" =e;,¢e7,¢€5,€5,...,€,, €.

To construct the undirected tree T, we alternate the vertex and edge blocks in the following way:
VB!, EB!, VB?, EB?, ..., EB""!, VB" and then connect the adjacent nodes by edges. Consider now a

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:32 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

(b)

—
»
<
$

AND-depth 1

AND-depth 0

Fig. 18. (a) A circuit C. (b) The labelled tree T for C: the nodes in the ith triple are u;, v;, w; and the omitted
edge labels are zeros. The vertices of the THGP are the edges of T (with the same labels) and the hyperedges
are sets of edges of T (two of them are shown).

tree hypergraph H based on T whose hyperedges are of the form

hk [vk ek] and 9; [e vjk”] fore; = (vj,vy) €E and 1 <k <n.

Note that |H| = O(|B|?). The vertices of H of the form {vf, 27{‘} are labelled with 1, the vertices
of the form {ell.c, éll.‘}, which separate the hyperedges hli‘ and gf, are labelled with the label of e;
in B, and all other vertices with 0. So, P is monotone whenever B is. We show that the constructed
THGP P computes f. Indeed, if f(a) = 1, then there is a path e;, ..., e;, , from v; to v, whose
labels evaluate to 1 under «. It follows that {hfk, gfk | 1 < k < n}is an independent set in H
covering all zeros. Conversely, if E’ is an independent set in H covering all zeros under a, then
it must contain exactly one pair of hyperedges h;‘k and .‘hkk for every k with 1 < k < n, and the

corresponding sequence of edges e;,,. .., e;, , defines a path from v; to v,. Moreover, since E’
does not cover the vertices {ell.‘k, éfk }, for 1 < k < n, their labels (that is, the labels of the e;, in B)
evaluate to 1 under «. O

7.4 LogCFL/poly and THGP

THGP and mTHGP are the classes of functions computable by polynomial-size THGPs and mono-
tone THGPs, respectively.

THEOREM 7.4. LogCFL/poly = THGP and mLogCFL/poly = mTHGP.

Proor. To show that LogCFL/poly € THGP, consider a SAC!-circuit C of depth d < log |C|. It
will be convenient to think of C as containing no NoT-gates but having literals as inputs. By the
AND-depth of a gate g in C we mean the maximal number of AND-gates in a path from an input
of C to g (it does not exceed d). Let C',fﬁ and C;light be the unions of sub-circuits computing the left
and, respectively, right inputs of the AND-gates of AND-depth n. Without loss of generality (see
Lemma A.6 in Appendix A.11) we can assume that C'" N C"8" =), for any n < d. Our aim is to
transform C into a polynomial-size THGP P. We construct its underlying tree T by associating
with each gate g; three nodes u;, v;, w; and arranging them into a tree as shown in Fig. 18. More
precisely, we first arrange the nodes associated with the gates of the maximal AND-depth, d, into
a path following the order of the gates in C and the alphabetic order for u;, v;, w;. Then we fork
the path into two branches, one of which is associated with C'e‘Ct and the other with C”ght and so

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:33

forth. We obtain the tree T by removing the node wy, from the result, where gy, is the output gate
of C (m = |C]); the tree T has vy, as its root and contains 3|C| — 1 nodes. The THGP P is based on
the hypergraph whose vertices are the edges of T and whose hyperedges comprise the following
(see Fig. 18):

— [u;, wi], for each i < m (pairs of edges in each triple of nodes in Fig. 18);
- [vj, vk, v;], for each g; = g; A gx (shown in Fig. 18 by shading);
- [vj,vil, ..., [vj,, vil], foreach g; = gj, V -+ V gj,.

Finally, if an input gate g; is a literal I, then we label the vertex {u;,v;} with I; we label all
other {u;, v;}- and {v;, w; }-vertices with 0, and the remaining ones with 1. Clearly, the size of P is
polynomial in |C|. By Lemma A.7, for any input o, the output of g; is 1 iff there is an independent
set of hyperedges entirely inside the subtree rooted in v; such that it covers all zeros in the subtree.
Thus, P computes the same function as C.

To show THGP C LogCFL/poly, suppose a THGP P is based on a tree hypergraph H = (U, V, E).
Given an input « for P and a non-empty subtree T of the underlying tree Ty of H, we set coverr
true iff there exists an independent subset of hyperedges in H that lie in T and cover all zeros in T.
It follows that, for any edge v of Ty, cover(, (o) is true if {v} is a hyperedge of H; otherwise, it is
the value of the label of v in P under «.

Our aim is to recursively construct a polynomial-size SAC!-circuit C computing the function
coverry,. Let T be a convex subtree of Ty. Given a convex subtree Ty of T, we define the Tj-splitting
of T as a (uniquely determined) set {T, . .., Tx } of maximal convex subtrees such that the set of
edges of T is a disjoint union of the non-empty sets of edges of Ty, Ty, . . ., Ty and each T; shares a
leaf with Tp, in which case the conjunction covery, A - -+ A covery, is denoted by splity . We also
say that a node u of T splits T into the ({u}, 0)-splitting of T. Observe that coverr is equivalent to

lit v/ lit 16
spht T,({u},0) e€E and u is in the interior of T, SPH T.T. ()

for any node u in T. By the degree deg(T) of T we understand the number of its leaves that are not
leaves of Ty; in other words, the degree is the number of nodes shared with other subtrees of a
splitting of Ty. Note that Ty is its only convex subtree of degree 0. The following lemma shows
that to compute coverr,, we only need subtrees of degree at most 2 and that the depth of recursion

is O(log |P|).

LEMMA 7.5. Let T be a subtree of Ty with m edges and deg(T) < 2. If deg(T) < 1, then there is
a node u splitting T into subtrees with at most (m + 1)/2 edges and degree at most 2. If deg(T) = 2,
then there is a node u splitting T into subtrees with at most (m + 1)/2 edges and degree at most 2 and,
possibly, one subtree with less than m edges and degree 1.

Proor. If deg(T) < 1, then let a node u; split T into subtrees one of which, say T, has more
than (m + 1)/2 edges and all others have less than (m — 1)/2 edges in total. Let u, be the (unique)
node in T; adjacent to u; in T. Then u, splits T into subtrees lying inside T; and a subtree with the
edge {uy, u}, which has less than (m + 1)/2 edges; all of the subtrees are of degree at most 2. If
there is still a subtree with more than (m + 1)/2 edges, then its size has decreased. The process is
repeated until all subtrees have at most (m + 1)/2 edges.

If deg(T) = 2, then let b; and b; be the leaves of T that are not leaves of Ty. We proceed as
above starting from u; = b;, but stop when either the largest subtree has at most (m + 1)/2 edges,
or u;4; leaves the path between b; and b,, in which case u; splits T into subtrees of degree at
most 2 (and at most (m + 1)/2 edges) and one subtree of degree 1 (whose number of edges does not
exceed m — 1). O

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:34 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

By applying (16) to Ty recursively and choosing the splitting nodes u as prescribed by Lemma 7.5,
we obtain a circuit C whose inputs are the labels of some vertices of H. Since any tree has polyno-
mially many subtrees of degree at most 2, the size of C is polynomial in |P|. We now show how to
make the depth of C logarithmic in |P|.

Suppose T is a subtree with m edges constructed on the recursion step i. To compute coverr
using (16), we need one or-gate of unbounded fan-in and a number of AND-gates of fan-in 2.
We show by induction that we can make the AND-depth of these AND-gates at most logm + i.
Let {Ti,. .., Ti} be the ({u}, 0)-splitting of T and m; the number of edges in Tj, for all j < k. We
have m = my + - - - + my. By the induction hypothesis, we can compute each covery, within the
AND-depth of at most logm; + i — 1. Assign the probability m;/m to T;. As shown by Huffman [45],
there is a prefix binary code such that each T; is encoded by a word of length [log(m/m;)]. This
encoding can be represented as a binary tree whose leaves are labelled with the T; so that the
length of the branch ending at T; is [log(m/m;)]. By replacing each non-leaf vertex of the tree with
an AND-gate, we obtain a circuit for the first conjunction in (16) whose depth does not exceed

max;{logm; + (i — 1) + log(m/m;) + 1} = logm +i.

The conjunction splity 7. is considered analogously. O

7.5 NC, I3 and THGP?

Denote by THGP? and mTHGP? the classes of functions computable by polynomial-size THGPs
and, respectively, monotone THGPs of degree at most d. The proof of the following theorem, given
in Appendix A.11, is a simplified version of the proof of Theorem 7.4:

THEOREM 7.6. NC' = THGP? and mNC! = mTHGP¥, for anyd > 3.

The subclasses of THGP? and mTHGP? with linear HGPs are denoted, respectively, by THGP?(2)
and mTHGP?(2). THGPs of degree 2 turn out to be less expressive than of degree 3:

THEOREM 7.7. M3 = THGP? = THGP?(2) and ml; = mTHGP? = mTHGP?(2).

Proor. To show THGP? C T3, take a THGP P based on a tree hypergraph H of degree at
most 2. By Lemma A.3, fy(a) = 1 iff neither « is degenerate nor meets any of its polynomially
many obstructions. This property can be computed by a INs-circuit where, for each obstruction
(eos - - - » €2n—1) from vy to va,—1, We create a circuit corresponding to the DNF expressing that one of
the conditions (01)-(03) is falsified (see Section 5.2). We collect the outputs of the or-gates of these
circuits and input them to a fresh AND-gate. It remains to add to this AND-gate the conjunction of
the labels of vertices of P that are not covered by any hyperedge; see condition (D).

To show M3 € THGP?(2), let C be a [Ns-circuit. We can assume that C is a conjunction of
DNFs. Denote the or-gates of C by gi, . . ., gk and the inputs of g; by h; 1, ..., h; j,, where the h; ;
are AND-gates. We construct a generalised THGP P whose underlying path graph consists of k
consecutive blocks of edges Vi, . . ., Vi, where each V; comprises edges v; 1, 9; 1, - . ., vi.1;, 9i,1;, and
whose hyperedges are of the form {v; j, 0; ;j} and {9; j, v; j+1}, for j < I;. We label each v; ; with a
conjunction of the inputs of h; j and each 9; ; with 1. For an input for C, we can cover all zeros among
each V; with an independent set of hyperedges iff at least one of the gates h; 1, .. ., h; ;, outputs 1;
cf. Fig. 9. For different i, the corresponding V; are covered independently. Thus, P computes the
same function as C. We convert P to a HGP from THGP?(2) using Proposition A.2. m}

Table 4 summarises the results obtained in this section. For example, its first row says that a
function is computable by a polynomial-size nondeterministic circuit iff it can also be computed by
a polynomial-size HGP (of degree at most d, for d > 3).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:35

Table 4. Complexity classes, models of computation and the corresponding classes of HGPs.

corré{)als;(1ty model of computation theorem class of HGPs
NP/poly nondeterministic Boolean circuits 7.1 HGP = HGPY, d > 3
P/poly Boolean circuits -
logarithmic-depth circuits with
LogClFL/poly unbounded fan-in AND-gates, 7.4 THGP
(SACY) and NoT-gates only on inputs
NL/poly nondeterministic branching programs 7.2/73 HGP*=THGP({), € > 2
NC! Boolean formulas 7.6 THGPY, d >3
constant-depth circuits with
AC? unbounded fan-in AND- and oRr-gates, —
and NoT-gates only on inputs
M; AC’-circuits of depth 3 & output AND-gate 7.7 THGP? = THGP?(2)

8 THE SIZE OF OMQ REWRITINGS

We now bring together the results from Sections 4-7 to obtain the upper and lower bounds on
the size of PE-, NDL- and FO-rewritings in Fig. 2a. In this section, by an OMQ Q = (7, q) we
mean a sequence {Q,, = (71.9,,)}n<w of OMQs of size polynomial in n, and by a rewriting ® of Q
we mean a sequence {®,},<,, of rewritings &, of Q,,. We call ® a polynomial rewriting of Q if
there is a polynomial p such that |®,| < p(n), for n < w. Theorem 4.5 can now be recast in the
complexity-theoretic setting as follows (see Table 4):

- if Q has a polynomial FO-rewriting, then f5 € NC!;

— if Q has a polynomial NDL-rewriting, then f5 € mP/poly;

- if Q has a polynomial PE-rewriting, then f§ € mNC!.
Similarly, Theorems 4.2 and 4.4 give the ‘converse’ implications:

~ if f5 € NC" or fJ € NC, then Q has a polynomial FO-rewriting;

- if fg € mP/poly or fJ € mP/poly, then Q has a polynomial NDL-rewriting;

— if f5 € mNC or f§ € mNC', then Q has a polynomial PE-rewriting.
In the sequel, we use these results without explicit references to the theorems.

The relations of the various classes of OMQs with the complexity of the Boolean functions
associated with these OMQs and their equivalent classes of monotone HGPs are summarised
in Fig. 19. The circles in the figure stand for classes of OMQs and the arrows for polynomial
transformations. For example, if we take an OMQ Q with ontologies of unbounded depth and CQs
of unbounded treewidth (the most general class, in the bottom right corner) then, by Proposition 4.3,
1o € mNP/poly.’® Conversely, by Theorem 7.1, any function in mNP/poly is computable by a
polynomial-size monotone HGP based on some hypergraph H and, by Theorem 6.2, this function
is a subfunction of fQAH, for a polynomial-size OMQ Qy;, which is of depth 2 and unbounded
treewidth—see the Q node in Fig. 19. Now, to obtain the succinctness landscape of Fig. 2a, it
remains to recall suitable results from circuit complexity; we shall do this in the remainder of this

13The class mNP/poly of functions computable by monotone Boolean circuits coincides with the class of monotone functions
in NP/poly [41].

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:36 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

mTHGP?(2) ' mHGP=2 <> mHGP?
in mNC! (poly-PE) I
(TT"!

.6 d J
{ mily <+ mTHGP? <—@]{Ncl mE*'f;P 220,]—F
_‘.
3

ontology depth

arb. {

T
trees (=1)

treewidth

number of leaves

in mP/poly but mNL/poly-hard
(poly-NDL but no poly-PE)

mNP/poly-complete
(no poly-NDL but poly-FO iff NP/poly € NC?)

Fig. 19. Roadmap for the proofs of succinctness results.

section. That every function in mNP/poly is computable by some (polynomial-size) tree-shaped
OMQ was shown by Gottlob et al. [34, Lemma 8].

8.1 All OMQs

We begin with the class of all OMQs. By Theorem 7.1, monotone HGPs can compute any function
in mNP/poly, in particular, the function CLIQUE with n(n — 1)/2 variables e;;, 1 < j < j’ < n, that
returns 1 iff the graph with vertices {1,...,n} and edges {{j,j’} | ej» = 1} contains a k-clique, for
some fixed k. Therefore, by Theorem 6.2 CLIgJE is a subfunction of fQ for some polynomial-size
OMQ Qyyqur: With ontologies of depth 2 and polynomially many tree witnesses.

On the other hand, CLIQUE is known to be NP/poly-complete under non-uniform AC’-reduc-
tions!* A series of papers started by Razborov [74] §>Ve an exponential lower bound for the size of
monotone circuits computing CLIQUE, namely 290K for k < (n/log n)?/3 [4]. Thus,

CLIQUE ¢ mP/poly. (17)

For monotone formulas, an even better lower bound is known: 2°%) for k = 2n/3 [73]. Using these
complexity results, we can establish:

141t is a standard observation in computational complexity that all well-known complete problems in conventional complexity
classes are complete under non-uniform ACP-reductions [2, 3]. Also, once we consider non-uniform reductions, all problems
that are complete for the uniform version of some complexity class are also complete for the non-uniform version. In
particular, NP and NP/poly have the same complete problems under non-uniform AC®-reductions. The same is true of NL
and NL/poly and of LogCFL and LogCFL/poly. We use these observations throughout Section 8.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:37

THEOREM 8.1. (i) There is an OMQ with ontologies of depth 2 and polynomially many tree witnesses,
any PE- and NDL-rewritings of which are of exponential size.

(ii) The following conditions are equivalent:

(a) all OMQs have polynomial FO-rewritings;

(b) all OMQs with ontologies of depth 2 and polynomially many tree witnesses have polynomial

FO-rewritings;

(c) NP/poly € NC!.

PROOF. (i) If Q¢ oy had a polynomial PE- or NDL-rewriting, then CLiQUE would be in mP/poly,
contrary to (17).

(b) = (c) If Q¢yyqur has a polynomial-size FO-rewriting, then CLIQUE € NC!. But since CLIQUE
is NP/poly-complete under non-uniform AC’-reductions, we obtain NP/poly € NC!.

(¢) = (a) By Proposition 4.3, we have fJ € mNP/poly, for any OMQ Q. Thus, if NP/poly C NC!,
then f§ € NC!, and so Q has a polynomial FO-rewriting. O

8.2 OMAQs with Ontologies of Depth 1

Consider the monotone function REAcH that takes the adjacency matrix of a directed graph G
with two distinguished vertices, s and ¢, and returns 1 iff G contains a directed path from s to t.
The function REacH and its dual, REacH*, are both NL/poly-complete under non-uniform AC’-
reductions [75]. It is known [49, 51] that REACH is computable by a polynomial-size monotone NBP,
but any monotone Boolean formula for REacH is of size nogn) Thys,

ReacH € mNL/pol but ReAcH ¢ mNC!, 18)
poly

By observing that mNC! is closed under taking dual functions (that is, by swapping AND and OR),
we also obtain:
ReacH” € co-mNL/poly but ReacH* ¢ mNC'. (19)

Then, by Theorems 7.2 and 6.4, we construct a polynomial-size OMQ Spgacy* of depth 1 such that
ReacH" is a subfunction of fsAR e Using (19), we now prove the following:

THEOREM 8.2. (i) All OMQs Q of depth 1 have polynomial N DL-rewritings.
(ii) There is an OMQ of depth 1 any PE-rewriting of which is of superpolynomial size.
(iii) All OMQs of depth 1 have polynomial FO-rewritings iff NL/poly € NC!.

ProoF. (i) By Theorem 7.2 and Corollary 5.2, f§ € co-mNL/poly € mP/poly, and so there is a
polynomial NDL-rewriting of Q.

(ii) If Spgacy+ had a polynomial PE-rewriting, then REacH* would be in mNC!, contrary to (19).

(iii) If NL/poly € NC! and Q is an OMQ of depth 1, then, by Theorem 7.2 and Corollary 5.2,
fg € co-mNL/poly € mNC' € NC', and so there is a polynomial FO-rewriting of Q. Conversely,
if Sppacy* has a polynomial FO-rewriting, then fsA € NC!. Since REacH" is NL/poly-complete
under AC’-reductions, we obtain NL/poly € NC - O

8.3 Tree-Shaped OMQs with a Bounded Number of Leaves

By using (18) in conjunction with Theorems 7.3, 6.6 and Corollary 5.9, we get the following result:

THEOREM 8.3. Fix any{ > 2.
(i) All tree-shaped OMQs Q with at most £ leaves have polynomial NDL-rewritings.

(ii) There is an OMQ with ontologies of depth 2 and linear CQs, any PE-rewriting of which is of
superpolynomial size.

(iii) The following are equivalent:

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:38 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

(a) all tree-shaped OMQs with at most € leaves have polynomial FO-rewritings;
(b) all OMQs with ontologies of depth 2 and linear CQs have polynomial FO-rewritings;
(¢) NL/poly € NC!.

8.4 OMQs with PFSP and Bounded Treewidth

Consider the Boolean function HCFL that corresponds to the hardest context-free language L, [40]:
it takes a word in the alphabet of L as input and returns 1 iff the word is in L. It is known that
HCFL is LogCFL/poly-complete under non-uniform AC’-reductions [47]. It is also not hard to
define a monotone version mHCFL of this function that is also LogCFL/poly-complete. Indeed,
if HCFL has n inputs x = xi,...,x,, then we construct a monotone function mHCFL with 2n
inputs x,y, where y = yy, . . ., yp, by taking

0, if there is i with x; = y; = 0,
mHCFL(x,y) = {HCFL(x), ify; = —x;, forall i,
1, otherwise.

Now, mHCFL together with Theorems 5.12, 7.4 and 6.6 give us the following:

THEOREM 8.4. Fix anyt > 0.
(i) All OMQs Q with the PFSP and CQs of treewidth at most t have polynomial NDL-rewritings.

(ii) The following are equivalent:

)
(a) all OMQs with the PFSP and CQs of treewidth at most t have polynomial FO-rewritings;
(b) all tree-shaped OMQs with ontologies of depth 2 have polynomial FO-rewritings;

(c) LogCFL/poly € NC!.

Using Theorem 3.3 and the fact that OMQs with ontologies of bounded depth enjoy the PFSP,
we obtain:

CoRoLLARY 8.5. The following OMQs have polynomial-size NDL-rewritings:

— OMQ:s with ontologies of bounded depth and CQs of bounded treewidth;
— OMQs with ontologies not containing axioms of the form o(x,y) — o’(x,y) (and (2)) and CQs
of bounded treewidth.

Whether all OMQs without axioms of the form p(x, y) — 0’(x, y) have polynomial-size rewritings
remains open!”® As concerns PE-rewritings for OMQs with CQs of bounded treewidth, Theorem 8.3
sends a negative message if their ontologies are of depth at least 2. However, for ontologies of
depth 1, we obtain the following positive result:

THEOREM 8.6. (i) For any fixedt > 0, all OMQs Q with ontologies of depth 1 and CQs of treewidth
at most t have polynomial PE-rewritings.

(ii) All tree-shaped OMQs Q of depth 1 have polynomial I'y-PE rewritings.

ProoF. (i) By Theorems 5.14 and 7.6, fg € mNC?, and so there is a polynomial PE-rewriting.

(i) By Corollary 5.7 and Theorem 7.7, f§ € mlls. By a simple unravelling argument, f3 is
computed by a polynomial monotone Boolean N3-formula. It remains to repeat the argument in
the proof of Theorem 4.2 to obtain a polynomial 4-PE rewriting of Q. O

15 A positive answer to this question [56] is based on a flawed proof.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:39

9 COMBINED COMPLEXITY OF OMQ ANSWERING

The size of OMQ rewritings we investigated so far is crucial for classical OBDA, which relies upon
a reduction to standard database query evaluation. However, this way of answering OMQs may not
be optimal, and so understanding the size of OMQ rewritings does not shed much light on how hard
OMQ answering actually is. For example, answering the OMQs from the proof of Theorem 8.2 (ii)
via PE-rewriting requires superpolynomial time, while the graph reachability problem encoded
by those OMQs is NL-complete. On the other hand, the existence of a short rewriting does not
obviously imply tractability.

In this section, we analyse the combined complexity of answering OMQs classified according to
the depth of ontologies and the shape of CQs. More precisely, our concern is the following decision
problem: given an OMQ Q(x) = (7, q(x)), a data instance A and a tuple a from ind(A), decide
whether 7, A |= q(a). Recall from Section 3 that 7, A |= q(a) iff C- # = q(a) iff there exists a
homomorphism from q(a) to Cy: #.

The combined complexity of CQ evaluation has been thoroughly investigated in relational
database theory. In general, evaluating CQs is NP-complete [24], but the problem becomes tractable
for tree-shaped CQs [88] and bounded treewidth CQs [25, 42]—LogCFL-complete, to be more
precise [36].

The emerging combined complexity landscape for OMQ answering is summarised in Fig. 2b
in Section 1.3. The NP and LogCFL lower bounds for arbitrary OMQs and tree-shaped OMQs
with ontologies of bounded depth are inherited from the corresponding CQ evaluation problems.
The NP upper bound for all OMQs was shown by Calvanese et al. [23] and Artale et al. [6], while
the matching lower bound for tree-shaped OMQs by Kikot et al. [56] and Gottlob et al. [34]. By
reduction of the reachability problem for directed graphs, one can easily show that evaluation
of tree-shaped CQs with a bounded number of leaves (as well as answering OMQs with unary
predicates only) is NL-hard. We now establish the remaining results.

9.1 OMQs with Bounded-Depth Ontologies

We begin by showing that the LogCFL upper bound for CQs of bounded treewidth [36] is preserved
even in the presence of ontologies of bounded depth.

THEOREM 9.1. For any fixedd > 0 and t > 0, answering OMQs with ontologies of depth at most d
and CQs of treewidth at most t is LogCFL-complete.

Proor. Let Q(x) = (77, q(x)) be an OMQ with 7 of depth at most d and q of treewidth at most .
As T is of finite depth, Cy- # is finite for any A. As LogCFL is closed under L-°8F--reductions [35]
and evaluation of CQs of bounded treewidth is LogCFL-complete, it suffices to show that Cy; # can
be computed by an L-°8¢FL-transducer (a deterministic logspace Turing machine with a LogCFL
oracle). Clearly, we need only logarithmic space to represent any predicate name or individual
constant from 7~ and A, as well as any word aw € A% 4 (since |w| < d and d is fixed). Finally, as
entailment in OWL 2 QL is in NL [6], each of the following problems can be decided by making a
call to an NL (hence LogCFL) oracle:

— decide whether ap; . . .0, € AS" 4 for any n < d and roles g; from T7;
~ decide whether u € A®" 4 belongs to AY" 4, for a unary predicate A from 7~ and A;
— decide whether (uy, uz) € A" % x A" 7 is in P A for a binary P from 7 and A. O

If we restrict the number of leaves in tree-shaped OMQs, then the LogCFL upper bound can be
improved to NL:

THEOREM 9.2. For any fixedd > 0 and € > 2, answering OMQs with ontologies of depth at most d
and tree-shaped CQs with at most € leaves is NL-complete.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:40 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

ALGORITHM 1: Nondeterministic procedure TreeQuery for answering tree-shaped OMQs

Data: a tree-shaped OMQ (7, q(x)), a data instance A and a tuple a from ind(A)
Result: true if 7, A |= q(a) and false otherwise

fix a directed tree T compatible with the Gaifman graph of q and let z¢ be its root;
letU = {aw € AS" 7 | g € ind(A) and |w| < d}; /* not computed */
guess up € U; /* use the definition of U to check if the guess is allowed */

if zq is the ith gnswer variable and ug # a; then
L return false

check uy € AST-A, for all A(zp) € q, and (ug, ug) € PCT- 7, for all P(zo, z9) € g;
frontier «— {z¢ — up};
while frontier # 0 do
remove some z — u from frontier;
foreach childz’ of z inT do
guess u’ € U; /* use the definition of U to check if the guess is allowed */

if 2’ is the i answer variable and u’ # a; then
L return false

check (u,u’) € P2, for all P(z,2') € q;
check u’ € ACT A, for all A(z’) € q, and (v, u’) € PST- A, for all P(z',2’) € q;
frontier «— frontier U {z’ > u’}

return true;

Proor. Algorithm 1 defines a nondeterministic procedure TreeQuery for deciding whether a
tuple a is a certain answer to a tree-shaped OMQ (77, q(x)) over A. The procedure views q as a
directed tree (we pick one of its variables z; as a root) and constructs a homomorphism from q(a)
to C7; # on-the-fly by traversing the tree from root to leaves. The set frontier is initialised with
a pair zo — uy representing the choice of where to map z,. The possible choices for z, include
ind(A) and aw € A" # with |w| < d. This set of possible choices is denoted by U in Algorithm 1.
Note that U occurs only in statements of the form ‘guess u € U’ and need not be fully materialised.
Instead, we assume that the sequence u is guessed element-by-element and the condition u € U
is verified along the sequence of guesses. We first ensure that, if z, is an answer variable of q(x),
then uq is the individual constant corresponding to z, in a. Next, if z, € ind(A), then we verify'®
that uy satisfies all atoms in g(x) that involve only z,. The remainder of the algorithm consists of a
while loop, in which we remove z +— u from frontier, and if z is not a leaf node, guess where to
map its children. We must then check that the guessed element u” for a child z’ is compatible with
(i) the binary atoms linking z to z” and (ii) the atoms that involve only z’. If the checks succeed,
then we add z’ — u’ to frontier, for each child z’ of z; otherwise, false is returned. We exit the
while loop when frontier is empty, that is, when an element of C7; # has been assigned to each
variable in q(x).

Correctness and termination of the algorithm are straightforward. Membership in NL follows
from the fact that the number of leaves of q does not exceed ¢, in which case the cardinality of
frontier is bounded by ¢, and the fact that the depth of 7 does not exceed d, in which case every
element of U requires only a fixed amount of space to store. So, since each variable z can be stored
in logarithmic space, the set frontier can also be stored in logarithmic space. Finally, as noted in
the proof of Theorem 9.1, the checks u € A®"# and (u,u’) € PS"# can be implemented in NL. O

18The operator check immediately returns false if the condition is not satisfied.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:41

9.2 OMQs with Bounded-Leaf CQs

It remains to settle the complexity of answering OMQs with arbitrary ontologies and tree-shaped
CQs with a bounded number of leaves, for which neither the upper bounds from Section 9.1 nor
the NP lower bound by Kikot et al. [56] are applicable.

THEOREM 9.3. For any fixed { > 2, answering OMQs with tree-shaped CQs having at most € leaves
is LogCFL-complete.

Proor. First, we establish the upper bound using a characterisation of the class LogCFL in terms
of nondeterministic auxiliary pushdown automata (NAuxPDAs). An NAuxPDA [29] is a nondeter-
ministic Turing machine with an additional work tape constrained to operate as a pushdown store.
Sudborough [82] showed that LogCFL coincides with the class of problems that can be solved by
NAuxPDAs running in logarithmic space and polynomial time (note that the pushdown tape is not
subject to the logarithmic space bound). Algorithm 2 gives a procedure BLQuery for answering
OMQs with bounded-leaf CQs that can be implemented by an NAuxPDA.

Similarly to TreeQuery, the idea is to view the input CQ g(x) as a tree T and iteratively construct
a homomorphism from g(a) to Cy: #, working from root to leaves. We begin by guessing an
element ayw to which the root variable z, is mapped and checking that agw is compatible with z.
However, instead of storing directly aow in frontier, we guess it element-by-element and push the
word w onto the stack, stack. We assume that we have access to the top of the stack, denoted by
top(stack), and that the call top(stack) on empty stack returns ¢. During the execution of BLQuery,
the height of the stack will never exceed 2|77| + |q| (which is enough to find a homomorphism if
one exists [6]), and so we assume that the height of the stack, denoted by |stack], is also available
as, for example, a variable whose value is updated by the push and pop operations on stack.

After having guessed apw, we check that z, can be mapped to it, which is done by calling
canMap(zy, ao, top(stack)). If the check succeeds, then we initialise frontier to the set of 4-tuples
of the form (z¢ +— (ao, |stack|), z;), for all children z; of zy in T. Intuitively, a tuple (z > (a, n),z’)
records that the variable z is mapped to the element a stack<, and that the child z’ of z remains to
be mapped (in the explanations, we use stack <, to refer to the word comprising the first n symbols
of stack; the algorithm, however, does not make use of it).

In the main loop, we remove one or more tuples from frontier, choose where to map the variables
and update frontier and stack accordingly. There are four options. Option 1 is used for tuples
(z + (a,0),2z’) where both z and z’ are mapped to individual constants, Option 2 (Option 3)
for tuples (z — (a, n), z’) in which we map z’ to a child (respectively, parent) of the image of z
in Cy; &, while Option 4 applies when z and z’ are mapped to the same element (which is possible
if P(z,2") € q, for some P that is reflexive according to 77). Crucially, however, the order in
which tuples are treated matters due to the fact that several tuples ‘share’ the single stack. Indeed,
when applying Option 3, we pop a symbol from stack, and may therefore lose some information
that is needed for processing other tuples. To avoid this, Option 3 may only be applied to tuples
(z = (a,n), z") with maximal n, and it must be applied to all such tuples at the same time. For
Option 2, we require that the selected tuple (z — (a, n), z’) is such that n = |stack|: since z’ is being
mapped to an element astack<, o, we need to access the nth symbol in stack to determine the
possible choices for p and to record the symbol chosen by pushing it onto stack.

The procedure terminates and returns true when frontier is empty, meaning that we have
successfully constructed a homomorphism witnessing that the input tuple is an answer. Conversely,
given a homomorphism from q(a) to Cy; #, we can define a successful execution of BLQuery. We
prove in Appendix A.12 that BLQuery terminates (Proposition A.8), is correct (Proposition A.9)
and can be implemented by an NAuxPDA (Proposition A.10). The following example illustrates the
construction.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:42 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

ALGORITHM 2: Nondeterministic procedure BLQuery for answering bounded-leaf OMQs.

Data: a bounded-leaf OMQ (77, q(x)), a data instance A and a tuple a from ind(A)
Result: true if 7, A |= q(a) and false otherwise

fix a directed tree T compatible with the Gaifman graph of q and let z¢ be its root;
guess qg € ind(A) and ng < 2|7 | + |q|; /* guess the ABox element and max distance */
foreachnin1,...,ny do /* guess the initial element in a step-by-step fashion %/
L guess a role o in 7 such that isGenerated(p, ao, top(stack));
push p on stack

check canMap(zo, ao, top(stack));

frontier «— {(zo — (ap, |stack]), z;) | z; is a child of zg in T};
while frontier # 0 do
guess one of the 4 options;

if Option 1then /* take a step in ind(A) */
remove some (z — (a, 0),z’) from frontier;
guess a’ € ind(A);

check (a,a’) € PCTﬂ,for all P(z,2’) € q, and canMap(z’, a’, ¢€);

frontier «— frontier U {(z" + (a’,0),2;) | 2} is a child of 2’ in T}
else if Option 2 and |stack| < 2|77| + |q| then /* a step forward in the tree part */
remove some (z — (a, |stack|), z’) from frontier;
guess a role o in 7 such that isGenerated(p, a, top(stack));
push p on stack;

check 7 |= o(x,y) — P(x,y), for all P(z,z’) € q, and canMap(z’, a, top(stack));

frontier «— frontier U {(z" = (a, |stack|), z}) | 2] is a child of z" in T}
else if Option 3 and |stack| > 0 then /* a step backward in the tree part */
let deepest = {(z — (a, n), z") € frontier | n = |stack|}; /* may be empty */
remove all deepest from frontier;
pop o from stack;
foreach (z — (a, n),z’) € deepest do

check 7 [o(x,y) — P(x,y), for all P(z’, z) € q, and canMap(z’, a, top(stack));
L frontier «— frontier U {(z’ = (a, |stack|), z}) | 2] is a child of z" in T}

else if Option 4 and |stack| > 0 then /* a loop-step in the tree part of Cg; g */
remove some (z > (a, |stack|), z’) from frontier;

check 7 | P(x, x), for all P(z,z") € q, and canMap(z’, a, top(stack));

frontier «— frontier U {(z" = (a, |stack|), z}) | 2] is a child of z" in T}

else return false;

return true;

Function isGenerated(p, a, o)

if o # ¢ then check 7 |= 3y o(y,x) — Jyo(x,y); /* of the form a...o (tree part) */
else check (a,b) € 7 A, for some b € ACT-A \ ind(A) ; /% in ind(A) */
| return true;

Function canMap(z, a, ¢)
if z is the i™ answer variable and either a # a;j or o # ¢ then return false;

if o # ¢ then /* of the form a...o (tree part) */
| check 7 = Jyo(y,x) — A(x), forall A(z) € q,and T |= P(x, x), for all P(z,z) € q
else /* in ind(A) */

L check a € AS™ 7 for all A(z) € q, and (a, a) € PCT 7, for all P(z,z) € q
| return true;

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:43

(a) q(x1, x2) Cr, (b) q(x1, x2) Cr,z
B a R c
Y1 Y1 A O
R X‘O 3 \O P.U
Y2 Y2 aP
S
X1 @ X1 @ aPS
T_ I
O aPST~

S

T
aPST~

Xy 2

Fig. 20. Partial homomorphisms from a tree-shaped CQ q(x1, x2) to the canonical model C7; # and the
contents of stack in Example 9.4: (a) before the third iteration, (b) before the fifth iteration, (c) before and
(d) after the final (sixth) iteration. Large nodes indicate the last component of the tuples in frontier.

Example 9.4. Suppose 7 has the following axioms:

Ax) = Jy P(x, y), P(x,y) = Uly, x), Jy P(y, x) — B(x),
Jy Py, x) — 3y S(x. y), Jy Sy, x) = Iy T(y, x),
the query q(x1, x2) consists of the following atoms with quantified variables y, . . ., ys:

R(yz, XI), P(y27 U1)’ S(yh y3)’ T(yS’ y3)7 S(y4, y3)7 U(y47 x2)

and A = { A(a), R(a,c) }. Observe that Cy- # |= q(c, a). We show how to define an execution of
BLQuery that returns true on ((7, q), A, (c, a)) and the homomorphism it induces. We fix some
variable, say y;, as the root of the query tree. We then guess the constant a and the word P, push P
onto stack and check using canMap(y;, a, P) that our choice is compatible with y;. At the start of
the while loop, we have

frontier = {(y1 = (a.1),%2), (y1 = (@, 1),y3)} and stack =P, (w-1)

where the first tuple, for example, records that y; has been mapped to astack<; = aP and y,
remains to be mapped. We are going to use Option 3 for the first tuple in frontier and Option 2
for the second. We (have to) start with Option 2 though: we remove (y; — (a, 1), y3) from frontier,
guess S, push it onto stack, and add (ys +— (a, 2), ys) and (ys — (a, 2), ys) to frontier. Note that the
tuples in frontier allow us to read off the elements a stack<; and a stack<, to which y; and ys3 are
mapped. Thus,

frontier = {(y; — (a, 1), y2), (y3 — (a,2),y4), (y3 — (a,2),ys)} and stack =PS (w-2)

at the start of the second iteration of the loop. We are going to use Option 3 for the second
tuple in frontier and Option 2 for the third. Again, we have to start with Option 2: we remove
(y3 = (a,2),ys) from frontier, and guess T~ and push it onto stack. As ys has no children, we leave
frontier unchanged. At the start of the third iteration (see Fig. 20a),

frontier = {(y; — (a,1),y2), (y3 — (a,2),y4)} and stack =PST . (w-3)

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:44 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

We apply Option 3 and, since deepest = 0, we pop T~ from stack but make no other changes. In
the fourth iteration, we again apply Option 3. Since deepest = {(y3 — (a, 2), y4)}, we remove this
tuple from frontier and pop S from stack. Since the checks succeed for S, we add (ys — (a, 1), x3)
to frontier. The fifth iteration (see Fig. 20b) begins with

frontier = { (y; — (a, 1), y2), (ys — (a,1),x2)} and stack = P. (w-5)

We apply Option 3 with deepest = {(y; — (a, 1), y2), (y4 — (a, 1), x2)}. This leads to both tuples
being removed from frontier and P popped from stack. We next perform the required checks and,
in particular, verify that the choice of where to map the answer variable x; agrees with the input
tuple (c, a) (which is indeed the case). Then, we add (y; — (a, 0), x1) to frontier. Thus,

frontier = { (y2 — (a,0),x;)} and stack=¢ (w-6)

at the start of the final, sixth, iteration; see Fig. 20c. We choose Option 1, remove (y2 — (g, 0), x1)
from frontier, guess c, and perform the required compatibility checks. As x; is a leaf, no new tuples
are added to frontier; see Fig. 20d. We are thus left with frontier = 0, and return true.

The proof of LogCFL-hardness is by reduction of the following problem: decide whether an
input of length n is accepted by the nth circuit of a logspace-uniform family of SAC!-circuits,
which is known to be LogCFL-hard [86]. This problem was used by Gottlob et al. [36] to show
LogCFL-hardness of evaluating tree-shaped CQs. We follow a similar approach, but with one
crucial difference: using an ontology, we ‘unravel’ the circuit into a tree, which allows us to replace
tree-shaped CQs by linear ones. Following Gottlob et al. [36], we assume without loss of generality
that the considered SAC!-circuits adhere to the following normal form:

— fan-in of all AND-gates is 2;

- nodes are assigned to levels, with gates on level i only receiving inputs from gates on level i—1,
the input gates on level 1 and the output gate on the greatest level;

— the number of levels is odd, all even-level gates are or-gates, and all odd-level non-input
gates are AND-gates.

It is well known [36, 86] that a circuit in normal form accepts an input « iff there is a labelled
rooted tree (called a proof tree) such that

— the root is labelled with the output AND-gate;
- if a node is labelled with an AND-gate g; = g; A gi, then it has two children labelled with g;
and g, respectively;
- if a node is labelled with an or-gate g; = g;, V...V gj,, then it has a unique child that is
labelled with one of gj,, ..., gj.;
- every leaf is labelled with an input gate whose literal evaluates to 1 under c.
For example, the circuit in Fig. 21a accepts (1, 0, 0, 0, 0), as witnessed by the proof tree in Fig. 21b.
While a circuit-input pair may admit multiple proof trees, they are all isomorphic modulo the
labelling. Thus, with every circuit C, we can associate a skeleton proof tree T such that C accepts a
iff some labelling of T is a proof tree for C and a. Note that T depends only on the number of
levels in C. The reduction [36], which is for presentation purposes reproduced here with minor
modifications, encodes C and « in the database and uses a Boolean tree-shaped CQ based on the
skeleton proof tree. Specifically, the database D(ar) uses the gates of C as constants and consists of
the following facts:

L(gj, g:) and R(gk, g:)s for every AND-gate g; = g; A gk;
U(9j,, 9i) - - -» U(Gj,.» 9i), for every or-gate g; = g;, V- -- V gj,;
A(g;), for every input gate g; whose value is 1 under «.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:45

@ :
w[o] e

Fig. 21. (a) A circuit C of five levels with input @: x; — 1, x3 = 0, x3 — 0, x4 — 0, x5 > 0 (the gate
number is indicated on the left and gates with value 1 under o are shaded); (b) a proof tree for C and «;
(c) CQs q (thick grey arrows) and q’ (black arrows); (d) the canonical model of (7¢, A) with the subscript
of G; inside the nodes.

The CQ q uses the nodes of T as variables, has an atom U(zj, z;) (L(z}, z;) or R(zj, z;), respectively)
for every node z; with unique (left or right, respectively) child z;, and has an atom A(z;) for every
leaf z;. These definitions guarantee that D(«) |= q iff C accepts «; moreover, both q and D(&) can
be constructed by logspace transducers.

To adapt this reduction to our setting, we replace q by a linear CQ q’, which is obtained by a
depth-first traversal of . When evaluated on D(«), the CQs q’ and q may give different answers,
but the answers coincide if the CQs are evaluated on the unravelling of D(e) into a tree. Thus, we
define (74, A) whose canonical model induces a tree isomorphic to the unravelling of D(e). To
formally introduce q’, consider the sequence of words defined inductively as follows:

Wy = € and wis1 =L U w;ULR U w;UR, forj>0.
Suppose C has 2d + 1 levels, d > 0. Consider the dth word wy = 010, . . . ox and take
q'yo) = Fyi....uk [/\ 0i(yi-1.yi) A /\ A(y:)];
1<i<k 0iei+1=U" U

see Fig. 21c. We now define (74, A). Suppose C has gates g1, . . ., g, with the output gate g,,. In
addition to predicates U, L, R, A, we take a unary predicate G; for each gate g;. We set A = {G,,(a)}
and include the following axioms in 7g:

Gi(x) = Ty (S(y, x) A Gi(y)), for every S(g;,9:) € D(x), S € {U,L, R},
Gi(x) — A(x), for every A(g;) € D();

see Fig. 21d for an illustration. When restricted to predicates U, L, R and A, the canonical model
of (7, A) is isomorphic to the unravelling of D(«) starting from g,.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:46 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

We show in Appendix A.13 that 7, and q’ can be constructed by logspace transducers (Proposi-
tion A.11), and that C accepts « iff T4, A |= q’(a) (Proposition A.12). O

10 CONCLUSIONS AND OPEN PROBLEMS

Our aim in this work was to understand how the size of OMQ rewritings and the combined
complexity of OMQ answering depend on (i) the existential depth of OWL 2 QL ontologies, (ii) the
treewidth of CQs or the number of leaves in tree-shaped CQs, and (iii) the type of rewriting:
PE, NDL or arbitrary FO.

We tackled the succinctness problem by representing OMQ rewritings as (Boolean) hypergraph
functions and establishing an unexpectedly tight correspondence between the size of OMQ rewrit-
ings and the size of various computational models for computing these functions. It turned out
that polynomial-size PE-rewritings can only be constructed for OMQs with ontologies of depth 1
and CQs of bounded treewidth. Ontologies of larger depth require, in general, PE-rewritings of
super-polynomial size. The good and surprising news, however, is that, for classes of OMQs with
ontologies of bounded depth and CQs of bounded treewidth, we can always (efficiently) construct
polynomial-size NDL-rewritings. The same holds if we consider OMQs obtained by pairing ontolo-
gies of depth 1 with arbitrary CQs, as well as arbitrary ontologies with bounded-leaf queries; see
Fig. 2 for details. The existence of polynomial-size FO-rewritings for different classes of OMQs was
shown to be equivalent to major open problems in computational and circuit complexity such as
NL/poly € NC?, LogCFL/poly €* NC! and NP/poly <’ NC.

We also determined the combined complexity of answering OMQs from the considered classes.
In particular, we showed that OMQ answering is tractable—either NL- or LogCFL-complete—for
bounded-depth ontologies coupled with bounded treewidth CQs, as well as for arbitrary ontologies
with tree-shaped queries with a bounded number of leaves. We point out that membership in
LogCFL implies that answering OMQs from the identified tractable classes can be ‘profitably
parallelised’ (for details, consult [36]).

Comparing the two sides of Fig. 2, we remark that the class of tractable OMQs nearly coincides
with the OMQs admitting polynomial-size NDL-rewritings (the only exception being OMQs with
ontologies of depth 1 and arbitrary CQs). However, the LogCFL and NL membership results cannot
be immediately inferred from the existence of polynomial-size NDL-rewritings, since evaluating
polynomial-size NDL-queries is a PSPACE-complete problem in general. In the follow-up paper [10],
we give polynomial-size NDL-rewritings for these cases, which can be constructed and evaluated
in LogCFL and NL, respectively, and study the parametrised and query complexities of OMQ
answering with CQs of bounded treewidth.

Although the present article gives comprehensive solutions to the succinctness and combined
complexity problems formulated in Section 1, it also raises some interesting and challenging
questions:

(1) What is the size of rewritings of OMQs with a fixed ontology?

(2) What is the size of rewritings of OMQs with ontologies in a fixed signature?

(3) What is the size of rewritings for OMQs whose ontologies do not contain role inclusions,
that is, axioms of the form o(x, y) — o’(x,y)?

Answering these questions would provide further insight into the difficulty of OBDA and could
lead to identification of new classes of well-behaved OMQs.

As far as practical OBDA is concerned, our experience with the query answering framework
Ontop [61, 77], which employs the tree-witness rewriting, shows that mappings and database
constraints together with semantic query optimisation techniques can drastically reduce the size of
rewritings and produce efficient SQL queries over the data. The role of mappings and data constraints

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:47

in OBDA is yet to be fully investigated [15, 63, 76, 79] and constitutes another promising avenue
for future work.

Finally, the focus of this article was on the ontology language OWL 2 QL that has been designed
specifically for OBDA via query rewriting. However, in practice ontology engineers often require
constructs that are not available in OWL 2 QL. Typical examples include axioms with V and A such
as A(x) — B(x) V C(x) and P(x,y) A A(y) — B(x). The former is a standard covering constraint in
conceptual modelling, while the latter occurs in biomedical ontologies such as SNOMED CT. There
are at least three ways of extending the applicability of rewriting techniques to a wider class of
ontology languages. One is the combined approach discussed in Section 1.4. A second approach
relies upon the observation that although many ontology languages do not guarantee the existence
of rewritings for all ontology-query pairs, it may still be the case that the queries and ontologies
typically encountered in practice admit rewritings. This has motivated the development of diverse
methods for identifying particular ontologies and OMQs for which (first-order or Datalog) rewritings
exist [12, 16, 44, 50, 66]. A third approach consists in replacing an ontology formulated in a complex
ontology language (which lacks efficient query answering algorithms) by an ontology written in a
simpler language, for which query rewriting methods can be employed. Ideally, one would show
that the simpler ontology is equivalent to the original with regards to query answering [17], and
thus provides the exact set of answers. Alternatively, one can use a simpler ontology to approximate
the answers for the full one [17, 28] (possibly employing a more costly complete algorithm to decide
the status of the remaining candidate answers [89]).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:48 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

A SUPPLEMENTARY MATERIALS
A.1 Proof of Theorem 3.9

THEOREM 3.9. For any OMQ Q(x), the formulas ®y,,(x) and ®{,(x) are equivalent, and so @y, (x)
is a PE-rewriting of Q(x) over complete data instances.

Proor. Let Q(x) = (7, q(x)) and q(x) = Jy ¢(x,y). We begin by showing that, for every tree
witness t for Q(x), we have the following chain of equivalences:

Ne=2)r \/ New@ = A=) \/ Ne®@

R(z,2")eq; t is p-initiated zet, Ut; z,2' €t Ut t is p-initiated z €t Ut;
— p— * _— —
= 3 N\ e=2) A\ @) = 3 A e=2) A \/) @
z €t Ut; t is o-initiated z€et, Ut t is generated by 7

where z is a fresh variable. The first equivalence follows from the transitivity of equality and
the fact that every pair of variables z, z’ in a tree witness must be linked by a sequence of binary
atoms. The following equivalence can be readily verified using first-order semantics. For the final
equivalence, we use the fact that if t is p-initiated and 7 |= 7(x) — 3y o(x, y), then t is generated
by 7, and conversely, if t is generated by 7, then there is some role o that initiates t and is such
that 7 |= 7(x) — Jyo(x, y).

By (20), @y, (x) can be equivalently expressed as follows:

Jy \/(/\ S(z) /\/\320(/\(zzzo) A v T(Z()))).

0COp S(z)eq\qo te® zet, Ut; t is generated by
independent
Finally, we observe that, for every independent ©® C @, the variables that occur in some t;, for
t € ©, do not occur in ti’, for any other t’ € ©. It follows that if z € t; and t € ©, then the only
occurrence of z in the disjunct for © is in the equality atom z = z;. We can thus drop all such
atoms, while preserving equivalence, which gives us precisely the tree-witness rewriting @, (x).
In particular, this means that @] (x) is a rewriting of Q(x) over complete data instances. O

A.2 Proofs of Theorems 4.2 and 4.4 and of Proposition 4.3

Tueorem 4.2. If f is computed by a Boolean formula (monotone formula or monotone circuit) y,
then Q has an FO- (respectively, PE- or NDL-) rewriting of size O(| x| - |Q]).

Proor. The cases of FO- and PE-rewritings are dealt with in Section 4.1. So, let Q(x) = (77, q(x))
be an OMQ and C a monotone circuit computing f§. Let t1,...,t! be tree witnesses for Q(x) with
q(x) = 3y AL, Si(z;). We assume that the gates g, .. ., gn of C are the inputs ps,(z,), - - -, Ps,(z,)
for the atoms, the gates gn+1, . . ., gn+1 are the inputs py, .. ., py for the tree witnesses, whereas
In+i+1s - - - » gm are AND- and OR-gates. Denote by II the following NDL-program, where z = x U y:

- Si(zi) = Gi(z),for0 <i < m .
- 7(u) > Gpyj(z[t] /u]), for 0 < j < [and 7 generating t/, where z[t] /u] is the result of
replacing each z € t/ in z with u;
B {Gj(z) A Gi(z) = Gi(z), if g; = g; A gk, forn+l<i<m
Gj(z) — Gi(z) and Gi(2) — Gi(z), ifgi =g; V gk,
- Gm(z) = G(x).

It is not hard to see that (II, G(x)) is an NDL-rewriting of Q(x). o

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:49

Tueorem 4.4. If f§ is computed by a Boolean formula (monotone formula or monotone circuit) y,
then Q has an FO- (respectively, PE- or NDL-) rewriting of size O(| x| - |Q]).

Proor. Let y be a Boolean formula that computes

=\ (Noso A NC Npe=e a0\ A Pg*(z)))’

0COgp S(z)eq\gg te® R(z,z')eq; t is p-initiated z et Ut;
independent
and let ®(x) be the FO-formula obtained by replacing each p,—. in y with z = z’, each pg(,) with 5(2),
each pyr(z) With Vg (6)5 3y o(x,y) 7(2), and prefixing the result with Jy. Recall that the modified
rewriting ®;, (x) was obtained by applying this same transformation to the original monotone
Boolean formula for fQ' . Since y computes fé , ®(x) and @}, (x) are equivalent FO-formulas. As
we have already established that ®;, (x) is a rewriting of Q(x), the same must be true of ®(x). The
statement regarding NDL-rewritings can be shown similarly to the proof of Theorem 4.2. O

PROPOSITION 4.3. The function fg can be computed by a nondeterministic algorithm that runs in
polynomial time in the size of Q.

Proor. Given truth-values for the ps(z), pz=- and pye(z) in fJ, we first guess k, for k < |q|,
subsets q;, . . ., g, of q, concepts 1y, . . ., i and maps hy, .. ., b and check that the h;: q; — C.}"(“)
are homomorphisms, for 1 < i < k,and thety, ..., 1, corresponding to q,, ..., g, are tree witnesses.
Then, we check whether ® = {ti, ..., t;} is independent. Finally, we check whether the polynomial-
size formula (11) is true under the given truth-values for every t € ©, and every S(z) with pg;) = 0
belongs to some t € ©. O

A.3 Generalised HGPs and THGPs

In some cases, it is convenient to use generalised HGPs and THGPs that allow hypergraph vertices
labelled with conjunctions A;I; of literals I;. The following two propositions show that this
generalisation does not increase the computational power of HGPs and THGPs.

PRroPOSITION A.1. For every generalised HGP P over n variables, there is an HGP P’ computing the
same function and such that |P’| < n - |P|.

PRrOOF. Let P be based on a hypergraph H = (V, E). To construct P’, we split every vertex v € V
labelled with /\if:1 l; into k new vertices vy, ..., v and label v; with [;, for 1 < i < k; each
hyperedge containing v will now contain all the v;. It is easy to see that P(a) = P’(«), for any
input e. Since we can assume without loss of generality that I; and I; in each A\X_, I; have distinct
variables for i # j, we have |P’| < n- |P|. O

ProPOSITION A.2. For every generalised THGP P over n variables, there is a THGP P’ computing
the same function and such that |P’| < n - |P|. Moreover, the degree of P’ and the number of leaves in
it are the same as in P.

Proor. Let P be based on a tree hypergraph H = (U, V, E). To construct P’, we proceed as in the
proof of Proposition A.1: we split every vertex v € V (which is an edge of the underlying tree Ty)
labelled with /\i?:1 l; into k new vertices vy, . . ., vg and label v; with I;, for 1 < i < k—these vertices
form consecutive edges in the underlying tree in P’; each hyperedge containing v will now contain
all the v;. As before, we have P(a) = P/(@), for any «, and |P’| < n - |P|. Moreover, it should be
clear that the degree of P’ and the number of leaves in it are the same as in P. O

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:50 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

’ N

us

up v

I
=)
LS
L
—
L 1
e
o

)

Fig. 22. Splitting an edge v, in a tree hypergraph in the proof of Proposition 5.5.

A.4 Proof of Proposition 5.4

ProrosiTION 5.4. If an OMQ Q(x) has a tree-shaped CQ q(x) with € leaves, then H(Q) is isomor-
phic to a tree hypergraph based on a tree with max(2, {) leaves.

Proor. The case when g has no binary atoms is trivial. Otherwise, we begin with the Gaifman
graph G4 of q, which is a tree, and label its nodes u with the unary atoms &(u) in q of the form
A(u) and P(u, u), and its edges {u, v} with the atoms of the form P(u, v) and P’(v, u) in q. Then,

we replace every edge {u, v} labelled with Py(uj,v;), ..., Py(uy, vy,), for n > 2, by a sequence of n
edges forming a path from u to v and label them with P;(u],v]), ..., Py(u;, v;,), respectively. In the
resulting tree, for every node u labelled with n unary atoms & (u), . . ., &,(u), for n > 1, we pick an

edge {u, v} labelled with some P(u’, v") and replace it by a sequence of n + 1 edges forming a path
from u to v and label them with & (u), .. ., &,(u), P(u’, v’), respectively. The resulting tree T has
the same number of leaves as q. It is readily checked that, for any tree witness t for Q, the set of
edges in T labelled with atoms in g, forms a convex subtree of T, which gives a tree hypergraph
isomorphic to H(Q). O

A.5 Proof of Proposition 5.5

PROPOSITION 5.5. For any tree hypergraph H of degree at most d, there is a monotone THGP that
computes fy and is of degree at most max(2, d) and size O(|H|).

Proor. Let H = (U, V, E). For any hyperedge e € E, we fix a vertex v, € e and perform the
following for all e € E. We split the edge v, = {u,u’} in the underlying tree Ty of H into a pair of
edges v, = {u,u’} and v/ = {u°, v’} and add a new chain of edges v = {u'"!,u'}, for 1 < i < 3,
to Ty, where the u' are fresh nodes (if the same vertex is chosen for distinct hyperedges e and e’,
then the edge v, = v, is split only once, and the same u° is used for both chains of length 3). The
vertices v}, v/ and v} are labelled with p,, and added to all hyperedges that contained v,. We
label v? with 1 and add it to e. We label v? with p, and introduce a new hyperedge ¢’ = {v2, v3};
see Fig. 22 All other vertices are labelled with the corresponding variables of fy. The resulting
THGP P is of degree at most max(2, d).

We claim that P computes fy. Indeed, for any input & with a(p.) = 0, we have to include the
hyperedge e’ into the cover, and so cannot include e itself. Thus, P(er) = 1iff there is an independent
set E' C {e € E | a(p.) = 1} covering the zeros of variables p,,. O

A.6 Proof of Theorem 5.6

LEMMA A.3. For any tree hypergraph H = (U, V, E) of degree at most 2, we have fuy(a) = 1 iff
neither is degenerate nor meets any obstruction.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:51

Proor. It should be clear that fy outputs 0 if either « is degenerate or meets an obstruction.

Conversely, if «r is neither degenerate and nor meets any obstruction, then we construct an
independent subset E’ C {e € E | a(p.) = 1} covering all vertices labelled with zeros under & as
follows.

Let E; be the set of all ey € E such that a(p,,) = 1 and there is vy € e, with a(p,,) = 0 and
a(per) = 0 for any hyperedge e’ # ey with vy € e’; cf. (O1) and (O2). Let E; be the result of iteratively
(until a fixpoint) extending E, with hyperedges e; € E such that a(p,,) = 1 and

there are eg € Eg and e; € E \ Ey with ey Ne; # 0 and v € e; N e, with a(p,) = 0; (21)

cf. (O3). We claim that E; is independent. For the sake of contradiction, suppose there are dis-

tinct e,e’ € E; with e N e’ # 0. Then there are sequences (e, €1, . . ., exx) and (eg, €7, ..., €,,)
satisfying (O1) and (O3) and such that e = ey and e’ = e, ,. Consider now the sequence
(€0 €15 - - -1 €2k s - - - €1, €0).

By construction, it satisfies conditions (O1)-(03). However, it may contain duplicating hyperedges,
say, e; and e/,. If that is the case, then we remove e;1, .. ., e;, from the sequence. By construction,
the result of the exhaustive removal of repetitions is an obstruction, and & meets it from v, to vy.

Next, if there is a vertex v with a(p,) = 0 but v ¢ | E;, then we extend E;: since « is non-
degenerate, there is some e, € E such that v € e,, a(p.,) = 1 and e, N |J E; = 0. (Indeed, there
are two hyperedges e, and e, containing v with a(p.) = a(p.) = 1; for otherwise, a single
such hyperedge would be in Ey. Next, if e; N |J E; # 0, then, by (21), we would get e’ € E;; thus,
neither e} nor e}’ intersects | E;.) Now we apply the extension procedure to E; U {e,}, that is, we
iteratively (until a fixpoint) extend the subset of hyperedges by all e; € E such that a(p,,) = 1 and

there are ¢g € E; and e; € E\ E; with ey Ne; # 0 and v € e; N e; with a(p,) = 0. (22)

We claim that the resulting set E, is independent. Indeed, if E; contains e and e’ with e N e’ # 0,
then one of them, say e, was added to E, due to (22) with some ej, e; and v. We claim that the
second hyperedge (in our case, e’) could not have been added to E,. The intuition is as follows:
if both e and e’ were added to E,, then they are ‘reachable’ from e* by two different paths (we
may speak of paths because the hyperedges are subtrees, and each vertex can belong to at most 2
hyperedges). Since e N e’ # 0, these two paths intersect, forming a ‘loop’, which contradicts the
fact that the underlying tree of the hypergraph has no cycles. It follows that e’ could not have
been added to E,, and so we must have e’ € E;. This, however, means that e; should have been
added to E; by using (21) for e’, e and v (in place of, respectively, ey, e; and v in (21)) contrary to
the assumption that e was added only to E, using it.

The process of extending Ej. to Ex. is repeated until there are no vertices v such that a(p,) = 0
but v ¢ [J E. It can be seen that the resulting set Ey. is independent. O

A.7 Proof of Theorem 5.8

THEOREM 5.8. For any tree hypergraph H based on a tree with at most € leaves, there is a monotone
linear THGP that computes the function fy and is of size O(|H[>**?).

Proor. Let H = (U, V, E) be a tree hypergraph: each e € E induces a convex subtree T, of the
underlying tree Ty. Pick some r € U and fix it as a root of Ty. Let < be the order on the flat subsets
of E defined in Section 5.2. For a flat F, let before(F) be the edges of Ty that lie outside |J F and
are accessible from the root r via paths not passing through | F; we denote by after(F) the edges
of Ty outside | F that are accessible from r only via paths passing through | J F. For flat F and F’
with F < F’, we denote by between(F, F’) the set of edges in Ty ‘between’ | J F and | F/, that is,
the edges outside | J F and | J F’ that are accessible from | J F via paths not passing through J F’

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:52 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

(.d)1oye

Fig. 23. Parts of the underlying tree in the proof of Theorem 5.8: F < F’ for F with one hyperedge and F’
with two hyperedges.

but are inaccessible from the root r via a path not passing through | F; see Fig. 23. Recall that the
edges of Ty are the vertices of the reduct (V, E) of H and so, the defined sets are subsets of V.

Let Fy, ..., Fy be the flat subsets of E, where m = O(|H|?). The required linear THGP will use a

linear gadget based on the following nodes:
m + 2 pairs f;, fi, (m+2)? pairs r;j;, 7;j, m+ 2 pairs fis fj',

where 0 < i,j < m + 1; the three groups are ordered as above, and the nodes within each group
are ordered lexicographically: e.g., f;, f; is followed by fi+1, fi+1, whereas ryj, 7;; is followed by
TiGi+1) Tigj+1) if j < m + 1 and by 141y, Fi+1)0 if j = m + 1 (and i < m + 1). The gadget vertices are
pairs of consecutive elements in the order and are labelled as follows: for all 1 < i, j < m,

- Afo fot Afis fik: Af}, £} and {11 frpaa} With 1,

— {rij, 7ij} with all p, for v € between(F;, F;), and all p,, for e € Fj, provided that F; < F;,

~ {roj, Fo;j} with all p,, for v € before(F;), and all p,, for e € F;,

— {ri.m+1, Fi,m+1} with all p,,, for v € after(F;),

— {ro.m+1, Fo,m+1} with p,, forallv e V,

- {rm+l,m+l’ fm+1,m+1} with 1,

— all other vertices are labelled with 0.
Note that the vertices are labelled with conjunctions of variables, and so the constructed linear
THGP will be generalised. The hyperedges are of the form

ij = [fi,rij] and g_ij = [fij’fj/] lfF, < Fj ori=0 OI’j =m+1,

for 0 < i,j < m+ 1. To construct the required generalised linear THGP P (see Appendix A.3), we
take m + 2 isomorphic copies of the gadget placing them in a linear order one after another and
identify each fj’ and fj’ with f; and f; in the successive copy.

We show that P computes fg. Indeed, if fy(a) = 1, then there is an independent subset E’ C E
such that a(p,) = 1,forv € V \ Vg and a(p,) = 1, for e € E’. If E’ = (), then we can choose hyper-
edges go,m+1 and go,m+1 in every copy to cover all zeros under ar. Otherwise, E’ is partitioned into
flat F;, < --- < Fj,. As i} < m, we can extend the sequence of indices iy = 0,1y, .. ., ik, ixs1 = m + 1
by repeating m+1 so that the result is of length m + 2. It then can be verified that by choosing g;,_, ;;
and g;,_, ;; in the jth copy (1 < j < m +2), we cover all zeros under . Conversely, if there is a cover
of all zeros under « in P, then it must contain exactly one matching pair of hyperedges g;; and g;;
from each copy of the gadget and, for each such g}, the successive copy of the gadget will contain
a hyperedge of the form g;;. Moreover, the first copy can only choose hyperedges of the form go;,

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:53

and go;,, with 1 < i; < m + 1, and the final copy can only choose hyperedges of the form g;, ., m+1
and gi, ., .m+1, With 1 < iy < m+ 1.Ifi; = m + 1, then E’ =) is independent and a(p,) = 1, for
all v € V. Otherwise, there is a sequence of indices i, . . ., iy that determines F;, < F;, < --- < F;,.
It can be verified that taking E’ = | J; F;, guarantees fy(a) = 1. Observe that |P| = O(|H|3%).
Finally, it remains to apply Proposition A.2 to convert the generalised linear THGP P into a linear
THGP of size O(|H[**). o

A.8 Proofs of Theorems 5.12 and 5.14

THEOREM 5.12. For every OMQ Q(x) = (7, q(x)) with a fundamental set Qo and a CQ of
treewidth t, there is a monotone THGP that computes f and is of degree polynomial in |Qg |' and
size polynomial in |q| and |Qo|".

Proor. We consider the generalised THGP P constructed in Section 5.3, which is based on a tree
hypergraph H = (U, V, E) with the underlying tree Ty = (U, V).

First, we consider the size of P. Recall that (T, 4) is a tree decomposition of G4 of width m — 1
and M = |Qg|™ is the number of bag types. Let K be the number of nodes in the tree T. By [32,
Lemma 11.9], we can assume that K < |q|. We claim that

- P contains at most (4M + 1) - K vertices and at most (M + M?) - K hyperedges, and

— P has labels with at most 3|q| conjuncts.
The vertices of the hypergraph of P correspond to the edges of Ty, and there are at most (4M +1)-K
of them: indeed, there are no more than K edges in T, each of which is replaced by a sequence of
4M + 1 edges in Ty. The hyperedges are of two types: ef, for1<i<Kand1l<k<M, and i’;[,
for an edge {i,j} in T and 1 < k, ¢ < M. It follows that the total number of hyperedges does not
exceed (M + M?) - K. Finally, a simple examination of the labelling function shows that there are
at most 3|q| conjuncts in each label: indeed, given i, j and k, each atom S(z) with z C A(N;) gives
rise to 1, 2 or 3 propositional variables in the label of {uf?j, vfj}, and |q| is the upper bound for the
number of such atoms.

Next, we show that P computes f{: for any assignment e,
fola)=1 iff Ple) = 1.

(=) Let & be such that fJ(e) = 1. Then we can find an independent ® C ©¢ such that &
satisfies the corresponding disjunct of fJ:

N psie) /\/\(N bz n /\Pg*<z>)~ (23)

S(z)eq\qq te® P(z,z')eq; t is p-initiated z€t,Ut;

For every t € ©, let ot be a role that makes the disjunction hold. We use the following lemma to
construct bag types for all nodes in T.

LEMMA A4, Let® C Og be an independent set of tree witnesses for Q, and, for eacht € ©, let ot be
aroleandh;: q, — C;'-yg‘(“’y) a homomorphism such that each hi(z) forz € t; is of the form apio, for
some o with oto € Qg (in other words, t is ot-initiated and induced by hy). Then, with each node N
in the tree decomposition (T, 1), we can associate a bag type ©(N) by taking, for allz € A(N):
w, ifz €t and hi(z) = aw, for somet € ©,

. (24)
e, otherwise,

7(N)[z] = {

such that t(N) is compatible with N and the pairs (t(N), T(N")) of types associated with pairs (N, N")
of nodes in T are compatible.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:54 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

Proor. Observe that 7(N) is well-defined since the independence of © guarantees that every
variable in q can occur in at most one t;, for t € ©. We show that 7(N) is compatible with N. For
condition (C1), consider A(z) € q with z € A(N) and 7(N)[z] # ¢. Then there ist € © with z € t;,
in which case ht(z) = a - 7(N)[z]. Let o be the final symbol in hi(z). Since h;: ¢, — Cf_ygf(“’y) isa
homomorphism, we have 7 |= 3y o(y, x) — A(x). For condition (C2), consider P(z,z’) € q with
z,z" € A(N) and either 7(N)[z] # ¢ or (N)[z'] # ¢. We assume without loss of generality that the
former is true (the latter is handled analogously). By definition, there is t € © such that z € t; and
hi(z) = a-t(N)[z]. Since z € t; and P(z, z’) € q, by the definition of tree witnesses, z’ € t, Ut;. Since
hi: gy — C.?-yg*(“’y) is a homomorphism, one of the following holds:

- t(N)[z'] = t(N)[z] and T | P(x, x);
- 7(N)[z’] = (N)[z] - o or z(N)[z] = 7(N)[z’] - 0~ for some p with 7~ |= o(x,y) — P(x,y).
This establishes compatibility of 7(N) with N. Next, by construction, the pairs (r(N), 7(N")) of

types associated with pairs (N, N’) of nodes in T are compatible: 7(N)[z] = 7(N’)[z], for all z
in A(N) N A(N’). O

Recall that wy, ..., wyy are all the bag types for Qg, and consider the following subset E’ C E of
hyperedges in H:

- el’.C = [N;, ul’.cjl, cees ufjn], where k is such that wy = 7(N;) and Nj,, ..., N;, are the neighbours

of N;, for every node N; in T;

- i];f = [vfj, vfi], where k and [are such that w, = 7(N;) and w, = 7(N;), for every edge
{N,’, N]} inT.

Note that, by Lemma A .4, these are hyperedges of H. It is easy to see that E’ is independent:
whenever we include ell.‘ or l.’j.f, we do not include any ef/ or fi’;/[for k’ # k. It remains to show
that every vertex of H that is not covered by E’ evaluates to 1 under a. Observe first that most of
the vertices are covered by E’. Specifically:

- {N;, ullj} is covered by ef;

- {vf, u*} is covered either by e (if n < k + 1) or by e?! (if n > k + 1);

oul) d either by e (if n < k + 1) or by €'/ (if n > k +1)

- {vgff, vj\f} is covered by efj[;
- {uf, v} is covere el if k < n, an e ifn > k.

f‘] ;kj i dby el ifk d by gf'f k

So, the only type of vertex not covered by E’ is of the form {ufj, vlk]} where wi = 7(Nj). Recall that
3
(i) ps(z), whenever S(z) € q, z C A(N;) and wi[z] = ¢, forall z € z;
(ii) po(z), whenever A(z) € q, z € A(N;) and wi[z] = go for some o;
(iii) po*(z)» Po(z) and p,-/, whenever P(z,z") € q (possibly with z = z’), z, 2’ € A(N;) and either
wi[z] = po or wi[z'] = po for some o.

the vertex {u vfj} is labelled with the following variables:

First suppose that pg(;) appears in the label of {ul’.cj, vfj}. Then wy[z] = ¢, for all z € z, and hence no
variable in S(z) belongs to any t; for t € ©. It follows that S(z) € q \ q¢, and since (23) is satisfied,
the variable ps(;) evaluates to 1 under «. Next suppose that one of py+(;), por(-) and p,-. is part of
the label. We focus on the case where these variables come from a binary atom (item (iii) above), but
the proof for the case of a unary atom (item (ii) above) is similar. So, there is some atom P(z,z’) € q
with z,z" € A(N;) and either wi[z] = oo or wi[z’] = po for some o. It follows that there is a tree
witness t € © with z,z’ € t, U t;. This means that p,-, is a conjunct of (23), and so it is satisfied
under «. Also, either wi[z] or wi[z] is of the form po, and, since all non-empty words in the
image of h; begin by o, we obtain ¢ = g;. Since ¢ was chosen so that A, ¢t 1, pPo(z) is satisfied

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:55

under &, both p,«(;) and py+(.7) evaluate to 1 under a. Therefore, E” is independent and covers all
zeros under &, which means that P(a) = 1.

(<) Suppose P(ar) = 1, that is, there is an independent subset E’ of the hyperedges in H that
covers all zeros under «. By construction, the subset E’ contains exactly one hyperedge of the
form ef for every node N; in T, and so we can associate with every node N; the unique bag
type wg, denoted by 7(N;). Also, E’ contains exactly one hyperedge of the form ef.‘j[for every
edge {N;, N;} in T. Moreover, if E’ contains hyperedges el’.< and efj'{’) (respectively, e]’:” and el’.‘j‘ﬂ),
then k = k’ (respectively, £ = ¢’). By the definition of H, every 7(N;) is compatible with N;,
and every (7(N;), 7(Nj)) are compatible with (Nj, N;) for adjacent nodes N;, N; in T. Using the
compatibility properties and the connectedness condition of tree decompositions, we can conclude
that the pairs of types assigned to any two nodes N; and N; in T are compatible. Since every variable
occurs in at least one node label, we can associate with each variable z in g a unique word w, € Qg
such that w, = 7(N)[z], for all nodes N with z € A(N).

Denote by = the smallest equivalence relation on the atoms of g that satisfies the following
condition: for every variable z in q,

if w, # ¢ and z occurs in both S;(z;) and S5(z3), then S;(z;) = S2(z3).

Letq,,...,q, be the subqueries corresponding to the equivalence classes of =. It is easily verified
that the q; are pairwise disjoint. Moreover, if q; contains only variables z with w, = ¢, then g;
consists of a single atom. We can show that the remaining q; correspond to tree witnesses.

LEmMA A.5. For every q; that contains a variable z with w, # ¢,

(T1) there is a role o; such that all w, # ¢ begin by o;, for variables z in q;;
(T2) there is a homomorphism h;: q; — Cf-ygi(“’y) with hi(z) = aw, forallz in q;;
(T3) there is a (o;-initiated and induced by h;) tree witnesst' for Q such that q; = q,:.

Proor. By the definition of q;, there is a sequence Ey, ..., Z; of subsets of g; such that =
consists of Sy(z¢) and contains a variable zy with w;, # ¢; each E;,; is obtained from =; by adding
an atom that contains a variable z that occurs in Z; and is such that w, # ¢; and finally 2 = q;.
By construction, every atom in q; contains a variable z with w, # ¢. Let p; be the first letter of the
word w;, and, for every 0 < j < k, let h; be the function that maps every variable z in =; to aw,.

Properties (T1) and (T2) are shown by induction on j. The base case is trivial. For the induction
step, suppose that, at stage j, for every variable z in =, the word w, # ¢ begins by o;, and h; is
a homomorphism Z; — Cf.y@i(“’y) such that hj(z) = aw, for all z. Let S(z) be the unique atom
in Zj;1 \ E;. Then S(z) contains a variable z from E; such that w, # ¢. If S(z) = A(z), then (T1)
for w, is by induction hypothesis. For (T2), let N be a node in T with z € A(N). Since 7(N) is
compatible with N, the word w, ends by a role o with 7~ |= Jy o(y, x) — A(x), which proves (T2).
If S(z) = P(z,2’) (possibly with z = 2z’), then let N be a node in T with z,z" € A(N). Since 7(N)
is compatible with N, we have one of the following: (a) w = w, and 7 |= P(x, x) or (b) either
Wy = Wz0 Or W, = wyo_ for some o with 7 |= o(x,y) — P(x,y). If (a) holds, then the arguments
for (T1) and (T2) are similar to the previous case, except that we use 7 |= P(x, x). If (b) holds,
then, whenever w, begins with g;, the same holds for w,» unless w,» = ¢, and other way round,
which proves (T1). By construction, h;4; is a homomorphism from =;,; to C;y"i(“’y), so (T2) holds.
If S(z) = P(z’, z), then the argument is analogous.

Property (T3) follows from (T1) and (T2) by the definitions of q; and tree witnesses. O

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:56 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

Let © consist of all the tree witnesses t’ obtained by Lemma A.5. As the gq; are disjoint, the set ©
is independent. We show that « satisfies the disjunct (23) of f{ that corresponds to ®. To this end,
observe that since all zeros are covered by E’, the following variables are assigned 1 under a:

Psz)» ifS(z) e qandw, = ¢, forallz € z; (25)
Po*(z)» if A(z) € g and w; = oo, for some o; (26)
Pe'(z)»Per(z) Pz=zr if P(2,2") € q (possibly with z = 2’) (27)

and either w, = po or w,» = po, for some o.

Consider first S(z) € q\qg. We have w, = ¢, for each variable z in S(z), whence, by (25), a(ps(z)) = 1.
Next, consider a g;-initiated tree witness t' € @, where g; is the role provided by Lemma A.5.
If q; = {A(z)}, then, by (26), a(pglf(z)) = 1, and we are done. Otherwise, g; contains a binary atom.
Consider any P(z, z’) € q;: by construction, either w, # € or w # ¢, whence, by (27), a(p,=2’) = 1,
as required. It remains to show that a(py:()) = 1 foreach z € thu t]’ By construction, q; contains
some P(z) with z = {z, z’} and either w, # ¢ or w,» # ¢. Then, by Lemma A.5 (T1), either w, = g;o
or wy = p;o, whence, by (27), a(pgif(z)) = 1, as required.

To complete the proof of Theorem 5.12, we convert the generalised THGP P into a THGP using
Proposition A.2. o

THEOREM 5.14. For every OMQ Q(x) = (7, q(x)) with an ontology of depth 1 and a CQ of
treewidth t, there is a monotone THGP that computes fg and is of degree 20() and size polynomial
in|q| and 2.

Proor. For every tree witness t = (1, ;) for Q(x), we take a fresh binary predicate P; (which
cannot occur in any data instance) and extend 7~ with the following axioms:

7(x) — Jy Pi(x, y), if T generates t,
Pi(x,y) — o(x, y), ifo(z,2) € q;, 2 € t,and z € t;.

Denote the resulting ontology by 7/ and let Q’(x) = (7, q(x)). Intuitively, P; becomes the single
most specific role that initiates t. It is easily verified that 7 is also of depth 1. By Theorem 3.7, the
number of tree witnesses for Q(x) does not exceed |q|, and so the size of Q” is polynomial in |Q).
It is easy to see that f coincides with fg. Thus, in the sequel we assume that the given OMQ is of
the form Q’, which we call explicit.

Let (T, A) be a tree decomposition of the Gaifman graph Gq of width m — 1; and let wy, ..., wy
be all the bag types for Qo (M = |Qp|™). We construct a tree Ty, = (U, Vs) from T similarly
to the tree Ty in Section 5.3 except that nodes uf‘l and v{‘j are introduced only if wy is strongly
compatible with N; (it follows that each edge of T corresponds to a sequence of 4 - 2™ + 1 edges
in Ty, , which does not depend on Q¢). Then we define a generalised monotone THGP Ps based on
a tree hypergraph Hy = (U, Vs, E;) with the underlying tree Ty, and the following hyperedges:

- ell.C = [Ni,ufjl, .. ,uf.“jn] if Nj,,...,Nj, are the neighbours of N; in T and wy is strongly
compatible with Nj;
- i];f = [vllfj, Ufi] if {N;, N;} is an edge in T, bag types wy and w, are strongly compatible

with N; and Nj, respectively, and (wy, w¢) is compatible with (Nj, N;).
Each vertex {uf.‘j, vfj} in H; is labelled with the conjunction of the following variables:

~ ps(z), Whenever 5(z) € q, z € A(N;) and wi[z] = ¢, for all z € z;
- pt, whenever wy[z] = P; for some z € A(N;);
all other vertices are labelled with 0.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:57

We claim that the generalised THGP P is of degree polynomial in 2! and size polynomial in 2°
and |q|. First, since there are at most 2™ types strongly compatible with a node, each vertex can
belong to at most 2™ hyperedges of the first type and 22 hyperedges of the second type. So, the
degree of Py does not exceed 2" + 22" = 20() It then can be easily verified that P contains at
most (2™%% +1) - |q| vertices and at most (2™ +22™) - |q| hyperedges, and has labels with at most |g|
conjuncts.

We show now that P; computes f3: for any assignment a,
fola)=1 iff Py(a) = 1.

(=) Let « be such that fQv () = 1. Then we can find an independent ® C O such that &
satisfies the corresponding disjunct of fQV:

Npseo A Ao (28)

S(z)eq\qq te®

Since 7 is explicit, every t € © has a role P; that initiates it and a homomorphism h; that induces
it: ht: ¢, — C73.y Pa.y) with hy(z) = aP;, for every z € t;. By Lemma A .4, we can assign a bag
type 7(N) to each node N in T so that 7(N) is compatible with N. In fact, as condition (C3) is
immediate from the choice of h;, the bag types are strongly compatible with their nodes.

Consider now a subset E; of hyperedges of H; defined in the same way as E’ in the proof of (=)
in Theorem 5.12. Note that E; are hyperedges of H; because each 7(N) is strongly compatible
with N and each pair (7(N;), 7(Nj)) is compatible with (Nj, N;). Again, it is easy to see that E; is
independent. It remains to show that every vertex of H, that is not covered by E. evaluates to 1
under a. Observe first that most of the vertices are covered by E; (see the proof of Theorem 5.12
for details), and only vertices of the form {ufj, vf‘}} for wi = 7(N;), are not covered by E;. If pg(,)
appears in the label of such a vertex, then wi[z] = ¢, for all z € z, and hence no variable in S(z)
belongs to any t; for t € ©. It follows that 5(z) € q \ qq, and since (28) is satisfied, a(ps(z)) = 1.
If p; is part of the label, then there is z € A(N;) with wg[z] = P;. By the definition of 7(N;), we
obtain t € ©, whence, by (28), ar(pt) = 1. Therefore, E!, is independent and covers all zeros under «,
which means that Ps(a) = 1.

(&) Suppose Ps(er) = 1, that is, there is an independent subset E’ of the hyperedges in H;
that covers all vertices evaluated to 0 under «. Then, in the same way as in the proof of (<) in
Theorem 5.12, we can define an equivalence relation = on q so that its equivalence classes q4, . . ., q,,
satisfy Lemma A.5. Since all bag types are strongly compatible, condition (C3) in addition implies
that all words w, are of length at most 1 and each tree witness t' is Py:-initiated and induced by a
homomorphism h; with h;(z) = aPy:, for all z € t/. Let © = {t',...,t"}. As the g, are disjoint, the
set © is independent. We show that « satisfies the disjunct of va that corresponds to ©; cf. (28).
Observe that, since all zeros are covered by E’, the following variables are evaluated to 1 by a:

Psz), ifS(z) € qand w, = ¢, forall z € z; (29)
pf, ifWZ:Pt. (30)

Now, consider some S(z) € q \ q¢: for every variable z in S(z), we have w, = ¢, whence, by (29),
we get &(ps(z)) = 1. Next, by (30), we obtain a(p;) = 1 for all t € O, as required.

To complete the proof of Theorem 5.14, we convert the generalised THGP P; into a THGP using
Proposition A.2. o

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:58 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

A.9 Proof of Theorem 6.6

THEOREM 6.6. Any tree hypergraph H is isomorphic to a subgraph of H(Ty), and any monotone
THGP based on H computes a subfunction of ff, .

Proor. Let H = (U, V, E) be a tree hypergraph with U = {1, ...,n}, for n > 1, and 1 be a leaf of
the underlying tree Ty. The directed tree obtained from Ty by fixing 1 as the root and orienting
the edges away from 1 is denoted by T* = (U, V*). By definition, each e € E induces a convex
subtree T, = (U, V) of T*. Observe that, for each subtree T, the OMQ Ty has a tree-witness t¢
such that

t; = {z; | i in on the boundary of e },
t? = {z; | i is in the interior of e } U { y;; | (i, /) € Ve }.

Thus, H is isomorphic to the subgraph of H(Ty) with vertices R;j(z;, yi;), for (i,j) € Ve, and
hyperedges g N {R;;(zi,yij) | (i, j) € Ve}, for e € E; in other words, the hypergraph is obtained by
eliminating the S;; atoms.

For the second statement, let P be based on a tree hypergraph H = (U, V, E). Given an input &
for P, we define an assignment y for the predicates in Ty = (77, q) by taking each y(R;;) and y(S;;)
to be the value of the label of (i, j) € V* under & and y(A,) = 1 for all e € E (of course, y(Py) = 0
for all normalisation predicates Pg). Observe that, for each e € E, the canonical model Cy; Alp)
contains labelled nulls w, and w;, such that

C‘T, Aly) |: /\ Rrej(a’ We) A /\ Sij(we’ a) A /\ Rij(W;’ We) A /\ Sij(we, W;)'
(re,j)€Ve (i,/)€Ve, jELe (1,))€Ve, i#re (,/)€Ve, j¢Le

We show that P(a) = iff ff; (y) = 1.

(=) Suppose that P(«) = 1. Then there exists an independent E’ C E that covers all zeros under «.

We show that 7, A(y) |= q (that is, fr,, (y) = 1). Define a mapping h as follows:

w., if iis in the interior of e € E’, we, if{i,j} €ee€E,
hzi) =4 ¢ hyij) =4 ° .
a otherwise.

a, otherwise,

Note that h is well-defined: since E’ is independent, its hyperedges share no interior, and there can
be at most one hyperedge e € E’ containing any given vertex {i, j}.

It remains to show that h is a homomorphism from q to Cy; #(y). Consider a pair of atoms
Rij(zi, yij) and S;;(yij, z;) in q. We have (i, j) € V*. If there is e € E’ with{i, j} € e, then there are
four possibilities to consider:

— if neither i nor j is in the interior of e then, since T, is a tree and (i, j) is its edge, the only

possibility is e = {{i, j} }, whence h(z;) = h(z;) = a and h(y;;) = we;

- if i is on the boundary and j is internal, then h(z;) = a, h(yi;) = we, and h(z;) = w,;

— if j is on the boundary and i is internal, then this case is the mirror image;

- if both i and j are in the interior, then h(z;) = h(z;) = w;, and A(y;;) = we.
Otherwise, the label of {i, j} must evaluate to 1 under &, whence A(y) contains R;(a, a) and S;;(a, a),
and we set h(z;) = h(y;j) = h(z;) = a. In all cases, h preserves the atoms R;;(z;, y;;) and S;;(yij, z;),
and so h is indeed a homomorphism.

(&) Suppose that fr, (y) = 1. Then 7, A(y) |= q, and so there is a homomorphism h: ¢ — Cg; ().
We show that there is an independent E” C E that covers all zeros under . Let E’ be the set of
all e € E such that h}(w,) # 0 (that is, w, is in the image of h). To show that E’ is independent,
we need the following claim:

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:59

Claim. If 7~ !(w,) # 0, then h(yij) = we for all {i, j} € e.

Proof of claim. Recall that r, is the root of T, and L, its leaves. Pick some variable z € h~}(w,) such
that there is no z’ € h™'(w,) higher than z in q (using the order of variables induced by the tree T*).
Observe that z cannot be of the form z;, for otherwise g would contain an atom Rj/(z}, yj¢) or
Sej(yej, zj), but we has no outgoing R, or SEJ. arcs in Cr; f(y). It follows that z is of the form y¢, for
some j, {. By considering the available arcs leaving w, again, we conclude that {j, £} € e. We next
show that j = r.. Suppose that this is not the case. Then, there must be {p, j} € e with (p,j) € V*. A
simple examination of the axioms in 7~ shows that the only way for h to satisfy the atom Rj¢(z;, yj¢)
is to map z; to wy. It follows that to satisfy the atom S,;(y,;, z;), we must put h(y,;) = w, contrary
to the assumption that z = y;, was a highest vertex in h™*(w,). Thus, j = r.. Now, using a simple
inductive argument on the distance from z,, and considering the possible ways of mapping the
atoms of g, we can show that h(y;;) = w, for every {i, j} € e. (end proof of claim)

Suppose that there are two distinct hyperedges e, e’ € E’ that have a non-empty intersection:
let {i,j} € ene’. Either y;; or y;; occurs in g, and we can assume the former without loss of
generality. By the claim, we obtain h(y;;) = we = we, a contradiction. Therefore, E’ is independent.
We now show that it covers all zeros. Let {i, j} be such that its label evaluates to 0 under «, and
assume again without loss of generality that y;; occurs in q. Then A(y) does not contain R;;(a, a),
so the only way h can satisfy the atom R;;(z;, y;;) is by mapping y;; to some w, with {i, j} € e.
Therefore, there is an e € E such that {i, j} € e, so all zeros under « are covered by E’. It follows
that P(a) = 1. O

A.10 Size of OMQs Constructed in Section 6

OMQ Qy; has an ontology of depth 2 and at most |E| + |V| tree witnesses and is of size O(|H|?):
indeed, the ontology has |E| axioms, each of size O(|H|), and the CQ at most |V| + |E| - |V| atoms.

OMQ Sy has an ontology of depth 1 and exactly |E| tree witnesses and is of size O(|H|): the
ontology contains |E| axioms with the total number of atoms in them not exceeding 2|V, and the
CQ contains exactly |V| atoms.

OMQ Ty has an ontology of depth 2 and a tree-shaped CQ with the same number of leaves as
the underlying tree of H, has exactly |E| tree witnesses (by Remark 2, we ignore the tree witnesses
generated by normalisation predicates) and is of size O(|H|?): by construction, the ontology has |E]|
axioms, each of size O(|E|), and the CQ has 2|V| atoms.

A.11 Proofs of Theorems 7.4 and 7.6

LEMMA A.6. Any semi-unbounded fan-in circuit C of AND-depth d is equivalent to a semi-un-
bounded fan-in circuit C' of AND-depth d with |C’| < 2¢ - |C| and C;Ieﬂ N C;”ght =0, foralln < d.

Proor. We show by induction on n that we can reconstruct the circuit in such a way that the
property holds for all i < n, the AND-depth of the circuit does not change, and the size of the
circuit increases at most by the factor of 2". First, take a copy C” of C',‘fﬂ and feed its outputs as
left inputs to the aAND-gates of C of AND-depth n. This operation at most doubles the size of the
circuit and ensures the property for the AND-gates of AND-depth n. Apply now the same procedure
inductively to the sub-circuits of both C” and C;light (which do not intersect). The size of the result
increases at most by the factor of 271, and the property for all gates of AND-depth not exceeding n
is ensured. O

In the setting of Theorem 7.4, let g; be a gate in C and T; the subtree of T rooted in v;. Given an
input &, we say that T; can be covered under « if the hypergraph with the underlying tree T; has
an independent subset of hyperedges that are entirely in T; and cover all zeros in T; under c.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:60 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

1 2 1 2!

Fig. 24. (a) A formula C. (b) The labelled tree T for C: the nodes in the ith triple are u;, v;, w; and the omitted
edge labels are 0s. The vertices of the THGP are the edges of T (with the same labels) and the hyperedges are
sets of edges of T (two of them are shown).

LeEMMA A.7. For a given input o and any i, the gate g; outputs 1 if and only if T; can be covered.

Proor. We prove the claim by induction on i. If g; is an input gate and outputs 1, then the label
of the edge {u;, v;} evaluates to 1 under e, and the remainder of T; can be covered by [uj, w;]-
hyperedges. Conversely, if an input gate g; outputs 0, then no hyperedge in T; can cover {u;, v;}.

If g; = gj A gk is an AND-gate and outputs 1, then both g; and g output 1. So we apply the
induction hypothesis to cover both subtrees T; and Ty (which are disjoint by construction) and add
to the cover the hyperedge [v;, v, v;], which is entirely inside T;. Thus, T; is covered. Conversely,
any covering of zeros in T; must include the hyperedge [v;, v, v;], and so the subtrees T; and Ty
are covered. Thus, by the induction hypothesis, g; and gi should output 1, and so does g;.

Ifg; = gj, V---Vgj, is an or-gate and outputs 1, then one of its inputs, say, g, outputs 1. By the
induction hypothesis, we cover T; and add the hyperedge [v;, v;], which, possibly together with
hyperedges of the form [u¢, w¢], forms a covering of T;. Conversely, since {u;, v;} is labelled with 0,
any covering of T; must include a hyperedge of the form [v}, v;], for some j € {ji, ..., jk}. Thus T;
must also be covered. By the induction hypothesis, g; outputs 1, and so does g;. O

THEOREM 7.6. NC! = THGP? and mNC! = mTHGP, for any d > 3.

Proor. To show NC! € THGP3, we use a more direct construction than in the proof of Theo-
rem 7.4. First, we assume that or-gates have only two inputs and second, even under this assumption,
the construction in the proof of Theorem 7.4 results in a hypergraph of degree 4.

Consider a polynomial-size formula C in negation normal form, which we represent as a tree
of gates gy, . . ., gm enumerated so that j < i whenever g; is an input of g;. We assume that C has
negated variables in place of NoT-gates. We first construct a tree T that contains triples of vertices
u;, v, w; (in this order) partially ordered in the same way as the g; in C. We then remove vertex wyy,
and make vy, the root of T. Next, we consider a hypergraph H whose vertices are the edges of T
and whose hyperedges comprise the following, see Fig. 24:

- [u;, wi], for each i < m;
= [vj, vk, vi], for each g; = g; A gi;
= [vj, uk, vil, [uj, vk, vi], for each g; = g; V gk

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:61

Finally, we construct a THGP P based on H by labelling its vertices (which are edges of T): if an
input gate g; is a literal I, then we label {u;, v;} with [; all other edges are labelled with 0. It is not
hard to check that P is of degree 3 and size polynomial in |C| and computes the same function
as C. Indeed, one can show by induction that we can cover all zeros in a subtree rooted at v; by the
hyperedges entirely inside this subtree iff g; outputs 1. (Hyperedges [u;, w;] ensure that we can
cover all zeros in all subtrees rooted in vertices u;, which is needed for or-gates; see Fig. 24)

The inclusion THGPY C NC! follows from the proof of THGP C LogCFL/poly in Theorem 7.4.
Indeed, if the degree of a given THGP P is at most d, then the disjunction in (16) has at most d + 1
disjuncts, and so the constructed circuit is of bounded fan-in. Since its depth is O(log |P|), the size
of the circuit is polynomial in |P|. O

A.12 Proof of the LogCFL membership in Theorem 9.3

We say that an iteration of the while loop is successful if the procedure BLQuery does not return
false; in particular, if none of the check operations returns false. The following properties can be
easily seen to hold by examination of BLQuery and straightforward induction:

For every tuple (z — (a, n),z’) € frontier, z" isachild of zin T. (31)
For every tuple (z — (a, n),z") € frontier, we have n < |stack|. (32)
All tuples (z — (a, n),z’) € frontier with n > 0 share the same a. (33)
Once (z = (a, n), z’) is added to frontier, (34)

no tuple of the form (z + (a’, n’), z’) can ever be added to frontier.

In every successful iteration, either at least one tuple is removed from frontier (35)
or frontier is unchanged, but one p is popped from the stack.

If (z — (a, n), z’) is removed from frontier in a successful iteration, then (36)
a tuple of the form (z’ +— (a’,n’),z"") is added to frontier, for each child z”’ of z" in T.

ProPoOSITION A.8. Every execution of BLQuery terminates.

Proor. A simple examination of BLQuery shows that the only possible source of non-termina-
tion is the while loop, which continues as long as frontier is non-empty. By (31) and (34), the total
number of tuples that may appear in frontier at any point cannot exceed the number of edges
in T, which is bounded by |q|. By (34) and (35), every tuple is added at most once and is eventually
removed from frontier. Thus, either the algorithm will exit the while loop by returning false (if a
check operations fails), or it will eventually exit the loop after reaching an empty frontier. O

ProPOsITION A.9. There exists an execution of BLQuery that returns true on input (7, q), A, a)
if and only if T, A |= q(a).

PRrOOF. (&) Suppose that 7, A |= q(a). Then there exists a homomorphism h: ¢ — C7; # such
that h(x) = a. Without loss of generality [6], we may choose h so that the image of h consists
of elements aw with |w| < 2|77| + |q|. We use h to specify an execution of BLQuery((7, q), A, a)
that returns true. First, we fix an arbitrary variable z, as root, and then we choose the element
h(zo) = apwy. Since h defines a homomorphism of g(a) into C7; #, the call canMap (zy, ao, top(stack))
returns true. We initialise stack to wy and frontier to {(zo + (aq, |stack|), v;) | v; is a child of vy }.
Next, we enter the while loop. Our aim is to make the nondeterministic choices to satisfy the
following invariant:

If (z+ (a,m),z’) € frontier, then h(z) = astack<p,. (37)

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:62 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

Recall that stack<,, denotes the word obtained by concatenating the first m symbols of stack.
Observe that before the while loop, property (37) is satisfied. At the start of each iteration of the
while loop, we proceed as follows.

[Cask 1.] If frontier contains (z — (a, 0), z") such that h(z’) € ind(A), then we choose Option 1.
We remove the tuple from frontier and choose the individual a’ = h(z’) for the guess. As a = h(z)
(by (37)) and h is a homomorphism, we have (a,a’) € P4, for all P(z,2z’) € q, and the call
canMap(z’, d’, €) returns true. We add (z’ — (a’, 0),z"") to frontier for every child z”’ of z’ in T.
These additions to frontier clearly preserve the invariant.

[CasE 2.] If Case 1 does not apply, |stack| > 0, and frontier contains (z +— (a, |stack|), z") such
that h(z") = h(z), then we choose Option 4 and remove the tuple from frontier. Since stack is
non-empty, h(z) = h(z’) occurs in the tree part. As h is a homomorphism, we have 7~ |= P(x, x), for
all P(z,2’) € q, and canMap(z’, a, top(stack)) returns true. Then, for every child z”’ of z’ in T, we
add (z’ — (a, |stack]), z””) to frontier. Observe that since h(z) = h(z’) and (37) holds for z, it also
holds for the newly added tuples.

[Cask 3.] If neither Case 1 nor Case 2 applies, and frontier contains (z > (a, |stack|), z’) such
that h(z") = h(z)p, then we choose Option 2 and remove the tuple from frontier. Note that in this
case, |stack| < 2|77| + |q| since, by (37), h(z) = aw, for w = stack<|stack|, and, by the choice of
homomorphism h, we have |wp| < 2|77| + |q|. So, we continue and choose p for the guess. By (37),
since h is a homomorphism and h(z") = h(z)g, the call isGenerated(p, a, top(stack)) returns true,
T | o(x,y) — P(x,y), for all P(z,z’) € q, and the call canMap(z’, g, top(stack)) returns true. So,
we push p onto stack and add (z’ +— (a, |stack|), z’") to frontier for every child z”’ of z’ in T. As
stack contains the word component of h(z’), invariant (37) holds for the newly added tuples.

[CasE 4.] If none of Case 1, 2 or 3 is applicable, then we choose Option 3 and remove all elements in
deepest = {(z > (a, n),z’) € frontier | n = |stack|} from frontier. Since neither Case 1 nor Case 3
applies, |stack| > 0. So, we pop the top symbol p from stack. Suppose first that deepest # 0. By (33),
all tuples in deepest share the same individual a. By (37), for every tuple (z — (a, n), z’) € deepest,
we have h(z) = awp, where w = stack|stack|; moreover, as Case 3 is not applicable, h(z’) = aw.
Since h is a homomorphism, one can show that 7 |= o(x,y) — P(x,y), for all P(z,z) € q, and
canMap(z’, a, top(stack)) returns true. So, we add to frontier all tuples (z’ +— (a, |stack]), z”"), for
children z”” of z’ in T. Note that invariant (37) is satisfied by all the new tuples. Moreover, since we
only removed the last symbol in stack, all the remaining tuples in frontier continue to satisfy (37).
Finally, if deepest = 0, then we do nothing, but the tuples in frontier continue to satisfy (37).

It is easily verified that so long as frontier is non-empty, one of these four cases applies. Since
we have shown how to make the nondeterministic choices in the while loop without returning
false, by Proposition A.8, the procedure eventually leaves the while loop and returns true.

(=) Consider an execution of BLQuery((7, q), A, a) that returns true. It follows that the while
loop is successfully exited after reaching an empty frontier. Let L be the total number of iterations
of the while loop. We inductively define a sequence hy, hy, . . ., hy of partial functions from the
variables of q to AC7-# by considering the guesses made during the different iterations of the while
loop. The domain of h; will be denoted by dom(h;). We will ensure that the following properties

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:63

hold for every 0 < i < L:

If i > 0, then dom(h;—;) € dom(h;) and h;(z) = h;—1(z), for z € dom(h;_1). (38)
If (z = (a, n), z’) € frontier at the end of iteration i, then (39)
hi(z) = aw, where w = stack<y, (39a)
and neither z’ nor any of its descendants belongs to dom(h;). (39b)
h; is a homomorphism q; — C7; #, wWhere g, is the restriction of g to dom(h;). (40)

We begin by setting ho(zo) = agwp, where wy is the word in stack (and leaving hy undefined for
all other variables). Property (38) is vacuously satisfied. Property (39) holds because of the initial
values of frontier and stack and because only zy € dom(hy), and zy cannot be its own child (hence,
it cannot appear in the last component of a tuple in frontier). To see why (40) is satisfied, first
suppose that wy = ¢ and so aywy € ind(A). Then, the call canMap(zy, ao, top(stack)) returns true.
It follows that

if zy is the jth answer variable, then ay = aj;
ag € A% for each A(zy) € q. and (ag,a9) € P4 for each P(zy, z9) € q;

hence, hy is a homomorphism of q, into Cr; #. Otherwise, wy is non-empty and wy = wge. Thus,

zp is not an answer variable of q;
T = Jyo(y, x) = A(x), for each A(zg) € q, and T |= P(x,x), for each P(z, zp) € q;

hence hy homomorphically maps all atoms of g, into C; #. Thus, hy satisfies (38)—(40).

Next, we show how to inductively define h; from h;_; while preserving (38)-(40). The variables

that belong to dom(h;) \ dom(h;_;) are precisely those variables that appear in the last position of
tuples removed from frontier during iteration i (since these are the variables for which we guess
a domain element). The choice of where to map these variables depends on which of the four
options was selected. In what follows, we will use stack’ to denote the contents of stack at the end
of iteration i.
[OrTION 1.] We remove a tuple (z +— (a,0),z") and guess a’ € ind(A). So, we set h;(z’) = a’ and
hi(v) = h;_1(v) for all v € dom(h;_;) (all other variables remain undefined). Property (38) is by
definition. For property (39), consider a tuple 7 = (v + (¢, m), v’) that belongs to frontier at the
end of iteration i. Suppose first r was added to frontier during iteration i, in which case 7 is of
the form (z’ +— (a’, 0), z”’) for some child z”’ of z’. Property (392) is satisfied because stackiSO =
Since h;_; satisfies (39), z’’ (a descendant of z’) is not in dom(h;_;), which satisfies (39b). The
remaining possibility is that 7 was already in frontier at the beginning of iteration i. Since h;_;
satisfies (39), we have h;_1(v) = cw for w = stack’; and neither v’ nor any of its descendants
belongs to dom(h;_y). Since stack’ = stack’™! and h;(v) = h;_;(v), property (39a) holds for r.
Moreover, as 7 was not removed from frontier during iteration i, we have ¢ # (z — (a,0),2z’), and
s0, by (34), v’ # z’. Thus, neither v’ nor any of its descendants is in dom(h;).

For property (40), we first note that since h; agrees with h;_; on dom(h;) and h;_; satisfies (40),
it is only necessary to consider the atoms in q; \ q,_;. There are three kinds of such atoms:

- if A(z’) € gq;, then, since canMap(z’, @’, €) returns true, we have h;(z’) = a’ € ACT
- if P(z’,2’) € q;, then, since canMap(z’, a’, ¢) returns true, (h;(z"), hi(z")) = (a’,a’) € plr.a;
- if P(z’,v) € q; with v # 2/, then v € dom(h;), so v must coincide with z, the parent of z’
(rather than being one of the children of z’); the check operation in the algorithm then
guarantees (h;(z’), h;(v)) = (@', a) € P74,
Thus, (40) holds for h;.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:64 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

[OpTION 2.] a tuple (z — (a, n), z’) is removed from frontier, n = |stack| and a role g is guessed. We
set h;j(z") = hi—1(z)o. By (39), hj_1(z) is defined. Moreover, the call isGenerated(p, g, top(stack))
ensures that h;_1(z)o € AS"#. We also set h;(v) = h;_1(v) for all v € dom(h;_;) and leave the
remaining variables undefined. Property (38) is immediate from the definition of h;, and (39b) can
be shown exactly as for Option 1. To show (39a), consider a tuple 7 = (v +— (c, m), v’) that belongs
to frontier at the end of iteration i. Suppose first that 7 was added to frontier during iteration i,
in which case 7 = (z’ — (a,n + 1),z”) for some child z” of z’. Since h;_; satisfies (39), we have
hi1(z) = a stackis_nl. Property (39a) follows then from h;(z’) = h;_i(z)o and stack’ = stack'™" p.
The other possibility is that 7 was present in frontier at the beginning of iteration i. Since h;_4
satisfies (39), we have h;_1(v) = a stack’;}l. Property (39a) continues to hold for 7 because stack’ =
stack'™ p and m < |stack’™!| and h;(v) = h;_1(v).

We now turn to property (40). As explained in the proof for Option 1, it is sufficient to consider
the atoms in q; \ q;_;, which can be of three types:

- if A(z’) € gq,, then, since canMap(z’, a, o) returns true, we have 7 |= 3y o(y, x) = A(x),
hence h;i(z’) = hi_1(z)o € A°" 7.
- if P(z’,2’) € q;, then, again, since canMap(z’, a, o) returns true, we have 7~ |= P(x, x), hence
(hi(2), hi(2)) € PCT-,
- if P(z’,v) € q; with v # 2z’ then v = z (see Option 1); so, 7 |= o(x,y) — P(y, x), whence
(hi(2), hi(v)) = (hi—1(2)0, hi—1(2)) € PCT- .
Therefore, h; is a homomorphism from q; into C7; #, which is required by (40).

[OrTION 3.] Tuples in deepest = {(z — (a,n),z’) € frontier | n = |stack|} are removed from
frontier, and role g is popped from stack. By (33), all tuples in deepest share the same individual a.
Let V = {2 | (z = (a,n),2’) € deepest}. For every v € V, we set h;(v) = astack’; we also set
hi(v) = h;_1(v) for all v € dom(h;_;) and leave the remaining variables undefined. Property (38) is
again immediate, and the argument for (39b) is the same as in Option 1. For property (39a), take
any tuple 7 = (v — (¢, m),v") in frontier at the end of iteration i. If the tuple was added to frontier
during this iteration, then v € V, a = ¢, m = |stack’|, and h;(v) = a stack’, whence (39a). The other
possibility is that 7 was present in frontier at the beginning of iteration i. Then h;_;(v) = ¢ stack’,),
andm < |stack’™"|. Since stack’ is obtained from stack’~! by popping one role, we have m < |stack’|,
and so (39a) holds for r.

For property (40), the argument is similar to Options 1 and 2 and involves considering the
different types of atoms that may appear in q; \ q;_;:

- if A(z") € q; with z’ € V then, since canMap(z’, a, top(stack)) returns true, we have
hi(z’) € AC"# (see Options 1 and 2);

- if P(z’,2") € q; with z’ € V then, since canMap(z’, a, top(stack)) returns true, we have
(hi(z'), hi(z')) € PO,

- if P(z',v) € q; with v # 2z’ and 2’ € V, then v is the parent of z (see Option 1) and, since
T = oy, x) — P(x,y), we obtain (h;(z), hi(v)) = (astack’, astack’ o) € P77,

[OrTION 4.] A tuple (z +— (a,n),z’) is removed from frontier with n = |stack|] > 0. We set
hi(z’) = hi(z), hi(v) = hi_1(v) for every v € dom(h;_1), and leave all other variables unmapped.
Again, it is easy to see that properties (38) and (39b) are satisfied by h;. For property (39a), let
7 = (v — (¢, m),v’) be a tuple in frontier at the end of iteration i. If the tuple is added during
iteration i, then v = z’, a = ¢, and m = n. Since (z + (a, n), z’) was present at the end of iteration
i — 1 and stack’ = stack’™!, we have h;(z) = a stackignl, hence hi(z) = a stack;m. As hi(z’) = hi(z),
we have h;(z') = a stackigm, so T satisfies (39a). If 7 is already present at the beginning of iteration i,
then we can use the fact that stack’ = stack’™" and all tuples in frontier satisfy (39a).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:65

To show (40), we consider the three types of atoms in q; \ q;_;:

- if A(z’) € q, then, since canMap(z’, a, top(stack)) returns true, then 7~ |= Jy o(y, x) — A(x),
where o = top(stack), and so h;(z’) € A% #;

- if P(z,2’) € q; then, since canMap(z’, a, top(stack)) returns true, then 7~ |= P(x, x), and so
(hi(2"), h(z")) € PCr 7,

- if P(z',v) € q; with v # 2/, then v = z (see Option 1), and so, since 7 |= P(x, x), we have
(hi(z'), hi(z)) € P77,

We claim that the final partial function hy is a homomorphism of q to Cs #. Since Ay, is a
homomorphism of q; into Cy; 4, it suffices to show that ¢ = q;, or equivalently, that all variables
of q are in dom(hy,). This follows from the tree-shapedness of q (which in particular means that q
is connected), invariants (31) and (36) and the fact that

dom(h;y1) = dom(h;) U {z’ | (z = (a,n),z’) is removed from frontier during iteration i }.
This completes the proof of Proposition A.9. O
ProrosITION A.10. BLQuery can be implemented by an NAuxPDA.

Proor. It suffices to show that BLQuery runs in nondeterministic logarithmic space and polyno-
mial time (the size of stack does not have to be bounded).

First, we nondeterministically fix a root variable zy, but do not actually need to store the induced
directed tree T in memory. Instead, it suffices to decide, given two variables z and z’, whether z’ is
a child of z in T, which clearly belongs to NL.

Next, we need only logarithmic space to store the individual ay. The initial word wy = 91 ... gp,
is guessed symbol-by-symbol and pushed onto stack. We note that both subroutines, isGenerated
and canMap, can be made to run in nondeterministic logarithmic space. Then, since the children of
anode in T can be identified in NL, we can decide in nondeterministic logarithmic space whether
a tuple (zg — (ay, |stack|, z;) should be included in frontier. Moreover, since the input query q is
a tree-shaped query with a bounded number of leaves, only a bounded number of tuples can be
added to frontier by each such operation. Moreover, it is clear that every tuple can be stored using
logarithmic space. More generally, by (31) and (34), one can show that |frontier| is bounded by a
constant throughout the execution of the procedure, and the tuples added during the while loop
can also be stored in logarithmically space.

Observe that iterations of the loop involve a polynomial number of simple operations such as

- remove a tuple from frontier, or add a tuple to frontier;

- pop a role from stack, or push a role onto stack;

- guess a single individual constant or symbol;

identify the children of a given variable;

test whether 7~ |= a, for some inclusion « involving symbols from 7;
— make a call to subroutines isGenerated or canMap.

For each of the above operations, it is either easy to see, or has already been explained, that the
operation can be performed in nondeterministic logarithmic space.

To complete the proof, observe that, by (35), each iteration of the while loop involves removing a
tuple from frontier or popping a role from stack. By (31), every tuple in frontier corresponds to an
edge in T, and, by (34), we create at most one tuple per edge. Thus, there are at most |q| iterations
involving the removal of a tuple. The total number of roles added to stack is bounded by 2|77| + |q|
roles in the initial stack plus |q| roles added in later iterations, yielding at most 2|7 | + 2|q| iterations
involving only the popping of a role. Thus, the total number of iterations of the while loop does
not exceed 2|7| + 3|q|. m}

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:66 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

A.13 Proof of LogCFL-hardness in Theorem 9.3
ProPOSITION A.11. The OMQ (T, q’) can be computed from C by logspace transducers.

Proor. Consider a circuit C in normal form with 2d + 1 layers of gates, where d is logarithmic in
the number of its inputs n. We show that 7, and q’ can be constructed using O(log(n)) worktape
memory.

To produce the CQ q’, we can generate the word wy symbol-by-symbol and insert the corre-
sponding variables. This can be done by a simple recursive procedure of depth d, using the worktape
to remember the current position in the recursion tree as well as the index of the current variable y;.
Note that |wg| (hence the largest index of the query variables) may be exponential in d, but is only
polynomial in n, and so we need only logarithmic space to store the index of the current variable.

The ontology 74 is obtained by making a single pass over a (graph representation) of the circuit
and generating the axioms that correspond to the gates of C and the links between them. To decide
which axioms of the form G;(x) — A(x) to include, we must also look up the value of the variables
associated to the input gates under «. O

ProrosiTION A.12. C accepts & iff T, A |= q'(a).

Proor. Denote by e the natural homomorphism from q’ to g, and by e’ the natural homo-
morphism from C7,, # to D(a). Since C accepts input e iff there is a homomorphism A from g
to D(«) [36], it remains to show that there is a homomorphism h from q to D(«) if and only if
there exists a homomorphism f from q’ to C,, a:

f f
@ ¢ ---+>Cr.a (b) ¢ —Cr.a
~ M
e o e’ e o e
// h/ // f/
——D ~—-+D
71— (@) 1-- (@)

(=) Suppose h is a homomorphism from g to D(«). We define a homomorphism h’: ¢ — C7,, «
inductively moving from the root z,, of q to its leaves. For the basis of induction, we set h’(z,,,) = a;
note that Cr, # |= Giu(a). For the inductive step, suppose that z; is a child of z;, h’(z;) is defined,
Cy,.a E Gir(h'(z;)) and h(zj) = gj. In this case, we set h'(z;) = h’(z;)Pyj, where Py is the
normalisation predicate for the axiom G (x) — Jy (S(y, x) A ij(y)). By the definition of 74, we
have C7, s |= Gj(h'(2;)), which enables us to continue the induction. It should be clear that A’ is
indeed a homomorphism from q into Cy,,, #. The desired homomorphism f: ¢’ — Cg,, # can be
obtained as the composition of e and h’, as illustrated in diagram (a).

(<) Suppose that f is a homomorphism from q’ to Cy,, #. We prove, by induction on |j — i|, that

e(y;) = e(y;) implies f(y;) = f(y;), for all variables y;, y;. (41)

The base case (|j — i| = 0) is trivial. For the inductive step, we may assume without loss of generality
that i < j and there is no intermediate variable yx between y; and y; with e(y;) = e(yx) =
e(y;) (otherwise, we can simply use the induction hypothesis together with the transitivity of
equality). It follows that e(y;+1) = e(y;j-1), and the atom between y;_; and y; is oriented from y;_;
towards y;, while the atom between y; and y;4; goes from y;;; to y;. Indeed, this holds if the
node z = e(y;) = e(y;) has a single child since in this case there are exactly two variables in q’
which are mapped to z, and they bound the subtree in q generated by z. If z has two children,
this also holds by our assumption on the intermediate variables. By the induction hypothesis,
f@is1) = f(yj-1) = awp for some word awp. Since the only parent of awg in Cy, # is aw, all

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:67

arrows in relations U, L and R are oriented towards the root, and f is a homomorphism, it follows
that f(y;) = f(y;) = aw. This concludes the inductive argument.

Next, we define function f’: ¢ — C7, # by setting f’(z) = f(y), where y is such that e(y) = z.
By (41), f” is well-defined, and since f is a homomorphism, the same holds for f’. To obtain the
desired homomorphism h: ¢ — D(«), it suffices to consider the composition of f” and e’; see
diagram (b) above. O

ACKNOWLEDGMENTS

This work was supported by the French ANR JCJC grant 12-JS02-007-01 ‘PAGODA: Practical
Algorithms for Ontology-Based Data Access’, the UK EPSRC grant EP/M012670 ‘iTract: Islands
of Tractability in Ontology-Based Data Access’, the grant MK-5379.2018.1 of the President of the
Russian Federation, and the Russian Academic Excellence Project 5-100. The authors are grateful to
the anonymous referees for their careful reading, valuable comments and constructive suggestions.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.

[2] M. Agrawal, E. Allender, R. Impagliazzo, T. Pitassi, and S. Rudich. 2001. Reducing the complexity of reductions.
Computational Complexity 10, 2 (2001), 117-138.

[3] M. Agrawal, E. Allender, and S. Rudich. 1998. Reductions in circuit complexity: an isomorphism theorem and a gap
theorem. J. Comput. System Sci. 57, 2 (1998), 127-143.

[4] N. Alon and R. Boppana. 1987. The monotone circuit complexity of Boolean functions. Combinatorica 7, 1 (1987), 1-22.

[5] S. Arora and B. Barak. 2009. Computational Complexity: A Modern Approach (1st ed.). Cambridge University Press,
New York, NY, USA.

[6] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. 2009. The DL-Lite family and relations. J. Artif. Intell.
Res. (JAIR) 36 (2009), 1-69.

[7] B. Aspvall, M. Plass, and R. Tarjan. 1979. A linear-time algorithm for testing the truth of certain quantified boolean

formulas. Inform. Process. Lett. 8, 3 (1979), 121-123.

J. Avigad. 2003. Eliminating definitions and Skolem functions in first-order logic. ACM Trans. Comput. Logic 4, 3 (2003),

402-415.

[9] J.-F. Baget, M. Leclére, M.-L. Mugnier, and E. Salvat. 2011. On rules with existential variables: walking the decidability
line. Artif. Intell. 175, 9-10 (2011), 1620-1654.

[10] M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, V. Ryzhikov, and M. Zakharyaschev. 2017. The complexity of
ontology-based data access with OWL 2 QL and bounded treewidth queries. In Proc. of the 36th ACM SIGMOD-SIGACT-
SIGAI Symp. on Principles of Database Systems, PODS 2017. ACM, 201-216.

[11] M. Bienvenu, S. Kikot, and V. V. Podolskii. 2015. Tree-like queries in OWL 2 QL: succinctness and complexity results.
In Proc. of the 30th Annual ACM/IEEE Symp. on Logic in Computer Science, LICS 2015. IEEE Computer Society, 317-328.

[12] M. Bienvenu, C. Lutz, and F. Wolter. 2013. First-order rewritability of atomic queries in Horn description logics. In
Proc. of the 23nd Int. Joint Conf. on Artificial Intelligence, IJCAI 2013. JCAI/AAAL 754-760.

[13] M. Bienvenu, M. Ortiz, and M. Simkus. 2015. Regular path queries in lightweight description logics: complexity and
algorithms. 7. Artif. Intell. Res. (FJAIR) 53 (2015), 315-374.

[14] M. Bienvenu, M. Ortiz, M. Simkus, and G. Xiao. 2013. Tractable queries for lightweight description logics. In Proc. of
the 23nd Int. Joint Conf. on Artificial Intelligence, IJCAI 2013. JCAI/AAAL 768-774.

[15] M. Bienvenu and R. Rosati. 2015. Query-based comparison of OBDA specifications. In Proc. of the 28th Int. Workshop
on Description Logics, DL 2015 (CEUR), Vol. 1350. CEUR-WS, 55-66.

[16] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. 2014. Ontology-based data access: a study through disjunctive Datalog,
CSP, and MMSNP. ACM Trans. Database Syst. 39, 4 (2014), 33:1-44.

[17] E. Botoeva, D. Calvanese, V. Santarelli, D. F. Savo, A. Solimando, and G. Xiao. 2016. Beyond OWL 2 QL in OBDA:
rewritings and approximations. In Proc. of the AAAI Conf. on Artificial Intelligence, AAAI 2016.

[18] A.Brandstadt, V. B. Le, and J. P. Spinrad. 1999. Graph Classes: A Survey. SIAM, Philadelphia, PA, USA.

[19] A. Bretto. 2013. Hypergraph Theory: An Introduction. Springer.

[20] A. Cali, G. Gottlob, and T. Lukasiewicz. 2012. A general Datalog-based framework for tractable query answering over
ontologies. J. Web Semantics 14 (2012), 57-83.

[21] A. Cali, G. Gottlob, and A. Pieris. 2012. Towards more expressive ontology languages: The query answering problem.
Artif, Intell. 193 (2012), 87-128.

[8

—

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:68 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

[22] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and D. F.
Savo. 2011. The MASTRO system for ontology-based data access. Semantic Web 2, 1 (2011), 43-53.

[23] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. 2007. Tractable reasoning and efficient query
answering in description logics: the DL-Lite family. 7. of Autom. Reasoning 39, 3 (2007), 385-429.

[24] A. Chandra and P. Merlin. 1977. Optimal implementation of conjunctive queries in relational data bases. In Conf.
Record of the 9th Annual ACM Symp. on Theory of Computing, STOC’77. ACM, 77-90.

[25] C. Chekuri and A. Rajaraman. 2000. Conjunctive query containment revisited. Theoretical Computer Science 239, 2
(2000), 211-229.

[26] A. Chortaras, D. Trivela, and G. Stamou. 2011. Optimized query rewriting for OWL 2 QL. In Proc. of the 23rd Int. Conf.
on Automated Deduction, CADE-23 (LNCS), Vol. 6803. Springer, 192-206.

[27] C. Civili and R. Rosati. 2012. A broad class of first-order rewritable tuple-generating dependencies. In Proc. of the 2nd
Int. Datalog 2.0 Workshop (LNCS), Vol. 7494. Springer, 68-80.

[28] M. Console,J. Mora, R. Rosati, V. Santarelli, and D. F. Savo. 2014. Effective computation of maximal sound approximations
of description logic ontologies. In Proc. of the 13th Int. Semantic Web Conf., ISWC 2014, Part Il (LNCS), Vol. 8797. Springer,
164-179.

[29] S. A. Cook. 1971. Characterizations of pushdown machines in terms of time-bounded computers. J. ACM 18, 1 (1971),
4-18.

[30] T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran, and G. Xiao. 2012. Query rewriting for Horn-SHIQ plus rules. In Proc. of the
26th AAAI Conf. on Artificial Intelligence, AAAI 2012. AAAI, 726-733.

[31] C.Flament. 1978. Hypergraphes arborés. Discrete Mathematics 21, 3 (1978), 223-227.

[32] J. Flum and M. Grohe. 2006. Parameterized Complexity Theory. Springer.

[33] M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase, E. Jiménez-Ruiz, D. Lanti, M. Rezk, G. Xiao, O. Ozcep, and R.
Rosati. 2015. Optique: Zooming in on Big Data. IEEE Computer 48, 3 (2015), 60-67.

[34] G. Gottlob, S. Kikot, R. Kontchakov, V. V. Podolskii, T. Schwentick, and M. Zakharyaschev. 2014. The price of query
rewriting in ontology-based data access. Artif. Intell. 213 (2014), 42-59.

[35] G. Gottlob, N. Leone, and F. Scarcello. 1999. Computing LOGCFL certificates. In Proc. of the 26th Int. Colloquium on
Automata, Languages & Programming, ICALP-99 (LNCS), Vol. 1644. Springer, 361-371.

[36] G. Gottlob, N. Leone, and F. Scarcello. 2001. The complexity of acyclic conjunctive queries. J. ACM 48, 3 (2001),
431-498.

[37] G. Gottlob, M. Manna, and A. Pieris. 2015. Polynomial rewritings for linear existential rules. In Proc. of the 24th Int.
Joint Conf. on Artificial Intelligence, IJCAI 2015. AAAI, 2992-2998.

[38] G. Gottlob, G. Orsi, and A. Pieris. 2011. Ontological queries: rewriting and optimization. In Proc. of the 27th Int. Conf.
on Data Engineering, ICDE 2011. IEEE Computer Society, 2-13.

[39] G. Gottlob and T. Schwentick. 2012. Rewriting ontological queries into small nonrecursive Datalog programs. In Proc.
of the 13th Int. Conf. on Principles of Knowledge Representation & Reasoning, KR 2012. AAAI, 254-263.

[40] S. A. Greibach. 1973. The Hardest Context-Free Language. SIAM 7. Comput. 2, 4 (1973), 304-310.

[41] M. Grigni and M. Sipser. 1992. Monotone complexity. In Proc. of the London Mathematical Society Symp. on Boolean
Function Complexity. Cambridge University Press, 57-75.

[42] M. Grohe, T. Schwentick, and L. Segoufin. 2001. When is the evaluation of conjunctive queries tractable?. In Proc. of
the 33rd Annual ACM Symp. on Theory of Computing, STOC 2001. ACM, 657-666.

[43] V. Gutiérrez-Basulto, Y. Ibafiez-Garcia, R. Kontchakov, and E. V. Kostylev. 2015. Queries with negation and inequalities
over lightweight ontologies. 7. Web Semantics 35 (2015), 184-202.

[44] P.Hansen, C. Lutz, I. Seylan, and F. Wolter. 2015. Efficient query rewriting in the description logic EL and beyond. In
Proc. of the 24th Int. Joint Conf. on Artificial Intelligence, IJCAI 2015. AAAL, 3034-3040.

[45] D. A. Huffman. 1952. A method for the construction of minimum-redundancy codes. Proceedings of the Institute of
Radio Engineers 40, 9 (1952), 1098-1101.

[46] N.Immerman. 1988. Nondeterministic space is closed under complementation. SIAM J. Comput. 17, 5 (1988), 935-938.

[47] D. S. Johnson. 1990. A Catalog of Complexity Classes. In Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity (A). 67-161.

[48] D. S. Johnson and A. C. Klug. 1982. Testing containment of conjunctive queries under functional and inclusion
dependencies. In Proc. of the ACM Symp. on Principles of Database Systems, PODS. ACM, 164-169.

[49] S.Jukna. 2012. Boolean Function Complexity — Advances and Frontiers. Algorithms and combinatorics, Vol. 27. Springer.

[50] M. Kaminski, Y. Nenov, and B. Cuenca Grau. 2014. Datalog rewritability of disjunctive Datalog programs and its
applications to ontology reasoning. In Proc. of the 28th AAAI Conference on Artificial Intelligence, AAAI 2014. AAAI,
1077-1083.

[51] M. Karchmer and A. Wigderson. 1988. Monotone circuits for connectivity require super-logarithmic depth. In Proc. of
the 20th Annual ACM Symp. on Theory of Computing, STOC ’88. ACM, 539-550.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

OMQs: Combined Complexity and Succinctness of Rewritings via Circuit Complexity 1:69

[52]

[53]

[54]

[55]

[56]
[57]
[58]
[59]
[60]

[61]

[62]
[63]

[64]
[65]

[66]
[67]
[68]
[69]
[70]
[71]
[72]

[73]
[74]

[75]
[76]
[77]

[78]

E. Kharlamov, D. Bilidas, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie, M. Rezk, M. Skjeeveland, A. Soylu, G. Xiao, D.
Zheleznyakov, M. Giese, Y. Ioannidis, Y. Kotidis, M. Koubarakis, and A. Waaler. 2017. Ontology based data access in
Statoil. §. Web Semantics 44 (2017), 3-36.

E. Kharlamov, T. Mailis, G. Mehdi, C. Neuenstadt, O. Ozgep, M. Roshchin, N. Solomakhina, A. Soylu, C. Svingos, S.
Brandt, M. Giese, Y. Ioannidis, S. Lamparter, R. Moller, Y. Kotidis, and A. Waaler. 2017. Semantic access to streaming
and static data at Siemens. 7. Web Semantics 44 (2017), 54-74.

S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. 2012. Exponential lower bounds and separation for
query rewriting. In Proc. of the 39th Int. Colloquium on Automata, Languages & Programming, ICALP 2012 (LNCS),
Vol. 7392. Springer, 263-274.

S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. 2014. On the succinctness of query rewriting over
shallow ontologies. In Proc. of the Joint Meeting of the 23rd EACSL Annual Conf. on Computer Science Logic (CSL) and
the 29th Annual ACM/IEEE Symp. on Logic in Computer Science (LICS), CSL-LICS’14. ACM, 57:1-57:10.

S. Kikot, R. Kontchakov, and M. Zakharyaschev. 2011. On (in)tractability of OBDA with OWL 2 QL. In Proc. of the 24th
Int. Workshop on Description Logics, DL 2011, Vol. 745. CEUR-WS, 224-234.

S. Kikot, R. Kontchakov, and M. Zakharyaschev. 2012. Conjunctive query Answering with OWL 2 QL. In Proc. of the
13th Int. Conf. on Principles of Knowledge Representation & Reasoning, KR 2012. AAAI, 275-285.

M. Kénig, M. Leclére, and M.-L. Mugnier. 2015. Query rewriting for existential rules with compiled preorder. In Proc.
of the 24th Int. Joint Conf. on Artificial Intelligence, I[JCAI 2015. AAAT, 3106-3112.

M. Kénig, M. Leclére, M.-L. Mugnier, and M. Thomazo. 2015. Sound, complete and minimal UCQ-rewriting for
existential rules. Semantic Web 6, 5 (2015), 451-475.

R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. 2010. The combined approach to query answering
in DL-Lite. In Proc. of the 12th Int. Conf. on Principles of Knowledge Representation & Reasoning, KR 2010. AAAI, 247-257.
R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev. 2014. Answering SPARQL queries over
databases under OWL 2 QL entailment regime. In Proc. of the 13th Int. Semantic Web Conf., ISWC 2014, Part I (LNCS),
Vol. 8796. Springer, 552-567.

E. V. Kostylev, J. L. Reutter, and D. Vrgo¢. 2015. XPath for DL ontologies. In Proc. of the 29th AAAI Conference on
Artificial Intelligence, AAAI 2015. AAAI, 1525-1531.

D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen. 2015. Mapping analysis in ontology-based data access:
algorithms and complexity. In Proc. of the 14th Int. Semantic Web Conf., ISWC 2015 (LNCS), Vol. 9366. Springer, 217-234.
L. Libkin. 2004. Elements of Finite Model Theory. Springer.

C. Lutz. 2008. The complexity of conjunctive query answering in expressive description logics. In Proc. of the 4th Int.
Joint Conf. on Automated Reasoning, I[JCAR 2008 (LNAI). Springer, 179-193.

C. Lutz, R. Piro, and F. Wolter. 2011. Description logic TBoxes: model-theoretic characterizations and rewritability. In
Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence, IJCAI 2011. [JCAT/AAAIT, 983-988.

C. Lutz, I. Seylan, D. Toman, and F. Wolter. 2013. The combined approach to OBDA: taming role hierarchies using
filters. In Proc. of the 12th Int. Semantic Web Conf., ISWC 2013, Part I (LNCS), Vol. 8218. Springer, 314-330.

C. Lutz, D. Toman, and F. Wolter. 2009. Conjunctive query answering in the description logic EL using a relational
database system. In Proc. of the 21st Int. Joint Conf. on Artificial Intelligence, IJCAI 2009. 2070-2075.

J. Mora, R. Rosati, and O. Corcho. 2014. Kyrie2: query rewriting under extensional constraints in ELHIO. In Proc. of the
13th Int. Semantic Web Conf., ISWC 2014 (LNCS), Vol. 8796. Springer, 568—583.

H. Pérez-Urbina, B. Motik, and I. Horrocks. 2009. A comparison of query rewriting techniques for DL-lite. In Proc. of
the 22nd Int. Workshop on Description Logics, DL 2009 (CEUR), Vol. 477. CEUR-WS.

H. Pérez-Urbina, E. Rodriguez-Diaz, M. Grove, G. Konstantinidis, and E. Sirin. 2012. Evaluation of query rewriting
approaches for OWL 2. In Proc. of SSWS+HPCSW 2012 (CEUR), Vol. 943. CEUR-WS.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. 2008. Linking data to ontologies. J.
Data Semantics X (2008), 133-173.

R. Raz and A. Wigderson. 1992. Monotone circuits for matching require linear depth. 7. ACM 39, 3 (1992), 736-744.
A. Razborov. 1985. Lower bounds for the monotone complexity of some Boolean functions. Dokl. Akad. Nauk SSSR
281, 4 (1985), 798-801.

A. A. Razborov. 1991. Lower bounds for deterministic and nondeterministic branching programs. In Proc. of the 8th Int.
Symp. on Fundamentals of Computation Theory, FCT’91 (LNCS), Vol. 529. Springer, 47-60.

M. Rodriguez-Muro and D. Calvanese. 2012. High performance query answering over DL-Lite ontologies. In Proc. of
the 13th Int. Conf. on Principles of Knowledge Representation & Reasoning, KR 2012. AAAI 308-318.

M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. 2013. Ontology-based data access: Ontop of databases. In
Proc. of the 12th Int. Semantic Web Conf., ISWC 2013 (LNCS), Vol. 8218. Springer, 558-573.

R. Rosati. 2007. The limits of querying ontologies. In Proc. of the 11th Int. Conf. on Database Theory, ICDT 2007 (LNCS),
Vol. 4353. Springer, 164-178.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:70 M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev

[79] R. Rosati. 2012. Prexto: query rewriting under extensional constraints in DL-Lite. In Proc. of the 9th Extended Semantic
Web Conf., EWSC 2012 (LNCS), Vol. 7295. Springer, 360-374.

[80] R.Rosati and A. Almatelli. 2010. Improving query answering over DL-Lite ontologies. In Proc. of the 12th Int. Conf. on
Principles of Knowledge Representation & Reasoning, KR 2010. AAAI 290-300.

[81] J. F. Sequeda, M. Arenas, and D. P. Miranker. 2014. OBDA: query rewriting or materialization? In practice, both!. In
Proc. of the 13th Int. Semantic Web Conf., ISWC 2014, Part I (LNCS), Vol. 8796. Springer, 535-551.

[82] I H. Sudborough. 1978. On the tape complexity of deterministic context-free languages. J ACM 25, 3 (1978), 405-414.

[83] R. Szelepcsényi. 1988. The method of forced enumeration for nondeterministic automata. Acta Informatica 26, 3 (1988),
279-284.

[84] M. Thomazo. 2013. Compact rewritings for existential rules. In Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence,
IJCAI 2013. JCAI/AAAL 1125-1131.

[85] M. Vardi. 1982. The complexity of relational query languages (extended abstract). In Proc. of the 14th ACM SIGACT
Symp. on Theory of Computing, STOC’82. ACM, 137-146.

[86] H. Venkateswaran. 1991. Properties that characterize LOGCFL. J. Comput. System Sci. 43, 2 (1991), 380-404.

[87] H. Vollmer. 1999. Introduction to Circuit Complexity: A Uniform Approach. Springer.

[88] M. Yannakakis. 1981. Algorithms for acyclic database schemes. In Proc. of the 7th Int. Conf. on Very Large Data Bases,
VLDB’81. IEEE Computer Society, 82—94.

[89] Y. Zhou, B. Cuenca Grau, Y. Nenov, M. Kaminski, and I. Horrocks. 2015. PAGOdA: pay-as-you-go ontology query
answering using a Datalog reasoner. J. Artif. Intell. Res. (JAIR) 54 (2015), 309-367.

Received April 2016; revised August 2017; accepted March 2018

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	1.1 Ontology-Based Data Access
	1.2 Problems: Succinctness and Complexity
	1.3 Our Contribution
	1.4 Some Remarks on Related OBDA Research

	2 OWL2QL ontology-mediated queries and first-order rewritability
	3 Tree-Witness Rewritings
	3.1 Basic Tree-Witness Rewriting
	3.2 The Number of Tree Witnesses
	3.3 Tree-Witness Rewriting Modified

	4 OMQ Rewritings as Boolean Functions
	4.1 Hypergraph Functions
	4.2 Primitive Evaluation Functions

	5 From OMQs to Hypergraph Programs
	5.1 Hypergraph Programs
	5.2 Tree Hypergraph Programs (THGPs)
	5.3 THGPs for OMQs of Bounded Treewidth and PFSP

	6 Representing hypergraphs as OMQs
	6.1 Arbitrary Hypergraphs as OMQs with Ontologies of Depth 2
	6.2 Hypergraphs of Degree 2 as OMQs with Ontologies of Depth 1
	6.3 Tree Hypergraphs as Tree-Shaped OMQs

	7 Hypergraph Programs and Circuit Complexity
	7.1 NP/poly and HGP3
	7.2 NL/poly and HGP2
	7.3 NL/poly and THGP()
	7.4 LogCFL/poly and THGP
	7.5 NCbold0mu mumu 111111, bold0mu mumu bold0mu mumu 333333 and THGPd

	8 The Size of OMQ Rewritings
	8.1 All OMQs
	8.2 OMQs with Ontologies of Depth 1
	8.3 Tree-Shaped OMQs with a Bounded Number of Leaves
	8.4 OMQs with PFSP and Bounded Treewidth

	9 Combined Complexity of OMQ answering
	9.1 OMQs with Bounded-Depth Ontologies
	9.2 OMQs with Bounded-Leaf CQs

	10 Conclusions and open problems
	A Supplementary Materials
	A.1 Proof of Theorem 3.9
	A.2 Proofs of Theorems 4.2 and 4.4 and of Proposition 4.3
	A.3 Generalised HGPs and THGPs
	A.4 Proof of Proposition 5.4
	A.5 Proof of Proposition 5.5
	A.6 Proof of Theorem 5.6
	A.7 Proof of Theorem 5.8
	A.8 Proofs of Theorems 5.12 and 5.14
	A.9 Proof of Theorem 6.6
	A.10 Size of OMQs Constructed in Section 6
	A.11 Proofs of Theorems 7.4 and 7.6
	A.12 Proof of the LogCFL membership in Theorem 9.3
	A.13 Proof of LogCFL-hardness in Theorem 9.3

	Acknowledgments
	References

